
Communications Toolbox™
Reference

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Communications Toolbox™ Reference
© COPYRIGHT 2011–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
April 2011 First printing New for Version 5.0
September 2011 Online only Revised for Version 5.1 (R2011b)
March 2012 Online only Revised for Version 5.2 (R2012a)
September 2012 Online only Revised for Version 5.3 (R2012b)
March 2013 Online only Revised for Version 5.4 (R2013a)
September 2013 Online only Revised for Version 5.5 (R2013b)
March 2014 Online only Revised for Version 5.6 (R2014a)
October 2014 Online only Revised for Version 5.7 (R2014b)
March 2015 Online only Revised for Version 6.0 (R2015a)
September 2015 Online only Revised for Version 6.1 (R2015b)
March 2016 Online only Revised for Version 6.2 (R2016a)
September 2016 Online only Revised for Version 6.3 (R2016b)
March 2017 Online only Revised for Version 6.4 (R2017a)
September 2017 Online only Revised for Version 6.5 (R2017b)
March 2018 Online only Revised for Version 6.6 (Release 2018a)
September 2018 Online only Revised for Version 7.0 (Release 2018b)
March 2019 Online only Revised for Version 7.1 (Release 2019a)
September 2019 Online only Revised for Version 7.2 (Release 2019b)

Apps — Alphabetical List
1

Functions — Alphabetical List
2

Blocks — Alphabetical List
3

System Objects — Alphabetical List
4

v

Contents

Apps — Alphabetical List

1

BER Analyzer
Analyze bit error rate (BER) performance of communications systems

Description
The BER Analyzer app calculates BER as a function of the energy per bit to noise power
spectral density ratio (Eb/N0). Using this app, you can:

• Plot theoretical BER vs. Eb/N0 estimates and upper bounds.
• Plot BER vs. Eb/N0 using the semianalytic technique. The semianalytic technique

estimates BER performance by using a combination of simulation and analysis. Use
this technique when the system error rate is small, for example, < 10–6.

• Estimate BER performance by using MATLAB® functions or Simulink® models.

Open the BER Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and

Communications, click the app icon.
• MATLAB command prompt: Enter bertool.

Examples

Theoretical Plot

Generate a theoretical estimate of BER performance for a 16-QAM link in AWGN.

Open the BER Analysis app.

bertool

Specify the Eb/N0 range as 0:10.

Set Modulation type to QAM and Modulation order to 16.

1 Apps — Alphabetical List

1-2

Plot the BER curve by clicking Plot.

 BER Analyzer

1-3

Semianalytic Plot

Use the semianalytic technique to plot the BER for a QPSK link having rectangular
pulses.

Open the BER Analysis app.

1 Apps — Alphabetical List

1-4

bertool

On the Semianalytic tab, set these parameters:

• Set the Modulation order to 4.
• Set the Samples per symbol parameter to 8.
• Set the Transmitted signal and Received signal parameters to

rectpulse(pskmod([0:3 0],4),8). To use the semianalytic technique, the
number of symbols must exceed ML, where M is the modulation order and L is the
impulse response length. The impulse response is 1, so a minimum of five symbols is
required.

• Specify the Numerator as ones(8,1)/8. These coefficients specify an ideal
integrator having eight samples per symbol.

Plot the BER vs. Eb/N0 curve by clicking Plot.

 BER Analyzer

1-5

Monte Carlo Simulation

Simulate BER using a custom MATLAB function.

Open the BER Analysis app.

1 Apps — Alphabetical List

1-6

bertool

On the Monte Carlo tab, specify Eb/N0 range as 1:.5:6.

To plot estimated BER values, run the simulation by clicking Run.

On the Theoretical tab, specify Eb/N0 range as 1:6 and set Modulation order to 4.

Enable convolutional coding by selecting the Convolutional check box.

Plot the upper bound of the BER curve by clicking Plot.

 BER Analyzer

1-7

Parameters
Theoretical

Eb/N0 range — Range of Eb/N0 values over which the BER is evaluated
0:18 (default) | vector

1 Apps — Alphabetical List

1-8

Specifies the range of Eb/N0 values, in dB, over which the BER is evaluated. The values in
the range vector must be real.
Example: 5:10

Channel type — Type of channel over which the BER is evaluated
AWGN (default) | Rayleigh | Rician

Specifies the type of channel over which the BER is evaluated. The Rayleigh and
Rician options correspond to flat fading channels.

Modulation type — Modulation type of the communication link
PSK (default) | DPSK | OQPSK | PAM | QAM | FSK | MSK | CPFSK

Specifies the modulation type of the communication link.

Modulation order — Modulation order of the communication link
2 (default) | 4 | 8 | 16 | 32 | 64

Specifies the modulation order of the communication link.

Differential encoding — Differential encoding of the input data
Off (default) | On

Specifies if the input data sequence is differentially encoded.

Demodulation type — Demodulation type
Coherent | Noncoherent

Specifies if Coherent or Noncoherent demodulation is used. This parameter is available
only when the Modulation type is FSK or MSK.

Channel coding — Channel coding used in estimating the BER
None (default) | Convolutional | Block

Specifies the type of channel coding used to estimate the theoretical BER.

Synchronization — Synchronization error
Perfect synchronization (default) | Normalized timing error | RMS phase
noise level

Specifies the synchronization error in the demodulation process. This parameter is
available only when the Modulation type is PSK and the Modulation order is 2.

 BER Analyzer

1-9

• When Synchronization is Normalized timing error, specify the normalized error
as a real number from 0 to 0.5.

• When Synchronization is RMS phase noise level, specify the RMS phase noise
as a nonnegative real number.

Decision method — Decoding decision method
Hard (default) | Soft

Specify the method used to decode the received data. This parameter is available when
either of these conditions exist:

• Channel coding is set to Convolutional
• Channel coding is set to Block and Coding Type is General

Trellis — Convolutional code trellis
poly2trellis(7,[171 133]) (default) | structure

Specify the convolutional code trellis as a structure variable. You can generate this
structure by using the poly2trellis function. The parameter is available only when the
Channel coding parameter is Convolutional.

Coding type — Specify block coding type
General (default) | Hamming | Golay | Reed-Solomon

Specify the block code used in the BER evaluation.

N — Codeword length
positive integer

Specify the codeword length as a positive integer.

K — Message length
positive integer

Specify the message length as a positive integer such that K is less than N.

dmin — Minimum code distance
positive integer

Specify the minimum distance of the (N,K) block code as a positive integer. This
parameter is available when the Coding type is General.

1 Apps — Alphabetical List

1-10

Semianalytic

Samples per symbol — Samples per symbol
16 (default) | positive integer

Specify the number of samples per symbol as a positive integer.

Transmitted signal — Transmitted sample sequence
rectpulse(step(comm.BPSKModulator, [0 1 1 0 0 1 1 1 1 0 1 1 0 0 0
0].'), 16) (default) | vector

Specify the transmit sequence as a real or complex column vector.
Data Types: double

Received signal — Received sample sequence
rectpulse(step(comm.BPSKModulator, [0 1 1 0 0 1 1 1 1 0 1 1 0 0 0
0].'), 16) (default) | vector

Specify the received sequence as a real or complex column vector.
Data Types: double

Numerator — Numerator of the receive filter coefficients
ones(16,1)/16 (default) | scalar | vector

Specify the numerator of the receive filter coefficients as a vector.

Denominator — Denominator of the receive filter coefficients
1 (default) | scalar | vector

Specify the denominator of the receive filter coefficients as a vector.

Monte Carlo

Simulation MATLAB file or Simulink model — File name of the BER
simulation
character vector

Specify the name of the MATLAB file or Simulink model containing the simulation code.

BER variable name — Name of the variable containing the BER simulation data
character vector

 BER Analyzer

1-11

Specify the name of the MATLAB workspace variable that contains the BER simulation
data.

Number of errors — Number of errors measured before simulation stop
100 (default) | positive integer

Specify the number of errors that must be measured before the simulation stops.
Typically, 100 measured errors are enough to produce an accurate BER estimate.

Number of bits — Number of bits processed before simulation stop
1e8 (default) | positive integer

Specify the number of bits that must be processed before the simulation stops. This
parameter is used to prevent the simulation from running too long.

Note The Monte Carlo simulation stops when either the number of errors or number of
bits threshold is reached.

See Also
Functions
berawgn | bercoding | berfading | berfit

Topics
“Bit Error Rate (BER)”

Introduced before R2006a

1 Apps — Alphabetical List

1-12

Eye Diagram Analyzer
(To be removed) Visualize and measure effects of impairments

Note eyescope will be removed in a future release. Use comm.EyeDiagram instead.

Description
The Eye Diagram Analyzer app displays and measures the effects of various
impairments. Using this app, you can:

• Visualize eye diagrams.
• Measure these quantities:

• Horizontal and vertical eye openings
• Random, deterministic, total, RMS, and peak-to-peak jitter
• Rise and fall times
• Signal-to-noise ratio

• Import and compare measurement results for eye diagrams of multiple signals.

Open the Eye Diagram Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and

Communications, click the app icon.
• MATLAB command prompt: Enter eyescope.

Examples

Import Eye Diagrams and Compare Measurement Results

MATLAB software includes a set of data containing nine eye diagram objects, which you
can import into EyeScope. While EyeScope can import eye diagram objects from either
the workspace or a MAT-file, this introduction covers importing from the workspace.

 Eye Diagram Analyzer

1-13

EyeScope reconstructs the variable names it imports to reflect the origin of the eye
diagram object.

1 Type load commeye_EyeMeasureDemoData at the MATLAB command line to load
nine eye diagram objects into the MATLAB workspace.

2 Type eyescope at the MATLAB command line to start the EyeScope tool.
3 In the EyeScope window, select File > Import Eye Diagram Object.

The Import eye diagram object dialog box opens.

In this window, the Workspace contents panel displays all eye diagram objects
available in the source location.

4 Select eyeObj1 and click Import. EyeScope imports the object, displaying an image
in the object plot and listing the file name in the Eye diagram objects list.

Note Object names associated with eye diagram objects that you import from the
work space begin with the prefix ws.

1 Apps — Alphabetical List

1-14

Review the image and note the default Eye diagram object settings and
Measurements selections. For more information, refer to the EyeScope on page 2-
554 reference page.

5
In the EyeScope window, click the Import button.

6 From the Import eye diagram object window, click to select eyeObj5 then click the
Import button.

• The EyeScope window changes, displaying a new plot and adding ws_eyeObj5 to
the Eye diagram objects list. EyeScope displays the same settings and
measurements for both eye diagram objects.

• You can switch between the eye diagram plots EyeScope displays by clicking on
an object name in the Eye diagram object list.

• Next, click ws_eyeObj1 and note the EyeScope plot and measurement values
changes.

 Eye Diagram Analyzer

1-15

7 To change or remove measurements from the EyeScope display:

• Select Options > Measurements View. The Configure measurement view
shuttle control opens.

• Hold down the <Ctrl> key and click to select Vertical Opening, Rise Time, Fall
Time, Eye SNR. Then click Remove.

8 From the left side of the shuttle control, select Crossing Time and Crossing
Amplitude and then click Add. To display EyeScope with these new settings, click
OK. The Measurement region displays Crossing Time and Crossing Amplitude at the
bottom of the Measurements section.

9 Change the list order so that Crossing Time and Crossing Amplitude appear at the
top of the list.

• Select Options > Measurements View.
• When the Configure measurement view shuttle control opens, hold down the

<Ctrl> key and click to select Crossing Time and Crossing Amplitude.
• Click the Move Up button until these selections appear at the top of the list.

Then, click OK

1 Apps — Alphabetical List

1-16

10 Select File > Save session as and then type a file name in the pop-up window.
11 Import ws_eyeObj2, ws_eyeObj3, and ws_eyeObj4. EyeScope now contains eye

diagram objects 1, 5, 2, 3, and 4 in the list.
12

Select ws_eyeObj5, and click the delete button.
13 Click File > Import Eye Diagram Object, and select ws_eyeObj5.
14 To compare measurement results for multiple eye diagram objects, click View >

Compare Measurement Results View.

In the data set, random jitter increases from experiment 1 to experiment 5, as you
can see in both the table and plot figure.

15 To include any data from the Measurements selection you chose earlier in this
procedure, use the Measurement selector. Go to the Measurement selector and
select Total Jitter. The object plot updates to display the additional measurements.

 Eye Diagram Analyzer

1-17

You can also remove measurements from the plot display. In the Measurements
selector, select Random Jitter and Deterministic Jitter. The object plot updates,
removing these two measurements.

16 To print the plot display, select File > Print to Figure. From Figure window, click
the print button.

1 Apps — Alphabetical List

1-18

Programmatic Use
eyescope calls an empty scope.

eyescope(obj) calls the eye scope and displays object obj.

Compatibility Considerations

eyescope will be removed
Warns starting in R2017b

 Eye Diagram Analyzer

1-19

Eye Diagram Analyzer will be removed in a future release. Use comm.EyeDiagram
instead.

See Also
comm.EyeDiagram

Introduced in R2008b

1 Apps — Alphabetical List

1-20

Wireless Waveform Generator
Create, impair, visualize, and export modulated waveforms

Description
The Wireless Waveform Generator app enables you to create, impair, visualize, and export
modulated waveforms.

Using this app you can:

• Generate custom OFDM, QAM, and PSK modulated waveforms.
• Generate sine wave test waveforms.
• Generate Bluetooth modulated waveforms. This feature requires the Communications

Toolbox Library for the Bluetooth® Protocol. To download this library, go to Get Add-
Ons (MATLAB).

• Generate WLAN (802.11™) modulated waveforms. This feature requires the “WLAN
Toolbox”.

• Generate LTE modulated waveforms. This feature requires the “LTE Toolbox”.
• Distort the waveform by adding RF impairments such as AWGN, phase offset,

frequency offset, DC offset, IQ imbalance, and memoryless cubic nonlinearity.
• Visualize the waveform in constellation diagram, spectrum analyzer, OFDM grid, and

time scope plots.
• Export the waveform to your workspace as a structure, to a .mat or a .bb file, or to a

runnable MATLAB script.

Note You can use the MATLAB script to reproduce your waveform outside of the
Wireless Waveform Generator app.

• Generate a waveform that you can transmit using a connected lab test instrument. The
Wireless Waveform Generator app can transmit using instruments supported by the
rfsiggen function. Use of the transmit feature in the Wireless Waveform
Generator app requires “Instrument Control Toolbox”.

For more information, see “Using Wireless Waveform Generator App”.

 Wireless Waveform Generator

1-21

Open the Wireless Waveform Generator App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and

Communications, click the app icon,
• MATLAB command prompt: Enter wirelessWaveformGenerator

Examples

Generate OFDM Waveform

Open the Wireless Waveform Generator app and generate the default waveform by
clicking Generate. The displayed waveform is an OFDM waveform with QPSK-modulated
symbols.

1 Apps — Alphabetical List

1-22

Click Insert DC null and increase the Guard band subcarriers to [20:19]. Click
Generate again. The plotted waveform changes to reflect the updated configuration.

 Wireless Waveform Generator

1-23

Generate 16-QAM Waveform with Impairments

Open the Wireless Waveform Generator app and configure a 16-QAM waveform.
Specify a phase imbalance of 11.25 degrees (pi/16 radians) and an amplitude imbalance
of 1.5 dB. Click Generate to generate the waveform.

1 Apps — Alphabetical List

1-24

Select the Filtering parameter and apply root raised cosine filtering. Click Generate
again to generate a waveform using the current configuration. The plotted waveform
changes to reflect the updated configuration.

 Wireless Waveform Generator

1-25

Generate BLE Waveform

Open the Wireless Waveform Generator app and configure a Bluetooth low energy
(BLE) waveform. To use the BLE feature, the app requires Communications Toolbox
Library for the Bluetooth Protocol . In the Waveform Type section, click Bluetooth Low
Energy. Change the bit source to User-defined and enter the input bits. Specify the
value of Samples per symbol as 32. Click Generate to generate the BLE waveform. The

1 Apps — Alphabetical List

1-26

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol
https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

plotted waveform is a BLE waveform with GMSK-modulated samples. Change the visible
plots by clicking Visualize and then selecting one or more options between
Constellation Diagram, Time Scope and Eye Diagram.

• “Using Wireless Waveform Generator App”

 Wireless Waveform Generator

1-27

See Also
Functions
bleWaveformGenerator

Apps
BER Analyzer

Topics
“Using Wireless Waveform Generator App”

Introduced in R2018b

1 Apps — Alphabetical List

1-28

Functions — Alphabetical List

2

algdeintrlv
Restore ordering of symbols using algebraically derived permutation table

Syntax
deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
deintrlvd = algdeintrlv(data,num,'welch-costas',alph)

Description
deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h) restores the
original ordering of the elements in data using a permutation table that is algebraically
derived using the Takeshita-Costello method. num is the number of elements in data if
data is a vector, or the number of rows of data if data is a matrix with multiple columns.
In the Takeshita-Costello method, num must be a power of 2. The multiplicative factor, k,
must be an odd integer less than num, and the cyclic shift, h, must be a nonnegative
integer less than num. If data is a matrix with multiple rows and columns, the function
processes the columns independently.

deintrlvd = algdeintrlv(data,num,'welch-costas',alph) uses the Welch-
Costas method. In the Welch-Costas method, num+1 must be a prime number. alph is an
integer between 1 and num that represents a primitive element of the finite field GF(num
+1).

To use this function as an inverse of the algintrlv function, use the same inputs in both
functions, except for the data input. In that case, the two functions are inverses in the
sense that applying algintrlv followed by algdeintrlv leaves data unchanged.

Examples

Interleave and Deinterleave Symbols

This example uses the Takeshita-Costello method of algintrlv and algdeintrlv.

2 Functions — Alphabetical List

2-2

Generate random data symbols to interleave. The number of rows of input data, num,
must be a power of two.

num = 16;
ncols = 3;
data = rand(num,ncols)

data = 16×3

 0.8147 0.4218 0.2769
 0.9058 0.9157 0.0462
 0.1270 0.7922 0.0971
 0.9134 0.9595 0.8235
 0.6324 0.6557 0.6948
 0.0975 0.0357 0.3171
 0.2785 0.8491 0.9502
 0.5469 0.9340 0.0344
 0.9575 0.6787 0.4387
 0.9649 0.7577 0.3816
 ⋮

Interleave the symbols using the Takeshita-Costello method. Set the multiplicative factor,
k, to an odd integer less than num, and the cyclic shift, h, to a nonnegative integer less
than num.

k = 3;
h = 4;
intdata = algintrlv(data,num,'takeshita-costello',k,h)

intdata = 16×3

 0.9572 0.6555 0.1869
 0.2785 0.8491 0.9502
 0.1576 0.7431 0.7655
 0.0975 0.0357 0.3171
 0.8147 0.4218 0.2769
 0.1270 0.7922 0.0971
 0.9058 0.9157 0.0462
 0.9575 0.6787 0.4387
 0.5469 0.9340 0.0344
 0.1419 0.0318 0.6463
 ⋮

 algdeintrlv

2-3

Deinterleave the symbols to obtain the original order.

deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h)

deintdata = 16×3

 0.8147 0.4218 0.2769
 0.9058 0.9157 0.0462
 0.1270 0.7922 0.0971
 0.9134 0.9595 0.8235
 0.6324 0.6557 0.6948
 0.0975 0.0357 0.3171
 0.2785 0.8491 0.9502
 0.5469 0.9340 0.0344
 0.9575 0.6787 0.4387
 0.9649 0.7577 0.3816
 ⋮

References
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic

Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for
Turbo-Codes,” Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16–21, 1998. p. 419.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
algintrlv

2 Functions — Alphabetical List

2-4

Topics
“Interleaving”

Introduced before R2006a

 algdeintrlv

2-5

algintrlv
Reorder symbols using algebraically derived permutation table

Syntax
intrlvd = algintrlv(data,num,'takeshita-costello',k,h)
intrlvd = algintrlv(data,num,'welch-costas',alph)

Description
intrlvd = algintrlv(data,num,'takeshita-costello',k,h) rearranges the
elements in data using a permutation table that is algebraically derived using the
Takeshita-Costello method. num is the number of elements in data if data is a vector, or
the number of rows of data if data is a matrix with multiple columns. In the Takeshita-
Costello method, num must be a power of 2. The multiplicative factor, k, must be an odd
integer less than num, and the cyclic shift, h, must be a nonnegative integer less than
num. If data is a matrix with multiple rows and columns, the function processes the
columns independently.

intrlvd = algintrlv(data,num,'welch-costas',alph) uses the Welch-Costas
method. In the Welch-Costas method, num+1 must be a prime number. alph is an integer
between 1 and num that represents a primitive element of the finite field GF(num+1). This
means that every nonzero element of GF(num+1) can be expressed as alph raised to
some integer power.

Examples

Reorder Symbols Using Algebraically Derived Permutation Table

This example illustrates how to use the Welch-Costas method of algebraic interleaving.

Define num such that num+1 is prime. Create data to interleave.

2 Functions — Alphabetical List

2-6

num = 10;
ncols = 3; % Number of columns of data to interleave
data = randi([0 num-1],num,ncols); % Random data to interleave

Find primitive polynomials of the finite field GF(num+1). The gfprimfd function
represents each primitive polynomial as a row containing the coefficients in order of
ascending powers.

pr = gfprimfd(1,'all',num+1)

pr = 4×2

 3 1
 4 1
 5 1
 9 1

Notice from the output that pr has two columns and that the second column consists
solely of 1s. In other words, each primitive polynomial is a monic degree-one polynomial.
This is because num+1 is prime. As a result, to find the primitive element that is a root of
each primitive polynomial, find a root of the polynomial by subtracting the first column of
pr from num+1 .

primel = (num+1)-pr(:,1) % Primitive elements of GF(num+1)

primel = 4×1

 8
 7
 6
 2

Now define alph as one of the elements of primel and use algintrlv to interleave.

alph = primel(1);
intrlvd = algintrlv(data,num,'Welch-Costas',alph);

Algorithms
• A Takeshita-Costello interleaver uses a length-num cycle vector whose nth element is

mod(k*(n-1)*n/2, num) for integers n between 1 and num. The function creates a

 algintrlv

2-7

permutation vector by listing, for each element of the cycle vector in ascending order,
one plus the element's successor. The interleaver's actual permutation table is the
result of shifting the elements of the permutation vector left by h. (The function
performs all computations on numbers and indices modulo num.)

• A Welch-Costas interleaver uses a permutation that maps an integer K to mod(AK,num
+1)-1.

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for
Turbo-Codes,” Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16–21, 1998. p. 419.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
algdeintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-8

amdemod
Amplitude demodulation

Syntax
z = amdemod(y,Fc,Fs)
z = amdemod(y,Fc,Fs,ini_phase)
z = amdemod(y,Fc,Fs,ini_phase,carramp)
z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den)

Description
z = amdemod(y,Fc,Fs) returns a demodulated signal z, given the input amplitude
modulated (AM) signal y, where the carrier signal has frequency Fc. The carrier signal
and y have sampling frequency Fs. The modulated signal y has zero initial phase and zero
carrier amplitude, resulting from a suppressed-carrier modulation.

Note The value of Fs must satisfy Fs ≥ 2Fc.

z = amdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal
in radians.

z = amdemod(y,Fc,Fs,ini_phase,carramp) demodulates a signal created through
transmitted-carrier modulation instead of suppressed-carrier modulation, where carramp
is the carrier amplitude of the modulated signal.

z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den) specifies the numerator and
denominator of the lowpass Butterworth filter used in the demodulation. The numerator
and denominator are generated by [num,den] = butter(n,Fc*2/Fs), where n is the
order of the lowpass filter.

Examples

 amdemod

2-9

Demodulate AM Signal

Set the carrier frequency to 10 kHz and sampling frequency to 80 kHz. Generate a time
vector having a duration of 0.01 s.

fc = 10e3;
fs = 80e3;
t = (0:1/fs:0.01)';

Create a two-tone sinusoidal signal with frequencies 300 and 600 Hz.

s = sin(2*pi*300*t)+2*sin(2*pi*600*t);

Create a lowpass filter.

[num,den] = butter(10,fc*2/fs);

Amplitude modulate the signal s.

y = ammod(s,fc,fs);

Demodulate the received signal.

z = amdemod(y,fc,fs,0,0,num,den);

Plot the original and demodulated signals.

plot(t,s,'c',t,z,'b--')
legend('Original Signal','Demodulated Signal')
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions — Alphabetical List

2-10

The demodulated signal is nearly identical to the original signal.

Input Arguments
y — Amplitude modulated input signal
scalar | vector | matrix | 3-D array

Amplitude modulated input signal, specified as a scalar, vector, matrix, or 3-D array. Each
element of y must be real.
Data Types: single | double

 amdemod

2-11

Fc — Carrier signal frequency
positive real scalar

Carrier signal frequency in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

Fs — Sampling frequency
positive real scalar

Sampling frequency of the carrier signal and input message signal in hertz (Hz), specified
as a positive real scalar. To avoid aliasing, the value of Fs must satisfy Fs > 2(Fc + BW),
where BW is the bandwidth of the original modulated signal.
Data Types: single | double

ini_phase — Initial phase
real scalar

Initial phase of the modulated signal in radians, specified as a real scalar.
Data Types: single | double

carramp — Carrier amplitude
real scalar

Carrier amplitude of the modulated signal, specified as a real scalar.
Data Types: single | double

num — Lowpass Butterworth filter numerator
real scalar

Lowpass Butterworth filter numerator, specified as a real scalar.
Data Types: single | double

den — Lowpass Butterworth filter denominator
real scalar

Lowpass Butterworth filter denominator, specified as a real scalar.
Data Types: single | double

2 Functions — Alphabetical List

2-12

Output Arguments
z — Amplitude demodulated output signal
scalar | vector | matrix | 3-D array

Amplitude demodulated output signal, returned as a scalar, vector, matrix, or 3-D array.

See Also
ammod | fmdemod | pmdemod | ssbdemod

Topics
“Analog Passband Modulation”

Introduced before R2006a

 amdemod

2-13

ammod
Amplitude modulation

Syntax
y = ammod(x,Fc,Fs)
y = ammod(x,Fc,Fs,ini_phase)
y = ammod(x,Fc,Fs,ini_phase,carramp)

Description
y = ammod(x,Fc,Fs) returns an amplitude modulated (AM) signal y, given the input
message signal x, where the carrier signal has frequency Fc. The carrier signal and x
have a sampling frequency Fs. The modulated signal has zero initial phase and zero
carrier amplitude, so the result is suppressed-carrier modulation.

Note The value of Fs must satisfy Fs ≥ 2Fc.

y = ammod(x,Fc,Fs,ini_phase) specifies the initial phase in the modulated signal y
in radians.

y = ammod(x,Fc,Fs,ini_phase,carramp) performs transmitted-carrier modulation
instead of suppressed-carrier modulation where carramp is the carrier amplitude of the
modulated signal.

Examples

Compare Double-Sideband and Single-Sideband Amplitude Modulation

Set the sample rate to 100 Hz. Create a time vector 100 seconds long.

2 Functions — Alphabetical List

2-14

fs = 100;
t = (0:1/fs:100)';

Set the carrier frequency to 10 Hz. Generate a sinusoidal signal.

fc = 10;
x = sin(2*pi*t);

Modulate x using single- and double-sideband AM.

ydouble = ammod(x,fc,fs);
ysingle = ssbmod(x,fc,fs);

Create a spectrum analyzer object to plot the spectra of the two signals. Plot the
spectrum of the double-sideband signal.

sa = dsp.SpectrumAnalyzer('SampleRate',fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'YLimits',[-60 40]);
step(sa,ydouble)

 ammod

2-15

Plot the single-sideband spectrum.

step(sa,ysingle)

2 Functions — Alphabetical List

2-16

Input Arguments
x — Input message signal
scalar | vector | matrix | 3-D array

Input message signal, specified as a scalar, vector, matrix, or a 3-D array. Each element of
x must be real.
Data Types: single | double

Fc — Carrier signal frequency
positive real scalar

 ammod

2-17

Carrier signal frequency in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

Fs — Sampling frequency
positive real scalar

Sampling frequency of carrier signal and input message signal in hertz (Hz), specified as
a positive real scalar. To avoid aliasing, the value of Fs must satisfy Fs > 2(Fc + BW),
where BW is the bandwidth of x.
Data Types: single | double

ini_phase — Initial phase
real scalar

Initial phase of the modulated signal in radians, specified as a real scalar.
Data Types: single | double

carramp — Carrier amplitude
real scalar

Carrier amplitude of the modulated signal, specified as a real scalar.
Data Types: single | double

Output Arguments
y — Amplitude modulated output signal
scalar | vector | matrix | 3-D array

Amplitude modulated signal, returned as a scalar, vector, matrix, or 3-D array.

See Also
amdemod | fmmod | pmmod | ssbmod

Topics
“Analog Passband Modulation”

2 Functions — Alphabetical List

2-18

Introduced before R2006a

 ammod

2-19

apskdemod
Amplitude phase shift keying (APSK) demodulation

Syntax
z = apskdemod(y,M,radii)
z = apskdemod(y,M,radii,phaseoffset)
z = apskdemod(___ ,Name,Value)

Description
z = apskdemod(y,M,radii) performs APSK demodulation of the input signal y, based
on the specified number of constellation points per PSK ring, M, and the radius of each
PSK ring, radii. For a description of APSK demodulation, see “APSK Hard
Demodulation” on page 2-31 and “APSK Soft Demodulation” on page 2-32.

Note apskdemod specifically applies to multiple ring PSK constellations. For a single ring
PSK constellation, use pskdemod.

z = apskdemod(y,M,radii,phaseoffset) specifies an initial phase offset for each
PSK ring of the APSK modulated signal.

z = apskdemod(___ ,Name,Value) specifies options using one or more name-value
pair arguments using any of the previous syntaxes. For example,
'OutputDataType','double' specifies the desired output data type as double. Specify
name-value pair arguments after all other input arguments.

Examples

2 Functions — Alphabetical List

2-20

Demodulate 16-APSK Signal

Demodulate a 16-APSK signal that has an unequal number of constellation points on each
circle. Plot the received constellation.

Define vectors for modulation order and PSK ring radii. Generate random 16-ary data
symbols.

M = [4 12];
radii = [1 2];
modOrder = sum(M);

x = randi([0 modOrder-1],1000,1);

Apply APSK modulation to the data.

txSig = apskmod(x,M,radii);

Pass the modulated signal through a noisy channel.

snr = 20; % dB
rxSig = awgn(txSig,snr,'measured');

Plot the transmitted (reference) signal points and the noisy received signal points.

plot(rxSig,'b*')
hold on
grid
plot(txSig,'r+')
xlim([-3 3])
ylim([-3 3])
xlabel('In-Phase')
ylabel('Quadrature')
legend('Received constellation','Reference constellation')

 apskdemod

2-21

Demodulate the received signal and compare to the input data.

z = apskdemod(rxSig,M,radii);
isequal(x,z)

ans = logical
 1

2 Functions — Alphabetical List

2-22

Demodulate 64-APSK Custom Symbol Mapped Signal

Demodulate a 64-APSK signal with custom symbol mapping. Compute hard decision bit
output and verify that the input matches the output.

Define vectors for modulation order and PSK ring radii. Generate 100 symbols of random
bit input.

M = [8 12 16 28]; % 4-PSK circles
modOrder = sum(M);
radii = [0.5 1 1.3 2];
x = randi([0 1],100*log2(modOrder),1);

Create a custom symbol mapping vector of binary mapping.

cmap = 0:63;

Modulate the data and plot the constellation.

y = apskmod(x,M,radii,'SymbolMapping',cmap,'inputType','bit', ...
 'PlotConstellation',true);

 apskdemod

2-23

Demodulate the received signal.

z = apskdemod(y,M,radii,'SymbolMapping',cmap,'OutputType','bit');

Verify that the demodulated signal is equal to the original data.

isequal(x,z)

ans = logical
 1

2 Functions — Alphabetical List

2-24

Soft Bit Demodulate 32-APSK Signal

Demodulate a 32-APSK signal and calculate soft bits.

Define vectors for modulation order and PSK ring radii. Generate 10000 symbols of
random bit data.

M = [16 16];
modOrder = sum(M);
radii = [0.6 1.2];
numSym = 10000;
x = randi([0 1], numSym*log2(modOrder),1);

Generate a reference constellation. Create a constellation diagram object.

refAPSK = apskmod(0:modOrder-1,M,radii);
constDiagAPSK = comm.ConstellationDiagram('ReferenceConstellation',refAPSK, ...
 'Title','Received Symbols','XLimits',[-2 2],'YLimits',[-2 2]);

Modulate the data.

txSig = apskmod(x,M,radii,'InputType','bit');
sigPow = var(txSig);

Pass the signal through a noisy channel.

snr = 15;
rxSig = awgn(txSig,snr,sigPow,'linear');

Plot the reference and received constellation symbols.

constDiagAPSK(rxSig)

 apskdemod

2-25

Demodulate the signal and compute soft bits.

2 Functions — Alphabetical List

2-26

z = apskdemod(rxSig,M,radii,'OutputType','approxllr', ...
 'NoiseVariance',sigPow/snr);

Input Arguments
y — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, specified as a complex scalar, vector, or matrix. Each column is
treated as an independent channel.
Data Types: double | single
Complex Number Support: Yes

M — Constellation points per PSK ring
vector

Constellation points per PSK ring, specified as a vector with more than one element.
Vector elements indicate the number of constellation points in each PSK ring. The first
element corresponds to the innermost circle, and so on, until the last element, that
corresponds to the outermost circle. Element values must be multiples of four and
sum(M) must be a power of two. The modulation order is the total number of points in the
signal constellation and equals the sum of the vector elements, sum(M).
Example: [4 12 16] specifies a three PSK ring constellation with a modulation order of
sum(M) = 32.
Data Types: double

radii — PSK ring radii
vector

PSK ring radii, specified as a vector with the same length as M. The first element
corresponds to the innermost circle, and so on, until the last element, that corresponds to
the outermost circle. The elements must be positive and arranged in increasing order.
Example: [0.5 1 2] defines constellation PSK ring radii. The inner ring has a radius of
0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.
Data Types: double

phaseoffset — PSK ring phase offsets
[pi/M(1) pi/M(2) … pi/M(end)] (default) | scalar | vector

 apskdemod

2-27

Phase offset of each PSK ring in radians, specified as a scalar or vector with the same
length as M. The first element corresponds to the innermost circle, and so on, until the last
element, that corresponds to the outermost circle. The phaseoffset can be a scalar only
if all the elements of M are the same value.
Example: [pi/4 pi/12 pi/16] defines three constellation PSK ring phase offsets. The
inner ring has a phase offset of pi/4, the second ring has a phase offset of pi/12, and the
outer ring has a phase offset of pi/16.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y =
apskdemod(x,M,radii,'OutputType','bit','OutputDataType','single');

SymbolMapping — Symbol mapping
'gray' | 'contourwise-gray' | integer vector

Symbol mapping, specified as the comma-separated pair consisting of SymbolMapping
and one of the following:

• 'contourwise-gray' — Uses Gray mapping along the contour in phase dimension.
• 'gray' — Uses Gray mapping along the contour in both the amplitude and phase

dimensions. For Gray symbol mapping, all the values for M must be equal and all the
values for phaseoffset must be equal. For a description of the Gray mapping used,
see [2].

• integer vector — Use custom symbol mapping. Vector must consist of sum(M) unique
elements with values from 0 to (sum(M)-1). The first element corresponds to the
constellation point in the first quadrant of the innermost circle, with subsequent
elements positioned counterclockwise around the PSK rings.

The default symbol mapping depends on M and phaseOffset. When all the elements of M
and phaseOffset are equal, the default is 'gray'. For all other cases, the default is
'contourwise-gray'.
Data Types: double | char | string

2 Functions — Alphabetical List

2-28

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Output type, specified as the comma-separated pair consisting of 'OutputType' and
'integer', 'bit', 'llr', or 'approxllr'. For a description of the returned output,
see z.
Data Types: char | string

OutputDataType — Output data type
'double' (default) | ...

Output data type, specified as the comma-separated pair consisting of OutputDataType
and one of the indicated data types. Acceptable values for OutputDataType depend on
the OutputType value.

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8',

'uint16', or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8',

'uint16', 'uint32', or 'logical'

Dependencies

This name-value pair argument applies only when OutputType is set to 'integer' or
'bit'.
Data Types: char | string

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as the comma-separated pair consisting of NoiseVariance and
a positive scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input
elements.

• When specified as a vector, the vector length must be equal to the number of columns
in the input signal.

 apskdemod

2-29

When the noise variance or signal power result in computations involving extreme
positive or negative magnitudes, see “APSK Soft Demodulation” on page 2-32 for
algorithm selection considerations.

Dependencies

This name-value pair argument applies only when OutputType is set to 'llr' or
'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
z — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of z depend
on the specified OutputType value.

OutputType
Value

Return Value of
apskdemod

Dimensions of z

'integer' Demodulated integer values
from 0 to (sum(M) – 1)

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(sum(M))
times the number of rows in y. Each
demodulated symbol is mapped to a group
of log2(sum(M)) elements in a column,
where the first element represents the MSB
and the last element represents the LSB.

'llr' Log-likelihood ratio value
for each bit

'approxllr
'

Approximate log-likelihood
ratio value for each bit

2 Functions — Alphabetical List

2-30

More About

APSK Hard Demodulation
The hard demodulation algorithm applies amplitude phase decoding as described in [1].

 apskdemod

2-31

APSK Soft Demodulation
For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are
available: exact LLR and approximate LLR. This table compares these algorithms.

Algorithm Accuracy Execution Speed
Exact LLR more accurate slower execution
Approximate LLR less accurate faster execution

For further description of these algorithms, see “Exact LLR Algorithm” and “Approximate
LLR Algorithm”.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

References
[1] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied

Mathematics, Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V.
Mladenov, and Z. Bojkovic, eds.). Vouliagmeni, Athens, Greece: WSEAS Press,
2009.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions — Alphabetical List

2-32

See Also
Functions
apskmod | dvbsapskdemod | genqamdemod | mil188qamdemod | pskdemod | qamdemod

Objects
comm.GeneralQAMDemodulator | comm.PSKDemodulator

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”

Introduced in R2018a

 apskdemod

2-33

apskmod
Amplitude phase shift keying (APSK) modulation

Syntax
y = apskmod(x,M,radii)
y = apskmod(x,M,radii,phaseoffset)
y = apskmod(___ ,Name,Value)

Description
y = apskmod(x,M,radii) performs APSK modulation on the input data, x, based on
the specified number of constellation points per PSK ring, M, and the radius of each PSK
ring, radii. For a description of APSK modulation, see “Algorithms” on page 2-44.

Note apskmod specifically applies to multiple ring PSK constellations. For a single ring
PSK constellation, use pskmod.

y = apskmod(x,M,radii,phaseoffset) specifies an initial phase offset for each PSK
ring of the APSK modulated signal.

y = apskmod(___ ,Name,Value) specifies options using one or more name-value pair
arguments using any of the previous syntaxes. For example,
'OutputDataType','double' specifies the desired output data type as double. Specify
name-value pair arguments after all other input arguments.

Examples

Apply APSK Modulation

Modulate data using APSK with an unequal number of constellation points on each circle.

2 Functions — Alphabetical List

2-34

Define vectors for modulation order and PSK ring radii. Generate data for constellation
points.

M = [4 8 20];
radii = [0.3 0.7 1.2];
modOrder = sum(M);
x = 0:modOrder-1;

Apply APSK modulation to the data.

y = apskmod(x,M,radii);

Plot the resulting constellation using a scatter plot.

scatterplot(y)

 apskmod

2-35

Apply APSK Modulation with Phase Offset

Modulate a random data sequence using APSK with zero phase offset for the inner circle
and pi/6 phase offset for the outer circle.

Define vectors for modulation order, PSK ring radii, and PSK ring phase offset. Generate
random data.

M = [8 8];
modOrder = sum(M);
radii = [0.5 1];
phOff = [0 pi/6];

x = randi([0 modOrder-1],100,1);

Apply APSK modulation to the data.

y = apskmod(x,M,radii,phOff);

Plot the resulting constellation using a scatter plot and observe the phase offset between
the constellation circles.

scatterplot(y)

2 Functions — Alphabetical List

2-36

Apply APSK Modulation Modifying Symbol Ordering

Plot APSK constellations for gray and custom symbol mappings.

Define vectors for modulation order and PSK ring radii. Generate bit data for
constellation points.

M = [8 8];
modOrder = sum(M);
radii = [0.5 1.5];
x = 0:modOrder-1;
xBit = de2bi(x);

 apskmod

2-37

Apply APSK modulation to the data using the default phase offset. Since element values
for M are equal and element values for phase offset are equal, the symbol mapping
defaults to 'gray'. Binary input is used to highlight the Gray nature of the constellation
mapping. Plot the constellation.

y = apskmod(xBit,M,radii,'PlotConstellation',true,'InputType','bit');

Create a custom symbol mapping vector. This custom mapping happens to be another
Gray mapping.

cmap = [0;1;9;8;12;13;5;4;2;3;11;10;14;15;7;6];

2 Functions — Alphabetical List

2-38

Apply APSK modulation with a custom symbol mapping. Plot the constellation. Binary
input is used to highlight that the custom mapping defines different Gray symbol
mapping.

z = apskmod(xBit,M,radii,'SymbolMapping',cmap,'PlotConstellation',true,'InputType','bit');

Apply APSK Modulation to Input Bits

Modulate a random bit sequence using APSK and output data type single. Pass the
signal through a noisy channel and display the constellation diagram.

Define vectors for modulation order and PSK ring radii. Generate random binary data.

 apskmod

2-39

M = [8 12 20 24];
radii = [0.8 1.2 2 2.5];
bitsPerSym = log2(sum(M));

x = randi([0 1],2000*bitsPerSym,1);

Apply APSK modulation to the data and use a name-value pair to output as data type
single.

y = apskmod(x,M,radii,'InputType','bit','OutputDataType','single');

Pass through an AWGN channel with a 25 dB SNR.

yrec = awgn(y,25,'measured');

Plot the received constellation as a scatter plot.

scatterplot(yrec)

2 Functions — Alphabetical List

2-40

Input Arguments
x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The elements of x must be binary
values or integers in the range [0, (sum(M)-1)].

Note To process the input signal as binary elements, set the 'InputType' name-value
pair to 'bit'. For binary inputs, the number of rows must be an integer multiple of

 apskmod

2-41

log2(sum(M)). Groups of log2(sum(M)) bits in a column are mapped onto a symbol, with
the first bit representing the MSB and the last bit representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

M — Constellation points per PSK ring
vector

Constellation points per PSK ring, specified as a vector with more than one element. Each
vector element indicates the number of constellation points in its corresponding PSK ring.
The first element corresponds to the innermost circle, and so on, until the last element,
which corresponds to the outermost circle. Element values must be multiples of four and
sum(M) must be a power of two. The modulation order is the total number of points in the
signal constellation and equals the sum of the vector elements, sum(M).
Example: [4 12 16] specifies a three PSK ring constellation with a modulation order of
sum(M) = 32.
Data Types: double

radii — Radius per PSK ring
vector

Radius per PSK ring, specified as a vector with the same length as M. The first element
corresponds to the innermost circle, and so on, until the last element, which corresponds
to the outermost circle. The elements must be positive and arranged in increasing order.
Example: [0.5 1 2] defines radii for three constellation PSK rings. The inner ring has a
radius of 0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.
Data Types: double

phaseoffset — Phase offset per PSK ring
[pi/M(1) pi/M(2) … pi/M(end)] (default) | scalar | vector

Phase offset per PSK ring in radians, specified as a scalar or vector with the same length
as M. The first element corresponds to the innermost circle, and so on, until the last
element, which corresponds to the outermost circle. The phaseoffset can be a scalar
only if all the elements of M are the same value.

2 Functions — Alphabetical List

2-42

Example: [pi/4 pi/12 pi/16] defines three constellation PSK ring phase offsets. The
inner ring has a phase offset of pi/4, the second ring has a phase offset of pi/12, and the
outer ring has a phase offset of pi/16.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y =
apskmod(x,M,radii,'InputType','bit','OutputDataType','single');

SymbolMapping — Symbol mapping
'gray' | 'contourwise-gray' | integer vector

Symbol mapping, specified as the comma-separated pair consisting of 'SymbolMapping'
and one of the following:

• 'contourwise-gray' — Uses Gray mapping along the contour in the phase
dimension for each PSK ring.

• 'gray' — Uses Gray mapping along the contour in both the amplitude and phase
dimensions. For Gray symbol mapping, all the values for M must be equal and all the
values for phaseoffset must be equal. For a description of the Gray mapping used,
see [2].

• integer vector — Use custom symbol mapping. Vector must consist of sum(M) unique
elements with values in the range [0, (sum(M)-1]. The first element corresponds to
the constellation point in the first quadrant of the innermost circle, with subsequent
elements positioned counterclockwise around the PSK rings.

The default symbol mapping depends on M and phaseOffset. When all the elements of M
are equal and all the elements of phaseOffset are equal, the default is 'gray'. For all
other cases, the default is 'contourwise-gray'.
Data Types: double | char | string

InputType — Input type
'integer' (default) | 'bit'

 apskmod

2-43

Input type, specified as the comma-separated pair consisting of 'InputType' and either
'integer' or 'bit'. To use 'integer', the input signal must consist of integers in the
range [0, (sum(M) – 1)]. To use 'bit', the input signal must contain binary values and
the number of rows must be an integer multiple of log2(sum(M)).
Data Types: char | string

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as the comma-separated pair consisting of
'OutputDataType' and either 'double' or 'single'.
Data Types: char | string

PlotConstellation — Plot reference constellation
false (default) | true

Plot reference constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the reference constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
y — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, returned as a complex scalar, vector, or matrix. The dimensions
of y depend on the specified 'InputType' value.

InputType Dimensions of y
'integer' y has the same dimensions as input x.
'bit' The number of rows in y equals the number of rows in x divided

by log2(sum(M)).

Algorithms
The function implements a pure APSK constellation.

2 Functions — Alphabetical List

2-44

A pure M-APSK constellation is composed of NC concentric rings or contours, each with
uniformly spaced PSK points. The M-APSK constellation set is

c

p q

p q
=

+
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = -

+
Ê

Ë

R j
M

i i M

R j
M

i

1

1

1 1

2

2

2

2
0 1

2

exp , , , ,

exp

…

ÁÁ
ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = -

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê

Ë
Á
Á

ˆ

¯

, , , ,

exp

i M

R j
M

iN

N

0 1

2

2
…

M M

C

C

Nc

p q ˜̃
˜

= -

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

, , , ,i MN0 1…
C

where

• The modulation order is equal to the sum of all Ml for l = 1, 2, ... , NC.
• NC is the number of concentric rings. NC ≥ 2.
• Ml is the number of constellation points in the lth ring.
• Rl is the radius of the lth ring.
• θl is the phase offset of the lth ring.
•

j = -1

References
[1] Corazza, Giovanni E. Digital Satellite Communications. New York: Springer Science

Business Media, LLC, 2007.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

 apskmod

2-45

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
apskdemod | dvbsapskmod | mil188qammod | pskmod | qammod

Objects
comm.GeneralQAMModulator | comm.PSKModulator

Introduced in R2018a

2 Functions — Alphabetical List

2-46

arithdeco
Decode binary code using arithmetic decoding

Syntax
dseq = arithdeco(code,counts,len)

Description
dseq = arithdeco(code,counts,len) decodes the binary arithmetic code in the
vector code to recover the corresponding sequence of len symbols. The vector counts
represents the source's statistics by listing the number of times each symbol of the
source's alphabet occurs in a test data set. This function assumes that the data in code
was produced by the arithenco function.

Examples

Decode Sequence Using Arithmetic Code

Set the counts vector so that a one occurs 99% of the time.

counts = [99 1];

Set the sequence length to 1000. Generate a random sequence.

len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]);

Arithmetically encode the random sequence then, decode the encoded sequence.

code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq));

Verify that the decoded sequence matches the original sequence.

 arithdeco

2-47

isequal(seq,dseq)

ans = logical
 1

Algorithms
This function uses the algorithm described in [1].

References
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,

2000.

See Also
arithenco

Topics
“Arithmetic Coding”

Introduced before R2006a

2 Functions — Alphabetical List

2-48

arithenco
Encode sequence of symbols using arithmetic coding

Syntax
code = arithenco(seq,counts)

Description
code = arithenco(seq,counts) generates the binary arithmetic code corresponding
to the sequence of symbols specified in the vector seq. The vector counts represents the
source's statistics by listing the number of times each symbol of the source's alphabet
occurs in a test data set.

Examples

Encode Data Sequence with Arithmetic Code

This example illustrates the compression that arithmetic coding can accomplish in some
situations. A source has a two-symbol alphabet and produces a test data set in which 99%
of the symbols are 1s. Encoding 1000 symbols from this source produces a code vector
having fewer than 1000 elements. The actual number of elements in encoded sequence
varies depending on the particular random sequence.

Set counts so that a one occurs 99% of the time.

counts = [99 1];

Generate a random data sequence of length 1000.

len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]);

Encode the sequence and display the encoded length.

 arithenco

2-49

code = arithenco(seq,counts);
s = size(code)

s = 1×2

 1 57

The length of the encoded sequence is only 5.7% of the length of the original sequence.

Algorithms
This function uses the algorithm described in [1].

References
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,

2000.

See Also
arithdeco

Topics
“Arithmetic Coding”

Introduced before R2006a

2 Functions — Alphabetical List

2-50

awgn
Add white Gaussian noise to signal

Syntax
out = awgn(in,snr)
out = awgn(in,snr,signalpower)

out = awgn(in,snr,signalpower,randobject)
out = awgn(in,snr,signalpower,seed)
out = awgn(___ ,powertype)

Description
out = awgn(in,snr) adds white Gaussian noise to the vector signal in. This syntax
assumes that the power of in is 0 dBW.

out = awgn(in,snr,signalpower) accepts an input signal power value in dBW. To
have the function measure the power of in before adding noise, specify signalpower as
'measured'.

out = awgn(in,snr,signalpower,randobject) accepts input combinations from
prior syntaxes and a random number stream object to generate normal random noise
samples. For information about producing repeatable noise samples, see “Tips” on page
2-59.

out = awgn(in,snr,signalpower,seed) specifies a seed value for initializing the
normal random number generator that is used when adding white Gaussian noise to the
input signal. For information about producing repeatable noise samples, see “Tips” on
page 2-59.

out = awgn(___ ,powertype) specifies the signal and noise power type as 'dB' or
'linear' in addition to the input arguments in any of the previous syntaxes.

For the relationships between SNR and other measures of the relative power of the noise,
such as Es/N0, and Eb/N0, see “AWGN Channel Noise Level”.

 awgn

2-51

Examples

Add AWGN to Sawtooth Signal

Create a sawtooth wave.

t = (0:0.1:10)';
x = sawtooth(t);

Apply white Gaussian noise and plot the results.

y = awgn(x,10,'measured');
plot(t,[x y])
legend('Original Signal','Signal with AWGN')

2 Functions — Alphabetical List

2-52

General QAM Modulation in AWGN Channel

Transmit and receive data using a nonrectangular 16-ary constellation in the presence of
Gaussian noise. Show the scatter plot of the noisy constellation and estimate the symbol
error rate (SER) for two different signal-to-noise ratios.

Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.

c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i];
M = length(c);

Generate random symbols.

 awgn

2-53

data = randi([0 M-1],2000,1);

Modulate the data by using the genqammod function. General QAM modulation is
necessary because the custom constellation is not rectangular.

modData = genqammod(data,c);

Pass the signal through an AWGN channel having a 20 dB signal-to-noise ratio (SNR).

rxSig = awgn(modData,20,'measured');

Display a scatter plot of the received signal and the reference constellation, c.

h = scatterplot(rxSig);
hold on
scatterplot(c,[],[],'r*',h)
grid
hold off

2 Functions — Alphabetical List

2-54

Demodulate the received signal by using the genqamdemod function. Determine the
number of symbol errors and the symbol error ratio.

demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 1

ser = 5.0000e-04

Repeat the transmission and demodulation process with an AWGN channel having a 10
dB SNR. Determine the symbol error rate for the reduced SNR. As expected, the
performance degrades when the SNR is decreased.

 awgn

2-55

rxSig = awgn(modData,10,'measured');
demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 462

ser = 0.2310

Repeatable AWGN with RandStream

Generate white Gaussian noise addition results using a RandStream object and “Class”
(MATLAB).

Specify the power of X to be 0 dBW, add noise to produce an SNR of 10 dB, and utilize a
local random stream.

S = RandStream('mt19937ar','Seed',5489);
sigin = sqrt(2)*sin(0:pi/8:6*pi);
sigout1 = awgn(sigin,10,0,S);

Add AWGN to sigin. Use isequal to compare sigout1 to sigout2. The outputs are
not equal when the random stream was not reset.

sigout2 = awgn(sigin,10,0,S);
isequal(sigout1,sigout2)

ans = logical
 0

Reset the random stream object, returning the object to its state prior to adding AWGN to
sigout1. Add AWGN to sigin and compare sigout1 to sigout3. The outputs are
equal after the random stream was reset.

reset(S);
sigout3 = awgn(sigin,10,0,S);
isequal(sigout1,sigout3)

ans = logical
 1

2 Functions — Alphabetical List

2-56

Input Arguments
in — Input signal
scalar | vector | array

Input signal, specified as a scalar, vector, or array. The power of the input signal is
assumed to be 0 dBW.
Data Types: double
Complex Number Support: Yes

snr — Signal-to-noise ratio
scalar

Signal-to-noise ratio in dB, specified as a scalar.

Note When the noise is added, this function applies the same snr to all elements of the
full input signal. Array input signals do not have a notion of independent channels. To
consider multiple channels independently, see comm.AWGNChannel.

Data Types: double

signalpower — Signal power
scalar | 'measured'

Signal power, specified as a scalar or 'measured'.

• When signalpower is a scalar, the value is used as the signal level of in to determine
the appropriate noise level based on the value of snr.

• When signalpower is 'measured', the signal level of in is computed to determine
the appropriate noise level based on the value of snr.

Note When you specify 'measured', this function computes the signal power using
all elements of the full input signal. When the power is computed, array input signals
do not have a notion of independent channels.

Data Types: double

randobject — Random number stream object
RandStream object

 awgn

2-57

Random number stream object, specified as a RandStream object. The state of the
random stream object determines the sequence of numbers produced by the randn
function. Configure the random stream object using the reset function and its
properties.

wgn generates normal random noise samples using randn. The randn function uses one
or more uniform values from the RandStream object to generate each normal value.

For information about producing repeatable noise samples, see “Tips” on page 2-59.

seed — Random number generator seed
scalar

Random number generator seed value, specified as a scalar.
Data Types: double

powertype — Signal power unit
'dB' (default) | 'linear'

Signal power unit, specified as 'dB' or 'linear'

• When powertype is 'dB', the snr is measured in dB and signalpower is measured
in dBW.

• When powertype is 'linear', the snr is measured as a ratio and signalpower is
measured in watts.

For the relationships between SNR and other measures of the relative power of the noise,
such as Es/N0, and Eb/N0, see “AWGN Channel Noise Level”.

Output Arguments
out — Output signal
scalar | vector | array

Output signal, returned as a scalar, vector, or array. The returned output signal is the
input signal with white Gaussian noise added to it.

2 Functions — Alphabetical List

2-58

Tips
• To generate repeatable white Gaussian noise samples, use one of these tips:

• Provide a static seed value as an input to wgn.
• Use the reset function on the randobject before passing it as an input to awgn.
• Provide randobject in a known state as an input to awgn. For more information,

see RandStream.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

Code generation supported, except for syntaxes that include a RandStream object.

See Also
Functions
RandStream | bsc | randn | wgn

Objects
comm.AWGNChannel

Topics
“AWGN Channel Noise Level”

Introduced before R2006a

 awgn

2-59

bchdec
BCH decoder

Syntax
decoded = bchdec(code,N,K)
decoded = bchdec(code,N,K,paritypos)
[decoded,cnumerr] = bchdec(___)
[decoded,cnumerr,ccode] = bchdec(___)

Description
decoded = bchdec(code,N,K) attempts to decode the received signal in code using
an (N,K) BCH decoder with the narrow-sense generator polynomial. Parity symbols are at
the end and the leftmost symbol is the most significant symbol.

In the decoded Galois array, each row represents the attempt at decoding the
corresponding row in code.

decoded = bchdec(code,N,K,paritypos) specifies in paritypos whether the
parity symbols in code were appended or prepended to the message in the coding
operation.

[decoded,cnumerr] = bchdec(___) returns a column vector, cnumerr, where each
element is the number of corrected errors in the corresponding row of code. You can
return cnumerr with either of the preceding syntaxes.

[decoded,cnumerr,ccode] = bchdec(___) returns ccode, the corrected version of
code.

Examples

2 Functions — Alphabetical List

2-60

Results of Error Correction

BCH-decode an input that has more errors per codeword than the error correcting
capability of the BCH decoder. Decode a BCH coded message with two errors per
codeword using a single-error correcting BCH decoder. View the effects of the error
mismatch on the output codeword.

Check the number of errors per codeword a [63,57] BCH decoder is capable of
correcting.

n = 63;
k = 57;
t = bchnumerr(n,k)

t = 1

The [63,57] BCH decoder is capable of correcting one error per codeword.

Create a random stream and use it to generate a GF array. Encode the message.

s = RandStream('swb2712','Seed',9973);
msg = gf(randi(s,[0 1],1,k));
code = bchenc(msg,n,k);

Add two errors per codeword and decode the errored code.

cnumerr2 = zeros(nchoosek(n,2),1);
nErrs = zeros(nchoosek(n,2),1);
cnumerrIdx = 1;
for idx1 = 1 : n-1
 %sprintf('idx1 for 2 errors = %d', idx1)
 for idx2 = idx1+1 : n
 errors = zeros(1,n);
 errors(idx1) = 1;
 errors(idx2) = 1;
 erroredCode = code + gf(errors);
 [decoded2, cnumerr2(cnumerrIdx)] ...
 = bchdec(erroredCode,n,k);

Encode the decoded message. Check that the re-encoded message differs from the
errored message in only one bit.

 if cnumerr2(cnumerrIdx) == 1
 code2 = bchenc(decoded2,n,k);
 nErrs(cnumerrIdx) = biterr(double(erroredCode.x), ...

 bchdec

2-61

 double(code2.x));
 end
 cnumerrIdx = cnumerrIdx + 1;
 end
end

Plot the computed number of errors, based on the difference between the doubly-errored
code and the re-encoded version of the initial decoding.

plot(nErrs)
title('Number of Actual Errors')

All inputs with two errors were decoded to a codeword that differs in exactly one bit from
the re-encoded version.

2 Functions — Alphabetical List

2-62

Decode Received BCH Codeword in Noisy Channel

Set the BCH parameters for a Galois array of GF(2).

M = 4;
n = 2^M-1; % Codeword length
k = 5; % Message length
nwords = 10; % Number of words to encode

Create a message.

msgTx = gf(randi([0 1],nwords,k));

Find the error-correction capability.

t = bchnumerr(n,k)

t = 3

Encode the message.

enc = bchenc(msgTx,n,k);

Corrupt up to t bits in each codeword.

noisycode = enc + randerr(nwords,n,1:t);

Decode the noisy code.

msgRx = bchdec(noisycode,n,k);

Validate that the message was properly decoded.

isequal(msgTx,msgRx)

ans = logical
 1

Increase the number of possible errors, and generate another noisy codeword.

t2 = t + 1;
noisycode2 = enc + randerr(nwords,n,1:t2);

 bchdec

2-63

Decode the new received codeword.

[msgRx2,numerr] = bchdec(noisycode2,n,k);

Determine if the message was properly decoded by examining the number of corrected
errors, numerr. Entries of -1 correspond to decoding failures, which occur when the
codeword has more errors than can be corrected for the specified [n,k] pair.

numerr

numerr = 10×1

 1
 2
 -1
 2
 3
 1
 -1
 4
 2
 3

Two of the ten transmitted codewords were not correctly received.

Input Arguments
code — Encoded message
Galois array

Encoded message, specified as a Galois array of symbols over GF(2). Each N-element row
of code represents a corrupted systematic codeword.

For more information, see “Creating a Galois field array”.

N — Codeword length
integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer
from 3 to 16. See “Tips” on page 2-66 for information about valid N values, valid (N,K)
pairs, and error correcting capabilities for a given BCH code.

2 Functions — Alphabetical List

2-64

Example: 15 for M=4

K — Message length
integer

Message length, specified as an integer. N and K must produce a narrow-sense BCH code.
Example: 5 specifies a Galois array with five elements.

paritypos — Parity position
'end' (default) | 'beginning'

Parity position, specified as 'end' or 'beginning'. Parity symbols are at the end or
beginning of each word in the output Galois array. If paritypos is 'beginning', then a
decoding failure causes bchdec to remove N-K symbols from the beginning rather than
the end of the row.

Output Arguments
decoded — Decoded message
Galois array of symbols over GF(2)

Decoded message, returned as a Galois array of symbols over GF(2). Each row represents
the attempt at decoding the corresponding row in code. A decoding failure occurs if
bchdec detects more than T errors in a row of code, where T is the number of errors per
codeword that the decoder is capable of correcting. When a decoding failure occurs,
bchdec forms the corresponding row of decoded by removing N-K symbols from the end
of the row of code. For more information, see “Error Correcting Capability” on page 2-
66.

cnumerr — Number of corrected errors
column vector

Number of corrected errors in the corresponding row of code, returned as a column
vector. A value of –1 in cnumerr indicates a decoding failure in that row in code.

ccode — Corrected version of code
Galois array

 bchdec

2-65

Corrected version of code, returned as a Galois array. ccode has the same format as the
input code. If a decoding failure occurs in a certain row of code, the corresponding row
in ccode contains that row unchanged.

More About

Error Correcting Capability
BCH decoders correct up to a specified number of errors per codeword based on the (N,K)
pair used to BCH encode that message. The error correcting capability, T, of a given (N,K)
pair is returned by bchnumerr. See “Tips” on page 2-66 for information about valid N
values, valid (N,K) pairs, and error correcting capabilities for a given BCH code.

If the coded message contains more errors per codeword than the decoder is capable of
correcting, the decoder is unlikely to decode to the correct codeword. For example, when
a single-error-correcting BCH decoder (T=1) is given an input with two errors per
codeword, it decodes it to a valid codeword but not the correct codeword. When a double-
error-correcting BCH decoder (T=2) is given an input with three errors per codeword, the
decoder sometimes decodes to an invalid codeword. The cnumerr and ccode output
provide feedback to analyze the correctness of the decoded message.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the

error-correction capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum

allowable value of N is 65,535.

Algorithms
bchdec uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see the works listed in “References” on page 2-67.

2 Functions — Alphabetical List

2-66

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.

Upper Saddle River, NJ: Prentice Hall, 1995.

[2] Berlekamp, Elwyn R. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

See Also
Functions
bchenc | bchgenpoly | bchnumerr

Objects
comm.BCHDecoder

Topics
“Block Codes”

Introduced before R2006a

 bchdec

2-67

bchenc
BCH encoder

Syntax
code = bchenc(msg,N,K)
code = bchenc(msg,N,K,paritypos)

Description
code = bchenc(msg,N,K) encodes the input message using an (N,K) BCH encoder that
uses a narrow-sense generator polynomial. For a description of Bose–Chaudhuri–
Hocquenghem (BCH) coding, see [1].

code = bchenc(msg,N,K,paritypos) appends or prepends the parity symbols to the
encoded input message to form the output.

Examples

Decode Received BCH Codeword in Noisy Channel

Set the BCH parameters for a Galois array of GF(2).

M = 4;
n = 2^M-1; % Codeword length
k = 5; % Message length
nwords = 10; % Number of words to encode

Create a message.

msgTx = gf(randi([0 1],nwords,k));

Find the error-correction capability.

t = bchnumerr(n,k)

2 Functions — Alphabetical List

2-68

t = 3

Encode the message.

enc = bchenc(msgTx,n,k);

Corrupt up to t bits in each codeword.

noisycode = enc + randerr(nwords,n,1:t);

Decode the noisy code.

msgRx = bchdec(noisycode,n,k);

Validate that the message was properly decoded.

isequal(msgTx,msgRx)

ans = logical
 1

Increase the number of possible errors, and generate another noisy codeword.

t2 = t + 1;
noisycode2 = enc + randerr(nwords,n,1:t2);

Decode the new received codeword.

[msgRx2,numerr] = bchdec(noisycode2,n,k);

Determine if the message was properly decoded by examining the number of corrected
errors, numerr. Entries of -1 correspond to decoding failures, which occur when the
codeword has more errors than can be corrected for the specified [n,k] pair.

numerr

numerr = 10×1

 1
 2
 -1
 2
 3
 1
 -1

 bchenc

2-69

 4
 2
 3

Two of the ten transmitted codewords were not correctly received.

Input Arguments
msg — Message to encode
Galois array of symbols over GF(2)

Message to encode, specified as a Galois array of symbols over GF(2). Each K-element
row of msg represents a message word, where the leftmost symbol is the most significant
symbol.

For more information, see “Creating a Galois field array”.
Example: msgTx = gf(randi([0 1],10,5)), where msgTx is a 10-by-5 gf array.

N — Codeword length
integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer
from 3 through 16. For more information, see “Tips” on page 2-71.
Example: 15 for M=4

K — Message length
integer

Message length, specified as an integer. N and K must produce a narrow-sense BCH code.
Example: 5 specifies a Galois array with five elements

paritypos — Parity position
'end' (default) | 'beginning'

Parity position, specified as 'end' or 'beginning'. Parity symbols are at the end or
beginning of each word in the output Galois array.

2 Functions — Alphabetical List

2-70

Output Arguments
code — Encoded message
Galois array

Encoded message, returned as a Galois array. Parity symbols are at the end or beginning
of each word in the output Galois array. To specify the position of the parity symbols, use
the paritypos argument.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the

error-correction capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum

allowable value of N is 65,535.

References
[1] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital

Communications, New York: Plenum Press, 1981.

See Also
Functions
bchdec | bchgenpoly | bchnumerr | gf

Objects
comm.BCHEncoder

Topics
“Block Codes”
“Galois Field Computations”
“How Integers Correspond to Galois Field Elements”

Introduced before R2006a

 bchenc

2-71

bchgenpoly
Generator polynomial of BCH code

Syntax
genpoly = bchgenpoly(n,k)
genpoly = bchgenpoly(n,k,prim_poly)
genpoly = bchgenpoly(n,k,prim_poly,outputFormat)
[genpoly,t] = bchgenpoly(...)

Description
genpoly = bchgenpoly(n,k) returns the narrow-sense generator polynomial of a
BCH code with codeword length n and message length k. The codeword length n must
have the form 2m-1 for some integer m between 3 and 16. The output genpoly is a Galois
row vector that represents the coefficients of the generator polynomial in order of
descending powers. The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ...,
m_2t(x)], where:

• LCM represents the least common multiple,
• m_i(x) represents the minimum polynomial corresponding to αi, α is a root of the

default primitive polynomial for the field GF(n+1),
• and t represents the error-correcting capability of the code.

Note Although the bchgenpoly function performs intermediate computations in GF(n
+1), the final polynomial has binary coefficients. The output from bchgenpoly is a Galois
vector in GF(2) rather than in GF(n+1).

genpoly = bchgenpoly(n,k,prim_poly) is the same as the syntax above, except
that prim_poly specifies the primitive polynomial for GF(n+1) that has Alpha as a root.
prim_poly is either a polynomial character vector or an integer whose binary
representation indicates the coefficients of the primitive polynomial in order of
descending powers. To use the default primitive polynomial for GF(n+1), set prim_poly
to [].

2 Functions — Alphabetical List

2-72

genpoly = bchgenpoly(n,k,prim_poly,outputFormat) is the same as the
previous syntax, except that outputFormat specifies output data type. The value of
outputFormat can be ‘gf' or 'double' corresponding to Galois field and double data
types respectively. The default value of outputFormat is 'gf'.

[genpoly,t] = bchgenpoly(...) returns t, the error-correction capability of the
code.

Examples

Create a BCH Generator Polynomial

Create two BCH generator polynomials based on different primitive polynomials.

Set the codeword and message lengths, n and k.

n = 15;
k = 11;

Create the generator polynomial and return the error correction capability, t.

[genpoly,t] = bchgenpoly(15,11)

genpoly = GF(2) array.

Array elements =

 1 0 0 1 1

t = 1

Create a generator polynomial for a (15,11) BCH code using a different primitive
polynomial expressed as a character vector. Note that genpoly2 differs from genpoly,
which uses the default primitive.

genpoly2 = bchgenpoly(15,11,'D^4 + D^3 + 1')

genpoly2 = GF(2) array.

Array elements =

 bchgenpoly

2-73

 1 1 0 0 1

Limitations
The maximum allowable value of n is 65535.

References

[1] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed., Cambridge,
MA, MIT Press, 1972.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
bchdec | bchenc | bchnumerr

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-74

bchnumerr
Number of correctable errors for BCH code

Syntax
T = bchnumerr(N)
T = bchnumerr(N, K)

Description
T = bchnumerr(N) returns all the possible combinations of message length, K, and
number of correctable errors, T, for a BCH code of codeword length, N.

T = bchnumerr(N, K) returns the number of correctable errors, T, for an (N, K) BCH
code.

Examples

Determine Message Length Combinations for BCH Code

Calculate the possible message length combinations for a BCH code word length of 15.

T = bchnumerr(15)

T = 3×3

 15 11 1
 15 7 2
 15 5 3

 bchnumerr

2-75

Compute the Correctable Errors for BCH Code

Calculate the number of correctable errors for BCH code 15,11

T = bchnumerr(15,11)

T = 1

Input Arguments
N — Codeword length
integer scalar

Codeword length, specified as an integer scalar. N must have the form 2m-1 for some
integer, m, between 3 and 16.
Example: 15
Data Types: single | double

K — Message length
integer scalar

Message length, specified as an integer scalar. N and K must produce a narrow-sense BCH
code.
Example: 11
Data Types: single | double

Output Arguments
T — Number of correctable errors
scalar or matrix

Number of correctable errors, returned as a scalar or matrix value.

bchnumerr(N) returns a matrix with three columns. The first column lists N, the second
column lists K, and the third column lists T.

2 Functions — Alphabetical List

2-76

bchnumerr(N, K) returns a scalar, which represents the number of correctable errors
for the BCH code.

See Also
bchdec | bchenc

Topics
“Block Codes”
“BCH Codes”

Introduced before R2006a

 bchnumerr

2-77

berawgn
Bit error rate (BER) for uncoded AWGN channels

Syntax
ber = berawgn(EbNo,'pam',M)
ber = berawgn(EbNo,'qam',M)
ber = berawgn(EbNo,'psk',M,dataenc)
ber = berawgn(EbNo,'oqpsk',dataenc)
ber = berawgn(EbNo,'dpsk',M)
ber = berawgn(EbNo,'fsk',M,coherence)
ber = berawgn(EbNo,'fsk',2,coherence,rho)
ber = berawgn(EbNo,'msk',precoding)
ber = berawgn(EbNo,'msk',precoding,coherence)
berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin)
[BER,SER] = berawgn(EbNo, ...)

Description

For All Syntaxes
The berawgn function returns the BER of various modulation schemes over an additive
white Gaussian noise (AWGN) channel. The first input argument, EbNo, is the ratio of bit
energy to noise power spectral density, in dB. If EbNo is a vector, the output ber is a
vector of the same size, whose elements correspond to the different Eb/N0 levels. The
supported modulation schemes, which correspond to the second input argument to the
function, are in the following table.

Modulation Scheme Second Input Argument
Phase shift keying (PSK) 'psk'
Offset quadrature phase shift keying
(OQPSK)

'oqpsk'

Differential phase shift keying (DPSK) 'dpsk'

2 Functions — Alphabetical List

2-78

Modulation Scheme Second Input Argument
Pulse amplitude modulation (PAM) 'pam'
Quadrature amplitude modulation (QAM) 'qam'
Frequency shift keying (FSK) 'fsk'
Minimum shift keying (MSK) 'msk'
Continuous phase frequency shift keying
(CPFSK)

'cpfsk'

Most syntaxes also have an M input that specifies the alphabet size for the modulation. M
must have the form 2k for some positive integer k. For all cases, the function assumes the
use of a Gray-coded signal constellation.

For Specific Syntaxes
ber = berawgn(EbNo,'pam',M) returns the BER of uncoded PAM over an AWGN
channel with coherent demodulation.

ber = berawgn(EbNo,'qam',M) returns the BER of uncoded QAM over an AWGN
channel with coherent demodulation. The alphabet size, M, must be at least 4. When

k = log2M is odd, a rectangular constellation of size M = I × J is used, where I = 2
k− 1

2

and J = 2
k + 1

2 . When k is even, a square constellation of size2
k
2 × 2

k
2 is used.

ber = berawgn(EbNo,'psk',M,dataenc) returns the BER of coherently detected
uncoded PSK over an AWGN channel. dataenc is either 'diff' for differential data
encoding or 'nondiff' for nondifferential data encoding. If dataenc is 'diff', M must
be no greater than 4.

ber = berawgn(EbNo,'oqpsk',dataenc) returns the BER of coherently detected
offset-QPSK over an uncoded AWGN channel.

ber = berawgn(EbNo,'dpsk',M) returns the BER of uncoded DPSK modulation over
an AWGN channel.

ber = berawgn(EbNo,'fsk',M,coherence) returns the BER of orthogonal uncoded
FSK modulation over an AWGN channel. coherence is either 'coherent' for coherent
demodulation or 'noncoherent' for noncoherent demodulation. M must be no greater
than 64 for 'noncoherent'.

 berawgn

2-79

ber = berawgn(EbNo,'fsk',2,coherence,rho) returns the BER for binary
nonorthogonal FSK over an uncoded AWGN channel, where rho is the complex
correlation coefficient. See “Nonorthogonal 2-FSK with Coherent Detection” for the
definition of the complex correlation coefficient and how to compute it for nonorthogonal
BFSK.

ber = berawgn(EbNo,'msk',precoding) returns the BER of coherently detected
MSK modulation over an uncoded AWGN channel. Setting precoding to 'off' returns
results for conventional MSK while setting precoding to 'on' returns results for
precoded MSK.

ber = berawgn(EbNo,'msk',precoding,coherence) specifies whether the
detection is coherent or noncoherent.

berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin) returns a lower bound on the
BER of uncoded CPFSK modulation over an AWGN channel. modindex is the modulation
index, a positive real number. kmin is the number of paths having the minimum distance;
if this number is unknown, you can assume a value of 1.

[BER,SER] = berawgn(EbNo, ...) returns both the BER and SER.

Examples

Generate Theoretical BER Data for AWGN Channels

This example shows how to generate theoretical bit error rate data for several modulation
schemes assuming an AWGN channel.

Create a vector of Eb/No values and set the modulation order, M.

EbNo = (0:10)';
M = 4;

Generate theoretical BER data for QPSK modulation by using the berawgn function.

berQ = berawgn(EbNo,'psk',M,'nondiff');

Generate equivalent data for DPSK and FSK.

berD = berawgn(EbNo,'dpsk',M);
berF = berawgn(EbNo,'fsk',M,'coherent');

2 Functions — Alphabetical List

2-80

Plot the results.

semilogy(EbNo,[berQ berD berF])
xlabel('Eb/No (dB)')
ylabel('BER')
legend('QPSK','DPSK','FSK')
grid

Limitations
The numerical accuracy of this function's output is limited by approximations related to
the numerical implementation of the expressions.

 berawgn

2-81

You can generally rely on the first couple of significant digits of the function's output.

Alternatives
As an alternative to the berawgn function, invoke the BERTool GUI (bertool), and use
the Theoretical tab.

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation, New

York, Plenum Press, 1986.

[2] Cho, K., and Yoon, D., “On the general BER expression of one- and two-dimensional
amplitude modulations”, IEEE Trans. Commun., Vol. 50, Number 7, pp.
1074-1080, 2002.

[3] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK with Gray code bit
mapping”, IEEE Trans. Commun., Vol. COM-34, Number 5, pp. 488-491, 1986.

[4] Proakis, J. G., Digital Communications, 4th ed., McGraw-Hill, 2001.

[5] Simon, M. K, Hinedi, S. M., and Lindsey, W. C., Digital Communication Techniques –
Signal Design and Detection, Prentice-Hall, 1995.

[6] Simon, M. K, “On the bit-error probability of differentially encoded QPSK and offset
QPSK in the presence of carrier synchronization”, IEEE Trans. Commun., Vol. 54,
pp. 806-812, 2006.

[7] Lindsey, W. C., and Simon, M. K, Telecommunication Systems Engineering, Englewood
Cliffs, N.J., Prentice-Hall, 1973.

See Also
bercoding | berfading | bersync | bertool

Topics
“Theoretical Results”

2 Functions — Alphabetical List

2-82

Analytical Expressions Used in berawgn

Introduced before R2006a

 berawgn

2-83

bercoding
Bit error rate (BER) for coded AWGN channels

Syntax
berub = bercoding(EbNo,'conv',decision,coderate,dspec)
berub = bercoding(EbNo,'block','hard',n,k,dmin)
berub = bercoding(EbNo,'block','soft',n,k,dmin)
berapprox = bercoding(EbNo,'Hamming','hard',n)
berub = bercoding(EbNo,'Golay','hard',24)
berapprox = bercoding(EbNo,'RS','hard',n,k)
berapprox = bercoding(...,modulation)

Description
berub = bercoding(EbNo,'conv',decision,coderate,dspec) returns an upper
bound or approximation on the BER of a binary convolutional code with coherent phase
shift keying (PSK) modulation over an additive white Gaussian noise (AWGN) channel.
EbNo is the ratio of bit energy to noise power spectral density, in dB. If EbNo is a vector,
berub is a vector of the same size, whose elements correspond to the different Eb/N0
levels. To specify hard-decision decoding, set decision to 'hard'; to specify soft-
decision decoding, set decision to 'soft'. The convolutional code has code rate equal
to coderate. The dspec input is a structure that contains information about the code's
distance spectrum:

• dspec.dfree is the minimum free distance of the code.
• dspec.weight is the weight spectrum of the code.

To find distance spectra for some sample codes, use the distspec function or see [5] and
[3].

Note The results for binary PSK and quadrature PSK modulation are the same. This
function does not support M-ary PSK when M is other than 2 or 4.

2 Functions — Alphabetical List

2-84

berub = bercoding(EbNo,'block','hard',n,k,dmin) returns an upper bound on
the BER of an [n,k] binary block code with hard-decision decoding and coherent BPSK or
QPSK modulation. dmin is the minimum distance of the code.

berub = bercoding(EbNo,'block','soft',n,k,dmin) returns an upper bound on
the BER of an [n,k] binary block code with soft-decision decoding and coherent BPSK or
QPSK modulation. dmin is the minimum distance of the code.

berapprox = bercoding(EbNo,'Hamming','hard',n) returns an approximation of
the BER of a Hamming code using hard-decision decoding and coherent BPSK
modulation. (For a Hamming code, if n is known, then k can be computed directly from n.)

berub = bercoding(EbNo,'Golay','hard',24) returns an upper bound of the BER
of a Golay code using hard-decision decoding and coherent BPSK modulation. Support for
Golay currently is only for n=24. In accordance with [3], the Golay coding upper bound
assumes only the correction of 3-error patterns. Even though it is theoretically possible to
correct approximately 19% of 4-error patterns, most decoders in practice do not have this
capability.

berapprox = bercoding(EbNo,'RS','hard',n,k) returns an approximation of the
BER of (n,k) Reed-Solomon code using hard-decision decoding and coherent BPSK
modulation.

berapprox = bercoding(...,modulation) returns an approximation of the BER for
coded AWGN channels when you specify a modulation type. See the berawgn function
for a listing of the supported modulation types.

Examples

Upper Bound on Theoretical BER for a Block Code

Find an upper bound on the theoretical BER of a (23,12) block code.

Set the example parameters.

n = 23; % Codeword length
k = 12; % Message length
dmin = 7; % Minimum distance
EbNo = 1:10; % Eb/No range (dB)

 bercoding

2-85

Estimate the BER.

berBlk = bercoding(EbNo,'block','hard',n,k,dmin);

Plot the estimated BER.

berfit(EbNo,berBlk)
ylabel('Bit Error Probability')
title('BER Upper Bound vs. Eb/No, with Best Curve Fit')

2 Functions — Alphabetical List

2-86

Estimate Coded BER Performance of 16-QAM in AWGN

Estimate the performance of a 16-QAM channel in AWGN when encoded with a (15,11)
Reed-Solomon code using hard-decision decoding.

Set the input Eb/No range and determine the uncoded BER for 16-QAM.

ebno = (2:12)';
uncodedBER = berawgn(ebno,'qam',16);

Estimate the coded BER for 16-QAM channel with a (15,11) Reed-Solomon code using
hard decision decoding.

codedBER = bercoding(ebno,'RS','hard',15,11,'qam',16);

Plot the estimated BER curves.

semilogy(ebno,[uncodedBER codedBER])
grid
legend('Uncoded BER','Coded BER')
xlabel('Eb/No (dB)')
ylabel('BER')

 bercoding

2-87

Limitations
The numerical accuracy of this function's output is limited by

• Approximations in the analysis leading to the closed-form expressions that the function
uses

• Approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

2 Functions — Alphabetical List

2-88

Alternatives
As an alternative to the bercoding function, invoke the BERTool GUI (bertool) and use
the Theoretical tab.

References
[1] Proakis, J. G., Digital Communications, 4th ed., New York, McGraw-Hill, 2001.

[2] Frenger, P., P. Orten, and T. Ottosson, “Convolutional Codes with Optimum Distance
Spectrum,” IEEE Communications Letters, Vol. 3, No. 11, Nov. 1999, pp. 317–319.

[3] Odenwalder, J. P., Error Control Coding Handbook, Final Report, LINKABIT
Corporation, San Diego, CA, 1976.

[4] Sklar, B., Digital Communications, 2nd ed., Prentice Hall, 2001.

[5] Ziemer, R. E., and R. L., Peterson, Introduction to Digital Communication, 2nd ed.,
Prentice Hall, 2001.

See Also
berawgn | berfading | bersync | bertool | distspec

Topics
“Theoretical Performance Results”
Analytical Expressions Used in bercoding and BERTool

Introduced before R2006a

 bercoding

2-89

berconfint
Bit error rate (BER) and confidence interval of Monte Carlo simulation

Syntax
[ber,interval] = berconfint(nerrs,ntrials)
[ber,interval] = berconfint(nerrs,ntrials,level)

Description
[ber,interval] = berconfint(nerrs,ntrials) returns the error probability
estimate ber and the 95% confidence interval interval for a Monte Carlo simulation of
ntrials trials with nerrs errors. interval is a two-element vector that lists the
endpoints of the interval. If the errors and trials are measured in bits, the error
probability is the bit error rate (BER); if the errors and trials are measured in symbols,
the error probability is the symbol error rate (SER).

[ber,interval] = berconfint(nerrs,ntrials,level) specifies the confidence
level as a real number between 0 and 1.

Examples
If a simulation of a communication system results in 100 bit errors in 106 trials, the BER
(bit error rate) for that simulation is the quotient 10-4. The command below finds the 95%
confidence interval for the BER of the system.

nerrs = 100; % Number of bit errors in simulation
ntrials = 10^6; % Number of trials in simulation
level = 0.95; % Confidence level
[ber,interval] = berconfint(nerrs,ntrials,level)

The output below shows that, with 95% confidence, the BER for the system is between
0.0000814 and 0.0001216.

ber =

2 Functions — Alphabetical List

2-90

 1.0000e-004

interval =

 1.0e-003 *

 0.0814 0.1216

For an example that uses the output of berconfint to plot error bars on a BER plot, see
“Curve Fitting An Error Rate Plot”

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of

Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

See Also
Introduced before R2006a

 berconfint

2-91

berfading
Bit error rate (BER) for Rayleigh and Rician fading channels

Syntax
ber = berfading(EbNo,'pam',M,divorder)
ber = berfading(EbNo,'qam',M,divorder)
ber = berfading(EbNo,'psk',M,divorder)
ber = berfading(EbNo,'depsk',M,divorder)
ber = berfading(EbNo,'oqpsk',divorder)
ber = berfading(EbNo,'dpsk',M,divorder)
ber = berfading(EbNo,'fsk',M,divorder,coherence)
ber = berfading(EbNo,'fsk',2,divorder,coherence,rho)
ber = berfading(EbNo,...,K)
ber = berfading(EbNo,'psk',2,1,K,phaserr)
[BER,SER] = berfading(EbNo, ...)

Description

For All Syntaxes
The first input argument, EbNo, is the ratio of bit energy to noise power spectral density,
in dB. If EbNo is a vector, the output ber is a vector of the same size, whose elements
correspond to the different Eb/N0 levels.

Most syntaxes also have an M input that specifies the alphabet size for the modulation. M
must have the form 2k for some positive integer k.

berfading uses expressions that assume Gray coding. If you use binary coding, the
results may differ.

For cases where diversity is used, the Eb/N0 on each diversity branch is EbNo/divorder,
where divorder is the diversity order (the number of diversity branches) and is a
positive integer.

2 Functions — Alphabetical List

2-92

For Specific Syntaxes
ber = berfading(EbNo,'pam',M,divorder) returns the BER for PAM over an
uncoded Rayleigh fading channel with coherent demodulation.

ber = berfading(EbNo,'qam',M,divorder) returns the BER for QAM over an
uncoded Rayleigh fading channel with coherent demodulation. The alphabet size, M, must
be at least 4. When k = log2M is odd, a rectangular constellation of size M = I × J is used,

where I = 2
k− 1

2 and J = 2
k + 1

2 .

ber = berfading(EbNo,'psk',M,divorder) returns the BER for coherently
detected PSK over an uncoded Rayleigh fading channel.

ber = berfading(EbNo,'depsk',M,divorder) returns the BER for coherently
detected PSK with differential data encoding over an uncoded Rayleigh fading channel.
Only M = 2 is currently supported.

ber = berfading(EbNo,'oqpsk',divorder) returns the BER of coherently detected
offset-QPSK over an uncoded Rayleigh fading channel.

ber = berfading(EbNo,'dpsk',M,divorder) returns the BER for DPSK over an
uncoded Rayleigh fading channel. For DPSK, it is assumed that the fading is slow enough
that two consecutive symbols are affected by the same fading coefficient.

ber = berfading(EbNo,'fsk',M,divorder,coherence) returns the BER for
orthogonal FSK over an uncoded Rayleigh fading channel. coherence should be
'coherent' for coherent detection, or 'noncoherent' for noncoherent detection.

ber = berfading(EbNo,'fsk',2,divorder,coherence,rho) returns the BER for
binary nonorthogonal FSK over an uncoded Rayleigh fading channel. rho is the complex
correlation coefficient. See “Nonorthogonal 2-FSK with Coherent Detection” for the
definition of the complex correlation coefficient and how to compute it for nonorthogonal
BFSK.

ber = berfading(EbNo,...,K) returns the BER over an uncoded Rician fading
channel, where K is the ratio of specular to diffuse energy in linear scale. For the case of
'fsk', rho must be specified before K.

ber = berfading(EbNo,'psk',2,1,K,phaserr) returns the BER of BPSK over an
uncoded Rician fading channel with imperfect phase synchronization. phaserr is the
standard deviation of the reference carrier phase error in radians.

 berfading

2-93

[BER,SER] = berfading(EbNo, ...) returns both the BER and SER.

Examples

Estimate BER Performance of 16-QAM in Fading

Generate a vector of Eb/No values to evaluate.

EbNo = 8:2:20;

Initialize the BER results vector.

ber = zeros(length(EbNo),20);

Generate BER vs. Eb/No curves for 16-QAM in a fading channel. Vary the diversity order
from 1 to 20.

for L = 1:20
 ber(:,L) = berfading(EbNo,'qam',16,L);
end

Plot the results.

semilogy(EbNo,ber,'b')
text(18.5, 0.02, sprintf('L=%d',1))
text(18.5, 1e-11, sprintf('L=%d',20))
title('QAM over fading channel with diversity order 1 to 20')
xlabel('E_b/N_0 (dB)')
ylabel('BER')
grid on

2 Functions — Alphabetical List

2-94

Limitations
The numerical accuracy of this function's output is limited by approximations related to
the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

 berfading

2-95

Alternatives
As an alternative to the berfading function, invoke the BERTool GUI (bertool), and use
the Theoretical tab.

References
[1] Proakis, John G., Digital Communications, 4th ed., New York, McGraw-Hill, 2001.

[2] Modestino, James W., and Mui, Shou Y., Convolutional code performance in the Rician
fading channel, IEEE Trans. Commun., 1976.

[3] Cho, K., and Yoon, D., “On the general BER expression of one- and two-dimensional
amplitude modulations”, IEEE Trans. Commun., Vol. 50, Number 7, pp.
1074-1080, 2002.

[4] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK with Gray code bit
mapping”, IEEE Trans. Commun., Vol. COM-34, Number 5, pp. 488-491, 1986.

[5] Lindsey, W. C., “Error probabilities for Rician fading multichannel reception of binary
and N-ary signals”, IEEE Trans. Inform. Theory, Vol. IT-10, pp. 339-350, 1964.

[6] Simon, M. K , Hinedi, S. M., and Lindsey, W. C., Digital Communication Techniques –
Signal Design and Detection, Prentice-Hall, 1995.

[7] Simon, M. K., and Alouini, M. S., Digital Communication over Fading Channels – A
Unified Approach to Performance Analysis, 1st ed., Wiley, 2000.

[8] Simon, M. K , “On the bit-error probability of differentially encoded QPSK and offset
QPSK in the presence of carrier synchronization”, IEEE Trans. Commun., Vol. 54,
pp. 806-812, 2006.

See Also
berawgn | bercoding | bersync | bertool

Topics
“Theoretical Performance Results”

2 Functions — Alphabetical List

2-96

Analytical Expressions Used in berfading

Introduced before R2006a

 berfading

2-97

berfit
Fit curve to nonsmooth empirical bit error rate (BER) data

Syntax
fitber = berfit(empEbNo,empber)
fitber = berfit(empEbNo,empber,fitEbNo)
fitber = berfit(empEbNo,empber,fitEbNo,options)
fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)
[fitber,fitprops] = berfit(...)
berfit(...)
berfit(empEbNo,empber,fitEbNo,options,'all')

Description
fitber = berfit(empEbNo,empber) fits a curve to the empirical BER data in the
vector empber and returns a vector of fitted bit error rate (BER) points. The values in
empber and fitber correspond to the Eb/N0 values, in dB, given by empEbNo. The vector
empEbNo must be in ascending order and must have at least four elements.

Note The berfit function is intended for curve fitting or interpolation, not
extrapolation. Extrapolating BER data beyond an order of magnitude below the smallest
empirical BER value is inherently unreliable.

fitber = berfit(empEbNo,empber,fitEbNo) fits a curve to the empirical BER data
in the vector empber corresponding to the Eb/N0 values, in dB, given by empEbNo. The
function then evaluates the curve at the Eb/N0 values, in dB, given by fitEbNo and
returns the fitted BER points. The length of fitEbNo must equal or exceed that of
empEbNo.

fitber = berfit(empEbNo,empber,fitEbNo,options) uses the structure
options to override the default options used for optimization. These options are the ones
used by the fminsearch function. You can create the options structure using the
optimset function. Particularly relevant fields are described in the table below.

2 Functions — Alphabetical List

2-98

Field Description
options.Display Level of display: 'off' (default) displays no

output; 'iter' displays output at each
iteration; 'final' displays only the final
output; 'notify' displays output only if the
function does not converge.

options.MaxFunEvals Maximum number of function evaluations
before optimization ceases. The default is
104.

options.MaxIter Maximum number of iterations before
optimization ceases. The default is 104.

options.TolFun Termination tolerance on the closed-form
function used to generate the fit. The default
is 10-4.

options.TolX Termination tolerance on the coefficient
values of the closed-form function used to
generate the fit. The default is 10-4.

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype) specifies which
closed-form function berfit uses to fit the empirical data, from the possible fits listed in
“Algorithms” on page 2-105 below. fittype can be 'exp', 'exp+const',
'polyRatio', or 'doubleExp+const'. To avoid overriding default optimization
options, use options = [].

[fitber,fitprops] = berfit(...) returns the MATLAB structure fitprops, which
describes the results of the curve fit. Its fields are described in the table below.

Field Description
fitprops.fitType The closed-form function type used to

generate the fit: 'exp', 'exp+const',
'polyRatio', or 'doubleExp+const'.

fitprops.coeffs The coefficients used to generate the fit. If
the function cannot find a valid fit,
fitprops.coeffs is an empty vector.

 berfit

2-99

Field Description
fitprops.sumSqErr The sum squared error between the log of

the fitted BER points and the log of the
empirical BER points.

fitprops.exitState The exit condition of berfit: 'The
curve fit converged to a
solution.', 'The maximum number
of function evaluations was
exceeded.', or 'No desirable fit
was found'.

fitprops.funcCount The number of function evaluations used
in minimizing the sum squared error
function.

fitprops.iterations The number of iterations taken in
minimizing the sum squared error
function. This is not necessarily equal to
the number of function evaluations.

berfit(...) plots the empirical and fitted BER data.

berfit(empEbNo,empber,fitEbNo,options,'all') plots the empirical and fitted
BER data from all the possible fits, listed in the “Algorithms” on page 2-105 below, that
return a valid fit. To avoid overriding default options, use options = [].

Note A valid fit must be

• real-valued
• monotonically decreasing
• greater than or equal to 0 and less than or equal to 1

If a fit does not confirm to this criteria, it is rejected.

2 Functions — Alphabetical List

2-100

Examples
Bit Error Rate Curve Fitting

These examples illustrate the syntax of the berfit function, but they use hard-coded or
theoretical BER data for simplicity. For an example that uses empirical BER data from a
simulation, see “Curve Fitting An Error Rate Plot”.

Best fit for a sample set of data

EbN0 = 0:13;
berdata = [.2 .15 .13 .12 .08 .09 .08 .07 .06 .04 .03 .02 .01 .004];
berfit(EbN0,berdata);

 berfit

2-101

Plot the best fit. The curve connects the points created by evaluating the fit expression at
the values in EbN0. To make the curve look smoother, use a syntax like
berfit(EbN0,berdata,[0:0.2:13]). This alternative syntax uses more points when
plotting the curve, but it does not change the fit expression.

Fit for a BER curve with an error floor

We generate the empirical BER array by simulating a channel with a null (ch = [0.5 0.47])
with BPSK modulation and linear MMSE equalizer at the receiver. We run the berfit with
the 'all' option. The 'doubleExp+const' fit does not provide a valid fit, and the 'exp'
fit type does not work well for this data. The 'exp+const' and 'polyRatio' fits closely
match the simulated data.

EbN0 = -10:3:15;
empBER = [0.3361 0.3076 0.2470 0.1878 0.1212 0.0845 0.0650 0.0540 0.0474];
figure; berfit(EbN0, empBER, [], [], 'all');

2 Functions — Alphabetical List

2-102

Use of the options input structure as well as the fitprops output structure

The 'notify' value for the display level causes the function to produce output when one
of the attempted fits does not converge. The exitState field of the output structure also
indicates which fit converges and which fit does not.

M = 8; EbN0 = 3:10;
berdata = berfading(EbN0,'psk',M,2); % Compute theoretical BER.
noisydata = berdata.*[.93 .92 1 .59 .08 .15 .01 .01];
% Say when fit fails to converge.
options = optimset('display','notify');

disp('*** Trying exponential fit.') % Poor fit

 berfit

2-103

*** Trying exponential fit.

[fitber1,fitprops1] = berfit(EbN0,noisydata,EbN0,...
 options,'exp')

Exiting: Maximum number of function evaluations has been exceeded
 - increase MaxFunEvals option.
 Current function value: 2.749919

fitber1 = 1×8

 0.1247 0.0727 0.0376 0.0168 0.0064 0.0020 0.0005 0.0001

fitprops1 = struct with fields:
 fitType: 'exp'
 coeffs: [4x1 double]
 sumSqErr: 2.7499
 exitState: 'The maximum number of function evaluations has been exceeded'
 funcCount: 10001
 iterations: 6193

disp('*** Trying polynomial ratio fit.') % Good fit

*** Trying polynomial ratio fit.

[fitber2,fitprops2] = berfit(EbN0,noisydata,EbN0,...
 options,'polyRatio')

fitber2 = 1×8

 0.1701 0.0874 0.0407 0.0169 0.0060 0.0016 0.0003 0.0001

fitprops2 = struct with fields:
 fitType: 'polyRatio'
 coeffs: [6x1 double]
 sumSqErr: 2.3880
 exitState: 'The curve fit converged to a solution'
 funcCount: 554

2 Functions — Alphabetical List

2-104

 iterations: 331

Algorithms
The berfit function fits the BER data using unconstrained nonlinear optimization via the
fminsearch function. The closed-form functions that berfit considers are listed in the
table below, where x is the Eb/N0 in linear terms (not dB) and f is the estimated BER.
These functions were empirically found to provide close fits in a wide variety of situations,
including exponentially decaying BERs, linearly varying BERs, and BER curves with error
rate floors.

Value of fittype Functional Expression
'exp'

f (x) = a1exp
− x− a2

a3

a4

'exp+const'
f (x) = a1exp

−(x− a2)a3

a4
+ a5

'polyRatio'
f (x) = a1x2 + a2x + a3

x3 + a4x2 + a5x + a6

'doubleExp+const'
a1exp

− x− a2
a3

a4

+ a5exp
− x− a6

a7

a8
+ a9

The sum squared error function that fminsearch attempts to minimize is

F = ∑ [log(empirical BER)− log(fitted BER)]2

where the fitted BER points are the values in fitber and the sum is over the Eb/N0 points
given in empEbNo. It is important to use the log of the BER values rather than the BER
values themselves so that the high-BER regions do not dominate the objective function
inappropriately.

 berfit

2-105

References
For a general description of unconstrained nonlinear optimization, see the following work.

[1] Chapra, Steven C., and Raymond P. Canale, Numerical Methods for Engineers, Fourth
Edition, New York, McGraw-Hill, 2002.

See Also
Introduced before R2006a

2 Functions — Alphabetical List

2-106

bersync
Bit error rate (BER) for imperfect synchronization

Syntax
ber = bersync(EbNo,timerr,'timing')
ber = bersync(EbNo,phaserr,'carrier')

Description
ber = bersync(EbNo,timerr,'timing') returns the BER of uncoded coherent
binary phase shift keying (BPSK) modulation over an additive white Gaussian noise
(AWGN) channel with imperfect timing. The normalized timing error is assumed to have a
Gaussian distribution. EbNo is the ratio of bit energy to noise power spectral density, in
dB. If EbNo is a vector, the output ber is a vector of the same size, whose elements
correspond to the different Eb/N0 levels. timerr is the standard deviation of the timing
error, normalized to the symbol interval. timerr must be between 0 and 0.5.

ber = bersync(EbNo,phaserr,'carrier') returns the BER of uncoded BPSK
modulation over an AWGN channel with a noisy phase reference. The phase error is
assumed to have a Gaussian distribution. phaserr is the standard deviation of the error
in the reference carrier phase, in radians.

Examples

Calculate Bit Error Rate (BER) for Imperfect Synchronization

The code below computes the BER of coherent BPSK modulation over an AWGN channel
with imperfect timing. The example varies both EbNo and timerr. (When timerr
assumes the final value of zero, the bersync command produces the same result as
berawgn(EbNo,'psk',2).)

EbNo = [4 8 12];
timerr = [0.2 0.07 0];

 bersync

2-107

ber = zeros(length(timerr),length(EbNo));
for ii = 1:length(timerr)
 ber(ii,:) = bersync(EbNo,timerr(ii),'timerr');
end

Display result using scientific notation.

format short e; ber

ber = 3×3

 5.2073e-02 2.0536e-02 1.1160e-02
 1.8948e-02 7.9757e-04 4.9008e-06
 1.2501e-02 1.9091e-04 9.0060e-09

Switch back to default notation format.

format;

Limitations
The numerical accuracy of this function's output is limited by

• Approximations in the analysis leading to the closed-form expressions that the function
uses

• Approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

Limitations Related to Extreme Values of Input Arguments
Inherent limitations in numerical precision force the function to assume perfect
synchronization if the value of timerr or phaserr is very small. The table below
indicates how the function behaves under these conditions.

Condition Behavior of Function
timerr < eps bersync(EbNo,timerr,'timing') defined as

berawgn(EbNo,'psk',2)

2 Functions — Alphabetical List

2-108

Condition Behavior of Function
phaserr < eps bersync(EbNo,phaserr,'carrier') defined as

berawgn(EbNo,'psk',2)

Algorithms
This function uses formulas from [3].

When the last input is 'timing', the function computes

1
4πσ∫−∞

∞
exp(− ξ2

2σ2)∫2R(1− 2 ξ)
∞

exp(− x2

2)dxdξ + 1
2 2π∫2R

∞
exp(− x2

2)dx

where σ is the timerr input and R is the value of EbNo converted from dB to a linear
scale.

When the last input is 'carrier', the function computes

1
πσ∫0 ∞exp(− ϕ2

2σ2)∫2Rcosϕ
∞

exp(− y2

2)dydϕ

where σ is the phaserr input and R is the value of EbNo converted from dB to a linear
scale.

Alternatives
As an alternative to the bersync function, invoke the BERTool GUI (bertool) and use
the Theoretical tab.

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

 bersync

2-109

[2] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Second
Edition, Upper Saddle River, NJ, Prentice-Hall, 2001.

[3] Stiffler, J. J., Theory of Synchronous Communications, Englewood Cliffs, NJ, Prentice-
Hall, 1971.

See Also
berawgn | bercoding | berfading | bertool

Topics
“Theoretical Results”

Introduced before R2006a

2 Functions — Alphabetical List

2-110

bertool
Open bit error rate analysis GUI (BERTool)

Syntax
bertool

Description
bertool launches the Bit Error Rate Analysis Tool (BERTool). The BERTool application
enables you to analyze the bit error rate (BER) performance of communications systems.
BERTool computes the BER as a function of signal-to-noise ratio. It analyzes performance
either with Monte-Carlo simulations of MATLAB functions and Simulink models or with
theoretical closed-form expressions for selected types of communication systems. See
“BERTool” to learn more.

Introduced before R2006a

 bertool

2-111

bi2de
Convert binary vectors to decimal numbers

Syntax
d =bi2de(b)
d = bi2de(b,flg)
d = bi2de(b,p)
d = bi2de(b,p,flg)

Description
d =bi2de(b) converts a binary row vector b to a nonnegative decimal integer.

d = bi2de(b,flg) converts a binary row vector to a decimal integer, where flg
determines the position of the most significant digit.

d = bi2de(b,p) converts a base-p row vector b to a nonnegative decimal integer.

d = bi2de(b,p,flg) converts a base-p row vector to a decimal integer, where flg
determines the position of the most significant digit.

Input Arguments
b — Binary input
row vector | matrix

Binary input specified as a row vector or matrix.
Example: [0 1 0]
Example: [1 0 0; 1 0 1]

Note b must represent an integer less than or equal to 252.

2 Functions — Alphabetical List

2-112

flg — MSB flag
'right-msb' | 'left-msb'

Character vector that determines whether the first column corresponds to the lowest-
order or highest-order digit. If omitted, bi2de assumes 'right-msb'.

p — Base
positive integer scalar

The base of the row vector that is converted to a decimal. Specify as a positive integer
greater than or equal to 2.
Example: 4

Output Arguments
d — Decimal output
scalar | vector

Decimal output converted from a base-p row vector b. Elements of d are nonnegative
integers. If b is a matrix, each row represents a base-p number. In this case, the output d
is a column vector in which each element is the decimal representation of the
corresponding row of b.

Examples

Convert Binary Numbers to Decimals

Generate a matrix that contains binary representations of five random numbers between
0 and 15. Convert the binary numbers to decimal integers.

b = randi([0 1],5,4);
d = bi2de(b)

d = 5×1

 1
 5
 14

 bi2de

2-113

 11
 15

Convert a base-8 number to its decimal equivalent. Assign the most significant digit to the
leftmost position. The output corresponds to 4(83) + 2(82) + 7(81) + 1(80) = 2233.

d = bi2de([4 2 7 1],8,'left-msb')

d = 2233

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
de2bi

Introduced before R2006a

2 Functions — Alphabetical List

2-114

bin2gray
Convert positive integers into corresponding Gray-encoded integers

Syntax
y = bin2gray(x,modulation,M)
[y,map] = bin2gray(x,modulation,M)

Description
y = bin2gray(x,modulation,M) generates a Gray-encoded vector or matrix output y
with the same dimensions as its input parameter x. x can be a scalar, vector, matrix, or 3-
D array. modulation is the modulation type and must be 'qam', 'pam', 'fsk', 'dpsk',
or 'psk'. M is the modulation order that can be an integer power of 2.

[y,map] = bin2gray(x,modulation,M) generates a Gray-encoded output y with its
respective Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map output gives the
Gray encoded labels for the corresponding modulation. See the example below.

Note If you are converting binary coded data to Gray-coded data and modulating the
result immediately afterwards, you should use the appropriate modulation object or
function with the 'Gray' option, instead of bin2gray.

Examples

Binary to Gray Symbol Mapping

This example shows how to use the bin2gray and gray2bin functions to map integer
inputs from a natural binary order symbol mapping to a Gray coded signal constellation
and vice versa, assuming 16-QAM modulation. In addition, a visual representation of the
difference between Gray and binary coded symbol mappings is shown.

 bin2gray

2-115

Create a complete vector of 16-QAM integers.

M= 16;
x = (0:M-1)';

Convert the input vector from a natural binary order to a Gray encoded vector using
bin2gray.

[y,mapy] = bin2gray(x,'qam',M);

Convert the Gray encoded symbols, y, back to a binary ordering using gray2bin.

z = gray2bin(y,'qam',M);

Verify that the original data, x, and the final output vector, z are identical.

isequal(x,z)

ans = logical
 1

To create a constellation plot showing the different symbol mappings, use the qammod
function to find the complex symbol values.

sym = qammod(x,M);

Plot the constellation symbols and label them using the Gray, y, and binary, z, output
vectors. The binary representation of the Gray coded symbols is shown in black while the
binary representation of the naturally ordered symbols is shown in red. Set the axes
scaling so that all points are displayed.

scatterplot(sym,1,0,'b*');
for k = 1:16
 text(real(sym(k))-0.3,imag(sym(k))+0.3,...
 dec2base(mapy(k),2,4));

 text(real(sym(k))-0.3,imag(sym(k))-0.3,...
 dec2base(z(k),2,4),'Color',[1 0 0]);
end
axis([-4 4 -4 4])

2 Functions — Alphabetical List

2-116

Observe that only a single bit differs between adjacent constellation points when using
Gray coding.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 bin2gray

2-117

See Also
gray2bin

Topics
Gray Encoding a Modulated Signal

Introduced before R2006a

2 Functions — Alphabetical List

2-118

biterr
Number of bit errors and bit error rate (BER)

Syntax
[number,ratio] = biterr(x,y)
[number,ratio] = biterr(x,y,k)
[number,ratio] = biterr(x,y,k,flag)
[number,ratio,individual] = biterr(___)

Description
[number,ratio] = biterr(x,y) compares the unsigned binary representation of
elements in x to those in y. The function returns number, the number of bits that differ in
the comparison, and ratio, the ratio of number to the total number of bits. The function
determines the order in which it compares x and y based on their sizes. For more details,
see Algorithms on page 2-125 section.

[number,ratio] = biterr(x,y,k) also specifies k, the maximum number of bits for
each element in x and y. If the unsigned binary representation of any element in x or y is
more than k digits, the function errors.

[number,ratio] = biterr(x,y,k,flag) specifies a flag to override default
settings for how the function compares the elements and computes the outputs. For more
information, see Algorithms on page 2-126 section.

[number,ratio,individual] = biterr(___) returns the binary comparison result
of x and y as matrix individual. You can specify any of the input argument combination
from the previous syntaxes.

Examples

 biterr

2-119

Bit Error Rate Computation

Create two binary matrices.

x = [0 0; 0 0; 0 0; 0 0]

x = 4×2

 0 0
 0 0
 0 0
 0 0

y = [0 0; 0 0; 0 0; 1 1]

y = 4×2

 0 0
 0 0
 0 0
 1 1

Determine the number of bit errors.

numerrs = biterr(x,y)

numerrs = 2

Compute the number of column-wise errors .

numerrs = biterr(x,y,[],'column-wise')

numerrs = 1×2

 1 1

Compute the number of row-wise errors.

numerrs = biterr(x,y,[],'row-wise')

numerrs = 4×1

 0

2 Functions — Alphabetical List

2-120

 0
 0
 2

Compute the number of overall errors. Behavior is the same as the default behaviour.

numerrs = biterr(x,y,[],'overall')

numerrs = 2

Estimate Bit Error Rate for 64-QAM in AWGN

Demodulate a noisy 64-QAM signal and estimate the bit error rate (BER) for a range of
Eb/No values. Compare the BER estimate to theoretical values.

Set the simulation parameters.

M = 64; % Modulation order
k = log2(M); % Bits per symbol
EbNoVec = (5:15)'; % Eb/No values (dB)
numSymPerFrame = 100; % Number of QAM symbols per frame

Initialize the results vector.

berEst = zeros(size(EbNoVec));

The main processing loop executes these steps.

• Generate binary data and convert to 64-ary symbols.
• QAM-modulate the data symbols.
• Pass the modulated signal through an AWGN channel.
• Demodulate the received signal.
• Convert the demodulated symbols into binary data.
• Calculate the number of bit errors.

The while loop continues to process data until either 200 errors are encountered or 1e7
bits are transmitted.

for n = 1:length(EbNoVec)
 % Convert Eb/No to SNR

 biterr

2-121

 snrdB = EbNoVec(n) + 10*log10(k);
 % Reset the error and bit counters
 numErrs = 0;
 numBits = 0;

 while numErrs < 200 && numBits < 1e7
 % Generate binary data and convert to symbols
 dataIn = randi([0 1],numSymPerFrame,k);
 dataSym = bi2de(dataIn);

 % QAM modulate using 'Gray' symbol mapping
 txSig = qammod(dataSym,M);

 % Pass through AWGN channel
 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal
 rxSym = qamdemod(rxSig,M);
 % Convert received symbols to bits
 dataOut = de2bi(rxSym,k);

 % Calculate the number of bit errors
 nErrors = biterr(dataIn,dataOut);

 % Increment the error and bit counters
 numErrs = numErrs + nErrors;
 numBits = numBits + numSymPerFrame*k;
 end

 % Estimate the BER
 berEst(n) = numErrs/numBits;
end

Determine the theoretical BER curve by using the berawgn function.

berTheory = berawgn(EbNoVec,'qam',M);

Plot the estimated and theoretical BER data. The estimated BER data points are well
aligned with the theoretical curve.

semilogy(EbNoVec,berEst,'*')
hold on
semilogy(EbNoVec,berTheory)
grid
legend('Estimated BER','Theoretical BER')

2 Functions — Alphabetical List

2-122

xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

Input Arguments
x,y — Inputs to be compared (as separate arguments)
vector | matrix

Inputs to be compared, specified as separate arguments, as a vector or matrix of
nonnegative integer elements. The function converts each element of x and y to its
unsigned binary representation for comparison.

 biterr

2-123

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Maximum number of bits for input elements
positive integer

Maximum number of bits for input elements of x and y, specified as a positive integer. If
the number of bits required for binary representation of any element in x or y is greater
than k, the function errors.

If you do not set k, the function sets it as the number of bits in the binary representation
of the largest element in x and y.
Data Types: single | double

flag — Flag to override default settings
'overall' | 'row-wise' | 'column-wise'

Flag to override default settings of the function, specified as 'overall', 'row-wise',
or 'column-wise'. Flag specifies how the function compares elements in inputs x,y
and computes the output. For more details, see the Algorithms on page 2-126 section.
Data Types: string | char

Output Arguments
number — Number of bit errors
nonnegative integer | integer vector

Number of bit errors, returned as a nonnegative integer or integer vector.
Data Types: single | double

ratio — Bit error rate
scalar

Bit error rate, returned as a scalar. ratio is the number of bit errors, number, to the
total number of bits used in the binary representation. The total number of bits is k times
the number of entries in the smaller of the inputs x,y.

individual — Binary comparison result of each input element
matrix

2 Functions — Alphabetical List

2-124

Binary comparison result of each input element in x and y, returned as a matrix whose
dimensions are those of the larger of x and y. Each element specifies the number of bits
by which the elements in the pair differ.
Data Types: single | double

Algorithms

Comparing Inputs Based on Sizes
The function uses the sizes of x and y to determine the order in which it compares their
elements.

• If inputs are matrices of the same dimensions, then the function compares the inputs
element by element. number is a nonnegative integer in this case. For example, see
case (a) in the figure.

• If one input is a matrix and the other input is a column vector, then the function
compares each column of the matrix element by element with the column vector. The
number of rows in the matrix must be equal to the length of the column vector. In
other words, if the matrix has dimensions m-by-n, then the column vector must have
dimensions m-by-1. For example, see case (b) in the figure.

• If one input is a matrix and the other input is a row vector, then the function compares
each row of the matrix element by element with the row vector. The number of
columns in the matrix must be equal to the length of the row vector. In other words, if
the matrix has dimensions m-by-n, then the row vector must have dimensions 1-by-n.
For example, see case (c) in the figure.

 biterr

2-125

Comparing Inputs Based on Flag
This table describes how the output is computed based on the different values of flag. x
is considered as a matrix in this table and the size of y is varied.

Size of y flag Value Type of
Comparison

number
Value

Total Number
of Bits

Matrix 'overall'
(default)

Element by
element

Total number
of bit errors

k times the
number of
elements in y

'row-wise' mth row of x to
mth row of y

Column
vector whose
elements
represent the
bit errors in
each row

k times the
number of
elements in y

'column-wise' mth column of x
to mth column of
y

Row vector
whose
elements
represent the
bit errors in
each column

k times the
number of
elements in y

Row vector 'overall' y to each row of
x

Total number
of bit errors

k times the
number of
elements of x

'row-
wise'(default)

y to each row of
x

Column
vector whose
elements
represent the
bit errors in
each row of x

k times the size
of y

Column vector 'overall' y to each column
of x

Total number
of bit errors

k times the
number of
elements of x

2 Functions — Alphabetical List

2-126

Size of y flag Value Type of
Comparison

number
Value

Total Number
of Bits

'column-wise'
(default)

y to each column
of x

Row vector
whose
elements
represent bit
errors in each
column of x

k times the size
of y

See Also
alignsignals | finddelay | symerr

Introduced before R2006a

 biterr

2-127

bleATTPDU
Generate BLE ATT PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
attPDU = bleATTPDU(cfgATT)

Description
attPDU = bleATTPDU(cfgATT) generates a Bluetooth low energy (BLE) attribute
protocol data unit (ATT PDU) corresponding to the BLE ATT PDU configuration object
cfgATT.

Examples

Generate BLE ATT PDUs

Generate two unique BLE ATT PDUs of type 'Read by type request' and 'Error
response'.

Create a BLE ATT PDU configuration object with default settings.

cfgATT = bleATTPDUConfig;

Change the BLE ATT PDU opcode as 'Read by type request'. View the applicable
properties of the opcode 'Read by type request'.

cfgATT.Opcode = 'Read by type request'

2 Functions — Alphabetical List

2-128

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgATT =
 bleATTPDUConfig with properties:

 Opcode: 'Read by type request'
 StartHandle: '0001'
 EndHandle: 'FFFF'
 AttributeType: '2800'

Generate a BLE ATT PDU using the corresponding configuration object.

attPDU = bleATTPDU(cfgATT)

attPDU = 7x2 char array
 '08'
 '01'
 '00'
 'FF'
 'FF'
 '00'
 '28'

Create another BLE ATT PDU configuration object, this time using the name-value pairs.
Change the BLE ATT PDU opcode to 'Error response'. View the applicable properties
of the opcode 'Error response'.

cfgATT = bleATTPDUConfig('Opcode','Error response')

cfgATT =
 bleATTPDUConfig with properties:

 Opcode: 'Error response'
 RequestedOpcode: 'Read request'
 AttributeHandle: '0001'
 ErrorMessage: 'Invalid handle'

Generate a BLE ATT PDU corresponding to this configuration object.

attPDU = bleATTPDU(cfgATT)

attPDU = 5x2 char array
 '01'
 '0A'

 bleATTPDU

2-129

 '01'
 '00'
 '01'

Input Arguments
cfgATT — BLE ATT PDU configuration object
bleATTPDUConfig object

BLE ATT PDU configuration object, specified as a bleATTPDUConfig object. This value
defines the type of BLE ATT PDU and its applicable properties.

Output Arguments
attPDU — Generated BLE ATT PDU
character array

Generated BLE ATT PDU, returned as a character array. Each row in this array is the
hexadecimal representation of an octet.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions — Alphabetical List

2-130

https://www.bluetooth.com/

See Also
Functions
bleATTPDUDecode

Objects
bleATTPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleATTPDU

2-131

bleATTPDUDecode
Decode BLE ATT PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
[status,cfgATT] = bleATTPDUDecode(attPDU)

Description
[status,cfgATT] = bleATTPDUDecode(attPDU) decodes the specified Bluetooth
low energy (BLE) attribute protocol data unit (ATT PDU), returning the corresponding
BLE ATT PDU configuration object, cfgATT, and the decoding status, status.

Examples

Decode BLE ATT PDUs

Decode two unique BLE ATT PDUs of type 'Read by type request' and 'Error
response'.

Create a BLE ATT PDU configuration object with default settings.

cfgATT = bleATTPDUConfig;

Change the BLE ATT PDU opcode as 'Read by type request'. View the applicable
properties of the opcode 'Read by type request'.

cfgATT.Opcode = 'Read by type request'

2 Functions — Alphabetical List

2-132

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgATT =
 bleATTPDUConfig with properties:

 Opcode: 'Read by type request'
 StartHandle: '0001'
 EndHandle: 'FFFF'
 AttributeType: '2800'

Generate a BLE ATT PDU using the corresponding configuration object.

attPDU = bleATTPDU(cfgATT)

attPDU = 7x2 char array
 '08'
 '01'
 '00'
 'FF'
 'FF'
 '00'
 '28'

Decode the generated BLE ATT PDU. The returned status indicates decoding is
successful. View the applicable properties of the opcode 'Read by type request'.

[status, cfg] = bleATTPDUDecode(attPDU)

status =
Success

cfg =
 bleATTPDUConfig with properties:

 Opcode: 'Read by type request'
 StartHandle: '0001'
 EndHandle: 'FFFF'
 AttributeType: '2800'

Create another BLE ATT PDU configuration object, this time using the name-value pairs.
Change the BLE ATT PDU opcode as 'Error response'. View the applicable properties
of the opcode 'Error response'.

cfgATT = bleATTPDUConfig('Opcode','Error response')

 bleATTPDUDecode

2-133

cfgATT =
 bleATTPDUConfig with properties:

 Opcode: 'Error response'
 RequestedOpcode: 'Read request'
 AttributeHandle: '0001'
 ErrorMessage: 'Invalid handle'

Generate a BLE ATT PDU using the corresponding configuration object.

attPDU = bleATTPDU(cfgATT)

attPDU = 5x2 char array
 '01'
 '0A'
 '01'
 '00'
 '01'

Decode the generated BLE ATT PDU. The returned status indicates decoding is
successful. View the applicable properties of the opcode 'Error response'.

[status, cfg] = bleATTPDUDecode(attPDU)

status =
Success

cfg =
 bleATTPDUConfig with properties:

 Opcode: 'Error response'
 RequestedOpcode: 'Read request'
 AttributeHandle: '0001'
 ErrorMessage: 'Invalid handle'

Decode Corrupted BLE ATT PDU

Specify a BLE ATT PDU containing corrupted data values.

attPDU = ['09'; '03'; '01'; '00'; '18'; '0D']; % Sample corrupted BLE ATT PDU

2 Functions — Alphabetical List

2-134

Decode the specified BLE ATT PDU. The returned status indicates that the decoding failed
due to mismatched attribute data lengths. In case of failed decoding, BLE ATT PDU
configuration object, 'cfgATT', displays no properties.

[status, cfgATT] = bleATTPDUDecode(attPDU)

status =
MismatchAttributeDataLength

cfgATT =
 bleATTPDUConfig with properties:

Input Arguments
attPDU — BLE ATT PDU
character vector | string scalar | numeric vector | character array

BLE ATT PDU, specified as one of these values:

• Character vector — This vector represent octets in hexadecimal format.
• String scalar — This scalar represent octets in hexadecimal format.
• Numeric vector of elements in the range [0,255] — This vector represent octets in

decimal format.
• n-by-2 character array — Each row represent an octet in hexadecimal format.

Data Types: char | uint8 | uint16 | uint32 | double | string

Output Arguments
cfgATT — BLE ATT PDU configuration object
bleATTPDUConfig object

BLE ATT PDU configuration object, returned as a bleATTPDUConfig object. This value
denotes the decoded BLE ATT PDU configuration.

status — Packet decoding status
nonpositive integer

 bleATTPDUDecode

2-135

Packet decoding status, returned as a nonpositive number of type
blePacketDecodeStatus. This value represents the result of an ATT PDU decoding.
Each value of status corresponds to a member of the blePacketDecodeStatus
enumeration class, which indicates the packet decoding status according to this table.

Enumeration Value Member of Enumeration
Class

Decoding Status

0 Success Packet decoding succeeded
–401 UnsupportedATTOpcode Invalid ATT opcode
–402 IncompleteATTPDU Incomplete ATT PDU
–403 InvalidATTReqOpcodeIn

ErrorResp
Invalid requested opcode in
"Error Response" PDUs

–404 InvalidATTErrorCode Invalid error code
–405 InvalidATTRxMTU Invalid received MTU
–406 InvalidAttributeHandl

eRange
Invalid attribute handle
range

–407 InvalidAttributeType Invalid attributet ype flag
–408 InvalidATTExecuteWrit

eFlag
Invalid execute write flag

–409 MismatchAttributeData
Length

Length mismatches with
actual length

–410 InvalidATTDataFormat Invalid Data Format

An enumeration value other than 0 means that the BLE ATT PDU decoding failed. If the
decoding fails, object cfgATT displays no output.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

2 Functions — Alphabetical List

2-136

https://www.bluetooth.com/

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleATTPDU

Objects
bleATTPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleATTPDUDecode

2-137

bleGAPDataBlock
Generate BLE GAP data block

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
dataBlock = bleGAPDataBlock(cfgGAP)

Description
dataBlock = bleGAPDataBlock(cfgGAP) generates a Bluetooth low energy (BLE)
generic access profile (GAP) data block of type advertising data (AD) or scan response
data (SRD) corresponding to the BLE GAP data block configuration object cfgGAP.

Examples

Generate BLE GAP AD Blocks

Generate three unique BLE GAP AD blocks: first one with AD types 'Flags' and 'Tx
power level', the second one with AD types 'Advertising interval' and 'Local
name' and the third one with AD type 'Flags' and having simultaneous support for low
energy (LE) and basic rate/enhanced data rate (BR/EDR) at the host.

Create a configuration object for a BLE GAP AD block and specify the AD types as
'Flags' and 'Tx power level'. Assign the values of LED discoverability as
'Limited' and Tx power level as 45.

cfgGAP = bleGAPDataBlockConfig;
cfgGAP.AdvertisingDataTypes = {'Flags';'Tx power level'};

2 Functions — Alphabetical List

2-138

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgGAP.LEDiscoverability = 'Limited';
cfgGAP.TxPowerLevel = 45;

Generate the BLE GAP AD block from the corresponding configuration object.

dataBlock = bleGAPDataBlock(cfgGAP)

dataBlock = 6x2 char array
 '02'
 '01'
 '05'
 '02'
 '0A'
 '2D'

Create a configuration object for a BLE GAP AD block, this time with advertising data
types as 'Advertising interval' and 'Local name'. Specify the values of the
advertising interval as 48, the local name as 'MathWorks' and the local name shortening
as true.

cfgGAP = bleGAPDataBlockConfig('AdvertisingDataTypes', ...
 {'Advertising interval', ...
 'Local name'});
cfgGAP.AdvertisingInterval = 48;
cfgGAP.LocalName = 'MathWorks';
cfgGAP.LocalNameShortening = true;

Generate the BLE GAP AD block from the corresponding configuration object.

dataBlock = bleGAPDataBlock(cfgGAP)

dataBlock = 15x2 char array
 '03'
 '1A'
 '30'
 '00'
 '0A'
 '08'
 '4D'
 '61'
 '74'
 '68'
 '57'
 '6F'

 bleGAPDataBlock

2-139

 '72'
 '6B'
 '73'

Create a configuration object for a BLE GAP AD block with type 'Flags'. Specify the
values of LE discoverability as 'Limited', BR/EDR support as true, and simultaneous
support for LE and BR/EDR as 'Host'.

cfgGAP = bleGAPDataBlockConfig;
cfgGAP.LEDiscoverability = 'Limited';
cfgGAP.BREDR = true;
cfgGAP.LE = 'Host';

Generate the BLE GAP AD block from the corresponding configuration object.

dataBlock = bleGAPDataBlock(cfgGAP)

dataBlock = 3x2 char array
 '02'
 '01'
 '11'

Input Arguments
cfgGAP — BLE GAP data block configuration object
bleGAPDataBlockConfig (default) | object

BLE GAP data block configuration object, specified as a bleGAPDataBlockConfig
object. This value defines the type of BLE GAP data block and its applicable properties.

Output Arguments
dataBlock — Generated BLE GAP data block
character array

Generated BLE GAP data block, returned as a character array. Each row in this array is
the hexadecimal representation of an octet.

2 Functions — Alphabetical List

2-140

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

[3] Bluetooth Special Interest Group (SIG). "Supplement to the Bluetooth Core
Specification." CSS Version 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleGAPDataBlockDecode

Objects
bleGAPDataBlockConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleGAPDataBlock

2-141

https://www.bluetooth.com/

bleGAPDataBlockDecode
Decode BLE GAP data block

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
[status,cfgGAP] = bleGAPDataBlockDecode(dataBlock)

Description
[status,cfgGAP] = bleGAPDataBlockDecode(dataBlock) decodes a Bluetooth
low energy (BLE) generic access profile (GAP) data block, dataBlock, of the type
advertising data (AD) or scan response data (SRD), returning the decoding status,
status, and the BLE GAP data block configuration object, cfgGAP.

Examples

Decode BLE GAP AD Blocks

Decode two unique BLE GAP AD blocks: one with AD types 'Flags' and 'Tx power
level' and the other with AD types 'Advertising interval' and 'Local name'.

Create a configuration object for a BLE GAP AD block. Specify the AD types as 'Flags'
and 'Tx power level'. Set the values of LE discoverability as 'Limited' and Tx
power level to 45. View the properties of the configuration object 'cfgGAP'.

cfgGAP = bleGAPDataBlockConfig;
cfgGAP.AdvertisingDataTypes = {'Flags'; 'Tx power level'};

2 Functions — Alphabetical List

2-142

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgGAP.LEDiscoverability = 'Limited';
cfgGAP.TxPowerLevel = 45

cfgGAP =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LEDiscoverability: 'Limited'
 BREDR: 0
 TxPowerLevel: 45

Generate a BLE GAP AD block from the corresponding configuration object.

dataBlock = bleGAPDataBlock(cfgGAP);

Decode the generated BLE GAP AD block. The returned status indicates decoding was
successful. View the output of 'status' and 'cfgGAP'.

[status, cfgGAP] = bleGAPDataBlockDecode(dataBlock)

status =
Success

cfgGAP =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LEDiscoverability: 'Limited'
 BREDR: 0
 TxPowerLevel: 45

Create another BLE GAP AD block configuration object, this time specifying AD types
'Advertising interval' and 'Local name'. Set the values of advertising interval
as 48, local name as 'MathWorks', and local name shortening as true. View the
properties of the configuration object 'cfgGAP'.

cfgGAP = bleGAPDataBlockConfig('AdvertisingDataTypes', ...
 {'Advertising interval','Local name'});
cfgGAP.AdvertisingInterval = 48;
cfgGAP.LocalName = 'MathWorks';
cfgGAP.LocalNameShortening = true

cfgGAP =
 bleGAPDataBlockConfig with properties:

 bleGAPDataBlockDecode

2-143

 AdvertisingDataTypes: {2x1 cell}
 LocalName: 'MathWorks'
 LocalNameShortening: 1
 AdvertisingInterval: 48

Generate the BLE GAP AD block from the corresponding configuration object.

dataBlock = bleGAPDataBlock(cfgGAP);

Decode the generated BLE GAP AD block. The returned status indicates decoding was
successful. View the output of 'status' and 'cfgGAP'.

[status, cfgGAP] = bleGAPDataBlockDecode(dataBlock)

status =
Success

cfgGAP =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LocalName: 'MathWorks'
 LocalNameShortening: 1
 AdvertisingInterval: 48

Decode Corrupted BLE GAP AD Block

Specify a BLE GAP AD block containing corrupted data values.

dataBlock = ['010106010202']; % Sample BLE GAP AD block with corrupted data values

Decode the specified BLE GAP AD block. The returned status indicates that the decoding
failed due to the corrupted input BLE GAP AD block. In this case, when decoding fails, the
BLE GAP AD block configuration object, 'cfgGAP', displays no properties.

[status, cfgGAP] = bleGAPDataBlockDecode(dataBlock)

status =
MismatchGAPADLength

2 Functions — Alphabetical List

2-144

cfgGAP =
 bleGAPDataBlockConfig with properties:

Input Arguments
dataBlock — BLE GAP data block
character vector | string scalar | numeric vector | character array

BLE GAP data block, specified as one of these values:

• Character vector — This vector represents octets in hexadecimal format.
• String scalar — This scalar represents octets in hexadecimal format.
• Numeric vector of elements in the range [0, 255] — This vector represents octets in

decimal format.
• n-by-2 character array — Each row represents an octet in hexadecimal format.

Data Types: char | string | double

Output Arguments
status — BLE GAP data block decoding status
nonpositive integer

BLE GAP data block decoding status, returned as a nonpositive integer of type
blePacketDecodeStatus. This value represents the result of an BLE GAP data block
decoding. Each value of status corresponds to a member of the
blePacketDecodeStatus enumeration class, which indicates the packet decoding
status according to this table.

Enumeration Value Member of Enumeration
Class

Decoding Status

0 Success Packet decoding succeeded
-201 InvalidGAPADLength GAP AD length is not valid

 bleGAPDataBlockDecode

2-145

–202 MismatchGAPADLength Received AD length does not
match with actual length

–203 UnsupportedGAPADType Advertising data type is not
valid or not supported

–204 InvalidGAPAdvertising
Interval

Advertising interval is not
valid

–205 InvalidGAPConnectionI
ntervalRange

Invalid connection interval

–206 InvalidGAPConnectionI
ntervalMinimum

Invalid interval minimum

–207 InvalidGAPConnectionI
ntervalMaximum

Invalid interval maximum

An enumeration value other than 0 means that the BLE GAP data block decoding failed. If
the decoding fails, object cfgGAP displays no output.

cfgGAP — BLE GAP data block configuration object
bleGAPDataBlockConfig | object

BLE GAP data block configuration object, returned as a bleGAPDataBlockConfig
object. This value defines the type of BLE GAP data block and its applicable properties.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

[3] Bluetooth Special Interest Group (SIG). "Supplement to the Bluetooth Core
Specification." CSS Version 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions — Alphabetical List

2-146

https://www.bluetooth.com/

See Also
Functions
bleGAPDataBlock

Objects
bleGAPDataBlockConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleGAPDataBlockDecode

2-147

bleIdealReceiver
Ideal receiver for BLE PHY waveform

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
[bits,accessAddr] = bleIdealReceiver(waveform)
[bits,accessAddr] = bleIdealReceiver(waveform,Name,Value)

Description
[bits,accessAddr] = bleIdealReceiver(waveform) decodes the Bluetooth low
energy (BLE) waveform, generated by bleWaveformGenerator , and returns the
received bits, bits, and the access address information, accesAddr.

[bits,accessAddr] = bleIdealReceiver(waveform,Name,Value) also specifies
options using one or more name-value pair arguments. For example, 'Mode','LE2M'
specifies the physical (PHY) layer transmission mode of the desired BLE waveform.

Examples

Decode BLE Waveform Using Default Settings

Create an input message column vector of length 1000 containing random binary values.
Generate a BLE transmit waveform from the transmission bits by using the
bleWaveformGenerator function.

txBits = randi([0 1],1000,1);
txWaveform = bleWaveformGenerator(txBits);

2 Functions — Alphabetical List

2-148

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Pass the transmit waveform through a noisy channel and obtain the received waveform.

snr = 30; % specified in dB
rxWaveform = awgn(txWaveform,snr);

Recover data bits from the received BLE waveform using bleIdealReceiver. Check for
the number of bit errors in the recovered bits. The returned value indicates that the BLE
waveform was successfully decoded.

[rxBits,accessAddr] = bleIdealReceiver(rxWaveform);
numErr = biterr(txBits,rxBits)

numErr = 0

Decode BLE Waveform Using Specified Name-Value Pairs

Specify the values of PHY generating mode, channel index and samples per symbol (sps).

phyMode = 'LE125K';
chanIndex = 2;
sps = 4;

Generate transmission bits containing random binary values. Obtain the BLE transmit
waveform from the transmission bits and the specified name-value pairs using the
bleWaveformGenerator function.

txBits = randi([0 1],100,1);
txWaveform = bleWaveformGenerator(txBits,'Mode',phyMode,...
 'SamplesPerSymbol',sps,'ChannelIndex',chanIndex);

Recover the data bits, and then compare them with the transmission bits. The result
indicates that the transmission bits match the recovered data bits, meaning the BLE
waveform was successfuly decoded.

rxBits = bleIdealReceiver(txWaveform,'Mode',phyMode,...
 'SamplesPerSymbol',sps,'ChannelIndex',chanIndex);
isequal(txBits,rxBits)

ans = logical
 1

 bleIdealReceiver

2-149

Input Arguments
waveform — Received time-domain signal
complex-valued vector

Received time-domain signal, specified as a complex-valued signal with size Ns-by-1,
where Ns represents the number of received samples. The values of Ns depend on the
'Mode' and 'SamplesPerSymbol' (sps) name-value pairs, according to the constraints
specified in this table. For example, if the value of 'Mode' is 'LE1M' and the value of
'SamplesPerSymbol' is 4 then the value of Ns must be greater than or equal to 160 and
a multiple of 'SamplesPerSymbol'.

Value of 'Mode' Value of Ns Multiple of
'LE1M' ≥40×sps sps
'LE2M' ≥48×sps sps
'LE500K' ≥376×sps 2×sps
'LE125K' ≥376×sps 8×sps

Data Types: double | single

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: bleIdealReceiver(waveform,'Mode','LE2M','ChannelIndex',36)

Mode — PHY transmission mode
'LE1M' (default) | 'LE2M' | 'LE500K' | 'LE125K'

PHY transmission mode, specified as the comma-separated pair consisting of 'Mode' and
'LE1M', 'LE2M', 'LE500K', or 'LE125K'. This value indicates the type of PHY used to
decode the received BLE waveform.
Data Types: string | char

ChannelIndex — Channel Index
37 (default) | integer in the range [0, 39]

2 Functions — Alphabetical List

2-150

Channel index, specified as the comma-separated pair consisting of 'ChannelIndex'
and an integer in the range [0, 39]. For data channels, this value must be in the range [0,
36]. For advertising channels, this value must be in the range [37, 39]. This value is used
by the data-dewhitening block.
Data Types: single | double

SamplesPerSymbol — Samples per symbol
8 (default) | positive integer

Samples per symbol, specified as the comma-separated pair consisting of
'SamplesPerSymbol' and a positive integer. This value is used for the Gaussian
frequency shift keying (GFSK) modulation.
Data Types: single | double

Output Arguments
bits — Payload bits
column vector

Payload bits, returned as a column vector of maximum length 260 bytes. This output
represents the recovered information bits.

accessAddr — Access address information
32-bit column vector

Access address information, returned as a 32-bit column vector. This output is used by the
higher layers for validating a packet.

References
[1] Bluetooth Hompage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

 bleIdealReceiver

2-151

https://www.bluetooth.com/

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleWaveformGenerator

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

2 Functions — Alphabetical List

2-152

bleL2CAPFrame
Generate BLE L2CAP frame

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
L2CAPFrame = bleL2CAPFrame(cfgL2CAP)
L2CAPFrame = bleL2CAPFrame(cfgL2CAP,SDU)

Description
L2CAPFrame = bleL2CAPFrame(cfgL2CAP) generates a Bluetooth low energy (BLE)
logical link control and adaptation protocol (L2CAP) frame, L2CAPFrame, for a given BLE
L2CAP configuration object, cfgL2CAP. Use this syntax to generate the signaling frames.

L2CAPFrame = bleL2CAPFrame(cfgL2CAP,SDU) generates a BLE L2CAP frame,
L2CAPFrame, for a given BLE L2CAP configuration object cfgL2CAP and the upper-layer
payload service data unit (SDU), SDU. Use this syntax to generate the data frames.

Examples

Generate BLE L2CAP Signaling Command Frame

Create a BLE L2CAP configuration object, 'cfgL2CAP', and view the corresponding
default properties.

cfgL2CAP = bleL2CAPFrameConfig

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 bleL2CAPFrame

2-153

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

 ChannelIdentifier: '0005'
 CommandType: 'Credit based connection request'
 SignalIdentifier: '01'
 SourceChannelIdentifier: '0040'
 LEPSM: '001F'
 MaxTransmissionUnit: 23
 MaxPDUPayloadSize: 23
 Credits: 1

Change the value of credits to 10.

cfgL2CAP.Credits = 10;

Generate a BLE L2CAP signaling command frame from the corresponding configuration
object.

l2capFrame = bleL2CAPFrame(cfgL2CAP)

l2capFrame = 18x2 char array
 '0E'
 '00'
 '05'
 '00'
 '14'
 '01'
 '0A'
 '00'
 '1F'
 '00'
 '40'
 '00'
 '17'
 '00'
 '17'
 '00'
 '0A'
 '00'

2 Functions — Alphabetical List

2-154

Generate BLE L2CAP Data Frames

Generate two unique BLE L2CAP data frames: one with SDU from the attribute protocol
(ATT) layer as '0A0100' and the other with an upper-layer payload SDU,'0A01E2D3'.

Create a BLE L2CAP configuration object, 'cfgL2CAP', and view the default properties.

cfgL2CAP = bleL2CAPFrameConfig

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0005'
 CommandType: 'Credit based connection request'
 SignalIdentifier: '01'
 SourceChannelIdentifier: '0040'
 LEPSM: '001F'
 MaxTransmissionUnit: 23
 MaxPDUPayloadSize: 23
 Credits: 1

Change the value of channel identifier to '0004'.

cfgL2CAP.ChannelIdentifier = '0004'; % Channel identifier for ATT

Generate a BLE L2CAP data frame from 'cfgL2CAP', specifying the upper-layer payload
SDU from the ATT layer as '0A0100'.

l2capFrame = bleL2CAPFrame(cfgL2CAP,"0A0100")

l2capFrame = 7x2 char array
 '03'
 '00'
 '04'
 '00'
 '0A'
 '01'
 '00'

Create another BLE L2CAP configuration object, 'cfgL2CAP', with default properties.
Set the value of channel identifier to '007A'.

cfgL2CAP = bleL2CAPFrameConfig;
cfgL2CAP.ChannelIdentifier = '007A'; % Dynamic channel identifier

 bleL2CAPFrame

2-155

Generate a BLE L2CAP data frame from 'cfgL2CAP', specifying the upper-layer payload
SDU as '0A01E2D3'.

l2capFrame = bleL2CAPFrame(cfgL2CAP,['0A'; '01'; 'E2'; 'D3'])

l2capFrame = 10x2 char array
 '06'
 '00'
 '7A'
 '00'
 '04'
 '00'
 '0A'
 '01'
 'E2'
 'D3'

Input Arguments
cfgL2CAP — BLE L2CAP configuration object
bleL2CAPFrameConfig object

BLE L2CAP configuration object, specified as a bleL2CAPFrameConfig object. The
function uses this object to configure the BLE L2CAP frame and its applicable properties.

SDU — Upper-layer payload
character vector | string scalar | numeric vector | character array

Upper-layer payload, specified as one of these types:

• Character vector — This vector represents octets in hexadecimal format.
• String scalar — This scalar represents octets in hexadecimal format.
• Numeric vector of elements in the range [0, 255] — This vector represents octets in

decimal format.
• n-by-2 character array — Each row represents an octet in hexadecimal format.

Data Types: char | double | string

2 Functions — Alphabetical List

2-156

Output Arguments
L2CAPFrame — Generated BLE L2CAP frame
character array

Generated BLE L2CAP frame, returned as a character array. Each row of the array
represents an octet in hexadecimal format. This value represents the output BLE L2CAP
frame.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleL2CAPFrameDecode

Objects
bleL2CAPFrameConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleL2CAPFrame

2-157

https://www.bluetooth.com/

bleL2CAPFrameDecode
Decode BLE L2CAP frame

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
[status,cfgL2CAP,SDU] = bleL2CAPFrameDecode(L2CAPFrame)

Description
[status,cfgL2CAP,SDU] = bleL2CAPFrameDecode(L2CAPFrame) decodes the
specified Bluetooth low energy (BLE) logical link control and adaptation protocol (L2CAP)
frame, L2CAPFrame. The function returns the decoding status, status, the
corresponding BLE L2CAP configuration object, cfgL2CAP, and the upper-layer payload
service data unit (SDU), SDU.

Examples

Decode BLE L2CAP Data Frame with SDU

Create a BLE L2CAP configuration object, 'cfgL2CAP', with default properties and view
the applicable properties. Change the value of channel identifier to '0004'.

cfgL2CAP = bleL2CAPFrameConfig

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0005'

2 Functions — Alphabetical List

2-158

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

 CommandType: 'Credit based connection request'
 SignalIdentifier: '01'
 SourceChannelIdentifier: '0040'
 LEPSM: '001F'
 MaxTransmissionUnit: 23
 MaxPDUPayloadSize: 23
 Credits: 1

cfgL2CAP.ChannelIdentifier = '0004'; % Channel identifier for ATT

Generate a BLE L2CAP data frame from 'cfgL2CAP', specifying the upper-layer payload
SDU from attribute protocol (ATT) layer as '0A0100'.

L2CAPFrame = bleL2CAPFrame(cfgL2CAP, "0A0100");

Decode the generated BLE L2CAP data frame. The returned status indicates decoding
was successful. View the output of 'status', 'cfgL2CAP' and the 'SDU'.

[status, cfgL2CAP, SDU] = bleL2CAPFrameDecode(L2CAPFrame)

status =
Success

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0004'

SDU = 3x2 char array
 '0A'
 '01'
 '00'

Decode Corrupted BLE L2CAP Frame

Specify a BLE L2CAP frame containing corrupted data values.

l2capFrame = ['090005000107040060005000']; % Sample frame

Decode the specified BLE L2CAP frame. The returned status indicates that the decoding
failed due to the corrupted input L2CAP frame. In this case, when decoding fails, the

 bleL2CAPFrameDecode

2-159

output displays the reason of failure and the BLE L2CAP frame configuration object,
'cfgL2CAP', displays no properties.

[status, cfgL2CAP, SDU] = bleL2CAPFrameDecode(l2capFrame)

status =
MismatchL2CAPHeaderLength

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

SDU =

 1x0 empty char array

Input Arguments
L2CAPFrame — BLE L2CAP frame
character vector | string scalar | numeric vector | character array

BLE L2CAP frame, specified as one of these values:

• Character vector — This vector represents octets in hexadecimal format.
• String scalar — This scalar represents octets in hexadecimal format.
• Numeric vector of elements in the range [0, 255] — This vector represents octets in

decimal format.
• n-by-2 character array — Each row represents an octet in hexadecimal format.

Data Types: char | double | string

Output Arguments
status — Packet decoding status
nonpositive integer

Packet decoding status, returned as a nonpositive integer of type
blePacketDecodeStatus. This value represents the result of decoding a BLE L2CAP

2 Functions — Alphabetical List

2-160

frame. Each value of status corresponds to a member of the blePacketDecodeStatus
enumeration class, which indicates the packet decoding status according to this table.

Enumeration Value Member of Enumeration
Class

Decoding Status

0 Success Packet decoding succeeded
–301 InvalidL2CAPConnectio

nIntervalRange
Invalid connection intervals

–302 InvalidL2CAPSlaveLate
ncy

Invalid slave latency

–303 InvalidLECredits Invalid low energy (LE)
credits

–304 L2CAPSegmentationUnsu
pported

Segmentation is not
supported

–305 MismatchL2CAPHeaderLe
ngth

Length mismatches with
actual length

–306 IncompleteL2CAPDataFr
ame

L2CAP data frame is not
sufficient to decode

–307 InvalidL2CAPChannelId
entifier

Invalid L2CAP channel
identifier

–308 InvalidL2CAPCommand Invalid L2CAP command
code

–309 InvalidL2CAPCommandRe
jectReason

Invalid command reject
reason code

–310 InvalidL2CAPParameter
UpdateResult

Invalid parameters update
result

-311 InvalidL2CAPConnectio
nResult

Invalid connection result
code

-312 IllegalL2CAPSignalIde
ntifier

Illegal signal identifier in
L2CAP

-313 InvalidL2CAPConnectio
nIntervalMinimum

Invalid interval minimum

-314 InvalidL2CAPConnectio
nIntervalMaximum

Invalid interval maximum

 bleL2CAPFrameDecode

2-161

-315 InvalidL2CAPConnectio
nTimeout

Invalid connection timeout

-316 InvalidLEPSM Invalid LE protocol/service
multiplexer

-317 InvalidL2CAPChannelMT
U

Invalid maximum
transmission unit

-318 InvalidL2CAPChannelMP
S

Invalid maximum PDU
payload size

-319 InvalidL2CAPSDULength Invalid SDU length
-320 MismatchL2CAPSignalFr

ameLength
Length mismatches with
actual length

-321 IncompleteL2CAPSignal
Frame

L2CAP signal frame is not
valid or not sufficient

An enumeration value other than 0 means that the BLE ATT PDU decoding failed. If the
decoding fails, object cfgATT displays no output.

cfgL2CAP — BLE L2CAP frame configuration object
bleL2CAPFrameConfig object

BLE L2CAP frame configuration object, returned as a bleL2CAPFrameConfig object.
This value denotes the decoded BLE L2CAP frame configuration.

SDU — Upper-layer payload
character array

Upper-layer payload, returned as a character array. Each row represents an octet in
hexadecimal format.
Data Types: char | string

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

2 Functions — Alphabetical List

2-162

https://www.bluetooth.com/

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleL2CAPFrame

Objects
bleL2CAPFrameConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleL2CAPFrameDecode

2-163

bleLLAdvertisingChannelPDU
Generate BLE LL advertising channel PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
pdu = bleLLAdvertisingChannelPDU(cfgLLAdv)

Description
pdu = bleLLAdvertisingChannelPDU(cfgLLAdv) generates a Bluetooth low energy
(BLE) link layer (LL) advertising channel protocol data unit (PDU) corresponding to the
BLE LL advertising channel PDU configuration object cfgLLAdv.

Examples

Generate BLE LL Advertising Channel PDUs

Generate two unique BLE LL advertising channel PDUs: first one of the type
'Advertising indication' using advertising data '020106' and the other of type
'Connection indication' using a set of data channels to be used.

Create a BLE LL advertising channel PDU configuration object, 'cfgLLAdv', with the
opcode as 'Advertising indication' by using advertising data '020106'. View the
configured properties corresponding to the opcode.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig;
cfgLLAdv.AdvertisingData = '020106'

2 Functions — Alphabetical List

2-164

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Advertising indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 AdvertisingData: [3x2 char]

Generate the BLE LL advertising channel PDU by using the corresponding configuration
object. Display the PDU length in octets.

pdu = bleLLAdvertisingChannelPDU(cfgLLAdv);
numel(pdu)/8

ans = 14

Display the first octet of the generated BLE LL advertising channel PDU.

pdu(1:8)

ans = 8×1

 0
 0
 0
 0
 0
 0
 1
 0

Create another BLE LL advertising channel PDU configuration object, this time using the
name-value pairs. Change the BLE LL advertising channel PDU opcode to 'Connection
indication'. View the active configured properties of the specified opcode.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig('PDUType', ...
 'Connection indication')

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Connection indication'

 bleLLAdvertisingChannelPDU

2-165

 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 InitiatorAddressType: 'Random'
 InitiatorAddress: '0123456789CD'
 AccessAddress: '01234567'
 CRCInitialization: '012345'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 6
 SlaveLatency: 0
 ConnectionTimeout: 10
 UsedChannels: [1x37 double]
 HopIncrement: 5
 SleepClockAccuracy: '251 to 500 ppm'

Specify the value of connection interval as 8 and the set of data channels as [0 4 12 16
18 24 25]. View the configured properties.

cfgLLAdv.ConnectionInterval = 8; % in milliseconds
cfgLLAdv.UsedChannels = [0 4 12 16 18 24 25]

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Connection indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 InitiatorAddressType: 'Random'
 InitiatorAddress: '0123456789CD'
 AccessAddress: '01234567'
 CRCInitialization: '012345'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 8
 SlaveLatency: 0
 ConnectionTimeout: 10
 UsedChannels: [0 4 12 16 18 24 25]
 HopIncrement: 5
 SleepClockAccuracy: '251 to 500 ppm'

2 Functions — Alphabetical List

2-166

Generate the BLE LL advertising channel PDU from the corresponding configuration
object. Display the PDU length in octets.

pdu = bleLLAdvertisingChannelPDU(cfgLLAdv);
numel(pdu)/8

ans = 39

Display the first octet of the generated BLE LL advertising channel PDU.

pdu(1:8)

ans = 8×1

 1
 0
 1
 0
 0
 0
 1
 1

Input Arguments
cfgLLAdv — BLE LL advertising channel PDU configuration object
bleLLAdvertisingChannelPDUConfig object

BLE LL advertising channel PDU configuration object, specified as a
bleLLAdvertisingChannelPDUConfig object. This value defines the type of generated
BLE LL advertising channel PDU and its applicable properties.

Output Arguments
pdu — Generated BLE LL advertising channel PDU
binary column vector

Generated BLE LL advertising channel PDU, returned as a binary column vector. This
value represents the output BLE LL advertising channel PDU.

 bleLLAdvertisingChannelPDU

2-167

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleLLAdvertisingChannelPDUDecode

Objects
bleLLAdvertisingChannelPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

2 Functions — Alphabetical List

2-168

https://www.bluetooth.com/

bleLLAdvertisingChannelPDUDecode
Decode BLE LL advertising channel PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
[status,cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu)
[status,cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu,Name,Value)

Description
[status,cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu)decodes the
specified Bluetooth low energy (BLE) link layer (LL) advertising channel protocol data
unit (PDU), returning the decoding status, status, and the corresponding BLE LL
advertising channel PDU configuration object, cfgLLAdv.

[status,cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu,Name,Value)
sets properties using one or more name-value pairs. Enclose each property name in
quotes. For example, 'InputFormat','octets' specifies the input BLE LL advertising
channel PDU in the form of octets.

Examples

Decode BLE LL Advertising Channel PDU Given in Bits

Create a BLE LL advertising channel PDU configuration object, 'cfgLLAdv', with default
settings and view the corresponding applicable properties.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig

 bleLLAdvertisingChannelPDUDecode

2-169

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Advertising indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 AdvertisingData: [3x2 char]

Generate the BLE LL advertising channel PDU from the corresponding configuration
object.

pdu = bleLLAdvertisingChannelPDU(cfgLLAdv);

Decode the generated BLE LL advertising channel PDU. The returned status indicates
decoding is successful. View the output of 'status'and 'cfgLLAdv'.

[status, cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu)

status =
Success

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Advertising indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 AdvertisingData: [3x2 char]

Decode BLE LL Advertising Channel PDU Given in Octets

Specify a sample BLE LL advertising channel PDU in octets.

pdu = 'C409AB8967452301020106A8F1DF'; % Sample PDU in octets

Decode the specified BLE LL advertising channel PDU by specifying 'InputFormat' to
'octets'. The returned status indicates decoding is successful. View the output of
'status' and 'cfgLLData'.

2 Functions — Alphabetical List

2-170

[status, cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu, ...
 'InputFormat','octets')

status =
Success

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Scan response'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 ScanResponseData: [3x2 char]

Decode Corrupted BLE LL Advertising Channel PDU

Specify a BLE LL advertising channel PDU containing corrupted data values.

pdu = 'D409AB89674523010201'; % Sample corrupted PDU

Decode the specified BLE LL advertising channel PDU. The returned status indicates that
the decoding failed due to corrupted input BLE LL advertising channel PDU. In case of
failed decoding, the reason of failure is indicated and the BLE LL advertising channel
PDU configuration object, 'cfgLLAdv', displays no properties.

[status, cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(pdu, ...
 'InputFormat','octets')

status =
CRCFailed

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 bleLLAdvertisingChannelPDUDecode

2-171

Input Arguments
pdu — BLE LL advertising channel PDU
character vector | string scalar | numeric vector | character array | binary vector

BLE LL advertising channel PDU, specified as one of these types:

• Character vector — This vector represents octets in hexadecimal format.
• String scalar — This scalar represents octets in hexadecimal format.
• Numeric vector of elements in the range [0,255] — This vector represents octets in

decimal format.
• n-by-2 character array — Each row represents an octet in hexadecimal format.
• Binary vector — This vector represents the BLE LL advertising channel PDU bits.

Data Types: char | double | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [status,cfgLLAdv] =
bleLLAdvertisingChannelPDUDecode('pdu','InputFormat','octets')

InputFormat — BLE LL advertising channel PDU format
'bits' (default) | 'octets'

BLE LL advertising channel PDU format, specified as 'bits' or'octets'. When
specified as 'bits', the InputFormat is a binary vector. When specified as 'octets',
InputFormat is a numeric vector representing octets in decimal format or a character
array or a string scalar representing octets in hexadecimal format.
Data Types: char | string

2 Functions — Alphabetical List

2-172

Output Arguments
status — BLE LL advertising channel PDU decoding status
nonpositive integer

BLE LL advertising channel PDU decoding status, returned as a nonpositive number of
type blePacketDecodeStatus. This value represents the result of BLE LL advertising
channel PDU decoding. Each value of status corresponds to a member of the
blePacketDecodeStatus enumeration class, which indicates the packet decoding
status listed in this table.

Enumeration Value Member of Enumeration
Class

Decoding Status

0 Success Packet decoding succeeded
-1 CRCFailed Link Layer PDU is corrupted
–2 LLPDULengthMismatch Length field does not match

with actual PDU length
–3 InvalidLLSlaveLatency Invalid slave latency
–4 InvalidLLConnectionTi

meout
Invalid connection timeout

–5 InvalidLLWindowSize Invalid window size
–6 InvalidLLWindowOffset Invalid window offset
–7 InvalidLLConnectionIn

terval
Invalid connection interval

–8 InvalidLLChannelMap Invalid channel map
–51 IncompleteLLAdvertisi

ngChannelPDU
Insufficient octets in
advertising channel PDU

–52 InvalidLLHopIncrement Invalid hop increment value
–53 InvalidLLAdvertisingD

ataLength
Invalid advertising data

–54 InvalidLLScanResponse
DataLength

Invalid scan response data

–55 UnsupportedLLAdvertis
ingPDUType

Unsupported advertising
channel PDU

 bleLLAdvertisingChannelPDUDecode

2-173

An enumeration value other than 0 means that the BLE LL advertising channel PDU
decoding failed. If the decoding fails, object cfgLLAdv displays no output.

cfgLLAdv — BLE LL advertising channel PDU configuration object
bleLLAdvertisingChannelPDUConfig object

BLE LL advertising channel configuration object, returned as a
bleLLAdvertisingChannelPDUConfig object. This value represents the decoded BLE
LL advertising channel PDU configuration.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleLLAdvertisingChannelPDU

Objects
bleLLAdvertisingChannelPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

2 Functions — Alphabetical List

2-174

https://www.bluetooth.com/

bleLLDataChannelPDU
Generate BLE LL data channel PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
pdu = bleLLDataChannelPDU(cfgLLData)
pdu = bleLLDataChannelPDU(cfgLLData,LLPayload)

Description
pdu = bleLLDataChannelPDU(cfgLLData) generates a Bluetooth low energy (BLE)
link layer (LL) data channel protocol data unit (PDU), pdu, for a given BLE LL data
channel configuration object cfgLLData. This syntax is used for generating BLE LL
control PDUs.

pdu = bleLLDataChannelPDU(cfgLLData,LLPayload) generates a BLE LL data
channel PDU, pdu, containing the upper-layer payload LLPayload for a given BLE LL
data channel configuration object cfgLLData. This syntax is used for generating BLE LL
data PDUs.

Examples

Generate BLE LL Control PDU of Type Connection Update Indication

Create a BLE LL control PDU configuration object for a control PDU using the default
configuration. View the corresponding default properties.

cfgControl = bleLLControlPDUConfig

 bleLLDataChannelPDU

2-175

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Connection update indication'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 6
 SlaveLatency: 0
 ConnectionTimeout: 10
 Instant: 0

Create a BLE LL data channel PDU configuration object for a control PDU of type
'Connection update indication' by configuring the values of link layer identifier
(LLID) as 'Control' and ControlConfig as 'cfgControl'. View the corresponding
properties.

cfgLLData = bleLLDataChannelPDUConfig('LLID', 'Control', ...
 'ControlConfig', cfgControl)

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0
 ControlConfig: [1x1 bleLLControlPDUConfig]

Generate a BLE LL data channel PDU of type 'Connection update indication' by
using the configuration object 'cfgLLData'. Display the PDU length in octets.

pdu = bleLLDataChannelPDU(cfgLLData);
numel(pdu)/8

ans = 17

Display the first octet of the generated BLE LL data channel PDU.

pdu(1:8)

ans = 8×1

 1

2 Functions — Alphabetical List

2-176

 1
 0
 0
 0
 0
 0
 0

Generate BLE LL Data PDU Using Upper-Layer Payload

Create a BLE LL data channel PDU configuration object, 'cfgLLData', for a data PDU
by using the default configuration. View the corresponding default properties.

cfgLLData = bleLLDataChannelPDUConfig

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Data (continuation fragment/empty)'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

Generate a BLE LL data PDU by using the corresponding configuration object,
'cgLLData' and the upper-layer payload '030004000A0100'. Display the PDU length
in octets.

pdu = bleLLDataChannelPDU(cfgLLData,'030004000A0100');
numel(pdu)/8

ans = 12

Display the first octet of the generated BLE LL data PDU.

pdu(1:8)

ans = 8×1

 1
 0

 bleLLDataChannelPDU

2-177

 0
 0
 0
 0
 0
 0

Input Arguments
cfgLLData — BLE LL data channel configuration object
bleLLDataChannelPDUConfig object

BLE LL data channel configuration object, specified as a bleLLDataChannelPDUConfig
object. This object is used to configure the BLE LL data channel PDU and its applicable
properties.

LLPayload — Upper-layer payload
character vector | string scalar | numeric vector | character array

Upper-layer payload, specified as one of these types:

• Character vector — This vector represents octets in hexadecimal format.
• String scalar — This scalar represents octets in hexadecimal format.
• Numeric vector of elements in the range [0,255] — This vector represents octets in

decimal format.
• n-by-2 character array — Each row represents an octet in hexadecimal format.

Data Types: char | double | string

Output Arguments
pdu — Generated BLE LL data channel PDU
binary vector

Generated BLE LL data channel PDU, returned as a binary column vector. This value
represents the output BLE LL data channel PDU.

2 Functions — Alphabetical List

2-178

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• No codegen when 'crcinit' value is varied

See Also
Functions
bleLLDataChannelPDUDecode

Objects
bleLLDataChannelPDUConfig | bleLLControlPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleLLDataChannelPDU

2-179

https://www.bluetooth.com/

bleLLDataChannelPDUDecode
Decode BLE LL data channel PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
[status,cfgLLData,LLPayload] = bleLLDataChannelPDUDecode(pdu,
CRCinit)
[status,cfgLLData,LLPayload] = bleLLDataChannelPDUDecode(pdu,CRCinit
Name,Value)

Description
[status,cfgLLData,LLPayload] = bleLLDataChannelPDUDecode(pdu,
CRCinit) decodes a Bluetooth low energy (BLE) link layer (LL) data channel protocol
data unit (PDU), returning the decoding status, status, the BLE LL data channel PDU
configuration object, cfgLLData, and the upper-layer payload, LLPayload. The
CRCinit denotes the initialization value of cyclic redundancy check (CRC).

[status,cfgLLData,LLPayload] = bleLLDataChannelPDUDecode(pdu,CRCinit
Name,Value) sets properties using one or more name-value pairs. Enclose each property
name in quotes. For example, 'InputFormat','bits' specifies the format of input BLE
LL data channel PDU in bits.

Examples

2 Functions — Alphabetical List

2-180

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Decode BLE LL Data Channel PDU Given in Bits

Create a BLE LL data channel PDU configuration object by using default settings and
view the corresponding applicable properties.

cfgLLData = bleLLDataChannelPDUConfig

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Data (continuation fragment/empty)'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

Initialize and set the LLID value to 'start fragment/complete' indicating the BLE
LL data channel PDU with the upper-layer payload. Initialize the cyclic redundancy check
(CRC) value to 'ED321C'.

cfgLLData.LLID = 'Data (start fragment/complete)';
cfgLLData.CRCInitialization = 'ED321C';
crcInit = 'ED321C'; % CRC initialization value

Generate the BLE LL data channel PDU with upper-layer payload given in hexadecimal
octets.

pdu = bleLLDataChannelPDU(cfgLLData,'030004000A0100');

Decode the generated BLE LL data channel PDU. The returned status indicates decoding
is successful. View the output of 'status', 'cfgLLData' and 'llPayload'.

[status, cfgLLData, llPayload] = bleLLDataChannelPDUDecode(pdu,crcInit)

status =
Success

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Data (start fragment/complete)'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

 bleLLDataChannelPDUDecode

2-181

llPayload = 7x2 char array
 '03'
 '00'
 '04'
 '00'
 '0A'
 '01'
 '00'

Decode BLE LL Data Channel PDU Given in Octets

Specify a sample BLE LL data channel PDU in octets.

pdu = '030C00010000060000000A000000FCD2A6'; % Sample PDU in octets

Initialize the CRC value.

crcInit = 'ED323C'; % CRC initialization value

Decode the specified BLE LL data channel PDU by specifying 'InputFormat' to
'octets'. The specified PDU is a control PDU. The returned status indicates decoding is
successful. View the output of 'status', 'cfgLLData' and 'llPayload'. You can see
the decoded configuration of the specified PDU in the 'ControlConfig' property of
'cfgLLData'.

[status, cfgLLData, llPayload] = bleLLDataChannelPDUDecode(...
 pdu, crcInit, ...
 'InputFormat', ...
 'octets')

status =
Success

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0
 ControlConfig: [1x1 bleLLControlPDUConfig]

2 Functions — Alphabetical List

2-182

llPayload =

 1x0 empty char array

Decode Corrupted BLE LL Data Channel PDU

Specify a BLE LL data channel PDU containing corrupted data values. Initialize the CRC
value.

pdu = '040C00010000060000000A00'; % Sample corrupted PDU
crcInit = 'CD3234'; % CRC initialization value

Decode the specified BLE LL data channel PDU. The returned status indicates that the
decoding failed due to the corrupted BLE LL data channel PDU. If the decoding fails, the
reason is indicated and the BLE LL data channel PDU configuration object,
'cfgLLData', displays no properties.

[status, cfgLLData, llPayload] = bleLLDataChannelPDUDecode(...
 pdu, crcInit, ...
 'InputFormat', ...
 'octets')

status =
CRCFailed

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

llPayload =

 1x0 empty char array

Input Arguments
pdu — BLE LL data channel PDU
character vector | string scalar | numeric vector | character array | binary vector

BLE LL data channel PDU, specified as one of these values:

 bleLLDataChannelPDUDecode

2-183

• Character vector — This vector represents octets in hexadecimal format.
• String scalar — This scalar represents octets in hexadecimal format.
• Numeric vector of elements in the range [0,255] — This vector represents octets in

decimal format.
• n-by-2 character array — Each row represents an octet in hexadecimal format.
• Binary vector — This vector represents BLE LL data channel PDU bits.

Data Types: char | string | double

CRCinit — CRC initialization value
character vector | string scalar

CRC initialization value, specified as a 6-element character vector or a string scalar
representing 3-octet hexadecimal value.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [status,cfgLLData,LLPayload] =
bleLLDecodeDataChannelPDU('pdu','CRCInit','InputFormat','octets')

InputFormat — BLE LL data channel PDU format
'bits' (default) | 'octets'

BLE LL data channel PDU format, specified as 'bits' or'octets'. When specified as
'bits', InputFormat is a binary vector. When specified as 'octets', InputFormat is
a numeric vector representing octets in decimal format or a character array or a string
scalar representing octets in hexadecimal format.
Data Types: char | string | double

2 Functions — Alphabetical List

2-184

Output Arguments
status — BLE LL data channel PDU decoding status
nonpositive integer

BLE LL data channel PDU decoding status, returned as a nonpositive number of type
blePacketDecodeStatus. This value represents the result of a BLE LL data channel
PDU decoding. Each value of status corresponds to a member of the
blePacketDecodeStatus enumeration class, which indicates the packet decoding
status as listed in this table.

Enumeration Value Member of Enumeration
Class

Decoding Status

0 Success Packet decoding succeeded
-1 CRCFailed Link Layer PDU is corrupted
–2 LLPDULengthMismatch Length field does not match

with actual PDU length
–3 InvalidLLSlaveLatency Invalid slave latency
–4 InvalidLLConnectionTi

meout
Invalid connection timeout

–5 InvalidLLWindowSize Invalid window size
–6 InvalidLLWindowOffset Invalid window offset
–7 InvalidLLConnectionIn

terval
Invalid connection interval

–8 InvalidLLChannelMap Invalid channel map
-101 IncompleteLLDataChann

elPDU
Insufficient octets in data
channel PDU

-102 InvalidLLID Invalid LLID
-103 UnsupportedLLOpCode Unsupported opcode
-104 InvalidLLErrorCode Invalid error code
-105 InvalidBluetoothVersi

on
Invalid version

-106 ExpectedNonZeroPayloa
d

Nonzero payload expected

 bleLLDataChannelPDUDecode

2-185

-107 MICNotSupported Payload contains MIC

An enumeration value other than 0 means that the BLE LL data channel PDU decoding
failed. If decoding fails, object cfgLLData displays no output.

cfgLLData — BLE LL data channel configuration object
bleLLDataChannelPDUConfig object

BLE LL data channel configuration object, returned as a bleLLDataChannelPDUConfig
object. This value represents the decoded BLE LL data channel PDU configuration.

LLPayload — Upper-layer payload
array

Upper-layer payload, returned as a character array where each row is the hexadecimal
representation of an octet.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• No codegen when 'crcinit' value is varied

See Also
Functions
bleLLDataChannelPDU

2 Functions — Alphabetical List

2-186

https://www.bluetooth.com/

Objects
bleLLDataChannelPDUConfig | bleLLControlPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleLLDataChannelPDUDecode

2-187

bleWaveformGenerator
Waveform generator for BLE PHY

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Syntax
waveform = bleWaveformGenerator(message)
waveform = bleWaveformGenerator(message,Name,Value)

Description
waveform = bleWaveformGenerator(message) generates waveform, a time-domain
Bluetooth low energy (BLE) physical layer (PHY) waveform by using the input information
bits message.

waveform = bleWaveformGenerator(message,Name,Value) also specifies options
using one or more name-value pair arguments. For example, 'Mode','LE2M' specifies
the generating mode value of the desired BLE waveform.

Examples

Generate BLE Waveform Using Default Settings

Create an input message column vector of length 2056 containing random binary values.
Set the symbol rate to default value.

message = randi([0 1],2056,1);
symbolRate = 1e6;

2 Functions — Alphabetical List

2-188

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Generate the BLE waveform.

waveform = bleWaveformGenerator(message);

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of
the generated BLE waveform. Set the sample rate of the frequency spectrum.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = 8*symbolRate;

Plot the BLE waveform.

scope(waveform);

 bleWaveformGenerator

2-189

Generate BLE Waveform Using Specified Name-Value Pairs

Create an input message column vector of length 640 containing random binary values.

message = randi([0 1],640,1);

Specify the values of generating mode, channel index, samples per symbol and access
address. Set symbol rate to default value.

phyMode = 'LE125K';
chanIdx = 2;
sps = 4;
accAdd = [1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 ...
 0 1 0 1 1 0 0].';
symbolRate = 1e6;

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of
the generated BLE waveform. Set the sample rate of the frequency spectrum.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = sps*symbolRate;

Generate the BLE waveform using specified name-value pair arguments. Plot the BLE
waveform.

waveform = bleWaveformGenerator(message,'Mode',phyMode, ...
 'SamplesPerSymbol',sps,'ChannelIndex',chanIdx,'AccessAddress',accAdd);
scope(waveform);

2 Functions — Alphabetical List

2-190

Input Arguments
message — Input message bits
binary-valued column vector

Input message bits, specified as a binary-valued column vector of numerical or logical
values. This message contains the protocol data unit (PDU) and cyclic redundancy check
(CRC) data. The maximum length of this value is 2080 bits.
Data Types: double | logical | single | int

 bleWaveformGenerator

2-191

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: bleWaveformGenerator(message,'Mode','LE2M','ChannelIndex',36)

Mode — Generating mode
'LE1M' (default) | 'LE2M' | 'LE500K' | 'LE125K'

Generating mode, specified as the comma-separated pair consisting of 'Mode' and
'LE1M', 'LE2M', 'LE500K', or 'LE125K'. This value indicates the type of BLE
waveform.
Data Types: string | char

ChannelIndex — Channel Index
37 (default) | integer in the range [0, 39]

Channel index, specified as the comma-separated pair consisting of 'ChannelIndex'and
an integer in the range [0, 39]. For data channels, this value must be in the range [0, 36].
For advertising channels, this value must be in the range [37, 39]. This value is used by
the data-whitening block to randomize the bits.
Data Types: single | double

SamplesPerSymbol — Samples per symbol
8 (default) | positive integer

Samples per symbol, specified as the comma-separated pair consisting of
'SamplesPerSymbol' and a positive integer. This value is used for the Gaussian
frequency-shift keying (GFSK) modulation.
Data Types: single | double

AccessAddress — Access address
[0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1]'
(default) | 32-bit column vector

Access address, specified as the comma-separated pair consisting of 'AccessAddress'
and a 32-bit column vector of numerical or logical values.

2 Functions — Alphabetical List

2-192

Data Types: logical | single | double | int

Output Arguments
waveform — Output time-domain waveform
complex-valued column vector

Output time-domain waveform, returned as a complex-valued column vector of size Ns-
by-1, where Ns represents the number of time-domain samples. The waveform is
generated in the form of complex in-phase quadrature (IQ) samples.

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleIdealReceiver

Apps
Wireless Waveform Generator

Topics
“Bluetooth Protocol Stack”

 bleWaveformGenerator

2-193

https://www.bluetooth.com/

Introduced in R2019b

2 Functions — Alphabetical List

2-194

bsc
Binary symmetric channel

Syntax
ndata = bsc(data,probability)
ndata = bsc(data,probability,streamhandle)
ndata = bsc(data,probability,seed)
[ndata,err] = bsc(___)

Description
ndata = bsc(data,probability) passes the binary input signal data through a
binary symmetric channel having the specified error probability. The channel introduces a
bit error and processes each element of the input data independently. data must be an
array of binary numbers or a Galois array in GF(2). probability must be a scalar from 0
to 1.

ndata = bsc(data,probability,streamhandle) accepts a random stream handle
to generate uniform noise samples by using rand. Providing a random stream handle or
using the reset function on the default random stream object enables you to generate
repeatable noise samples. For more information, see RandStream.

ndata = bsc(data,probability,seed) accepts a seed value, for initializing the
uniform random number generator, rand. If you want to generate repeatable noise
samples, then either reset the random stream input before calling bsc or use the same
seed input.

[ndata,err] = bsc(___) returns an array containing the channel errors, using any
of the preceding syntaxes.

 bsc

2-195

Examples
Add Bit Errors to Bit Stream

Using the bsc function, introduce bit errors in the bits in a random matrix with
probability 0.15.

z = randi([0 1],100,100); % Random matrix
nz = bsc(z,.15); % Binary symmetric channel
[numerrs, pcterrs] = biterr(z,nz) % Number and percentage of errors

numerrs = 1509

pcterrs = 0.1509

The output below is typical. For relatively small sets of data, the percentage of bit errors
is not exactly 15% in most trials. If the size of the matrix z is large, the bit error
percentage will be closer to the exact probability you specify.

Check for Errors After Decoding

Using the bsc function, introduce bit errors in the bits in a random matrix with
probability 0.01. Use Viterbi decoder to decode message data.

Define trellis for Viterbi decoder. Generate and encode message data.

trel = poly2trellis([4 3],[4 5 17;7 4 2]);
msg = ones(10000,1);

Create objects for convolutional encoder, Viterbi decoder, and error rate calculator.

hEnc = comm.ConvolutionalEncoder(trel);
hVitDec = comm.ViterbiDecoder(trel, 'InputFormat','hard', 'TracebackDepth',...
 2, 'TerminationMethod', 'Truncated');
hErrorCalc = comm.ErrorRate;

Encode the message data. Introduce bit errors. Display the total number of errors.

code = hEnc(msg);
[ncode,err] = bsc(code,.01);
numchanerrs = sum(sum(err))

numchanerrs = 158

2 Functions — Alphabetical List

2-196

Decode the data and check the number of errors after decoding.

dcode = hVitDec(ncode);
berVec = hErrorCalc(msg, dcode);
ber = berVec(1)

ber = 0.0049

numsyserrs = berVec(2)

numsyserrs = 49

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

Code generation supported, except for syntaxes that include a RandStream object.

See Also
Functions
RandStream | awgn | gf | rand

Topics
“Design a Rate 2/3 Feedforward Encoder Using Simulink”

Introduced before R2006a

 bsc

2-197

cdma2000ForwardReferenceChannels
Define cdma2000 forward reference channel

Syntax
cfg = cdma2000ForwardReferenceChannels(wv)
cfg = cdma2000ForwardReferenceChannels(wv,numchips)
cfg = cdma2000ForwardReferenceChannels(BSTM-RC,numchips,P,M)
cfg = cdma2000ForwardReferenceChannels(traffic,numchips,F-SCH-SPEC)

Description
cfg = cdma2000ForwardReferenceChannels(wv) returns a structure, cfg, that
defines the cdma2000® forward link parameters given the input waveform identifier, wv.
To generate a forward link reference channel waveform, pass this structure to the
cdma2000ForwardWaveformGenerator function.

For all syntaxes, cdma2000ForwardReferenceChannels creates a configuration
structure that is compliant with the cdma2000 physical layer specification [1].

cfg = cdma2000ForwardReferenceChannels(wv,numchips) specifies the number
of chips to generate.

cfg = cdma2000ForwardReferenceChannels(BSTM-RC,numchips,P,M) returns
the data structure for the BSTM-RC waveform identifiers, given the total traffic channel
power, P, and the number of traffic channels, M. For more information on base station
testing, see Table 6.5.2-1 of [2].

cfg = cdma2000ForwardReferenceChannels(traffic,numchips,F-SCH-SPEC)
returns the data structure for the specified traffic channel, traffic, and the forward
supplemental channel (F-SCH) and frame length combination, F-SCH-SPEC. If omitted,
F-SCH-SPEC has a default value of the lowest F-SCH data rate allowable for a 20 ms
frame length, given the radio configuration specified by traffic.

2 Functions — Alphabetical List

2-198

Examples

Generate Waveform for RC2 Forward Traffic Channels

Create a parameter structure, config, for all forward traffic channels (F-FCH and F-
SCCH) that are supported by radio configuration 2.

config = cdma2000ForwardReferenceChannels('ALL-RC2')

config = struct with fields:
 SpreadingRate: 'SR1'
 Diversity: 'NTD'
 QOF: 'QOF1'
 PNOffset: 0
 LongCodeState: 0
 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'
 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 1000
 FPICH: [1x1 struct]
 FAPICH: [1x1 struct]
 FTDPICH: [1x1 struct]
 FATDPICH: [1x1 struct]
 FPCH: [1x1 struct]
 FSYNC: [1x1 struct]
 FBCCH: [1x1 struct]
 FCACH: [1x1 struct]
 FCCCH: [1x1 struct]
 FCPCCH: [1x1 struct]
 FQPCH: [1x1 struct]
 FFCH: [1x1 struct]
 FOCNS: [1x1 struct]
 FSCCH: [1x1 struct]

Examine the fields for the Forward Fundamental Channel (F-FCH). The data rate is
14,400 bps and the frame length is 20 ms.

config.FFCH

 cdma2000ForwardReferenceChannels

2-199

ans = struct with fields:
 Enable: 'On'
 Power: 0
 RadioConfiguration: 'RC2'
 DataRate: 14400
 FrameLength: 20
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 WalshCode: 7
 EnableQOF: 'Off'
 PowerControlEnable: 'Off'

Generate the complex waveform using the corresponding waveform generator function.

waveform = cdma2000ForwardWaveformGenerator(config);

A waveform composed of the channels specified by each substructure of config is
generated by cdma2000ForwardWaveformGenerator.

Generate CDMA200 Waveform Containing Sync Channel Message

Create a reference channel, specify the sync channel message as the data source, add the
SyncMessage structure to the FSYNC substructure. Generate the waveform using this
reference channel configuration.

Create a reference channel for testing a base station using radio configuration 3.

config = cdma2000ForwardReferenceChannels('BSTM-RC3');

Adjust the Forward Sync Channel (F-SYNC) settings. Set a relative channel power of 0.0
dB and specify the sync channel message as the data source.

config.FSYNC.Power = 0.0;
config.FSYNC.DataSource = 'SyncMessage';

Define the sync channel message structure (for P_REV = 6 (IS-2000-0)) and add it to the
config.FSYNC substructure. Display the FSYNC structure.

sm = struct();
sm.P_REV = 6; % Protocol Revision field

2 Functions — Alphabetical List

2-200

sm.MIN_P_REV = 6; % Minimum Protocol Revision field
sm.SID = hex2dec('14B'); % System Identifier field
sm.NID = 1; % Network Identification field
sm.PILOT_PN = 0; % Pilot PN Offset field
sm.LC_STATE = hex2dec('20000000000'); % Long Code State field
sm.SYS_TIME = hex2dec('36AE0924C'); % System Time field
sm.LP_SEC = 0; % Leap Second field
sm.LTM_OFF = 0; % Local Time Offset field
sm.DAYLT = 0; % Daylight Savings Time Indicator field
sm.PRAT = 0; % Paging Channel Data Rate field
sm.CDMA_FREQ = hex2dec('2F6'); % CDMA Frequency field
sm.EXT_CDMA_FREQ = hex2dec('2F6'); % Extended CDMA Frequency field

config.FSYNC.SyncMessage = sm;

config.FSYNC

ans = struct with fields:
 Enable: 'On'
 Power: 0
 EnableCoding: 'On'
 DataSource: 'SyncMessage'
 SyncMessage: [1x1 struct]

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Generate F-CCCH Waveform

Create a structure for a 2000-chip forward common control channel (F-CCCH). Specify a
38,400 bps data rate, a 5 ms frame length, and an accompanying broadcast control
channel (F-BCCH) with a 9600 bps data rate.

config = cdma2000ForwardReferenceChannels('CONTROL-38400-5-9600',2000)

config = struct with fields:
 SpreadingRate: 'SR1'
 Diversity: 'NTD'
 QOF: 'QOF1'
 PNOffset: 0

 cdma2000ForwardReferenceChannels

2-201

 LongCodeState: 0
 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'
 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 2000
 FPICH: [1x1 struct]
 FPCH: [1x1 struct]
 FCCCH: [1x1 struct]
 FBCCH: [1x1 struct]

Verify that the F-CCCH and F-BCCH data rates are 38,400 bps and 9600 bps, respectively.

config.FCCCH.DataRate

ans = 38400

config.FBCCH.DataRate

ans = 9600

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Generate Waveform for Base Station Testing

Create a reference channel for testing a base station using radio configuration 3. Specify
the number of chips, the total power allocated to the individual channels, and the number
of traffic channels. The FFCH substructure is a structure array whose dimensions are set
by the number of traffic channels.

config = cdma2000ForwardReferenceChannels('BSTM-RC3',1000,-3,4)

config = struct with fields:
 SpreadingRate: 'SR1'
 Diversity: 'NTD'
 QOF: 'QOF1'
 PNOffset: 0
 LongCodeState: 0

2 Functions — Alphabetical List

2-202

 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'
 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 1000
 FPICH: [1x1 struct]
 FSYNC: [1x1 struct]
 FPCH: [1x1 struct]
 FFCH: [1x4 struct]

Verify that the length of the FFCH substructure corresponds to the number of specified
traffic channels, 4.

length(config.FFCH)

ans = 4

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Generate F-SCH Waveform

Create a traffic channel using radio configuration 7 composed of a 614,400 bps forward
supplemental channel (F-SCH) having a 20 ms frame length. Set the number of chips to
5000.

config = cdma2000ForwardReferenceChannels('TRAFFIC-RC7-4800', ...
 5000,'F-SCH-614400-20')

config = struct with fields:
 SpreadingRate: 'SR3'
 Diversity: 'NTD'
 QOF: 'QOF1'
 PNOffset: 0
 LongCodeState: 0
 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'

 cdma2000ForwardReferenceChannels

2-203

 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 5000
 FPICH: [1x1 struct]
 FFCH: [1x1 struct]
 FSCH: [1x1 struct]

This channel uses spreading rate 3, 'SR3', which has a 3.75 MHz bandwidth.

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector. The
input typically identifies the channel type, radio configuration, data rate, and frame
length. To specify wv, connect the substrings with hyphens, for example,
'CONTROL-19200-10-4800'.

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3 Substring 4

wv 'FPICH-
ONLY'

 Generates a
waveform
containing a
pilot channel
only.

'CONTROL' 9600 20 4800 | 9600 |
19200

Character
vector
representing
the forward
common
control

19200 10 | 20

2 Functions — Alphabetical List

2-204

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3 Substring 4

38400 5 | 10 | 20 channel (F-
CCCH) data
rate in bps,
the frame
length in ms,
and the
forward
broadcast
control
channel (F-
BCCH) data
rate in bps.
Specify
'CONTROL-9
600-20-960
0' to create a
structure
variable, wv,
with a 9600
bps F-CCCH
data rate, a
20 ms frame
length, and a
9600 bps F-
BCCH data
rate.

'TRAFFIC' RC1 1200 | 2400 |
4800 | 9600

N/A Character
vector
representing
the radio
configuration
and the
forward
fundamental
channel (F-
FCH) data
rate in bps.

RC2 | RC5 |
RC8 | RC9

1800 | 3600 |
7200 | 14400

 cdma2000ForwardReferenceChannels

2-205

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3 Substring 4

RC3 | RC4 |
RC6 | RC7

1500 | 2700 |
4800 | 9600

Specify
'TRAFFIC-
RC9-14400'
to create a
channel with
radio
configuration
9 having a
14400 bps F-
FCH data
rate.

'BSTM' RC1 | RC2 |
RC3 | RC4 |
RC5 | RC6 |
RC7 | RC8 |
RC9

N/A N/A Models for
testing the
base station
transmitter.
Specify
'BSTM-RC1'
to create a
structure for
base station
testing with
radio
configuration
1.

2 Functions — Alphabetical List

2-206

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3 Substring 4
'ALL' RC1 | RC2 |

RC3 | RC4 |
RC5 | RC6 |
RC7 | RC8 |
RC9

N/A N/A Returns all
channels that
are supported
for the
specified
radio
configuration.
Specify
'ALL-RC4'
to create a
structure
containing all
traffic
channels for
radio
configuration
4.

Example: 'CONTROL-9600-20-9600'
Example: 'TRAFFIC-RC9-7200'
Example: 'ALL-RC5'
Data Types: char

numchips — Number of chips
1000 (default) | positive integer scalar

Number of chips, specified as a positive integer.
Example: 1024
Data Types: double

BSTM-RC — BSTM reference channel type
'BSTM-RC1' | 'BSTM-RC2' | 'BSTM-RC3' | 'BSTM-RC4' | 'BSTM-RC5' | 'BSTM-RC6' |
'BSTM-RC7' | 'BSTM-RC8' | 'BSTM-RC9'

BSTM reference channel type, specified as a character vector. For more information, see
Table 6.5.2-1 of [2].

 cdma2000ForwardReferenceChannels

2-207

Example: 'BSTM-RC8'
Data Types: char

P — Power budget allocated to traffic channels
0 (default) | real scalar

Power budget allocated to all traffic channels, specified in decibels as a real scalar.
Example: 5
Data Types: double

M — Number of traffic channels
6 (default) | positive integer scalar

Number of traffic channels, specified as a positive integer.
Example: 8
Data Types: double

traffic — Traffic configuration
character vector

Traffic channel configuration, specified as a character vector. The table shows the
supported traffic channel configurations.

Radio
Configuration

Traffic Channel Configuration

1 'TRAFFIC-
RC1-1200'

'TRAFFIC-
RC1-2400'

'TRAFFIC-
RC1-4800'

'TRAFFIC-
RC1-9600'

2 'TRAFFIC-
RC2-1800'

'TRAFFIC-
RC2-3600'

'TRAFFIC-
RC2-7200'

'TRAFFIC-
RC2-14400'

3 'TRAFFIC-
RC3-1500'

'TRAFFIC-
RC3-2700'

'TRAFFIC-
RC3-4800'

'TRAFFIC-
RC3-9600'

4 'TRAFFIC-
RC4-1500'

'TRAFFIC-
RC4-2700'

'TRAFFIC-
RC4-4800'

'TRAFFIC-
RC4-9600'

5 'TRAFFIC-
RC5-1800'

'TRAFFIC-
RC5-3600'

'TRAFFIC-
RC5-7200'

'TRAFFIC-
RC5-14400'

2 Functions — Alphabetical List

2-208

Radio
Configuration

Traffic Channel Configuration

6 'TRAFFIC-
RC6-1500'

'TRAFFIC-
RC6-2700'

'TRAFFIC-
RC6-4800'

'TRAFFIC-
RC6-9600'

7 'TRAFFIC-
RC7-1500'

'TRAFFIC-
RC7-2700'

'TRAFFIC-
RC7-4800'

'TRAFFIC-
RC7-9600'

8 'TRAFFIC-
RC8-1800'

'TRAFFIC-
RC8-3600'

'TRAFFIC-
RC8-7200'

'TRAFFIC-
RC8-14400'

9 'TRAFFIC-
RC9-1800'

'TRAFFIC-
RC9-3600'

'TRAFFIC-
RC9-7200'

'TRAFFIC-
RC9-14400'

Example: 'TRAFFIC-RC6-4800' is a traffic channel that uses radio configuration 6 with
a 4800 bps data rate.
Data Types: char

F-SCH-SPEC — Forward supplemental channel data rate and frame length
character vector

Forward supplemental channel data rate and frame length, specified as a character
vector. The supported data rate and frame length combinations are summarized in the
table.

Radio
Configuration

Frame Length
20 ms 40 ms 80 ms

3 | 4 | 6 | 7 'F-SCH-1500-20' |
'F-SCH-2700-20' |
'F-SCH-4800-20' |
'F-SCH-9600-20' |
'F-SCH-19200-20'
| 'F-
SCH-38400-20' |
'F-SCH-76800-20'
| 'F-
SCH-153600-20'

'F-SCH-1350-40' |
'F-SCH-2400-40' |
'F-SCH-4800-40' |
'F-SCH-9600-40' |
'F-SCH-19200-40'
| 'F-
SCH-38400-40' |
'F-SCH-76800-40'

'F-SCH-1200-80' |
'F-SCH-2400-80' |
'F-SCH-4800-80' |
'F-SCH-9600-80' |
'F-SCH-19200-80'
| 'F-
SCH-38400-80'

4 | 6 | 7 'F-
SCH-307200-20'

'F-
SCH-153600-40'

'F-SCH-76800-80'

 cdma2000ForwardReferenceChannels

2-209

Radio
Configuration

Frame Length
20 ms 40 ms 80 ms

7 'F-
SCH-614400-20'

'F-
SCH-307200-40'

'F-
SCH-153600-80'

5 | 8 | 9 'F-SCH-1800-20' |
'F-SCH-3600-20' |
'F-SCH-7200-20' |
'F-SCH-14400-20'
| 'F-
SCH-28800-20' |
'F-SCH-57600-20'
| 'F-
SCH-115200-20' |
'F-
SCH-230400-20'

'F-SCH-1800-40' |
'F-SCH-3600-40' |
'F-SCH-7200-40' |
'F-SCH-14400-40'
| 'F-
SCH-28800-40' |
'F-SCH-57600-40'
| 'F-
SCH-115200-40'

'F-SCH-1800-80' |
'F-SCH-3600-80' |
'F-SCH-7200-80' |
'F-SCH-14400-80'
| 'F-
SCH-28800-80' |
'F-SCH-57600-80'

8 | 9 'F-
SCH-460800-20'

'F-
SCH-230400-40'

'F-
SCH-115200-80'

9 'F-
SCH-1036800-20'

'F-
SCH-518400-40'

'F-
SCH-259200-80'

For more data rate information for the cdma2000 forward links, see tables 3.1.3.1.3-2 and
3.1.3.1.3-4 of [1].
Example: 'F-SCH-460800-20' is a supplemental channel with a 460,800 bps data rate
and a 20 ms frame length.
Data Types: char

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

2 Functions — Alphabetical List

2-210

Top-Level Parameters and Substructures

Parameter Field Values Description
SpreadingRate 'SR1' | 'SR3' Spreading rate of the waveform. SR1

corresponds to a 1.2288 Mcps carrier. SR3
corresponds to a 3.6864 Mcps carrier.

SR3 supports direct sequence spreading
only.

Diversity 'NTD' | 'OTD' | 'STS' Transmit diversity type (applicable only for
SR1), where NTD is no transmit diversity,
OTD is orthogonal transmit diversity, and
STS is space time spreading

QOF 'QOF1' | 'QOF2' | 'QOF3' Quasi-orthogonal function type
PNOffset Nonnegative scalar integer PN offset of the base station
LongCodeState Positive scalar integer Initial long code state
PowerNormalization 'Off' |

'NormalizeTo0dB' |
'NoiseFillTo0dB'

Power normalization of the waveform

NumChips Positive scalar integer Number of chips in the waveform
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off'
| 'Custom'

Type of output filtering

CustomFilterCoeffi
cients

Real vector Custom filter coefficients, used only when
the FilterType field is set to 'Custom'

OversamplingRatio Positive scalar integer Oversampling ratio at output
InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

FPICH Structure See FPICH Substructure. Optional.
FAPICH Structure See FAPICH Substructure. Optional.
FTDPICH Structure See FTDPICH Substructure. Optional.

 cdma2000ForwardReferenceChannels

2-211

Parameter Field Values Description
FATDPICH Structure See FATDPICH Substructure. Optional.
FSYNC Structure See FSYNC Substructure. Optional.
FPCH Structure See FPCH Substructure. Optional.
FCCCH Structure See FCCCH Substructure. Optional.
FCACH Structure See FCACH Substructure. Optional.
FQPCH Structure See FQPCH Substructure. Optional.
FCPCCH Structure See FCPCCH Substructure. Optional.
FBCCH Structure See FBCCH Substructure. Optional.
FFCH Structure See FFCH Substructure. Optional.
FDCCH Structure See FDCCH Substructure. Optional.
FSCCH Structure See FSCCH Substructure. Optional.
FSCH Structure See FSCH Substructure. Optional.
FOCNS Structure See FOCNS Substructure. Optional.

FPICH Substructure

Include the FPICH substructure in the cfg structure to configure the forward pilot
channel (F-PICH). The FPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FAPICH Substructure

Include the FAPICH substructure in the cfg structure to configure the forward auxiliary
pilot channel (F-APICH). The FAPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 | 512 Walsh code length

2 Functions — Alphabetical List

2-212

Parameter Field Values Description
WalshCode Nonnegative integer

scalar, such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FTDPICH Substructure

Include the FTDPICH substructure in the cfg structure to configure the forward transmit
diversity pilot Channel (F-TDPICH). The FTDPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FATDPICH

Include the FATDPICH substructure in the cfg structure to configure the forward
auxiliary transmit diversity pilot channel (F-ATDPICH). The FATDPICH substructure
contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256, 512 Walsh code length
WalshCode Nonnegative integer

scalar, such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FSYNC Substructure

Include the FSYNC substructure in the cfg structure to configure the forward sync
channel (F-SYNC). The FSYNC substructure contains these fields.

 cdma2000ForwardReferenceChannels

2-213

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed}, binary vector,
or 'SyncMessage'.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed, a
binary vector, or a 'SyncMessage'
character vector.

SyncMessage Structure See SyncMessage Substructure.
Optional.

SyncMessage Substructure

If the DataSource field of the FSYNC substructure is set to 'SyncMessage', add the
SyncMessage substructure to the cfg.FSYNC substructure to configure the sync channel
message. The SyncMessage substructure contains these fields.

Parameter Field Typical Value Description
P_REV 6 Protocol revision field
MIN_P_REV 6 Minimum protocol revision

field
SID hex2dec('14B') System identifier field
NID 1 Network identification field
PILOT_PN 0 Pilot PN offset field
LC_STATE hex2dec('20000000000'

)
Long code state field

SYS_TIME hex2dec('36AE0924C') System time field
LP_SEC 0 Leap second field
LTM_OFF 0 Local time offset field
DAYLT 0 Daylight savings time

indicator field

2 Functions — Alphabetical List

2-214

Parameter Field Typical Value Description
PRAT 0 Paging channel data rate

field
CDMA_FREQ hex2dec('2F6') CDMA frequency field
EXT_CDMA_FREQ hex2dec('2F6') Extended CDMA frequency

field

FPCH Substructure

Include the FPCH substructure in the cfg substructure to configure the forward paging
channel (F-PCH). The FPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 Data rate (bps)
LongCodeMask Positive scalar integer Long code identifier
WalshCode Nonnegative integer

scalar, such that 0 ≤
WalshCode ≤ 7

Walsh code number

EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed}, binary vector,
or a paging message
character vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Paging message options
include
'PagingMessage1',
'PagingMessage2', and
'PagingMessage3'.

Data source. Specify a standard PN
sequence with a random number seed, a
binary vector, or one of three paging
messages. For a description of paging
message contents see footnote 1.

 cdma2000ForwardReferenceChannels

2-215

Parameter Field Values Description
1 When the DataSource enumeration specifies one of the paging message options,

simulated paging message data is used as input to the F-PCH physical channel:

• 'PagingMessage1' — Streams a 7680 bit sequence (800 ms at fullrate) of
paging message contents onto the channel that includes the General Page
Message, the CDMA Channel List Message, the Extended System Parameter
Message, the Extended Neighbor List Message, the System Parameter Message,
and the Access Parameter Message. The paging message repeats these messages
in a nonsequential pattern.

• 'PagingMessage2' — Streams a 2304 bit sequence (240 ms at fullrate) of
paging message contents onto the channel that includes a truncated version of
the full 'PagingMessage1' content.

• 'PagingMessage3' — Streams an 864 bit sequence (90 ms at fullrate) of
paging message contents onto the channel that includes the Neighbor List
Message, the CDMA Channel List Message, the General Page Message, the
System Parameter Message, and the Access Parameter Message. The paging
message repeats these messages in a sequential pattern.

For more information on the F-PCH contents, refer to 3GPP2 C.S0004, Table
3.1.2.3.1.1.2–1.

FCCCH Substructure

Include the FCCCH substructure in the cfg structure to configure the forward common
control channel (F-CCCH). The FCCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On'| 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

2 Functions — Alphabetical List

2-216

Parameter Field Values Description
LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FCACH Substructure

Include the FCACH substructure in the cfg structure to configure the forward common
assignment channel (F-CACH). The FCACH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

 cdma2000ForwardReferenceChannels

2-217

FQPCH Substructure

Include the FQPCH substructure in the cfg structure to configure the forward quick
paging channel (F-QPCH). The FQPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 2400 | 4800 Data rate (bps)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FCPCCH Substructure

Include the FCPCCH substructure in the cfg structure to configure the forward common
power control channel (F-CPCCH). The FCPCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 63

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

2 Functions — Alphabetical List

2-218

Parameter Field Values Description
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FBCCH Substructure

Include the FBCCH substructure in the cfg structure to configure the forward broadcast
control channel (F-BCCH). The FBCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 | 19200 Data rate (bps)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 127

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FFCH Substructure

Include the FFCH substructure in the cfg structure to configure the forward fundamental
traffic channel (F-FCH). The FFCH substructure contains these fields.

 cdma2000ForwardReferenceChannels

2-219

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC1' through 'RC9' Radio configuration channel

DataRate 1200 | 1500 | 1800 |
2400 | 2700 | 3600 |
4800 | 7200 | 9600 |
14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

PowerControlEna
ble

'On' | 'Off' Enable or disable power control
subchannel

PowerControlPow
er

Real scalar Power control subchannel power
(relative to F-FCH)

2 Functions — Alphabetical List

2-220

Parameter Field Values Description
PowerControlDat
aSource

Cell array: {'PN Type',
RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Power control subchannel data source

FDCCH Substructure

Include the FDCCH substructure in the cfg structure to configure the forward dedicated
control channel (F-DCCH). The FDCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC3' through 'RC9' Radio configuration channel

DataRate 9600 | 14400 Data rate (bps)
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

 cdma2000ForwardReferenceChannels

2-221

FSCCH Substructure

Include the FSCCH substructure in the cfg structure to configure the forward
supplemental code channel (F-SCCH). The FSCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC1' | 'RC2' Radio configuration channel

WalshCode Nonnegative integer
scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FSCH Substructure

Include the FSCH substructure in the cfg structure to configure the forward
supplemental channel (F-SCH). The FSCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC3' | 'RC4' | 'RC5' |
'RC6' | 'RC7' | 'RC8' |
'RC9'

Radio configuration channel

2 Functions — Alphabetical List

2-222

Parameter Field Values Description
DataRate 1200 | 1350 | 1500 |

1800 | 2400 | 2700 |
3600 | 4800 | 7200 |
9600 | 14400 | 19200 |
28800 | 38400 | 57600 |
76800 | 115200 |
153600 | 230400 |
307200

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
CodingType 'Conv' | 'Turbo' Channel coding type, convolutional or

turbo
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FOCNS Substructure

Include the FOCNS substructure in the cfg structure to configure orthogonal channel
noise source information. The FOCNS substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 Walsh code length

 cdma2000ForwardReferenceChannels

2-223

Parameter Field Values Description
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum

Systems.” 3rd Generation Partnership Project 2.

[2] 3GPP2 C.S0010–C v2.0. “Recommended Minimum Performance Standards for
cdma2000 Spread Spectrum Base Stations.” 3rd Generation Partnership Project
2.

[3] 3GPP2 C.S0004–F v1.0. “Signaling Link Access Control (LAC) Standard for cdma2000
Spread Spectrum Systems.” 3rd Generation Partnership Project 2.

See Also
cdma2000ForwardWaveformGenerator | cdma2000ReverseReferenceChannels

Introduced in R2015b

2 Functions — Alphabetical List

2-224

cdma2000ForwardWaveformGenerator
Generate cdma2000 forward link waveform

Syntax
[waveform1,waveform2] = cdma2000ForwardWaveformGenerator(cfg)

Description
[waveform1,waveform2] = cdma2000ForwardWaveformGenerator(cfg) returns
the cdma2000 forward link baseband primary waveform, waveform1, and the forward
link diversity waveform, waveform2, as defined by the parameter definition structure,
cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and
channel properties the function uses to generate a cdma2000 waveform. You can
generate cfg by using the cdma2000ForwardReferenceChannels function. The top-
level parameters of cfg are SpreadingRate, Diversity, QOF, PNOffset,
LongCodeState, PowerNormalization, CustomFilterCoefficients,
OversamplingRatio, FilterType, InvertQ, EnableModulation,
ModulationFrequency, and NumChips. To enable specific channels, add their
associated substructures, for example, the forward paging channel, FPCH.

Note The tables herein list the allowable values for the top-level parameters and
substructure fields. However, not all combinations of spreading rate, radio configuration,
frame length, and data rate are supported. To ensure that the input argument is valid, use
the cdma2000ForwardReferenceChannels function. If you input the structure fields
manually, consult [1] to ensure that the input parameter combinations are permitted.

Examples

 cdma2000ForwardWaveformGenerator

2-225

Generate Waveform for RC2 Forward Traffic Channels

Create a parameter structure, config, for all forward traffic channels (F-FCH and F-
SCCH) that are supported by radio configuration 2.

config = cdma2000ForwardReferenceChannels('ALL-RC2')

config = struct with fields:
 SpreadingRate: 'SR1'
 Diversity: 'NTD'
 QOF: 'QOF1'
 PNOffset: 0
 LongCodeState: 0
 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'
 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 1000
 FPICH: [1x1 struct]
 FAPICH: [1x1 struct]
 FTDPICH: [1x1 struct]
 FATDPICH: [1x1 struct]
 FPCH: [1x1 struct]
 FSYNC: [1x1 struct]
 FBCCH: [1x1 struct]
 FCACH: [1x1 struct]
 FCCCH: [1x1 struct]
 FCPCCH: [1x1 struct]
 FQPCH: [1x1 struct]
 FFCH: [1x1 struct]
 FOCNS: [1x1 struct]
 FSCCH: [1x1 struct]

Examine the fields for the Forward Fundamental Channel (F-FCH). The data rate is
14,400 bps and the frame length is 20 ms.

config.FFCH

ans = struct with fields:
 Enable: 'On'
 Power: 0
 RadioConfiguration: 'RC2'

2 Functions — Alphabetical List

2-226

 DataRate: 14400
 FrameLength: 20
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 WalshCode: 7
 EnableQOF: 'Off'
 PowerControlEnable: 'Off'

Generate the complex waveform using the corresponding waveform generator function.

waveform = cdma2000ForwardWaveformGenerator(config);

A waveform composed of the channels specified by each substructure of config is
generated by cdma2000ForwardWaveformGenerator.

Generate Forward Traffic Channel for RC4

Configure a cdma2000 forward link supporting a 307.2 kbps forward supplemental
channel (F-SCH) using radio configuration 4.

config = cdma2000ForwardReferenceChannels('TRAFFIC-RC4-4800',5000, ...
 'F-SCH-307200-20');

Generate the waveform and plot its spectrum. The sample rate is equal to the product of
the chip rate and the oversampling ratio. RC4 uses spreading rate 1, which is equivalent
to a 1.2288 Mcps chip rate.

wv = cdma2000ForwardWaveformGenerator(config);
fs = 1.2288e6 * config.OversamplingRatio;

sa = dsp.SpectrumAnalyzer('SampleRate',fs);
step(sa,wv)

 cdma2000ForwardWaveformGenerator

2-227

Change the filter type to 'cdma2000Short' and plot the spectrum.

config.FilterType = 'cdma2000Short';
wv = cdma2000ForwardWaveformGenerator(config);
step(sa,wv)

2 Functions — Alphabetical List

2-228

The 'cdma2000Short' filter does not provide as much out-of-band attenuation as does
the 'cdma2000Long' filter.

Generate cdma2000 Waveform with Two Forward Supplemental Channels

Create a parameter structure that specifies a forward traffic channel. Use it to generate a
forward channel waveform.

Create a parameter structure specifying a traffic channel consisting of a 4800 bps
fundamental channel, 5000 chips, and a 614.4 kbps supplemental channel (F-SCH) having
a 20 ms frame duration.

 cdma2000ForwardWaveformGenerator

2-229

cfg = cdma2000ForwardReferenceChannels('TRAFFIC-RC7-4800', ...
 5000,'F-SCH-614400-20');

Based on the first F-SCH, create a second F-SCH.

cfg(2).FSCH = cfg.FSCH;

Set the data rate of the second F-SCH to 38.4 kbps. Set the frame duration to 40 ms.

cfg(2).FSCH.DataRate = 38400;
cfg(2).FSCH.FrameLength = 40;
cfg.FSCH

ans = struct with fields:
 Enable: 'On'
 Power: 0
 RadioConfiguration: 'RC7'
 DataRate: 614400
 FrameLength: 20
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 WalshCode: 2
 EnableQOF: 'Off'
 CodingType: 'conv'

ans = struct with fields:
 Enable: 'On'
 Power: 0
 RadioConfiguration: 'RC7'
 DataRate: 38400
 FrameLength: 40
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 WalshCode: 2
 EnableQOF: 'Off'
 CodingType: 'conv'

Set the Walsh code of the second F-SCH so that it is not identical to the Walsh code of the
first F-SCH.

cfg(2).FSCH.WalshCode = 3;

2 Functions — Alphabetical List

2-230

Generate the forward link waveform.

wv = cdma2000ForwardWaveformGenerator(cfg);

Input Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
SpreadingRate 'SR1' | 'SR3' Spreading rate of the waveform. SR1

corresponds to a 1.2288 Mcps carrier. SR3
corresponds to a 3.6864 Mcps carrier.

SR3 supports direct sequence spreading
only.

Diversity 'NTD' | 'OTD' | 'STS' Transmit diversity type (applicable only for
SR1), where NTD is no transmit diversity,
OTD is orthogonal transmit diversity, and
STS is space time spreading

QOF 'QOF1' | 'QOF2' | 'QOF3' Quasi-orthogonal function type
PNOffset Nonnegative scalar integer PN offset of the base station
LongCodeState Positive scalar integer Initial long code state
PowerNormalization 'Off' |

'NormalizeTo0dB' |
'NoiseFillTo0dB'

Power normalization of the waveform

NumChips Positive scalar integer Number of chips in the waveform
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off'
| 'Custom'

Type of output filtering

 cdma2000ForwardWaveformGenerator

2-231

Parameter Field Values Description
CustomFilterCoeffi
cients

Real vector Custom filter coefficients, used only when
the FilterType field is set to 'Custom'

OversamplingRatio Positive scalar integer Oversampling ratio at output
InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

FPICH Structure See FPICH Substructure. Optional.
FAPICH Structure See FAPICH Substructure. Optional.
FTDPICH Structure See FTDPICH Substructure. Optional.
FATDPICH Structure See FATDPICH Substructure. Optional.
FSYNC Structure See FSYNC Substructure. Optional.
FPCH Structure See FPCH Substructure. Optional.
FCCCH Structure See FCCCH Substructure. Optional.
FCACH Structure See FCACH Substructure. Optional.
FQPCH Structure See FQPCH Substructure. Optional.
FCPCCH Structure See FCPCCH Substructure. Optional.
FBCCH Structure See FBCCH Substructure. Optional.
FFCH Structure See FFCH Substructure. Optional.
FDCCH Structure See FDCCH Substructure. Optional.
FSCCH Structure See FSCCH Substructure. Optional.
FSCH Structure See FSCH Substructure. Optional.
FOCNS Structure See FOCNS Substructure. Optional.

FPICH Substructure

Include the FPICH substructure in the cfg structure to configure the forward pilot
channel (F-PICH). The FPICH substructure contains these fields.

2 Functions — Alphabetical List

2-232

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FAPICH Substructure

Include the FAPICH substructure in the cfg structure to configure the forward auxiliary
pilot channel (F-APICH). The FAPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 | 512 Walsh code length
WalshCode Nonnegative integer

scalar, such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FTDPICH Substructure

Include the FTDPICH substructure in the cfg structure to configure the forward transmit
diversity pilot Channel (F-TDPICH). The FTDPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FATDPICH

Include the FATDPICH substructure in the cfg structure to configure the forward
auxiliary transmit diversity pilot channel (F-ATDPICH). The FATDPICH substructure
contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel

 cdma2000ForwardWaveformGenerator

2-233

Parameter Field Values Description
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256, 512 Walsh code length
WalshCode Nonnegative integer

scalar, such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FSYNC Substructure

Include the FSYNC substructure in the cfg structure to configure the forward sync
channel (F-SYNC). The FSYNC substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed}, binary vector,
or 'SyncMessage'.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed, a
binary vector, or a 'SyncMessage'
character vector.

SyncMessage Structure See SyncMessage Substructure.
Optional.

SyncMessage Substructure

If the DataSource field of the FSYNC substructure is set to 'SyncMessage', add the
SyncMessage substructure to the cfg.FSYNC substructure to configure the sync channel
message. The SyncMessage substructure contains these fields.

Parameter Field Typical Value Description
P_REV 6 Protocol revision field

2 Functions — Alphabetical List

2-234

Parameter Field Typical Value Description
MIN_P_REV 6 Minimum protocol revision

field
SID hex2dec('14B') System identifier field
NID 1 Network identification field
PILOT_PN 0 Pilot PN offset field
LC_STATE hex2dec('20000000000'

)
Long code state field

SYS_TIME hex2dec('36AE0924C') System time field
LP_SEC 0 Leap second field
LTM_OFF 0 Local time offset field
DAYLT 0 Daylight savings time

indicator field
PRAT 0 Paging channel data rate

field
CDMA_FREQ hex2dec('2F6') CDMA frequency field
EXT_CDMA_FREQ hex2dec('2F6') Extended CDMA frequency

field

FPCH Substructure

Include the FPCH substructure in the cfg substructure to configure the forward paging
channel (F-PCH). The FPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 Data rate (bps)
LongCodeMask Positive scalar integer Long code identifier
WalshCode Nonnegative integer

scalar, such that 0 ≤
WalshCode ≤ 7

Walsh code number

EnableCoding 'On' | 'Off' Enable or disable channel coding

 cdma2000ForwardWaveformGenerator

2-235

Parameter Field Values Description
DataSource Cell array: {'PN Type',

RN Seed}, binary vector,
or a paging message
character vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Paging message options
include
'PagingMessage1',
'PagingMessage2', and
'PagingMessage3'.

Data source. Specify a standard PN
sequence with a random number seed, a
binary vector, or one of three paging
messages. For a description of paging
message contents see footnote 1.

1 When the DataSource enumeration specifies one of the paging message options,
simulated paging message data is used as input to the F-PCH physical channel:

• 'PagingMessage1' — Streams a 7680 bit sequence (800 ms at fullrate) of
paging message contents onto the channel that includes the General Page
Message, the CDMA Channel List Message, the Extended System Parameter
Message, the Extended Neighbor List Message, the System Parameter Message,
and the Access Parameter Message. The paging message repeats these messages
in a nonsequential pattern.

• 'PagingMessage2' — Streams a 2304 bit sequence (240 ms at fullrate) of
paging message contents onto the channel that includes a truncated version of
the full 'PagingMessage1' content.

• 'PagingMessage3' — Streams an 864 bit sequence (90 ms at fullrate) of
paging message contents onto the channel that includes the Neighbor List
Message, the CDMA Channel List Message, the General Page Message, the
System Parameter Message, and the Access Parameter Message. The paging
message repeats these messages in a sequential pattern.

For more information on the F-PCH contents, refer to 3GPP2 C.S0004, Table
3.1.2.3.1.1.2–1.

2 Functions — Alphabetical List

2-236

FCCCH Substructure

Include the FCCCH substructure in the cfg structure to configure the forward common
control channel (F-CCCH). The FCCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On'| 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FCACH Substructure

Include the FCACH substructure in the cfg structure to configure the forward common
assignment channel (F-CACH). The FCACH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
CodingType 'conv' | 'turbo' Type of error correction coding

 cdma2000ForwardWaveformGenerator

2-237

Parameter Field Values Description
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FQPCH Substructure

Include the FQPCH substructure in the cfg structure to configure the forward quick
paging channel (F-QPCH). The FQPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 2400 | 4800 Data rate (bps)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

2 Functions — Alphabetical List

2-238

Parameter Field Values Description
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FCPCCH Substructure

Include the FCPCCH substructure in the cfg structure to configure the forward common
power control channel (F-CPCCH). The FCPCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 63

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FBCCH Substructure

Include the FBCCH substructure in the cfg structure to configure the forward broadcast
control channel (F-BCCH). The FBCCH substructure contains these fields.

 cdma2000ForwardWaveformGenerator

2-239

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 | 19200 Data rate (bps)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 127

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FFCH Substructure

Include the FFCH substructure in the cfg structure to configure the forward fundamental
traffic channel (F-FCH). The FFCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC1' through 'RC9' Radio configuration channel

DataRate 1200 | 1500 | 1800 |
2400 | 2700 | 3600 |
4800 | 7200 | 9600 |
14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)

2 Functions — Alphabetical List

2-240

Parameter Field Values Description
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

PowerControlEna
ble

'On' | 'Off' Enable or disable power control
subchannel

PowerControlPow
er

Real scalar Power control subchannel power
(relative to F-FCH)

PowerControlDat
aSource

Cell array: {'PN Type',
RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Power control subchannel data source

FDCCH Substructure

Include the FDCCH substructure in the cfg structure to configure the forward dedicated
control channel (F-DCCH). The FDCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

 cdma2000ForwardWaveformGenerator

2-241

Parameter Field Values Description
RadioConfigurat
ion

'RC3' through 'RC9' Radio configuration channel

DataRate 9600 | 14400 Data rate (bps)
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FSCCH Substructure

Include the FSCCH substructure in the cfg structure to configure the forward
supplemental code channel (F-SCCH). The FSCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC1' | 'RC2' Radio configuration channel

WalshCode Nonnegative integer
scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

2 Functions — Alphabetical List

2-242

Parameter Field Values Description
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FSCH Substructure

Include the FSCH substructure in the cfg structure to configure the forward
supplemental channel (F-SCH). The FSCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfigurat
ion

'RC3' | 'RC4' | 'RC5' |
'RC6' | 'RC7' | 'RC8' |
'RC9'

Radio configuration channel

DataRate 1200 | 1350 | 1500 |
1800 | 2400 | 2700 |
3600 | 4800 | 7200 |
9600 | 14400 | 19200 |
28800 | 38400 | 57600 |
76800 | 115200 |
153600 | 230400 |
307200

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
CodingType 'Conv' | 'Turbo' Channel coding type, convolutional or

turbo
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

 cdma2000ForwardWaveformGenerator

2-243

Parameter Field Values Description
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

FOCNS Substructure

Include the FOCNS substructure in the cfg structure to configure orthogonal channel
noise source information. The FOCNS substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 Walsh code length
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

Output Arguments
waveform1 — Modulated baseband waveform comprising the primary physical
channels
complex vector array

Modulated baseband waveform comprising the primary cdma2000 physical channels,
returned as a complex vector array.

2 Functions — Alphabetical List

2-244

waveform2 — Modulated baseband waveform comprising the diversity physical
channels
complex vector array

Modulated baseband waveform comprising the diversity cdma2000 physical channels,
returned as a complex vector array.

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum

Systems.” 3rd Generation Partnership Project 2.

[2] 3GPP2 C.S0004–F v1.0. “Signaling Link Access Control (LAC) Standard for cdma2000
Spread Spectrum Systems.” 3rd Generation Partnership Project 2.

See Also
cdma2000ForwardReferenceChannels | cdma2000ReverseWaveformGenerator

Introduced in R2015b

 cdma2000ForwardWaveformGenerator

2-245

cdma2000ReverseReferenceChannels
Define cdma2000 reverse reference channel

Syntax
cfg = cdma2000ReverseReferenceChannels(wv)
cfg = cdma2000ReverseReferenceChannels(wv,numchips)
cfg = cdma2000ReverseReferenceChannels(traffic,numchips,R-SCH-SPEC)

Description
cfg = cdma2000ReverseReferenceChannels(wv) returns a structure, cfg, that
defines the cdma2000 reverse link parameters given the input waveform identifier, wv.
Pass the structure to the cdma2000ReverseWaveformGenerator function to generate a
reverse link reference channel waveform.

For all syntaxes, cdma2000ReverseReferenceChannels creates a configuration
structure that is compliant with the physical layer specification for cdma2000 systems
described in [1].

cfg = cdma2000ReverseReferenceChannels(wv,numchips) specifies the number
of chips to generate.

cfg = cdma2000ReverseReferenceChannels(traffic,numchips,R-SCH-SPEC)
returns cfg for the specified traffic channel, traffic, and the reverse supplemental
channel (R-SCH) and frame length combination, R-SCH-SPEC.

Examples

Generate Reverse Common Control Channel Waveform

Generate the structure corresponding to the reverse common control channel (R-CCCH)
having a 19,200 bps data rate and 10 ms frames.

2 Functions — Alphabetical List

2-246

config = cdma2000ReverseReferenceChannels('R-CCCH-19200-10');

Verify that the R-CCCH substructure is configured for the correct data rate and frame
duration.

config.RCCCH

ans = struct with fields:
 Enable: 'On'
 Power: 0
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 DataRate: 19200
 FrameLength: 10
 WalshCode: 1

Generate the reverse channel waveform using the corresponding waveform generator
function, cdma2000ReverseWaveformGenerator.

wv = cdma2000ReverseWaveformGenerator(config);

Generate Reverse Channels for RC1 and RC6

Create a configuration structure to generate all possible channels associated with radio
configuration 1 in which the number of chips is specified as 2500.

config = cdma2000ReverseReferenceChannels('ALL-RC1',2500)

config = struct with fields:
 RadioConfiguration: 'RC1'
 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'
 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 2500
 RFCH: [1x1 struct]
 RACH: [1x1 struct]
 RSCCH: [1x1 struct]

 cdma2000ReverseReferenceChannels

2-247

The structure contains substructures corresponding to the R-FCH, R-ACH, and R-SCCH
channels.

Call the function again using radio configuration 6.

config = cdma2000ReverseReferenceChannels('ALL-RC6',2500)

config = struct with fields:
 RadioConfiguration: 'RC6'
 PowerNormalization: 'Off'
 OversamplingRatio: 4
 FilterType: 'cdma2000Long'
 InvertQ: 'Off'
 EnableModulation: 'Off'
 ModulationFrequency: 0
 NumChips: 2500
 RFCH: [1x1 struct]
 RPICH: [1x1 struct]
 REACH: [1x1 struct]
 RCCCH: [1x1 struct]
 RDCCH: [1x1 struct]
 RSCH1: [1x1 struct]
 RSCH2: [1x1 struct]

The channels supported by RC6 differ from those supported by RC1. They include R-FCH,
R-PICH, R-EACH, R-CCCH, R-DCCH, R-SCH1, and R-SCH2.

Create the waveform corresponding to the set of RC6 channels.

wv = cdma2000ReverseWaveformGenerator(config);

Generate Reverse Supplemental Channel

Create a configuration structure using radio configuration 3 with a reverse fundamental
channel (R-FCH). Specify a 2700 bps data rate and a reverse supplemental channel (R-
SCH) having a 76,800 bps data rate and an 80 ms frame length.

config = cdma2000ReverseReferenceChannels('TRAFFIC-RC3-2700',2000, ...
 'R-SCH-76800-80');

2 Functions — Alphabetical List

2-248

Verify that the R-FCH data rate is 2700 bps and the first R-SCH data rate is 76,800 bps
with an 80 ms frame length.

config.RFCH.DataRate

ans = 2700

config.RSCH1.DataRate

ans = 76800

config.RSCH1.FrameLength

ans = 80

Generate the corresponding waveform.

wv = cdma2000ReverseWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector. The
input typically identifies the channel type, radio configuration, data rate, and frame
length. To specify wv, connect the substrings with hyphens, for example, 'TRAFFIC-
RC2-3600'.

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3

wv 'R-PICH-ONLY' Generates a
waveform
containing a
pilot channel
only.

'R-CCCH' 9600 20 Character vector
representing the
Reverse

19200 10 | 20

 cdma2000ReverseReferenceChannels

2-249

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3

38400 Common Control
Channel (R-
CCCH) data rate
in bps and the
frame length in
ms. Specify 'R-
CCCH-9600-20'
to create a
structure
variable, wv,
with a 9600 bps
R-CCCH data
rate and a 20 ms
frame length.

5 | 10 | 20

'TRAFFIC' RC1 1200 | 2400 |
4800 | 9600

Character vector
representing the
radio
configuration
and the Reverse
Fundamental
Channel (R-
FCH) data rate
in bps. Specify
'TRAFFIC-
RC6-14400',
corresponds to
radio
configuration 6
with a 14400
bps R-FCH data
rate.

RC2 | RC4 | RC6 1800 | 3600 |
7200 | 14400

RC3 | RC5 | RC6 1500 | 2700 |
4800 | 9600

'R-EACH' 9600 20 Reverse
Enhanced
Access Channel
waveforms.
Specify 'R-

19200 10 | 20

2 Functions — Alphabetical List

2-250

Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3

38400 5 | 10 | 20 EACH-38400-5'
to create a
structure
corresponding to
an R-EACH
channel with a
38400 bps data
rate and a 5 ms
frame length.

'R-PICH-R-
FCH'

 Specify tests for
the mobile
transmitter in
accordance with
[2].

'ALL' RC1 | RC2 | RC3 |
RC4 | RC5 | RC6

N/A Returns all
channels that
are supported
for the specified
radio
configuration.
Specify 'ALL-
RC4' to create a
structure
containing all
traffic channels
for radio
configuration 4.

Example: 'R-CCCH-9600-20' is a R-CCH channel having a 9600 bps data rate and a 20
ms frame length.
Example: 'R-EACH-38400-5' is a R-EACH channel having a 38,400 bps data rate and a
5 ms frame length.
Data Types: char

numchips — Number of chips
1000 (default) | positive integer scalar

 cdma2000ReverseReferenceChannels

2-251

Number of chips, specified as a positive integer.
Example: 2048
Data Types: double

traffic — Traffic configuration
character vector

Traffic channel configuration, specified as a character vector. The table shows the valid
configurations.

Radio
Configuration

Traffic Channel Configuration

1 'TRAFFIC-
RC1-1200'

'TRAFFIC-
RC1-2400'

'TRAFFIC-
RC1-4800'

'TRAFFIC-
RC1-9600'

2 'TRAFFIC-
RC2-1800'

'TRAFFIC-
RC2-3600'

'TRAFFIC-
RC2-7200'

'TRAFFIC-
RC2-14400'

3 'TRAFFIC-
RC3-1500'

'TRAFFIC-
RC3-2700'

'TRAFFIC-
RC3-4800'

'TRAFFIC-
RC3-9600'

4 'TRAFFIC-
RC4-1800'

'TRAFFIC-
RC4-3600'

'TRAFFIC-
RC4-7200'

'TRAFFIC-
RC4-14400'

5 'TRAFFIC-
RC5-1500'

'TRAFFIC-
RC5-2700'

'TRAFFIC-
RC5-4800'

'TRAFFIC-
RC5-9600'

6 'TRAFFIC-
RC6-1800'

'TRAFFIC-
RC6-3600'

'TRAFFIC-
RC6-7200'

'TRAFFIC-
RC6-14400'

Example: 'TRAFFIC-RC4-1800' is a traffic channel using radio configuration 4 and
having an R-FCH with an 1800 bps data rate .
Data Types: char

R-SCH-SPEC — Reverse Supplemental Channel data rate and frame length
character vector

Specify the R-SCH data rate and frame length as a character vector. If omitted, R-SCH-
SPEC defaults to the lowest R-SCH data rate allowable for a 20 ms frame length given the
radio configuration specified by traffic. The table summarizes the supported data rate
and frame length combinations.

2 Functions — Alphabetical List

2-252

Radio
Configuration

Frame Length
20 ms 40 ms 80 ms

3 | 5 'R-SCH-1500-20' |
'R-SCH-2700-20' |
'R-SCH-4800-20' |
'R-SCH-9600-20' |
'R-SCH-19200-20'
| 'R-
SCH-38400-20' |
'R-SCH-76800-20'
| 'R-
SCH-153600-20' |
'R-
SCH-307200-20'

'R-SCH-1350-40' |
'R-SCH-2400-40' |
'R-SCH-4800-40' |
'R-SCH-9600-40' |
'R-SCH-19200-40'
| 'R-
SCH-38400-40' |
'R-
SCH-76800-40'|
'R-
SCH-153600-40'

'R-SCH-1350-80' |
'R-SCH-2400-80' |
'R-SCH-4800-80' |
'R-SCH-9600-80' |
'R-SCH-19200-80'
| 'R-
SCH-38400-80' |
'R-SCH-76800-80'

5 'R-
SCH-614400-20'

'R-
SCH-307200-40'

'R-
SCH-153600-80'

4 | 6 'R-SCH-1800-20' |
'R-SCH-3600-20' |
'R-SCH-7200-20' |
'R-SCH-14400-20'
| 'R-
SCH-28800-20' |
'R-SCH-57600-20'
| 'R-
SCH-115200-20' |
'R-
SCH-230400-20'

'R-SCH-1800-40' |
'R-SCH-3600-40' |
'R-SCH-7200-40' |
'R-SCH-14400-40'
| 'R-
SCH-28800-40' |
'R-SCH-57600-40'
| 'R-
SCH-115200-40'

'R-SCH-1800-80' |
'R-SCH-3600-80' |
'R-SCH-7200-80' |
'R-SCH-14400-80'
| 'R-
SCH-28800-80' |
'R-SCH-57600-80'

6 'R-
SCH-460800-20' |
'R-
SCH-1036800-20'

'R-
SCH-230400-40' |
'R-
SCH-518400-40'

'R-
SCH-115200-80' |
'R-
SCH-259200-80'

Additional data rate information for the cdma2000 reverse links is given in Tables
2.1.3.1.3-1 and 2.1.3.1.3-2 of [1].
Example: 'R-SCH-153600-20' is an R-SCH having a 153,600 bps data rate and a 20 ms
frame length.
Data Types: char

 cdma2000ReverseReferenceChannels

2-253

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
RadioConfiguration 'RC1' | 'RC2' | 'RC3' |

'RC4' | 'RC5' | 'RC6'
Radio configuration of the reverse channel.
The spreading rate of the waveform is
derived from the radio configuration.
Spreading rate 1, SR1, corresponds to a
1.2288 Mcps carrier and is associated with
RC1 through RC4. Spreading rate 3, SR3,
corresponds to a 3.6864 Mcps carrier and is
associated with RC5 and RC6.

PowerNormalization 'Off' |
'NormalizeTo0dB'

Power normalization of the waveform

NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off'
| 'Custom'

Type of output filtering

CustomFilterCoeffi
cients

Real vector Custom filter coefficients used only when
the FilterType field is set to 'Custom'

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

RPICH Structure See RPICH Substructure. Optional.
RACH Structure See RACH Substructure. Optional.

2 Functions — Alphabetical List

2-254

Parameter Field Values Description
REACH Structure See REACH Substructure. Optional.
RCCCH Structure See RCCCH Substructure. Optional.
RDCCH Structure See RDCCH Substructure. Optional.
RFCH Structure See RFCH Substructure. Optional.
RSCCH Structure See RSCCH Substructure. Optional.
RSCH1 Structure See RSCH1 Substructure. Optional.
RSCH2 Structure See RSCH2 Substructure. Optional.

RPICH Substructure

Include the RPICH substructure in the cfg structure to configure the Reverse Pilot
Channel (R-PICH). The RPICH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
PowerControlEna
ble

'On' | 'Off' Enable or disable power control
subchannel

PowerControlPow
er

Real scalar Power control subchannel power
(relative to R-PICH)

PowerControlDat
aSource

Cell array, {'PN Type',
RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Power control subchannel data source

RACH Substructure

Include the RACH substructure in the cfg structure to configure the Reverse Access
Channel (R-ACH). The RACH substructure contains the following fields.

 cdma2000ReverseReferenceChannels

2-255

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or a binary
vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a binary vector.

REACH Substructure

Include the REACH substructure in the cfg structure to configure the Reverse Enhanced
Access Channel (R-EACH). The REACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or a binary
vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a binary vector.

2 Functions — Alphabetical List

2-256

RCCCH Substructure

Include the RCCCH substructure in the cfg structure to configure the Reverse Common
Control Channel (R-CCCH). The RCCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error control coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RDCCH Substructure

Include the RDCCH substructure in the cfg structure to configure the Reverse Dedicated
Control Channel (R-DCCH). The RDCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
FrameLength 5 | 20 Frame length (ms)

 cdma2000ReverseReferenceChannels

2-257

Parameter Field Values Description
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RFCH Substructure

Include the RFCH substructure in the cfg structure to configure the Reverse
Fundamental Traffic Channel (R-FCH). The RFCH substructure contains the following
fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1500 | 1800 |

2400 | 2700 | 3600 |
4800 | 7200 | 9600 |
14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

2 Functions — Alphabetical List

2-258

Parameter Field Values Description
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RSCCH Substructure

Include the RSCCH substructure in the cfg structure to configure the Reverse
Supplemental Code Channel (R-SCCH). The RSCCH substructure contains the following
fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RSCH1 Substructure

Include the RSCH1 substructure in the cfg structure to configure the Reverse
Supplemental Channel 1 (R-SCH 1). The RSCH1 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel

 cdma2000ReverseReferenceChannels

2-259

Parameter Field Values Description
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1350 | 1500 |

1800 | 2400 | 2700 |
3600 | 4800 | 7200 |
9600 | 14400 | 19200 |
28800 | 38400 | 57600 |
76800 | 115200 |
153600 | 230400 |
259200 | 307200 |
460800 | 518400 |
614400 | 1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 2 | 4 Walsh code length
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RSCH2 Substructure

Include the RSCH2 substructure in the cfg structure to configure the Reverse
Supplemental Channel 2 (R-SCH 2). The RSCH2 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel

2 Functions — Alphabetical List

2-260

Parameter Field Values Description
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1350 | 1500 |

1800 | 2400 | 2700 |
3600 | 4800 | 7200 |
9600 | 14400 | 19200 |
28800 | 38400 | 57600 |
76800 | 115200 |
153600 | 230400 |
259200 | 307200 |
460800 | 518400 |
614400 | 1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 4 | 8 Walsh code length
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

Data Types: struct

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum

Systems.” 3rd Generation Partnership Project 2.

 cdma2000ReverseReferenceChannels

2-261

[2] 3GPP2 C.S0011–E v2.0. “Recommended Minimum Performance Standards for
cdma2000 Spread Spectrum Mobile Stations.” 3rd Generation Partnership Project
2.

See Also
cdma2000ForwardReferenceChannels | cdma2000ReverseWaveformGenerator

Introduced in R2015b

2 Functions — Alphabetical List

2-262

cdma2000ReverseWaveformGenerator
Generate cdma2000 reverse link waveform

Syntax
waveform = cdma2000ReverseWaveformGenerator(cfg)

Description
waveform = cdma2000ReverseWaveformGenerator(cfg) returns the cdma2000
reverse link baseband waveform, waveform as defined by the parameter configuration
structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and
channel properties used by the function to generate a cdma2000 waveform. You can
generate the input argument by using the cdma2000ReverseReferenceChannels
function. The top-level parameters of cfg are RadioConfiguration, LongCodeState,
PowerNormalization, OversamplingRatio, FilterType, InvertQ,
EnableModulation, ModulationFrequency, and NumChips. To enable specific
channels, add their associated substructures, for example, the reverse dedicated control
channel, RDCCH.

Note The tables herein list the allowable values for the top-level parameters and
substructure fields. However, not all combinations of spreading rate, radio configuration,
frame length, and data rate are supported. To ensure that the input argument is valid, use
the cdma2000ReverseReferenceChannels function. If you input the structure fields
manually, consult [1] to ensure that the input parameter combinations are permitted.

Examples

 cdma2000ReverseWaveformGenerator

2-263

Generate Reverse Common Control Channel Waveform

Generate the structure corresponding to the reverse common control channel (R-CCCH)
having a 19,200 bps data rate and 10 ms frames.

config = cdma2000ReverseReferenceChannels('R-CCCH-19200-10');

Verify that the R-CCCH substructure is configured for the correct data rate and frame
duration.

config.RCCCH

ans = struct with fields:
 Enable: 'On'
 Power: 0
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 DataRate: 19200
 FrameLength: 10
 WalshCode: 1

Generate the reverse channel waveform using the corresponding waveform generator
function, cdma2000ReverseWaveformGenerator.

wv = cdma2000ReverseWaveformGenerator(config);

Generate R-SCH Channels for RC5

Create a configuration structure for a reverse channel having an R-FCH with a 4800 bps
data rate and two R-SCHs. Specify that each R-SCH have a 153,600 bps data rate using
RC5.

config = cdma2000ReverseReferenceChannels('TRAFFIC-RC5-4800',5000, ...
 'R-SCH-153600-40');

Determine the sample rate. Because RC5 corresponds to SR3, the chip rate is 3.6864
Mcps. Multiply by the oversampling ratio to obtain the sample rate.

fs = 3.6864e6*config.OversamplingRatio;

2 Functions — Alphabetical List

2-264

Generate the reverse link waveform.

wv = cdma2000ReverseWaveformGenerator(config);

Plot the spectrum of the resultant waveform.

sa = dsp.SpectrumAnalyzer('SampleRate',fs);
step(sa,wv)

Generate cdma2000 Waveform with Two Reverse Supplemental Channels

Create a parameter structure specifying a reverse traffic channel containing a pair of
supplemental channels and generate the corresponding waveform.

 cdma2000ReverseWaveformGenerator

2-265

Create a parameter structure specifying a traffic channel consisting of a 14,400 bps
fundamental channel, 2000 chips, and a 57,600 bps supplemental channel (R-SCH) pair
having a 40 ms frame duration.

cfg = cdma2000ReverseReferenceChannels('TRAFFIC-RC4-14400',2000,'F-SCH-57600-40');

Create a second R-SCH pair by copying the R-SCH fields from the existing pair.

cfg(2).RSCH1 = cfg.RSCH1;
cfg(2).RSCH2 = cfg.RSCH2;

Set the data rate of the second R-SCH pair to 28,800 bps.

cfg(2).RSCH1.DataRate = 28800;
cfg(2).RSCH2.DataRate = 28800;

Set the Walsh codes of the second pair so that they differ from the first pair.

cfg(2).RSCH1.WalshCode = 4;
cfg(2).RSCH2.WalshCode = 5;

Verify that the data rates are set correctly and that no two supplemental channels share
the same Walsh code.

cfg.RSCH1

ans = struct with fields:
 Enable: 'On'
 Power: 0
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 DataRate: 57600
 FrameLength: 40
 WalshLength: 2
 WalshCode: 0

ans = struct with fields:
 Enable: 'On'
 Power: 0
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 DataRate: 28800

2 Functions — Alphabetical List

2-266

 FrameLength: 40
 WalshLength: 2
 WalshCode: 4

cfg.RSCH2

ans = struct with fields:
 Enable: 'On'
 Power: 0
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 DataRate: 57600
 FrameLength: 40
 WalshLength: 2
 WalshCode: 1

ans = struct with fields:
 Enable: 'On'
 Power: 0
 LongCodeMask: 0
 EnableCoding: 'On'
 DataSource: {'PN9' [1]}
 DataRate: 28800
 FrameLength: 40
 WalshLength: 2
 WalshCode: 5

Generate the reverse link waveform.

wv = cdma2000ReverseWaveformGenerator(cfg);

Input Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

 cdma2000ReverseWaveformGenerator

2-267

Top-Level Parameters and Substructures

Parameter Field Values Description
RadioConfiguration 'RC1' | 'RC2' | 'RC3' |

'RC4' | 'RC5' | 'RC6'
Radio configuration of the reverse channel.
The spreading rate of the waveform is
derived from the radio configuration.
Spreading rate 1, SR1, corresponds to a
1.2288 Mcps carrier and is associated with
RC1 through RC4. Spreading rate 3, SR3,
corresponds to a 3.6864 Mcps carrier and is
associated with RC5 and RC6.

PowerNormalization 'Off' |
'NormalizeTo0dB'

Power normalization of the waveform

NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off'
| 'Custom'

Type of output filtering

CustomFilterCoeffi
cients

Real vector Custom filter coefficients used only when
the FilterType field is set to 'Custom'

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

RPICH Structure See RPICH Substructure. Optional.
RACH Structure See RACH Substructure. Optional.
REACH Structure See REACH Substructure. Optional.
RCCCH Structure See RCCCH Substructure. Optional.
RDCCH Structure See RDCCH Substructure. Optional.
RFCH Structure See RFCH Substructure. Optional.
RSCCH Structure See RSCCH Substructure. Optional.
RSCH1 Structure See RSCH1 Substructure. Optional.
RSCH2 Structure See RSCH2 Substructure. Optional.

2 Functions — Alphabetical List

2-268

RPICH Substructure

Include the RPICH substructure in the cfg structure to configure the Reverse Pilot
Channel (R-PICH). The RPICH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
PowerControlEna
ble

'On' | 'Off' Enable or disable power control
subchannel

PowerControlPow
er

Real scalar Power control subchannel power
(relative to R-PICH)

PowerControlDat
aSource

Cell array, {'PN Type',
RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Power control subchannel data source

RACH Substructure

Include the RACH substructure in the cfg structure to configure the Reverse Access
Channel (R-ACH). The RACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

 cdma2000ReverseWaveformGenerator

2-269

Parameter Field Values Description
DataSource Cell array: {'PN Type',

RN Seed} or a binary
vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a binary vector.

REACH Substructure

Include the REACH substructure in the cfg structure to configure the Reverse Enhanced
Access Channel (R-EACH). The REACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or a binary
vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a binary vector.

RCCCH Substructure

Include the RCCCH substructure in the cfg structure to configure the Reverse Common
Control Channel (R-CCCH). The RCCCH substructure contains the following fields.

2 Functions — Alphabetical List

2-270

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error control coding
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RDCCH Substructure

Include the RDCCH substructure in the cfg structure to configure the Reverse Dedicated
Control Channel (R-DCCH). The RDCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

 cdma2000ReverseWaveformGenerator

2-271

Parameter Field Values Description
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RFCH Substructure

Include the RFCH substructure in the cfg structure to configure the Reverse
Fundamental Traffic Channel (R-FCH). The RFCH substructure contains the following
fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1500 | 1800 |

2400 | 2700 | 3600 |
4800 | 7200 | 9600 |
14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤ 15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

2 Functions — Alphabetical List

2-272

RSCCH Substructure

Include the RSCCH substructure in the cfg structure to configure the Reverse
Supplemental Code Channel (R-SCCH). The RSCCH substructure contains the following
fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RSCH1 Substructure

Include the RSCH1 substructure in the cfg structure to configure the Reverse
Supplemental Channel 1 (R-SCH 1). The RSCH1 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

 cdma2000ReverseWaveformGenerator

2-273

Parameter Field Values Description
DataRate 1200 | 1350 | 1500 |

1800 | 2400 | 2700 |
3600 | 4800 | 7200 |
9600 | 14400 | 19200 |
28800 | 38400 | 57600 |
76800 | 115200 |
153600 | 230400 |
259200 | 307200 |
460800 | 518400 |
614400 | 1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 2 | 4 Walsh code length
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

RSCH2 Substructure

Include the RSCH2 substructure in the cfg structure to configure the Reverse
Supplemental Channel 2 (R-SCH 2). The RSCH2 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

2 Functions — Alphabetical List

2-274

Parameter Field Values Description
DataRate 1200 | 1350 | 1500 |

1800 | 2400 | 2700 |
3600 | 4800 | 7200 |
9600 | 14400 | 19200 |
28800 | 38400 | 57600 |
76800 | 115200 |
153600 | 230400 |
259200 | 307200 |
460800 | 518400 |
614400 | 1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 4 | 8 Walsh code length
WalshCode Nonnegative integer

scalar such that 0 ≤
WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

Output Arguments
waveform — Modulated baseband waveform comprising the physical channels
complex vector array

Modulated baseband waveform comprising the cdma2000 physical channels, returned as
a complex vector array.

 cdma2000ReverseWaveformGenerator

2-275

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum

Systems.” 3rd Generation Partnership Project 2.

See Also
cdma2000ForwardWaveformGenerator | cdma2000ReverseReferenceChannels

Introduced in R2015b

2 Functions — Alphabetical List

2-276

cma
(To be removed) Construct constant modulus algorithm (CMA) object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

Syntax
alg = cma(stepsize)
alg = cma(stepsize,leakagefactor)

Description
The cma function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about the
process for equalizing a signal, see “Equalization”.

Note After you use either lineareq or dfe to create a CMA equalizer object, you should
initialize the equalizer object's Weights property with a nonzero vector. Typically, CMA is
used with differential modulation; otherwise, the initial weights are very important. A
typical vector of initial weights has a 1 corresponding to the center tap and 0s elsewhere.

alg = cma(stepsize) constructs an adaptive algorithm object based on the constant
modulus algorithm (CMA) with a step size of stepsize.

alg = cma(stepsize,leakagefactor) sets the leakage factor of the CMA.
leakagefactor must be between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, while a value of 0 corresponds to a memoryless update
algorithm.

 cma

2-277

Properties
The table below describes the properties of the CMA adaptive algorithm object. To learn
how to view or change the values of an adaptive algorithm object, see “Equalization”.

Property Description
AlgType Fixed value, 'Constant Modulus'
StepSize CMA step size parameter, a nonnegative

real number
LeakageFactor CMA leakage factor, a real number between

0 and 1

Examples

Create a Linear Equalizer using CMA

Use the constant modulus algorithm (CMA) to create an adaptive equalizer object.

Set the number of weights and the step size for the equalizer.

nWeights = 1;
stepSize = 0.1;

Create an adaptive algorithm object using the cma function.

alg = cma(stepSize);

Construct a linear equalizer using the algorithm object.

eqObj = lineareq(nWeights,alg)

eqObj =

 EqType: 'Linear Equalizer'
 AlgType: 'Constant Modulus'
 nWeights: 1
 nSampPerSym: 1
 SigConst: [-1 1]
 StepSize: 0.1000

2 Functions — Alphabetical List

2-278

 LeakageFactor: 1
 Weights: 0
 WeightInputs: 0
 ResetBeforeFiltering: 1
 NumSamplesProcessed: 0

Algorithms
Referring to the schematics in “Equalization”, define w as the vector of all weights wi and
define u as the vector of all inputs ui. Based on the current set of weights, w, this adaptive
algorithm creates the new set of weights given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

Compatibility Considerations

cma will be removed
Not recommended starting in R2019a

cma will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

References

[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-
Hall, 1996.

[2] Johnson, Richard C., Jr., Philip Schniter, Thomas. J. Endres, et al., “Blind Equalization
Using the Constant Modulus Criterion: A Review,” Proceedings of the IEEE, Vol.
86, October 1998, pp. 1927–1950.

 cma

2-279

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

2 Functions — Alphabetical List

2-280

comm_links
Library link information for Communications Toolbox blocks

Syntax
comm_links
comm_links(sys)
comm_links(sys,color)

Description
comm_links returns a structure with two elements. Each element contains a cell array
of strings containing names of library blocks in the current system. The blocks are
grouped into two categories: obsolete and current. Blocks at all levels of the model are
analyzed.

comm_links(sys) works as above on the named system sys, instead of the current
system.

comm_links(sys,color) additionally colors all obsolete blocks according to the
specified color. color is one of the following strings: 'blue', 'green', 'red', 'cyan',
'magenta', 'yellow', or 'black'.

Obsolete blocks are blocks that are no longer supported. They might or might not work
properly.

Current blocks are supported and represent the latest block functionality.

See Also
liblinks

Introduced before R2006a

 comm_links

2-281

commlib
Open main Communications Toolbox block library

Syntax
commlib

Description
commlib opens the latest version of the Communications Toolbox block library.

See Also
dsplib

Introduced before R2006a

2 Functions — Alphabetical List

2-282

commscope
(To be removed) Package of communications scope classes

Note commscope.eyediagram will be removed in a future release. Use
comm.ConstellationDiagram and comm.EyeDiagram instead.

Syntax
h = commscope.<type>(...)

Description
h = commscope.<type>(...) returns a communications scope object h of type type.

Type help commscope to get a complete list of available types.

Each type of communications scope object is equipped with functions for simulation and
visualization. Type help commscope.<type> to get the complete help on a specific
communications scope object, for example help commscope.eyediagram.

Compatibility Considerations

commscope will be removed
Warns starting in R2017b

commscope.eyediagram will be removed in a future release. Use
comm.ConstellationDiagram and comm.EyeDiagram instead.

See Also
comm.ConstellationDiagram | comm.EyeDiagram

 commscope

2-283

Introduced in R2007b

2 Functions — Alphabetical List

2-284

commscope.eyediagram
(To be removed) Eye diagram analysis

Note commscope.eyediagram will be removed in a future release. Use
comm.EyeDiagram instead.

Syntax
h = commscope.eyediagram
h = commscope.eyediagram(property1,value1,...)

Description
h = commscope.eyediagram constructs an eye diagram object, h, with default
properties. This syntax is equivalent to:

H = commscope.eyediagram('SamplingFrequency', 10000, ...
 'SamplesPerSymbol', 100, ...
 'SymbolsPerTrace', 2, ...
 'MinimumAmplitude', -1, ...
 'MaximumAmplitude', 1, ...
 'AmplitudeResolution', 0.0100, ...
 'MeasurementDelay', 0, ...
 'PlotType', '2D Color', ...
 'PlotTimeOffset', 0, ...
 'PlotPDFRange', [0 1], ...
 'ColorScale', 'linear', ...
 'RefreshPlot', 'on');

h = commscope.eyediagram(property1,value1,...) constructs an eye diagram
object, h, with properties as specified by property/value pairs.

The eye diagram object creates a series of vertical histograms from zero to T seconds, at
Ts second intervals, where T is a multiple of the symbol duration of the input signal and Ts
is the sampling time. A vertical histogram is defined as the histogram of the amplitude of
the input signal at a given time. The histogram information is used to obtain an

 commscope.eyediagram

2-285

approximation to the probability density function (PDF) of the input amplitude
distribution. The histogram data is used to generate '2D Color' plots, where the color
indicates the value of the PDF, and '3D Color' plots. The '2D Line' plot is obtained
by constructing an eye diagram from the last n traces stored in the object, where a trace
is defined as the segment of the input signal for a T second interval.

You can change the plot type by setting the PlotType property. The following plots are
examples of each type.

2D-Color Eye Diagram

2 Functions — Alphabetical List

2-286

3D-Color Eye Diagram

 commscope.eyediagram

2-287

2D-Line Eye Diagram

To see a detailed demonstration of this object's use, type showdemo scattereyedemo;
at the command line.

Properties
An eye diagram scope object has the properties shown on the following table. All
properties are writable except for the ones explicitly noted otherwise.

Property Description
Type Type of scope object ('Eye Diagram'). This

property is not writable.
SamplingFrequency Sampling frequency of the input signal in hertz.

2 Functions — Alphabetical List

2-288

Property Description
SamplesPerSymbol Number of samples used to represent a symbol. An

increase in SamplesPerSymbol improves the
resolution of an eye diagram.

SymbolRate The symbol rate of the input signal. This property is
not writable and is automatically computed based on
SamplingFrequency and SamplesPerSymbol.

SymbolsPerTrace The number of symbols spanned on the time axis of
the eye diagram scope.

MinimumAmplitude Minimum amplitude of the input signal. Signal
values less than this value are ignored both for
plotting and for measurement computation.

MaximumAmplitude Maximum amplitude of the input signal. Signal
values greater than this value are ignored both for
plotting and for measurement computation.

AmplitudeResolution The resolution of the amplitude axis. The amplitude
axis is created from MinimumAmplitude to
MaximumAmplitude with AmplitudeResolution
steps.

MeasurementDelay The time in seconds the scope waits before starting
to collect data.

PlotType Type of the eye diagram plot. The choices are '2D
Color' (two dimensional eye diagram, where color
intensity represents the probability density function
values), '3D Color' (three dimensional eye
diagram, where the z-axis represents the probability
density function values), and '2D Line' (two
dimensional eye diagram, where each trace is
represented by a line).

NumberOfStoredTraces The number of traces stored to display the eye
diagram in '2D Line' mode.

PlotTimeOffset The plot time offset input values must reside in the
closed interval [-Tsym Tsym], where Tsym is the
symbol duration. Since the eye diagram is periodic,
if the value you enter is out of range, it wraps to a
position on the eye diagram that is within range.

 commscope.eyediagram

2-289

Property Description
RefreshPlot The switch that controls the plot refresh style. The

choices are 'on' (the eye diagram plot is refreshed
every time the update method is called) and 'off'
(the eye diagram plot is not refreshed when the
update method is called).

PlotPDFRange The range of the PDF values that will be displayed in
the '2D Color' mode. The PDF values outside the
range are set to a constant mask color.

ColorScale The scale used to represent the color, the z-axis, or
both. The choices are 'linear' (linear scale) and
'log' (base ten logarithmic scale).

SamplesProcessed The number of samples processed by the eye
diagram object. This value does not include the
discarded samples during the MeasurementDelay
period. This property is not writable.

OperationMode When the operation mode is complex signal, the eye
diagram collects and plots data on both the in-phase
component and the quadrature component. When
the operation mode is real signal, the eye diagram
collects and plots real signal data.

Measurements An eye diagram can display various types of
measurements. All measurements are done on both
the in-phase and quadrature signal, unless otherwise
stated. For more information, see the Measurements
section.

The resolution of the eye diagram in '2D Color' and '3D Color' modes can be
increased by increasing SamplingFrequency, decreasing AmplitudeResolution, or
both.

Changing MinimumAmplitude, MaximumAmplitude, AmplitudeResolution,
SamplesPerSymbol, SymbolsPerTrace, and MeasurementDelay resets the
measurements and updates the eye diagram.

2 Functions — Alphabetical List

2-290

Methods
An eye diagram object is equipped with seven methods for inspection, object
management, and visualization.

update
This method updates the eye diagram object data.

update(h,x) updates the collected data of the eye diagram object h with the input x.

If the RefreshPlot property is set to 'on', the update method also refreshes the eye
diagram figure.

The following example shows this method's use:

% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off')

% Prepare a noisy sinusoidal as input
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SNR', 20);
x = step(hChan,0.5*sin(2*pi*(0:1/100:10))+j*cos(2*pi*(0:1/100:10)));
% update the eyediagram
update(h, x);
% Check the number of processed samples
h.SamplesProcessed

plot
This method displays the eye diagram figure.

The plot method has three usage cases:

plot(h) plots the eye diagram for the eye diagram object h with the current colormap or
the default linespec.

plot(h,cmap), when used with the plottype set to '2D Color' or '3D Color', plots
the eye diagram for the object h, and sets the colormap to cmap.

 commscope.eyediagram

2-291

plot(h,linespec), when used with the plottype set to '2D Line', plots the eye
diagram for the object h using linespec as the line specification. See the help for plot
for valid linespecs.

The following example shows this method's use:

% Create an eye diagram scope object
h = commscope.eyediagram;
% Prepare a noisy sinusoid as input
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SNR', 20);
x = step(hChan, 0.5*sin(2*pi*(0:1/100:10))+ j*0.5*cos(2*pi*(0:1/100:10)));
% Update the eye diagram
update(h, x);
% Display the eye diagram figure
plot(h)

% Display the eye diagram figure with jet colormap
plot(h, jet(64))

% Display 2D Line eye diagram with red dashed lines
h.PlotType = '2D Line';
plot(h, 'r--')

exportdata
This method exports the eye diagram data.

[VERHIST EYEL HORHISTX HORHISTRF] = EXPORTDATA(H) Exports the eye diagram
data collected by the eyediagram object H.

VERHIST is a matrix that holds the vertical histogram, which is also used to plot '2D
Color' and '3D Color' eye diagrams.

EYEL is a matrix that holds the data used to plot 2D Line eye diagram. Each row of the
EYEC holds one trace of the input signal.

HORHISTX is a matrix that holds the crossing point histogram data collected for the
values defined by the CrossingAmplitudes property of the MeasurementSetup object.
HORHISTX(i, :) represents the histogram for CrossingAmplitudes(i).

HORHISTRF is a matrix that holds the crossing point histograms for rise and fall time
levels. HORHISTRF(i,:) represents the histogram for AmplitudeThreshold(i).

2 Functions — Alphabetical List

2-292

The following example shows this method's use:

% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off');
% Prepare a noisy sinusoidal as input
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SNR', 20);
x = step(hChan, 0.5*sin(2*pi*(0:1/100:10))+ j*0.5*cos(2*pi*(0:1/100:10)));
% Update the eyediagram
update(h, x);
% Export the data
[eyec eyel horhistx horhistrf] = exportdata(h);
% Plot line data
t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;
plot(t, real(eyel)); xlabel('time (s)');...
 ylabel('Amplitude (AU)'); grid on;
% Plot 2D Color data
t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;
a=h.MinimumAmplitude:h.AmplitudeResolution:h.MaximumAmplitude;
imagesc(t,a,eyec); xlabel('time (s)'); ylabel('Amplitude (AU)');

reset
This method resets the eye diagram object.

reset(h) resets the eye diagram object h. Resetting h clears all the collected data.

The following example shows this method's use:

% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off');
% Prepare a noisy sinusoidal as input
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SNR', 20);
x = step(hChan, 0.5*sin(2*pi*(0:1/100:10))+ j*0.5*cos(2*pi*(0:1/100:10)));
update(h, x); % update the eyediagram
h.SamplesProcessed % Check the number of processed samples
reset(h); % reset the object
h.SamplesProcessed % Check the number of processed samples

copy
This method copies the eye diagram object.

 commscope.eyediagram

2-293

h = copy(ref_obj) creates a new eye diagram object h and copies the properties of
object h from properties of ref_obj.

The following example shows this method's use:

% Create an eye diagram scope object
h = commscope.eyediagram('MinimumAmplitude', -3, ...
 'MaximumAmplitude', 3);
disp(h); % display object properties
h1 = copy(h)

disp
This method displays properties of the eye diagram object.

disp(h) displays relevant properties of eye diagram object h.

If a property is not relevant to the object's configuration, it is not displayed. For example,
for a commscope.eyediagram object, the ColorScale property is not relevant when
PlotType property is set to '2D Line'. In this case the ColorScale property is not
displayed.

The following is an example of its use:

% Create an eye diagram scope object
h = commscope.eyediagram;
% Display object properties
disp(h);
h = commscope.eyediagram('PlotType', '2D Line')

close
This method closes the eye diagram object figure.

close(h) closes the figure of the eye diagram object h.

The following example shows this method's use:

% Create an eye diagram scope object
h = commscope.eyediagram;
% Call the plot method to display the scope
plot(h);
% Wait for 1 seconds

2 Functions — Alphabetical List

2-294

pause(1)
% Close the scope
close(h)

analyze
This methods executes eye diagram measurements. analyze(h) executes the eye diagram
measurements on the collected data of the eye diagram scope object h. The results of the
measurements are stored in the Measurements property of h. See “Measurements” on
page 2-295 for more information.

In some cases, the analyze method cannot determine a measurement value. If this
problem occurs, verify that your settings for measurement setup values or the eye
diagram are valid.

Measurements
You can obtain the following measurements on an eye diagram:

• Amplitude Measurements

• Eye Amplitude
• Eye Crossing Amplitude
• Eye Crossing Percentage
• Eye Height
• Eye Level
• Eye SNR
• Quality Factor
• Vertical Eye Opening

• Time Measurements

• Deterministic Jitter
• Eye Crossing Time
• Eye Delay
• Eye Fall Time

 commscope.eyediagram

2-295

• Eye Rise Time
• Eye Width
• Horizontal Eye Opening
• Peak-to-Peak Jitter
• Random Jitter
• RMS Jitter
• Total Jitter

Measurements assume that the eye diagram object has valid data. A valid eye diagram
has two distinct eye crossing points and two distinct eye levels.

The deterministic jitter, horizontal eye opening, quality factor, random jitter, and vertical
eye opening measurements utilize a dual-Dirac algorithm. Jitter is the deviation of a
signal’s timing event from its intended (ideal) occurrence in time [1]. Jitter can be
represented with a dual-Dirac model. A dual-Dirac model assumes that the jitter has two
components: deterministic jitter (DJ) and random jitter (RJ). The DJ PDF comprises two
delta functions, one at μL and one at μR. The RJ PDF is assumed to be Gaussian with zero
mean and variance σ.

The Total Jitter (TJ) PDF is the convolution of these two PDFs, which is composed of two
Gaussian curves with variance σand mean values μL and μR. See the following figure.

2 Functions — Alphabetical List

2-296

The dual-Dirac model is described in [5] in more detail. The amplitude of the two Dirac
functions may not be the same. In such a case, the analyze method estimates these
amplitudes, ρL and ρR.

Amplitude Measurements
You can use the vertical histogram to obtain a variety of amplitude measurements. For
complex signals, measurements are done on both in-phase and the quadrature
components, unless otherwise specified.

 commscope.eyediagram

2-297

Note For amplitude measurements, at least one bin per vertical histogram must reach 10
hits before the measurement is taken, ensuring higher accuracy.

Eye Amplitude (EyeAmplitude)

Eye Amplitude, measured in Amplitude Units (AU), is defined as the distance between two
neighboring eye levels. For an NRZ signal, there are only two levels: the high level (level
1 in figure) and the low level (level 0 in figure). The eye amplitude is the difference of
these two values, as shown in figure [3].

Eye Crossing Amplitude (EyeCrossingLevel)

Eye crossing amplitudes are the amplitude levels at which the eye crossings occur,
measured in Amplitude Units (AU). The analyze method calculates this value using the
mean value of the vertical histogram at the crossing times [3]. See the following figure.

2 Functions — Alphabetical List

2-298

The next figure shows the vertical histogram at the first eye crossing time.

Eye Crossing Percentage (EyeOpeningVer)

Eye Crossing Percentage is the location of the eye crossing levels as a percentage of the
eye amplitude.

Eye Height (EyeHeight)

Eye Height, measured in Amplitude Units (AU), is defined as the 3σ distance between two
neighboring eye levels.

 commscope.eyediagram

2-299

For an NRZ signal, there are only two levels: the high level (level 1 in figure) and the low
level (level 0 in figure). The eye height is the difference of the two 3σ points, as shown in
the next figure. The 3σ point is defined as the point that is three standard deviations away
from the mean value of a PDF.

Eye Level (EyeLevel)

Eye Level is the amplitude level used to represent data bits, measured in Amplitude Units
(AU).

For an ideal NRZ signal, there are two eye levels: +A and –A. The analyze method
calculates eye levels by estimating the mean value of the vertical histogram in a window
around the EyeDelay, which is also the 50% point between eye crossing times [3]. The
width of this window is determined by the EyeLevelBoundary property of the eye
measurement setup object, shown in the next figure.

2 Functions — Alphabetical List

2-300

The analyze method calculates the mean value of all the vertical histograms within the
eye level boundaries. The mean vertical histogram appears in the following figure. There
are two distinct PDFs, one for each eye level. The mean values of the individual
histograms are the eye levels as shown in this figure.

Eye SNR (EyeSNR)

Eye signal-to-noise ratio is defined as the ratio of the eye amplitude to the sum of the
standard deviations of the two eye levels. It can be expressed as:

SNR =
L1− L0
σ1 + σ0

 commscope.eyediagram

2-301

where L1 and L0 represent eye level 1 and 0, respectively, and σ1 and σ2 are the standard
deviation of eye level 1 and 0, respectively.

For an NRZ signal, eye level 1 corresponds to the high level, and the eye level 0
corresponds to low level.

Quality Factor (QualityFactor)

The analyze method calculates Quality Factor the same way as the eye SNR. However,
instead of using the mean and standard deviation values of the vertical histogram for L1
and σ1, the analyze method uses the mean and standard deviation values estimated using
the dual-Dirac method. [2] See dual-Dirac section for more detail.

Vertical Eye Opening (EyeOpeningVer)

Vertical Eye Opening is defined as the vertical distance between two points on the vertical
histogram at EyeDelay that corresponds to the BER value defined by the BERThreshold
property of the eye measurement setup object. The analyze method calculates this
measurement taking into account the random and deterministic components using a dual-
Dirac model [5] (see the Dual Dirac Section). A typical BER value for the eye opening
measurements is 10-12, which approximately corresponds to the 7σ point assuming a
Gaussian distribution.

Time Measurements
You can use the horizontal histogram of an eye diagram to obtain a variety of timing
measurements.

Note For time measurements, at least one bin per horizontal histogram must reach 10
hits before the measurement is taken.

Deterministic Jitter (JitterDeterministic)

Deterministic Jitter is the deterministic component of the jitter. You calculate it using the
tail mean value, which is estimated using the dual-Dirac method as follows [5]:

DJ = μL — μR

2 Functions — Alphabetical List

2-302

where μL and μR are the mean values returned by the dual-Dirac algorithm.

Eye Crossing Time (EyeCrossingTime)

Eye crossing times are calculated as the mean of the horizontal histogram for each
crossing point, around the reference amplitude level. This value is measured in seconds.
The mean value of all the horizontal PDFs is calculated in a region defined by the
CrossingBandWith property of the eye measurement setup object.

The region is from -Atotal* BW to +Atotal* BW, where Atotal is the total amplitude range of
the eye diagram (i.e., A total = A max — Amin) and BW is the crossing band width, shown in
the following figure.

The following figure shows the average PDF in this region. Because this example assumes
two symbols per trace, there are two crossing points.

 commscope.eyediagram

2-303

Note When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds
interval, the time measurement wraps to the end of the eye diagram, i.e., the
measurement wraps by 2*Ts seconds (where Ts is the symbol time). For a complex signal
case, the analyze method issues a warning if the crossing time measurement of the in-
phase branch wraps while that of the quadrature branch does not (or vice versa).

To avoid the time-wrapping or a warning, add a half-symbol duration delay to the current
value in the MeasurementDelay property of the eye diagram object. This additional delay
repositions the eye in the approximate center of the scope.

Eye Delay (EyeDelay)

Eye Delay is the distance from the midpoint of the eye to the time origin, measured in
seconds. The analyze method calculates this distance using the crossing time. For a
symmetric signal, EyeDelay is also the best sampling point.

2 Functions — Alphabetical List

2-304

Eye Fall Time (EyeFallTime)

Eye Fall Time is the mean time between the high and low threshold values defined by the
AmplitudeThreshold property of the eye measurement setup object. The previous figure
shows the fall time calculated from 10% to 90% of the eye amplitude.

Eye Rise Time (EyeRiseTime)

Eye Rise Time is the mean time between the low and high threshold values defined by the
AmplitudeThreshold property of the eye measurement setup object. The following figure
shows the rise time calculated from 10% to 90% of the eye amplitude.

 commscope.eyediagram

2-305

Eye Width (EyeWidth)

Eye Width is the horizontal distance between two points that are three standard
deviations (3σ) from the mean eye crossing times, towards the center of the eye. The
value for Eye Width measurements is seconds.

2 Functions — Alphabetical List

2-306

Horizontal Eye Opening (EyeOpeningHor)

Horizontal Eye Opening is the horizontal distance between two points on the horizontal
histogram that correspond to the BER value defined by the BERThreshold property of the
eye measurement setup object. The measurement is take at the amplitude value defined
by the ReferenceAmplitude property of the eye measurement setup object. It is
calculated taking into account the random and deterministic components using a dual-
Dirac model [5] (see the Dual Dirac Section).

A typical BER value for the eye opening measurements is 10-12, which approximately
corresponds to the 7σ point assuming a Gaussian distribution.

Peak-to-Peak Jitter (JitterP2P)

Peak-To-Peak Jitter is the difference between the extreme data points of the histogram.

Random Jitter (JitterRandom)

Random Jitter is defined as the Gaussian unbounded component of the jitter. The analyze
method calculates it using the tail standard deviation estimated using the dual-Dirac
method as follows [5]:

 commscope.eyediagram

2-307

RJ = (QL + QR) * σ

where

QL = 2 * erfc−1 2 * BER
ρL

and

QR = 2 * erfc−1 2 * BER
ρR

BER is the bit error ratio at which the random jitter is calculated. It is defined with the
BERThreshold property of the eye measurement setup object.

RMS Jitter (JitterRMS)

RMS Jitter is the standard deviation of the jitter calculated from the horizontal histogram.

Total Jitter (JitterTotal)

Total Jitter is the sum of the random jitter and the deterministic jitter [5].

Measurement Setup Parameters
A number of set-up parameters control eye diagram measurements. This section
describes these set-up parameters and the measurements they affect.

Eye Level Boundaries
Eye Level Boundaries are defined as a percentage of the symbol duration. The analyze
method calculates the eye levels by averaging the vertical histogram within a given time
interval defined by the eye level boundaries. A common value you can use for NRZ signals
is 40% to 60%. For RZ signals, a narrower band of 5% is more appropriate. The default
setting for Eye level Boundaries is a 2-by-1 vector where the first element is the lower
boundary and the second element is the upper boundary. When the eye level boundary
changes, the object recalculates this value.

2 Functions — Alphabetical List

2-308

Reference Amplitude
Reference Amplitude is the boundary value at which point the signal crosses from one
signal level to another. Reference amplitude represents the decision boundary of the
modulation scheme. This value is used to perform jitter measurements. The default
setting for Reference Amplitude is a 2-by-1 double vector where the first element is the
lower boundary and the second element is the upper boundary. Setting the reference
amplitude resets the eye diagram.

The crossing instants of the input signal are detected and recorded as crossing times. A
common value you can use for NRZ signals is 0. For RZ signals, you can use the mean
value of 1 and 0 levels. Reference amplitude is stored in a 2-by-N matrix, where the first
row is the in-phase values and second row is the quadrature values. See Eye Crossing
Time for more information.

Crossing Bandwidth
Crossing Bandwidth is the amplitude band used to measure the crossing times of the eye
diagram. Crossing Bandwidth represents a percentage of the amplitude span of the eye
diagram, typically 5%. See Eye Crossing Time for more information. The default setting
for Crossing Bandwidth is 0.0500.

Bit Error Rate Threshold
The eye opening measurements, random, and total jitter measurements are performed at
a given BER value. This BER value defines the BER threshold. A typical value is 1e-12. The
default setting for Bit Error Threshold is 1.0000e-12. When the bit error rate threshold
changes, the object recalculates this value.

Amplitude Threshold
The rise time of the signal is defined as the time required for the signal to travel from the
lower amplitude threshold to the upper amplitude threshold. The fall time, measured from
the upper amplitude threshold to the lower amplitude threshold, is defined as a
percentage of the eye amplitude. The default setting is 10% for the lower threshold and
90% for the upper threshold. Setting the amplitude threshold resets the eye diagram. See
Eye Rise Time and Eye Fall Time for more information.

 commscope.eyediagram

2-309

Jitter Hysteresis
You can use the JitterHysteresis property of the eye measurement setup object to remove
the effect of noise from the horizontal histogram estimation. The default value for Jitter
Hysteresis is zero. Setting the jitter hysteresis value resets the eye diagram.

If channel noise impairs the signal being tested, as shown in the following figure, the
signal may seem like it crosses the reference amplitude level multiple times during a
single 0-1 or 1-0 transition.

See the zoomed—in image for more detail.

2 Functions — Alphabetical List

2-310

To eliminate the effect of noise, define a hysteresis region between two threshold values:
Aref + ΔA and Aref - ΔA, where Aref is the reference amplitude value and ΔA is the jitter
hysteresis value. If the signal crosses both threshold values, level crossing is declared.
Then, linear interpolation calculates the crossing point in the horizontal histogram
estimation.

Compatibility Considerations

commscope.eyediagram will be removed
Warns starting in R2017b

commscope.eyediagram will be removed in a future release. Use comm.EyeDiagram
instead.

References

[1] Nelson Ou, et al, Models for the Design and Test of Gbps-Speed Serial
Interconnects,IEEE Design & Test of Computers, pp. 302-313, July-August 2004.

 commscope.eyediagram

2-311

[2] HP E4543A Q Factor and Eye Contours Application Software, Operating Manual,
http://agilent.com

[3] Agilent 71501D Eye-Diagram Analysis, User’s Guide, http://www.agilent.com

[4] 4] Guy Foster, Measurement Brief: Examining Sampling Scope Jitter Histograms,
White Paper, SyntheSys Research, Inc., July 2005.

[5] Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale, White Paper, Agilent
Technologies, December 2004, http://www.agilent.com

See Also
comm.EyeDiagram

Introduced in R2007b

2 Functions — Alphabetical List

2-312

commsrc.combinedjitter
Construct combined jitter generator object

Syntax
combJitt = commsrc.combinedjitter
combJitt = commsrc.combinedjitter(Name,Value)

Description
combJitt = commsrc.combinedjitter constructs a default combined jitter generator
object, combJitt, with all jitter components disabled.

Use the object to generate jitter samples that include any combination of random,
periodic, and Dirac components.

combJitt = commsrc.combinedjitter(Name,Value) creates a combined jitter
generator object with the specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
A combined jitter generator object includes these properties. You can edit all properties,
except those explicitly noted.

Property Description
Type Type of object, Combined Jitter Generator.

This property is not writable.
SamplingFrequency Sampling frequency of the input signal in hertz.

Default value 1e4.

 commsrc.combinedjitter

2-313

Property Description
RandomJitter Variable to enable the random jitter generator.

Specify as either 'off' (default) or 'on'.
RandomStd Standard deviation of the random jitter generator in

seconds. Applies when RandomJitter is 'on'.
Default value 1e-4.

PeriodicJitter Variable to enable the periodic jitter generator.
Specify as either 'off' (default) or 'on'.

PeriodicNumber Number of sinusoidal components. The
PeriodicNumber must be a finite positive scalar
integer. Applies when PeriodicJitter is 'on'.
Default value 1.

PeriodicAmplitude Amplitude of each sinusoidal component of the
periodic jitter in seconds. Applies when
PeriodicJitter is 'on'. Default value 5e-4.

PeriodicFrequencyHz Frequency of each sinusoidal component of the
periodic jitter measured in Hz. Applies when
PeriodicJitter is 'on'. Default value is 200.

PeriodicPhase Phase of each sinusoidal component of the periodic
jitter in radians. Applies when PeriodicJitter is
'on'. Default value 0.

DiracJitter Variable to enable the Dirac jitter generator. Specify
as either 'off' (default) or 'on'.

DiracNumber Number of Dirac components. The DiracNumber
must be a finite positive scalar integer. Applies when
DiracJitter is 'on'. Default value 2.

DiracDelta Time delay of each Dirac component in seconds.
Applies when DiracJitter is 'on'. Default value
[-5.e-4 5.e-4].

DiracProbability Probability of each Dirac component represented as
a vector of length DiracNumber. The sum of the
probabilities must equal one. Applies when
DiracJitter is 'on'. Default value [0.5 0.5].

2 Functions — Alphabetical List

2-314

Object Functions
A combined jitter generator object has three object functions, as described in this section.

generate
This object function generates jitter samples based on the jitter generator object. It has
one input argument, which is the number of samples in a frame. Its output is a single-
column vector of length N. You can call this object function using this syntax:

x = generate(combJitt,N)

where combJitt is the generator object, N is the number of output samples, and x is a
real single-column vector.

reset
This object function resets the internal states of the combined jitter generator. You can
call this object function using this syntax:

reset(combJitt)

where combJitt is the generator object.

disp
Display the properties of the combined generator object, combJitt. You can call this
object function using this syntax:

disp(combJitt)

where combJitt is the generator object.

Examples

Generate Combined Random and Periodic Jitter

Generate 500 jitter samples composed of random and periodic components.

 commsrc.combinedjitter

2-315

Create a commsrc.combinedjitter object configured to apply a combination of random
and periodic jitter components. Use name-value pairs to enable RandomJitter and
PeriodicJitter, and to assign jitter settings. Set the standard deviation of the random
jitter to 2e-4 seconds, the periodic jitter amplitude to 5e-4 seconds, and the periodic
jitter frequency to 2 Hz.

numSamples = 500;
combJitt = commsrc.combinedjitter(...
 'RandomJitter','on', ...
 'RandomStd',2e-4, ...
 'PeriodicJitter','on', ...
 'PeriodicAmplitude',5e-4, ...
 'PeriodicFrequencyHz',200)

combJitt =
 Type: 'Combined Jitter Generator'
 SamplingFrequency: 10000
 RandomJitter: 'on'
 RandomStd: 2.0000e-04
 PeriodicJitter: 'on'
 PeriodicNumber: 1
 PeriodicAmplitude: 5.0000e-04
 PeriodicFrequencyHz: 200
 PeriodicPhase: 0
 DiracJitter: 'off'

Use the generate method to create the combined jitter samples.

y = generate(combJitt,numSamples);
x = [0:numSamples-1];

Plot the jitter samples. You can see the Gaussian and periodic nature of the combined
jitter.

plot(x/combJitt.SamplingFrequency,y)
xlabel('Time (seconds)')
ylabel('Jitter (seconds)')

2 Functions — Alphabetical List

2-316

Display commsrc.combinedjitter Object Settings

Create a commsrc.combinedjitter object. Display the default object property values.

combJitt = commsrc.combinedjitter;
disp(combJitt)

 Type: 'Combined Jitter Generator'
 SamplingFrequency: 10000
 RandomJitter: 'off'
 PeriodicJitter: 'off'
 DiracJitter: 'off'

 commsrc.combinedjitter

2-317

Create a commsrc.combinedjitter object with random, periodic, and Dirac jitters
enabled. Display the object property values.

combJitt = commsrc.combinedjitter('RandomJitter','on', ...
 'PeriodicJitter','on','DiracJitter','on');
disp(combJitt)

 Type: 'Combined Jitter Generator'
 SamplingFrequency: 10000
 RandomJitter: 'on'
 RandomStd: 1.0000e-04
 PeriodicJitter: 'on'
 PeriodicNumber: 1
 PeriodicAmplitude: 5.0000e-04
 PeriodicFrequencyHz: 200
 PeriodicPhase: 0
 DiracJitter: 'on'
 DiracNumber: 2
 DiracDelta: [-5.0000e-04 5.0000e-04]
 DiracProbability: [0.5000 0.5000]

Generate Non-return-to-zero Pattern Signal

Generate a binary non-return-to-zero (NRZ) signal utilizing the pattern generator object.
View the NRZ signal with and without jitter applied to the signal.

Initialize system parameters.

Fs = 10000; % Sample rate
Rs = 50; % Symbol rate (Sps)
sps = Fs/Rs; % Number of samples per symbol
Trise = 1/(5*Rs); % Rise time of the NRZ signal
Tfall = 1/(5*Rs); % Fall time of the NRZ signal
frameLen = 100; % Number of symbols in a frame
spt = 200; % Number of samples per trace on eye diagram

Create a pattern generator object with no jitter component assigned.

src = commsrc.pattern('SamplingFrequency', Fs, ...
 'SamplesPerSymbol', sps, ...
 'RiseTime', Trise, ...
 'FallTime', Tfall)

2 Functions — Alphabetical List

2-318

src =
 Type: 'Pattern Generator'
 SamplingFrequency: 10000
 SamplesPerSymbol: 200
 SymbolRate: 50
 PulseType: 'NRZ'
 OutputLevels: [-1 1]
 RiseTime: 0.0040
 FallTime: 0.0040
 DataPattern: 'PRBS7'
 Jitter: [1x1 commsrc.combinedjitter]

src.Jitter

ans =
 Type: 'Combined Jitter Generator'
 SamplingFrequency: 10000
 RandomJitter: 'off'
 PeriodicJitter: 'off'
 DiracJitter: 'off'

Generate an NRZ signal and view the eye diagram of the signal.

message = generate(src,frameLen);
eyediagram(message,spt)

 commsrc.combinedjitter

2-319

Add inter-symbol-interference (ISI) to an NRZ signal. ISI is modeled by two equal
amplitude Dirac functions. Create a combined jitter object with Dirac jitter and assign it
to the pattern generator object.

jitterSrc = commsrc.combinedjitter('DiracJitter','on', ...
 'DiracDelta',0.05/Rs*[-1 1]);
src.Jitter = jitterSrc

src =
 Type: 'Pattern Generator'
 SamplingFrequency: 10000
 SamplesPerSymbol: 200
 SymbolRate: 50
 PulseType: 'NRZ'
 OutputLevels: [-1 1]
 RiseTime: 0.0040
 FallTime: 0.0040
 DataPattern: 'PRBS7'

2 Functions — Alphabetical List

2-320

 Jitter: [1x1 commsrc.combinedjitter]

Generate an NRZ signal that has jitter added to it and view the eye diagram of the signal.

reset(src);
message = generate(src, frameLen);
eyediagram(message,spt)

See Also
Functions
commsrc.pattern

 commsrc.combinedjitter

2-321

Topics
“Eye Diagram Measurements”

Introduced in R2015a

2 Functions — Alphabetical List

2-322

commsrc.pattern
Construct pattern generator object

Syntax
h = commsrc.pattern
h = commsrc.pattern(Name,Value)

Description
h = commsrc.pattern constructs a pattern generator object, h.

The pattern generator object produces modulated data patterns. The object can be used
to inject jitter into modulated signals.

h = commsrc.pattern(Name,Value) creates a combined jitter generator object with
the specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
A pattern generator object includes these properties. You can edit all properties, except
those explicitly noted.

Property Description
Type Type of pattern generator object ('Pattern

Generator'). This property is not writable.
SamplingFrequency Sampling frequency of the input signal in hertz.
SymbolRate The symbol rate of the input signal. This property

depends upon the SamplingFequency and
SamplesPerSymbol properties. This property is not
writable.

 commsrc.pattern

2-323

Property Description
SamplesPerSymbol The number of samples representing a symbol.

SamplesPerSymbol must be an integer. This
property affects SymbolRate.

PulseType The type of pulse the object generates. Pulse types
available: return-to-zero ('RZ') and non-return-to-
zero ('NRZ'). The initial condition for an 'NRZ'
pulse is 0.

OutputLevels Amplitude levels that correspond to the symbol
indices. For an 'NRZ' pulse, specify as a 1-by-2
vector. The first element of the 1-by-2 vector
corresponds to the 0th symbol (data bit value 0). The
second element corresponds to the 1st symbol (data
bit value 1). For an 'RZ' pulse, specify as a scalar
and the value corresponds to the data bit value 1.

DutyCycle The duty cycle of the pulse the object generates.
Displays calculated duty cycle based on pulse
parameters. This property is not writable.

RiseTime Specifies 10% to 90% rise time of the pulse in
seconds.

PulseDuration Pulse duration in seconds defined by IEEE STD 181
standard. See the Return-to-Zero (RZ) Signal
Conversion: Ideal Pulse to STD–181 figure in the
“Object Functions” on page 2-325. Applies when
PulseType is 'RZ'.

FallTime Fall time of the pulse in seconds, specified as a
percentage from 10 to 90.

DataPattern The bit sequence the object uses, specified as
'PRBS5', 'PRBS6', …, 'PRBS15', 'PRBS23',
'PRBS31', and'User Defined'.

UserDataPattern User-defined bit pattern consisting of a vector of
ones and zeroes. Applies when DataPattern is
'User Defined'.

2 Functions — Alphabetical List

2-324

Property Description
Jitter Jitter characteristics, specified as a

commsrc.combinedjitter object. Use this
property to configure Random, Periodic and Dual
Dirac Jitter.

Object Functions
A pattern generator object has five object functions, as described in this section.

generate
This object function outputs a frame worth of modulated and interpolated symbols. It has
one input argument, which is the number of symbols in a frame. Its output is a column
vector. You can call the object function using this syntax:

x = generate(h, N)

where h is the handle to the object, N is the number of output symbols, and x is a column
vector whose length is N multiplied by h.SamplesPerSymbol.

reset
This object function resets the pattern generator to its default state. The property values
do not reset unless they relate to the state of the object. This object function has no input
arguments.

idealtostd181
This object function converts the ideal pulse specifications to IEEE STD-181
specifications. The ideal 0% to 100% span rise time (tr) and fall time (tf) are converted
to 10% to 90% spans with a 50% pulse width duration (pw). Call the idealtostd181
object function using this syntax:

h = idealtostd181(tr,tf,pw)

The object function sets the appropriate properties. The IEEE STD-181 Return-to-Zero
(RZ) signal parameters are shown in this figure.

 commsrc.pattern

2-325

90%

Reference level

tR tF

Pulse duration

Tsym

50%

10%

std181toideal
The std181toideal object function converts the IEEE STD-181 pulse specifications,
stored in the pattern generator, to ideal pulse specifications. The function converts the
rise and fall times from 10% – 90% span to 0% – 100% span, and converts the 50% pulse
duration to pulse width. Call the std181toideal object function using this syntax:

[tr tf pw] = std181toideal(h)

where h is the pattern generator object handle, tr is the ideal 0% – 100% rise time, tf is
the ideal 0% – 100% fall time, and pw is the ideal pulse width. The ideal pulse non-return-
to-zero (NRZ) signal parameters are shown in this figure.

2 Functions — Alphabetical List

2-326

Symbol

boundary

level

PW+

PW-

tR tF

Tsym Tsym

Use the property values for IEEE STD-181 specifications.

computedcd
The computedcd object function computes the duty cycle distortion, DCD, of the pulse
defined by the pattern generator object h.

DCD represents the ratio of the pulse on duration to the pulse off duration. For an NRZ
pulse, on duration is the duration the pulse spends above the symbol boundary level. Off
duration is the duration the pulse spends below zero. Call the computedcd object
function using this syntax:

dcd = computedcd(h)

The software calculates DCD given tR, tF, Tsym. This formula assumes that the symbol
boundary level is zero.

Th = (Ah-Al) *
tR
Al

 + (Ah-Al) *
tF
Al

 + PW+

Tl = (Ah-Al) *
tR
Al

 + (Ah-Al) *
tF
Al

 + PW-

DCD =
Th
Tl

Where Th is the duration of the high signal, Tl is the duration of the low signal, and DCD
represents the ratio of the duration of the high signal to the low signal.

 commsrc.pattern

2-327

Examples

Display commsrc.pattern Object Settings

Create a commsrc.pattern object. Display the default object property values.

h = commsrc.pattern;
disp(h)

 Type: 'Pattern Generator'
 SamplingFrequency: 10000
 SamplesPerSymbol: 100
 SymbolRate: 100
 PulseType: 'NRZ'
 OutputLevels: [-1 1]
 RiseTime: 0
 FallTime: 0
 DataPattern: 'PRBS7'
 Jitter: [1x1 commsrc.combinedjitter]

Generate Non-return-to-zero Pattern Signal

Generate a binary non-return-to-zero (NRZ) signal utilizing the pattern generator object.
View the NRZ signal with and without jitter applied to the signal.

Initialize system parameters.

Fs = 10000; % Sample rate
Rs = 50; % Symbol rate (Sps)
sps = Fs/Rs; % Number of samples per symbol
Trise = 1/(5*Rs); % Rise time of the NRZ signal
Tfall = 1/(5*Rs); % Fall time of the NRZ signal
frameLen = 100; % Number of symbols in a frame
spt = 200; % Number of samples per trace on eye diagram

Create a pattern generator object with no jitter component assigned.

src = commsrc.pattern('SamplingFrequency', Fs, ...
 'SamplesPerSymbol', sps, ...
 'RiseTime', Trise, ...
 'FallTime', Tfall)

2 Functions — Alphabetical List

2-328

src =
 Type: 'Pattern Generator'
 SamplingFrequency: 10000
 SamplesPerSymbol: 200
 SymbolRate: 50
 PulseType: 'NRZ'
 OutputLevels: [-1 1]
 RiseTime: 0.0040
 FallTime: 0.0040
 DataPattern: 'PRBS7'
 Jitter: [1x1 commsrc.combinedjitter]

src.Jitter

ans =
 Type: 'Combined Jitter Generator'
 SamplingFrequency: 10000
 RandomJitter: 'off'
 PeriodicJitter: 'off'
 DiracJitter: 'off'

Generate an NRZ signal and view the eye diagram of the signal.

message = generate(src,frameLen);
eyediagram(message,spt)

 commsrc.pattern

2-329

Add inter-symbol-interference (ISI) to an NRZ signal. ISI is modeled by two equal
amplitude Dirac functions. Create a combined jitter object with Dirac jitter and assign it
to the pattern generator object.

jitterSrc = commsrc.combinedjitter('DiracJitter','on', ...
 'DiracDelta',0.05/Rs*[-1 1]);
src.Jitter = jitterSrc

src =
 Type: 'Pattern Generator'
 SamplingFrequency: 10000
 SamplesPerSymbol: 200
 SymbolRate: 50
 PulseType: 'NRZ'
 OutputLevels: [-1 1]
 RiseTime: 0.0040
 FallTime: 0.0040
 DataPattern: 'PRBS7'

2 Functions — Alphabetical List

2-330

 Jitter: [1x1 commsrc.combinedjitter]

Generate an NRZ signal that has jitter added to it and view the eye diagram of the signal.

reset(src);
message = generate(src, frameLen);
eyediagram(message,spt)

References
[1] IEEE Standard for Transitions, Pulses, and Related Waveforms, STD-181-2011.

Piscataway, NJ. 6 September 2011.

 commsrc.pattern

2-331

See Also
Functions
commsrc.combinedjitter

Topics
“Eye Diagram Measurements”

Introduced in R2008b

2 Functions — Alphabetical List

2-332

commsrc.pn
Create PN sequence generator object

Syntax
h = commsrc.pn
h = commsrc.pn(property1,value1,...)

Description
h = commsrc.pn creates a default PN sequence generator object h, and is equivalent to
the following:

H = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], ...
 'InitialStates', [0 0 0 0 0 1], ...
 'CurrentStates', [0 0 0 0 0 1], ...
 'Mask', [0 0 0 0 0 1], ...
 'NumBitsOut', 1)

or

H = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], ...
 'InitialStates', [0 0 0 0 0 1], ...
 'CurrentStates', [0 0 0 0 0 1], ...
 'Shift', 0, ...
 'NumBitsOut', 1)

h = commsrc.pn(property1,value1,...) creates a PN sequence generator object,
h, with properties you specify as property/value pairs.

Properties
A PN sequence generator has the properties shown on the following table. All properties
are writable except for the ones explicitly noted otherwise.

 commsrc.pn

2-333

Property Description
GenPoly Generator polynomial vector array of bits;

must be descending order
InitialStates Vector array (with length of the generator

polynomial order) of initial shift register
values (in bits)

CurrentStates Vector array (with length of the generator
polynomial order) of present shift register
values (in bits)

NumBitsOut Number of bits to output at each generate
method invocation

Mask or Shift A mask vector of binary 0 and 1 values is
used to specify which shift register state
bits are XORed to produce the resulting
output bit value.

Alternatively, a scalar shift value may be
used to specify an equivalent shift (either a
delay or advance) in the output sequence.

The 'GenPoly' property values specify the shift register connections. Enter these values
as either a binary vector or a vector of exponents of the nonzero terms of the generator
polynomial in descending order of powers. For the binary vector representation, the first
and last elements of the vector must be 1. For the descending-ordered polynomial
representation, the last element of the vector must be 0. For more information and
examples, see the LFSR SSRG Details section of this page.

Methods
A PN sequence generator is equipped with the following methods.

generate
Generate [NumBitsOut x 1] PN sequence generator values

2 Functions — Alphabetical List

2-334

reset
Set the CurrentStates values to the InitialStates values

getshift
Get the actual or equivalent Shift property value

getmask
Get the actual or equivalent Mask property value

copy
Make an independent copy of a commsrc.pn object

disp
Display PN sequence generator object properties

Side Effects of Setting Certain Properties

Setting the GenPoly Property
Every time this property is set, it will reset the entire object. In addition to changing the
polynomial values, 'CurrentStates', 'InitialStates', and 'Mask' will be set to
their default values ('NumBitsOut' will remain the same), and no warnings will be
issued.

Setting the InitialStates Property
Every time this property is set, it will also set 'CurrentStates' to the new
'InitialStates' setting.

 commsrc.pn

2-335

LFSR SSRG Details
The generate method produces a pseudorandom noise (PN) sequence using a linear
feedback shift register (LFSR). The LFSR is implemented using a simple shift register
generator (SSRG, or Fibonacci) configuration, as shown below.

gr-1

r-1 r-2 0

gr gr-2

mr-1 mr-2 m0

g1 g0

Output

XOR addition

All r registers in the generator update their values at each time step according to the
value of the incoming arrow to the shift register. The adders perform addition modulo 2.
The shift register is described by the 'GenPoly' property (generator polynomial), which
is a primitive binary polynomial in z, grzr+gr-1zr-1+gr-2zr-2+...+g0. The coefficient gk is 1 if
there is a connection from the kth register, as labeled in the preceding diagram, to the
adder. The leading term gr and the constant term g0 of the 'GenPoly' property must be 1
because the polynomial must be primitive.

You can specify the Generator polynomial parameter using either of these formats:

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

2 Functions — Alphabetical List

2-336

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial, p(z)
= z8 + z2 + 1.

The Initial states parameter is a vector specifying the initial values of the registers. The
Initial states parameter must satisfy these criteria:

• All elements of the Initial states vector must be binary numbers.
• The length of the Initial states vector must equal the degree of the generator

polynomial.

Note At least one element of the Initial states vector must be nonzero in order for
the block to generate a nonzero sequence. That is, the initial state of at least one of
the registers must be nonzero.

For example, the following table indicates two sets of parameter values that correspond
to a generator polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2
Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

Output mask vector (or scalar shift value) shifts the starting point of the output
sequence. With the default setting for this parameter, the only connection is along the
arrow labeled m0, which corresponds to a shift of 0. The parameter is described in greater
detail below.

You can shift the starting point of the PN sequence with Output mask vector (or scalar
shift value). You can specify the parameter in either of two ways:

• An integer representing the length of the shift
• A binary vector, called the mask vector, whose length is equal to the degree of the

generator polynomial

The difference between the block's output when you set Output mask vector (or scalar
shift value) to 0, versus a positive integer d, is shown in the following table.

 commsrc.pn

2-337

T = 0 T = 1 T = 2 ... T = d T = d+1
Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

Alternatively, you can set Output mask vector (or scalar shift value) to a binary
vector, corresponding to a polynomial in z, mr-1zr-1 + mr-2zr-2 + ... + m1z + m0, of degree at
most r-1. The mask vector corresponding to a shift of d is the vector that represents m(z)
= zd modulo g(z), where g(z) is the generator polynomial. For example, if the degree of
the generator polynomial is 4, then the mask vector corresponding to d = 2 is [0 1 0
0], which represents the polynomial m(z) = z2. The preceding schematic diagram shows
how Output mask vector (or scalar shift value) is implemented when you specify it as
a mask vector. The default setting for Output mask vector (or scalar shift value) is 0.
You can calculate the mask vector using the Communications Toolbox function
shift2mask.

Sequences of Maximum Length
If you want to generate a sequence of the maximum possible length for a fixed degree, r,
of the generator polynomial, you can set Generator polynomial to a value from the
following table. See Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995 for more information about the shift-register configurations that these
polynomials represent.

r Generator Polynomial r Generator Polynomial
2 [2 1 0] 21 [21 19 0]
3 [3 2 0] 22 [22 21 0]
4 [4 3 0] 23 [23 18 0]
5 [5 3 0] 24 [24 23 22 17 0]
6 [6 5 0] 25 [25 22 0]
7 [7 6 0] 26 [26 25 24 20 0]
8 [8 6 5 4 0] 27 [27 26 25 22 0]
9 [9 5 0] 28 [28 25 0]
10 [10 7 0] 29 [29 27 0]
11 [11 9 0] 30 [30 29 28 7 0]

2 Functions — Alphabetical List

2-338

r Generator Polynomial r Generator Polynomial
12 [12 11 8 6 0] 31 [31 28 0]
13 [13 12 10 9 0] 32 [32 31 30 10 0]
14 [14 13 8 4 0] 33 [33 20 0]
15 [15 14 0] 34 [34 15 14 1 0]
16 [16 15 13 4 0] 35 [35 2 0]
17 [17 14 0] 36 [36 11 0]
18 [18 11 0] 37 [37 12 10 2 0]
19 [19 18 17 14 0] 38 [38 6 5 1 0]
20 [20 17 0] 39 [39 8 0]
40 [40 5 4 3 0] 47 [47 14 0]
41 [41 3 0] 48 [48 28 27 1 0]
42 [42 23 22 1 0] 49 [49 9 0]
43 [43 6 4 3 0] 50 [50 4 3 2 0]
44 [44 6 5 2 0] 51 [51 6 3 1 0]
45 [45 4 3 1 0] 52 [52 3 0]
46 [46 21 10 1 0] 53 [53 6 2 1 0]

Examples

Setting Up PN Sequence Generator

Set up a PN sequence generator. Define the polynomial in binary vector format or
exponential vector format.

This figure defines a PN sequence generator with a generator polynomial
p z = z6 + z + 1.

 commsrc.pn

2-339

Define this PN sequence generator as follows:

h1 = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], 'Mask', [1 1 0 1 0 1]);
h2 = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], 'Shift', 22);
mask2shift ([1 0 0 0 0 1 1],[1 1 0 1 0 1])

ans = 22

Alternatively, you can input GenPoly as the exponents of z for the nonzero terms of the
polynomial in descending order of powers:

h = commsrc.pn('GenPoly', [6 1 0], 'Mask', [1 1 0 1 0 1])

h =
 GenPoly: [1 0 0 0 0 1 1]
 InitialStates: [0 0 0 0 0 1]
 CurrentStates: [0 0 0 0 0 1]
 Mask: [1 1 0 1 0 1]
 NumBitsOut: 1

General commsrc.pn Use

Typically commsrc.pn is used to output pseudorandom data streams.

Construct a PN object.

2 Functions — Alphabetical List

2-340

h = commsrc.pn('Shift',0);

Output 10 PN bits.

set(h,'NumBitsOut',10);
generate(h)

ans = 10×1

 1
 0
 0
 0
 0
 0
 1
 0
 0
 0

Output 10 more PN bits.

generate(h)

ans = 10×1

 0
 1
 1
 0
 0
 0
 1
 0
 1
 0

Reset the object to the initial shift register state values.

reset(h);

Output 4 PN bits.

 commsrc.pn

2-341

set(h,'NumBitsOut',4);
generate(h)

ans = 4×1

 1
 0
 0
 0

Copied commsrc.pn Object Behavior

When a commsrc.pn object is copied, its states are also copied. Subsequent outputs from
the copied object are likely to be different from the initial outputs from the original
object.

Construct a PN object and output a sequence from it.

h = commsrc.pn('Shift', 0);
set(h, 'NumBitsOut', 5);
generate(h)

ans = 5×1

 1
 0
 0
 0
 0

Make a copy of h. Generate a sequence from the copied object. Because the copy was
made after the state of h changed, the initial sequence generated by g is different from
the initial sequence generated from h.

g=copy(h);
generate(g)

ans = 5×1

 0

2 Functions — Alphabetical List

2-342

 1
 0
 0
 0

But if g is reset, it generates the same sequence that h generated.

reset(g);
generate(g)

ans = 5×1

 1
 0
 0
 0
 0

See Also
mask2shift | shift2mask

Introduced in R2009a

 commsrc.pn

2-343

commtest.ErrorRate
(To be removed) Create error rate test console

Compatibility
commtest.ErrorRate will be removed in a future release. Use comm.ErrorRate or
bertool instead. For more information, see “Compatibility Considerations” on page 2-
369.

Syntax
h = commtest.ErrorRate
h = commtest.ErrorRate(sys)
h = commtest.ErrorRate(sys,'PropertyName',PropertyValue,...)
h = commtest.ErrorRate('PropertyName',PropertyValue,...)

Description
h = commtest.ErrorRate returns an error rate test console, h. The error rate test
console runs simulations of a system under test to obtain error rates.

h = commtest.ErrorRate(sys) returns an error rate test console, error rate test
console, h, with each specified property set to the h, with an attached system under test,
SYS.

h = commtest.ErrorRate(sys,'PropertyName',PropertyValue,...) returns an
error rate test console, h, with an attached system under test, sys. Each specified
property, 'PropertyName', is set to the specified value, PropertyValue.

h = commtest.ErrorRate('PropertyName',PropertyValue,...) returns an
error rate test console, h, with each specified property 'PropertyName', set to the
specified value, PropertyValue.

2 Functions — Alphabetical List

2-344

Properties
The error rate test console object has the properties in the following table. Setting any
property resets the object. A property that is irrelevant is one that you can set, but its
value does not affect measurements. Similarly, you cannot display irrelevant properties
using the disp method. You can write to all properties, except for the ones explicitly
noted otherwise.

Property Description
Description 'Error Rate Test Console'. Read-only.
SystemUnderTestName System under test name. Read-only.
FrameLength Specify the length of the transmission frame at each iteration.

This property becomes relevant only when the system under test
registers a valid test input.

• If the system under test registers a NumTransmissions test
input and calls its getInput method, the error rate test
console returns the value stored in FrameLength. Using an
internal data source, the system under test uses this value to
generate a transmission frame of the specified length.

• If the system under test registers a DiscreteRandomSource
test input and calls its getInput method, the test console
generates and returns a frame of symbols. The length of the
frame of symbols matches the FrameLength property. This
property defaults to 500.

 commtest.ErrorRate

2-345

Property Description
IterationMode Specify how the object determines simulation points.

• If set to Combinatorial, the object performs simulations for
all possible combinations of registered test parameter sweep
values.

• If set to Indexed, the object performs simulations for all
indexed sweep value sets. The ith sweep value set consists of
the ith element of every sweep value vector for each
registered test parameter. All sweep value vectors must have
equal length, except for values that are unit length.

Note that for the following sweep parameter settings:

• Parameter1 = [a1 a2]
• Parameter2 = [b1 b2]
• Parameter3 = [c1]

In Indexed Mode, the test console performs simulations for the
following sweep parameter sets:

(a1, b1, c1)

(a2, b2, c1)

In Combinatorial Mode, the test console performs simulations for
the following sweep parameter sets:

(a1, b1, c1)

(a1, b2, c1)

(a2, b1, c1)

(a2, b2, c1)

2 Functions — Alphabetical List

2-346

Property Description
SystemResetMode Specify the stage of a simulation run at which the system resets.

• Setting to Reset at new simulation point resets the
system under test at the beginning of a new simulation point.

• Setting to Reset at every iteration resets the system
under test at every iteration.

 commtest.ErrorRate

2-347

Property Description
SimulationLimitOption Specify how to stop the simulation for each sweep parameter

point.

• If set to Number of transmissions the simulation for a
sweep parameter point stops when the number of
transmissions equals the value for MaxNumTransmissions.

• Set TransmissionCountTestPoint to the name of the
registered test point containing the transmission count
you are comparing to MaxNumTransmissions.

• If set to Number of errors the simulation for a sweep
parameter point stops when the number of errors equals the
value for MinNumErrors.

• Set the ErrorCountTestPoint to the name of the
registered test point containing the error count you are
comparing to the MinNumErrors.

• Setting to Number of errors or transmissions stops
the simulation for a sweep parameter point when meeting one
of two conditions.

• The simulation stops when the number of transmissions
equals the value for MaxNumTransmissions.

• The simulation stops when obtaining the number of errors
matching NumErrors.

• Setting this property to Number of errors and
transmissions stops the simulation for a sweep parameter
point when meeting the following condition.

• The simulation stops when the number of transmissions
and the number errors have at least reached the values in
MinNumTransmissions and MinNumErrors.

Set TransmissionCountTestPoint to the name of the
registered test point that contains the transmission count you
are comparing to the MaxNumTransmissions property.

2 Functions — Alphabetical List

2-348

Property Description
To control the simulation length, set ErrorCountTestPoint to
the name of the registered test point containing the error count
you are comparing to MinNumErrors.

Call the info method of the error rate test console to see the
valid registered test point names.

MaxNumTransmissions Specify the maximum number of transmissions the object counts
before stopping the simulation for a sweep parameter point. This
property becomes relevant only when
SimulationLimitOption is Number of transmissions or
Number of errors or transmissions.

• When setting SimulationLimitOption to Number of
transmissions the simulation for each sweep parameter
point stops when reaching the number of transmissions
MaxNumTransmissions specifies.

• Setting SimulationLimitOption to Number of errors
or transmissions stops the simulation for each sweep
parameter point for one of two conditions.

• The simulation stops when completing the number of
transmissions MaxNumTransmissions specifies.

• The simulation stops when obtaining the number of errors
MinNumErrors specifies.

The TransmissionCountTestPoint property supplies the
name of a registered test point containing the count transmission
type. Calling the info method of the error rate test console
displays the valid registered test points. If this property contains
registered test points, the test console runs iterations equal to
the value for MaxNumTransmissions for each sweep parameter
point. If this property has no registered test parameters, the test
console runs the number of iterations equal to the value for
MaxNumTransmissions and stops. The value defaults to 1000.

 commtest.ErrorRate

2-349

Property Description
MinNumErrors Specify the minimum number of errors the object counts before

stopping the simulation for a sweep parameter point. This
property becomes relevant only when setting the
SimulationLimitOption to Number of errors or Number
of errors or transmissions.

• When setting SimulationLimitOption to Number of
errors the simulation for each parameter point stops when
reaching the number of errors you specify for the
MinNumErrors property.

• When setting the SimulationLimitOption property to
Number of errors or transmissions the simulation for
each sweep parameter point stops for one of two conditions.

• The simulation stops when reaching the number of errors
you specify for the MaxNumTransmissions property.

• The simulation stops when reaching the number of errors
you specify for the MinNumErrors property.

Specify the type of errors the error count uses by setting the
ErrorCountTestPoint property to the name of a registered
test point containing the count. Call the info method of the
error rate test console to see the valid registered test point
names. This value defaults to 100.

TransmissionCountTestPoint Specify and register a test point containing the transmission
count that controls the test console simulation stop mechanism.
This property becomes relevant only when setting
SimulationLimitOption to Number of transmissions,
Number of errors or transmissions, or Number of
errors and transmissions. In this scenario, if you register a
test point, and TransmissionCountTestPoint equals Not
set, the value of this property automatically updates to that of
the registered test point name. Call the info method to see the
valid test point names.

2 Functions — Alphabetical List

2-350

Property Description
ErrorCountTestPoint Specify and register the name of a test point containing the error

count that controls the simulation stop mechanism. This property
is only relevant when setting the SimulationLimitOption
property to Number of errors, Number of errors or
transmissions, or Number of errors and
transmissions. In this scenario, if you register a test point,
and ErrorCountTestPoint equals Not set, the value of this
property automatically updates to that of the registered test
point name. Call the info method to see the valid test point
names.

Methods
The error rate test console object has the following methods:

run
Runs a simulation.

Runs the number of error rate simulations you specify for a system under test with a
specified set of parameter values. If a Parallel Computing Toolbox™ license is available
and a parpool is open, then the object distributes the iterations among the number of
workers available.

getResults
Returns the simulation results.

r = getResults(h) returns the simulation results, r, for the test console, h. r is an object of
the type you specify using testconsole.Results. It contains the simulation data for all the
registered test points and methods to parse the data and plot it.

info
Returns a report of the current test console settings.

 commtest.ErrorRate

2-351

info(h) displays the current test console settings, such as registered test parameters and
registered test points.

reset
Resets the error rate test console.

reset(h) resets test parameters and test probes and then clears all simulation results of
test console, h.

attachSystem
Attaches a system to test console.

attachSystem(ho,sys) attaches a valid user-defined system, sys, to the test console, h.

detachSystem
Detaches the system from the test console.

detachSystem(h) detaches a system from the test console, h. This method also clears the
registered test inputs, test parameters, test probes, and test points.

setTestParameterSweepValues
Sets test parameter sweep values.

setTestParameterSweepValues(h,name,sweep) specifies a set of sweep values, 'sweep', for
the registered test parameter, 'name', in the test console, h. You only specify sweep values
for registered test parameters. sweep must have values within the specified range of the
test parameter. It can be a row vector of numeric values, or a cell array of char values.
Display the valid ranges using the getTestParameterValidRanges method.

setTestParameterSweepValues(h,name1,sweep1,name2,sweep2...) simultaneously
specifies sweep values for multiple registered test parameters.

getTestParameterSweepValues
Returns test parameter sweep values.

2 Functions — Alphabetical List

2-352

getTestParameterSweepValues(h,name) gets the sweep values currently specified for the
registered test parameter, name, in the test console, h.

getTestParameterValidRanges
Returns the test parameter valid ranges.

getTestParameterValidRanges(h,name) gets the valid ranges for a registered test
parameter, name, in the test console, h.

registerTestPoint
Registers a test point.

registerTestPoint(h, name, actprobe,expprobe) registers a new test point object, name, to
the error rate test console, h. The test point must contain a pair of registered test probes,
actprobe, and expprobe. actprobe contains actual data, and expprobe contains expected
data. The object compares the data from these probes and obtains error rate values. The
error rate calculation uses a default error rate calculator function that simply performs
one-to-one comparisons of the data vectors available in the probes.

registerTestPoint(h, name, actprobe,expprobe, handle) adds the handle, handle, to a user-
defined error calculation function that compares the data in the probes and then obtains
error rate results.

The user-defined error calculation function must comply with the following syntax: [ecnt
tcnt] = functionName(act, exp, udata) where

• ecnt output corresponds to the error count
• tcnt output is the number of transmissions used to obtain the error count
• act and exp correspond to actual and expected data

The error rate test console sets the inputs to the data available in the pair of test point
probes, actprobe, and expprobe.

udata is a data input that the system under test passes to the test console at run time,
using the setUserData method. udata contains the data necessary to compute errors, such
as delays and data buffers.

The error rate test console passes the data that the system under test logs to the error
calculation functions for all the registered test points. Calling the info method returns the

 commtest.ErrorRate

2-353

names of the registered test points and the error rate calculator functions associated with
them. It also returns the names of the registered test probes.

unregisterTestPoint
Unregister a test point.

unregisterTestPoint(h,name) removes the test point, name, from the test console, h.

Examples

Error Rate Simulation Sweeps

The commtest.ErrorRate and testconsole.Results object packages will be
removed in a future release. They can be used to perform parameter sweeps to analyze
communication system performance. This example demonstrates a workflow that uses
them and along with recommended alternate workflows.

Multiple Parameter Sweep and Parallel Run using commtest.ErrorRate

Obtain bit error rate and symbol error rate of an M-PSK system for different modulation
orders and EbNo values. System under test is commtest.MPSKSystem.

% Create an M-ary PSK system
systemUnderTest = commtest.MPSKSystem;

% Instantiate an Error Rate Test Console and attach the system
errorRateTester = commtest.ErrorRate(systemUnderTest);

Warning: commtest.ErrorRate will be removed in the future. Use comm.ErrorRate or bertool instead. See R2019b Communications Toolbox Release Notes for more information.

errorRateTester.SimulationLimitOption = 'Number of errors or transmissions';
errorRateTester.MaxNumTransmissions = 1e5;

% Set sweep values for simulation test parameters
setTestParameterSweepValues(errorRateTester,'M',2.^[1 2 3 4],'EbNo',(-5:10))

% Register a test point
registerTestPoint(errorRateTester,'MPSK_BER','TxInputBits','RxOutputBits')

2 Functions — Alphabetical List

2-354

% Get information about the simulation settings
info(errorRateTester)

Test console name: commtest.ErrorRate
System under test name: commtest.MPSKSystem
Available test inputs: NumTransmissions, RandomIntegerSource
Registered test inputs: NumTransmissions
Registered test parameters: EbNo, M
Registered test probes: RxOutputBits, RxOutputSymbols, TxInputBits, TxInputSymbols
Registered test points: MPSK_BER
Metric calculator functions: @commtest.ErrorRate.defaultErrorCalculator
Test metrics: ErrorCount, TransmissionCount, ErrorRate

% Run the M-PSK simulations
run(errorRateTester)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).
12 workers available for parallel computing. Simulations will be distributed among these workers.
Running simulations...

% Get the results
mpskResults = getResults(errorRateTester);

Warning: testconsole.Results will be removed in the future. See R2019b Communications Toolbox Release Notes for more information.

% Get a semi-log scale plot of EbNo versus bit error rate for
% different values of modulation order M
mpskResults.TestParameter2 = 'M';
semilogy(mpskResults,'*-')

 commtest.ErrorRate

2-355

Multiple Parameter Sweep and Parallel Run using nested for loops and
comm.ErrorRate

Run an error rate simulation over M=2.^(1:4) and EbNo=-5:10. Use comm.ErrorRate to
collect both bit error rate (BER) and symbol error rate (SER) data. Run the simulations to
collect a minimum of 100 symbol errors or for a maximum of 1e5 symbols.

% Set the M sweep values same as the commtest.ErrorRate object
getTestParameterSweepValues(errorRateTester,'M')

ans = 1×4

 2 4 8 16

2 Functions — Alphabetical List

2-356

MSweep = 2.^[1 2 3 4];

% Set EbNo sweep values same as the commtest.ErrorRate object
getTestParameterSweepValues(errorRateTester,'EbNo')

ans = 1×16

 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

EbNoSweep = -5:10;

% Set minumum number of errors same as the commtest.ErrorRate object
errorRateTester.MinNumErrors

ans = 100

minNumErrors = 100;

% Set maximum number of transmissions same as the commtest.ErrorRate
% object. In this example a transmission is a symbol.
errorRateTester.MaxNumTransmissions

ans = 100000

MaxNumTransmissions = 1e5;

% Set frame length same as the commtest.ErrorRate object
errorRateTester.FrameLength

ans = 500

frameLength = 500;

% Find out if there is a parallel pool and how many workers are available
[licensePCT,~] = license('checkout','distrib_computing_toolbox');
if (licensePCT && ~isempty(ver('parallel')))
 p = gcp;
 if isempty(p)
 numWorkers = 1;
 else
 numWorkers = p.NumWorkers
 end
else
 numWorkers = 1;
end

 commtest.ErrorRate

2-357

numWorkers = 12

minNumErrorsPerWorker = minNumErrors/numWorkers;
maxNumSymbolsPerWorker = MaxNumTransmissions/numWorkers;

% Store results in an array, where first dimension is M and second
% dimension is EbNo. Initialize the vector with NaN values.
ser = nan(length(MSweep),length(EbNoSweep));
ber = nan(length(MSweep),length(EbNoSweep));

% First sweep is over M (modulation order)
for MIdx = 1:length(MSweep)
 M = MSweep(MIdx);
 bitsPerSymbol = log2(M);

 % Second sweep is over EbNo
 for EbNoIdx = 1:length(EbNoSweep)
 EbNo = EbNoSweep(EbNoIdx);

 SNR = EbNo+10*log10(bitsPerSymbol);

 numSymbolErrors = zeros(numWorkers,1);
 numBitErrors = zeros(numWorkers,1);
 numSymbols = zeros(numWorkers,1);

 parfor worker = 1:numWorkers
 symErrRate = comm.ErrorRate;
 bitErrRate = comm.ErrorRate;

 while (numSymbolErrors(worker) < minNumErrorsPerWorker) ...
 || (numSymbols(worker) < maxNumSymbolsPerWorker)
 % Generate frameLength source outputs
 txMsg = randi([0 M-1],frameLength,1);

 % Modulate the data
 txOutput = pskmod(txMsg,M,0,'gray');
 % Pass data through an AWGN channel with current SNR value
 chnlOutput = awgn(txOutput,SNR,'measured',[],'dB');
 % Demodulate the data
 rxOutput = pskdemod(chnlOutput,M,0,'gray');

 % Calculate number of symbol errors
 symErrVal = symErrRate(txMsg,rxOutput);
 numSymbolErrors(worker) = symErrVal(2);
 numSymbols(worker) = symErrVal(3);

2 Functions — Alphabetical List

2-358

 % Convert symbol streams to bit streams
 bTx = de2bi(txMsg,bitsPerSymbol,'left-msb')';
 bTx = bTx(:);
 bRx = de2bi(rxOutput,bitsPerSymbol,'left-msb')';
 bRx = bRx(:);

 % Calculate number of bit errors
 bitErrVal = bitErrRate(bTx,bRx);
 numBitErrors(worker) = bitErrVal(2);
 end
 end

 ber(MIdx,EbNoIdx) = sum(numBitErrors)/(sum(numSymbols)*bitsPerSymbol);
 ser(MIdx,EbNoIdx) = sum(numSymbolErrors)/sum(numSymbols);
 end
end

% Plot results
semilogy(EbNoSweep,ber,'*-')
grid on
title('MPSK BER')
xlabel('Eb/No')
ylabel('BER')
legendText = cell(length(MSweep),1);
for p=1:length(MSweep)
 legendText{p} = sprintf('M: %d',MSweep(p));
end
legend(legendText)

 commtest.ErrorRate

2-359

Multiple Variable Sweeps using BERTool

BERTool computes the BER as a function of signal-to-noise ratio. It analyzes performance
either with Monte-Carlo simulations of MATLAB® functions and Simulink® models or
with theoretical closed-form expressions for selected types of communication systems.
The bertool function opens the BERTool. Here BERTool is configured to call the
simulation defined in the function mpsksim included below.

function [ber,numBits] = mpsksim(EbNo,minNumErrs,maxNumBits)
% Import the Java class for BERTool, so that you will be able to stop the simulation using the "Stop" button on the BERTool.
import com.mathworks.toolbox.comm.BERTool;

frameLength = 500;

2 Functions — Alphabetical List

2-360

M = 16; % Can be 2, 4, 8, 16
bitsPerSymbol = log2(M);

maxNumSymbols = maxNumBits/bitsPerSymbol;

SNR = EbNo + 10*log10(bitsPerSymbol);

% Initialize variables related to exit criteria.
numBitErrors = 0;
numSymbols = 0;

while (numBitErrors < minNumErrs) || (numSymbols < maxNumSymbols)

 % Check if the user clicked the Stop button of BERTool.
 if (BERTool.getSimulationStop)
 break;
 end

 % Generate frameLength source outputs
 txMsg = randi([0 M-1],frameLength,1);
 numSymbols = numSymbols+frameLength;

 % Modulate the data
 txOutput = pskmod(txMsg,M,0,'gray');
 % Pass data through an AWGN channel with current SNR value
 chnlOutput = awgn(txOutput,SNR,'measured',[],'dB');
 % Demodulate the data
 rxOutput = pskdemod(chnlOutput,M,0,'gray');

 % Convert symbol streams to bit streams
 bTx = de2bi(txMsg,bitsPerSymbol,'left-msb')';
 bTx = bTx(:);
 bRx = de2bi(rxOutput,bitsPerSymbol,'left-msb')';
 bRx = bRx(:);

 % Calculate number of bit errors
 numBitErrors = numBitErrors+sum(bTx~=bRx);
end

% Assign values to the output variables.
numBits = numSymbols*bitsPerSymbol;
ber = numBitErrors/numBits;

Configure BERTool as follows.

 commtest.ErrorRate

2-361

Set M=2 in the mpsksim function and click Run. Set the BER Data Set name to 'M=2'.

2 Functions — Alphabetical List

2-362

Display the BER curve for M=2.

 commtest.ErrorRate

2-363

2 Functions — Alphabetical List

2-364

Update the value for M in the mpsksim function, repeating this process for M = 4, 8, 16.
You will see results similar to those below in the Bit Error Rate Analysis Tool window
and the BER figure.

 commtest.ErrorRate

2-365

2 Functions — Alphabetical List

2-366

 commtest.ErrorRate

2-367

Parallel SNR Sweep using BERTool

Using parfor, run each simulation point in parallel by configuring your simulation
function similar to the mpsksim_parfor function included below. Since parfor cannot
work with the Java class for BERTool, you will not be able to stop the simulation using
the Stop button.

function [ber,numBits] = mpsksim_parfor(EbNo,minNumErrs,maxNumBits)

% Find out if there is a parallel pool and how many workers are available
if license('test','Distrib_Computing_Toolbox')
 p = gcp;
 if isempty(p)
 numWorkers = 1;
 else
 numWorkers = p.NumWorkers;
 end
else
 numWorkers = 1;
end

M = 2;
bitsPerSymbol = log2(M);

maxNumSymbols = maxNumBits/bitsPerSymbol;

minNumErrorsPerWorker = minNumErrs/numWorkers;
maxNumSymbolsPerWorker = maxNumSymbols/numWorkers;
frameLength = 500;

SNR = EbNo + 10*log10(bitsPerSymbol);

% Initialize variables related to exit criteria.
numBitErrors = zeros(numWorkers,1);
numSymbols = zeros(numWorkers,1);

parfor worker = 1:numWorkers
 while (numBitErrors(worker) < minNumErrorsPerWorker) ...
 || (numSymbols(worker) < maxNumSymbolsPerWorker)

 % Generate frameLength source outputs
 txMsg = randi([0 M-1],frameLength,1);
 numSymbols(worker) = numSymbols(worker)+frameLength;

2 Functions — Alphabetical List

2-368

 % Modulate the data
 txOutput = pskmod(txMsg, M, 0, 'gray');
 % Pass data through an AWGN channel with current SNR value
 chnlOutput = awgn(txOutput,SNR,'measured',[],'dB');
 % Demodulate the data
 rxOutput = pskdemod(chnlOutput,M,0,'gray');

 % Convert symbol streams to bit streams
 bTx = de2bi(txMsg,bitsPerSymbol,'left-msb')';
 bTx = bTx(:);
 bRx = de2bi(rxOutput,bitsPerSymbol,'left-msb')';
 bRx = bRx(:);

 % Calculate number of bit errors
 numBitErrors(worker) = numBitErrors(worker)+sum(bTx~=bRx);
 end
end

% Assign values to the output variables.
ber = sum(numBitErrors)/sum(numSymbols);
numBits = sum(numSymbols)*bitsPerSymbol;

Compatibility Considerations

commtest.ErrorRate will be removed
Warns starting in R2019b

commtest.ErrorRate will be removed in a future release. Use comm.ErrorRate or
bertool instead. The “Error Rate Simulation Sweeps” on page 2-354 example
demonstrates alternate workflows using comm.ErrorRate and bertool.

See Also
Objects
comm.ErrorRate

Functions
bertool

 commtest.ErrorRate

2-369

Topics
“Bit Error Rate (BER)”

Introduced in R2009b

2 Functions — Alphabetical List

2-370

compand
Source code mu-law or A-law compressor or expander

Syntax
out = compand(in,Mu,v)
out = compand(in,Mu,v,'mu/compressor')
out = compand(in,Mu,v,'mu/expander')
out = compand(in,A,v,'A/compressor')
out = compand(in,A,v,'A/expander')

Description
out = compand(in,Mu,v) implements a µ-law compressor for the input vector in. Mu
specifies µ, and v is the input signal's maximum magnitude. out has the same dimensions
and maximum magnitude as in.

out = compand(in,Mu,v,'mu/compressor') is the same as the syntax above.

out = compand(in,Mu,v,'mu/expander') implements a µ-law expander for the
input vector in. Mu specifies µ and v is the input signal's maximum magnitude. out has
the same dimensions and maximum magnitude as in.

out = compand(in,A,v,'A/compressor') implements an A-law compressor for the
input vector in. The scalar A is the A-law parameter, and v is the input signal's maximum
magnitude. out is a vector of the same length and maximum magnitude as in.

out = compand(in,A,v,'A/expander') implements an A-law expander for the input
vector in. The scalar A is the A-law parameter, and v is the input signal's maximum
magnitude. out is a vector of the same length and maximum magnitude as in.

Note The prevailing parameters used in practice are µ= 255 and A = 87.6.

 compand

2-371

Examples

μ-Law Compression and Expansion

Generate a data sequence.

data = 2:2:12;

Compress the input sequence using an μ-law compander. The typical value for μ is 255.
The data ranges between 8.1 and 12 instead of between 2 and 12.

compressed = compand(data,255,max(data),'mu/compressor')

compressed = 1×6

 8.1644 9.6394 10.5084 11.1268 11.6071 12.0000

Expand the compressed signal. The expanded sequence is nearly identical to the original.

expanded = compand(compressed,255,max(data),'mu/expander')

expanded = 1×6

 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000

A-Law Compression and Expansion

Generate a data sequence.

data = 1:5;

Compress the input sequence using an A-law compander. The typical value for A is 87.5.
The data ranges between 3.5 and 5 instead of between 1 and 5.

compressed = compand(data,87.6,max(data),'a/compressor')

compressed = 1×5

2 Functions — Alphabetical List

2-372

 3.5296 4.1629 4.5333 4.7961 5.0000

Expand the compressed signal. The expanded sequence is nearly identical to the original.

expanded = compand(compressed,87.6,max(data),'a/expander')

expanded = 1×5

 1.0000 2.0000 3.0000 4.0000 5.0000

Algorithms
For a given signal x, the output of the µ-law compressor is

y = Vlog(1 + μ x /V)
log(1 + μ) sgn(x)

where V is the maximum value of the signal x, µ is the µ-law parameter of the compander,
log is the natural logarithm, and sgn is the signum function (sign in MATLAB).

The output of the A-law compressor is

y =

A x
1 + logAsgn(x)

V(1 + log(A x /V))
1 + logA sgn(x)

for 0 ≤ x ≤ V
A

for VA < x ≤ V

where A is the A-law parameter of the compander and the other elements are as in the µ-
law case.

References

[1] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood
Cliffs, NJ, Prentice-Hall, 1988.

 compand

2-373

See Also
dpcmdeco | dpcmenco | quantiz

Topics
“Compand a Signal”

Introduced before R2006a

2 Functions — Alphabetical List

2-374

convdeintrlv
Restore ordering of symbols using shift registers

Syntax
deintrlved = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state)

Description
deintrlved = convdeintrlv(data,nrows,slope) restores the ordering of
elements in data by using a set of nrows internal shift registers. The delay value of the
kth shift register is (nrows-k)*slope, where k = 1, 2, 3,..., nrows. Before the function
begins to process data, it initializes all shift registers with zeros. If data is a matrix with
multiple rows and columns, the function processes the columns independently.

[deintrlved,state] = convdeintrlv(data,nrows,slope) returns a structure
that holds the final state of the shift registers. state.value stores any unshifted
symbols. state.index is the index of the next register to be shifted.

[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state)
initializes the shift registers with the symbols contained in init_state.value and
directs the first input symbol to the shift register referenced by init_state.index. The
structure init_state is typically the state output from a previous call to this same
function, and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair
To use this function as an inverse of the convintrlv function, use the same nrows and
slope inputs in both functions. In that case, the two functions are inverses in the sense
that applying convintrlv followed by convdeintrlv leaves data unchanged, after you
take their combined delay of nrows*(nrows-1)*slope into account. To learn more
about delays of convolutional interleavers, see “Delays of Convolutional Interleavers”.

 convdeintrlv

2-375

Examples
The example in “Effect of Delays on Recovery of Convolutionally Interleaved Data Using
MATLAB” uses convdeintrlv and illustrates how you can handle the delay of the
interleaver/deinterleaver pair when recovering data.

The example on the reference page for muxdeintrlv illustrates how to use the state
output and init_state input with that function; the process is analogous for this
function.

References
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic

Publishers, 1999.

See Also
convintrlv | muxdeintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-376

convenc
Convolutionally encode binary data

Syntax
code = convenc(msg,trellis)
code = convenc(msg,trellis,puncpat)
code = convenc(msg,trellis,...,init_state)
[code,final_state] = convenc(...)

Description
code = convenc(msg,trellis) encodes the binary vector msg using the
convolutional encoder whose MATLAB trellis structure is trellis. For details about
MATLAB trellis structures, see “Trellis Description of a Convolutional Code”. Each symbol
in msg consists of log2(trellis.numInputSymbols) bits. The vector msg contains one
or more symbols. The output vector code contains one or more symbols, each of which
consists of log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,puncpat) is the same as the syntax above, except
that it specifies a puncture pattern, puncpat, to allow higher rate encoding. puncpat
must be a vector of 1s and 0s, where the 0s indicate the punctured bits. puncpat must
have a length of at least log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,...,init_state) allows the encoder registers to
start at a state specified by init_state. init_state is an integer between 0 and
trellis.numStates-1 and must be the last input parameter.

[code,final_state] = convenc(...) encodes the input message and also returns
the encoder's state in final_state. final_state has the same format as
init_state.

Examples

 convenc

2-377

Create Convolutional Codes

Encode five two-bit symbols using a rate 2/3 convolutional code.

data = randi([0 1],10,1);
trellis1 = poly2trellis([5 4],[23 35 0; 0 5 13]);
code1 = convenc(data,poly2trellis([5 4],[23 35 0; 0 5 13]));

Verify that the encoded output is 15 bits, 3/2 times the length of the input sequence,
data.

length(code1)

ans = 15

Define the encoder's trellis structure explicitly and then use convenc to encode 10 one-
bit symbols.

trellis2 = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);
code2 = convenc(randi([0 1],10,1),trellis2);

Use the final and initial state arguments when invoking convenc. Encode part of data ,
recording final state for later use.

[code3,fstate] = convenc(data(1:6),trellis1);

Encode the rest of data, using fstate as an input argument.

code4 = convenc(data(7:10),trellis1,fstate);

Verify that the [code3; code4] matches code1.

isequal(code1,[code3; code4])

ans = logical
 1

2 Functions — Alphabetical List

2-378

Trellis Structure for 1/2 Feedforward Convolutional Encoder

Create a trellis structure for a rate 1/2 feedforward convolutional code. Use the trellis to
encode and decode a random bit stream.

Create a trellis structure. Set the constraint length to 7 and specify the code generator as
a cell array of polynomial character vectors.

trellis = poly2trellis(7,{'1 + x^3 + x^4 + x^5 + x^6', ...
 '1 + x + x^3 + x^4 + x^6'})

trellis = struct with fields:
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 64
 nextStates: [64x2 double]
 outputs: [64x2 double]

Generate random binary data, convolutionally encode the data, and decode the data using
the Viterbi algorithm.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
decodedData = vitdec(codedData,trellis,34,'trunc','hard');

Verify the decoded data has no bit errors.

biterr(data,decodedData)

ans = 0

Estimate BER for Hard and Soft Decision Viterbi Decoding

Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi
decoders in AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

clear; close all
rng default
M = 64; % Modulation order

 convenc

2-379

k = log2(M); % Bits per symbol
EbNoVec = (4:10)'; % Eb/No values (dB)
numSymPerFrame = 1000; % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec));
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback length for a rate 1/2, constraint length 7,
convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops performs these steps:

• Generate binary data.
• Convolutionally encode the data.
• Apply QAM modulation to the data symbols. Specify unit average power for the

transmitted signal.
• Pass the modulated signal through an AWGN channel.
• Demodulate the received signal using hard decision and approximate LLR methods.

Specify unit average power for the received signal.
• Viterbi decode the signals using hard and unquantized methods.
• Calculate the number of bit errors.

The while loop continues to process data until either 100 errors are encountered or 1e7
bits are transmitted.

for n = 1:length(EbNoVec)
 % Convert Eb/No to SNR
 snrdB = EbNoVec(n) + 10*log10(k*rate);
 % Noise variance calculation for unity average signal power.
 noiseVar = 10.^(-snrdB/10);
 % Reset the error and bit counters
 [numErrsSoft,numErrsHard,numBits] = deal(0);

 while numErrsSoft < 100 && numBits < 1e7
 % Generate binary data and convert to symbols
 dataIn = randi([0 1],numSymPerFrame*k,1);

2 Functions — Alphabetical List

2-380

 % Convolutionally encode the data
 dataEnc = convenc(dataIn,trellis);

 % QAM modulate
 txSig = qammod(dataEnc,M,'InputType','bit','UnitAveragePower',true);

 % Pass through AWGN channel
 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal using hard decision (bit) and
 % soft decision (approximate LLR) approaches.
 rxDataHard = qamdemod(rxSig,M,'OutputType','bit','UnitAveragePower',true);
 rxDataSoft = qamdemod(rxSig,M,'OutputType','approxllr', ...
 'UnitAveragePower',true,'NoiseVariance',noiseVar);

 % Viterbi decode the demodulated data
 dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
 dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');

 % Calculate the number of bit errors in the frame. Adjust for the
 % decoding delay, which is equal to the traceback depth.
 numErrsInFrameHard = biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
 numErrsInFrameSoft = biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));

 % Increment the error and bit counters
 numErrsHard = numErrsHard + numErrsInFrameHard;
 numErrsSoft = numErrsSoft + numErrsInFrameSoft;
 numBits = numBits + numSymPerFrame*k;

 end

 % Estimate the BER for both methods
 berEstSoft(n) = numErrsSoft/numBits;
 berEstHard(n) = numErrsHard/numBits;
end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an
uncoded 64-QAM channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on
semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid

 convenc

2-381

xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

As expected, the soft decision decoding produces the best results.

Examples
For some commonly used puncture patterns for specific rates and polynomials, see the
last three references.

2 Functions — Alphabetical List

2-382

References

[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications,
New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data Communications
Principles, New York, Plenum, 1992.

[3] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, vol. COM-32, No. 3, pp 315–
319, Mar. 1984.

[4] Haccoun, D., and G. Begin, “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[5] Begin, G., et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, vol. 38,
No. 11, pp 1922–1928, Nov. 1990.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
distspec | istrellis | poly2trellis | vitdec

Topics
“Convolutional Codes”

Introduced before R2006a

 convenc

2-383

convintrlv
Permute symbols using shift registers

Syntax
intrlved = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope,init_state)

Description
intrlved = convintrlv(data,nrows,slope) permutes the elements in data by
using a set of nrows internal shift registers. The delay value of the kth shift register is
(k-1)*slope, where k = 1, 2, 3,... nrows. Before the function begins to process data, it
initializes all shift registers with zeros. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

[intrlved,state] = convintrlv(data,nrows,slope) returns a structure that
holds the final state of the shift registers. state.value stores any unshifted symbols.
state.index is the index of the next register to be shifted.

[intrlved,state] = convintrlv(data,nrows,slope,init_state) initializes the
shift registers with the symbols contained in init_state.value and directs the first
input symbol to the shift register referenced by init_state.index. The structure
init_state is typically the state output from a previous call to this same function, and
is unrelated to the corresponding deinterleaver.

Examples
The example below shows that convintrlv is a special case of the more general function
muxintrlv. Both functions yield the same numerical results.

x = randi([0 1],100,1); % Original data
nrows = 5; % Use 5 shift registers
slope = 3; % Delays are 0, 3, 6, 9, and 12.

2 Functions — Alphabetical List

2-384

y = convintrlv(x,nrows,slope); % Interleaving using convintrlv.
delay = [0:3:12]; % Another way to express set of delays
y1 = muxintrlv(x,delay); % Interleave using muxintrlv.
isequal(y,y1)

The output below shows that y, obtained using convintrlv, and y1, obtained using
muxintrlv, are the same.

ans =

 1

Another example using this function is in “Effect of Delays on Recovery of Convolutionally
Interleaved Data Using MATLAB”.

The example on the muxdeintrlv reference page illustrates how to use the state
output and init_state input with that function; the process is analogous for this
function.

References
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic

Publishers, 1999.

See Also
convdeintrlv | helintrlv | muxintrlv

Topics
“Interleaving”

Introduced before R2006a

 convintrlv

2-385

convmtx
Convolution matrix of Galois field vector

Syntax
A = convmtx(c,n)

Description
A convolution matrix is a matrix, formed from a vector, whose inner product with another
vector is the convolution of the two vectors.

A = convmtx(c,n) returns a convolution matrix for the Galois vector c. The output A is
a Galois array that represents convolution with c in the sense that conv(c,x) equals

• A*x, if c is a column vector and x is any Galois column vector of length n. In this case,
A has n columns and m+n-1 rows.

• x*A, if c is a row vector and x is any Galois row vector of length n. In this case, A has
n rows and m+n-1 columns.

Examples
The code below illustrates the equivalence between using the conv function and
multiplying by the output of convmtx.

m = 4;
c = gf([1; 9; 3],m); % Column vector
n = 6;
x = gf(randi([0 2^m-1],n,1),m);
ck1 = isequal(conv(c,x), convmtx(c,n)*x) % True
ck2 = isequal(conv(c',x'),x'*convmtx(c',n)) % True

The output is

ck1 =

2 Functions — Alphabetical List

2-386

 1

ck2 =

 1

See Also
conv | gf

Topics
“Signal Processing Operations in Galois Fields”

Introduced before R2006a

 convmtx

2-387

cosets
Produce cyclotomic cosets for Galois field

Syntax
cst = cosets(m)

Description
cst = cosets(m) produces cyclotomic cosets mod 2^m-1. Each element of the cell
array cst is a Galois array that represents one cyclotomic coset.

A cyclotomic coset is a set of elements that share the same minimal polynomial. Together,
the cyclotomic cosets mod 2^m-1 form a partition of the group of nonzero elements of
GF(2^m). For more details on cyclotomic cosets, see the works listed in “References” on
page 2-389.

Examples
The commands below find and display the cyclotomic cosets for GF(8). As an example of
interpreting the results, c{2} indicates that A, A2, and A2 + A share the same minimal
polynomial, where A is a primitive element for GF(8).

c = cosets(3);
c{1}'
c{2}'
c{3}'

The output is below.

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 1

2 Functions — Alphabetical List

2-388

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 2 4 6

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 3 5 7

References
[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA,

Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

See Also
gf | minpol

Introduced before R2006a

 cosets

2-389

crc.detector
Construct CRC detector object

Syntax
h= crc.detector(polynomial)

h= crc.detector(generatorObj)

h= crc.detector(‘Polynomial’, polynomial, ‘param1’, val1, etc.)

h= crc.detector

Description
h= crc.detector(polynomial) constructs a CRC detector object H defined by the
generator polynomial POLYNOMIAL

h= crc.detector(generatorObj) constructs a CRC detector object H defined by the
parameters found in the CRC generator object GENERATOROBJ

h= crc.detector('property1', val1, ...) constructs a CRC detector object H
with properties as specified by PROPERTY/VALUE pairs.

h= crc.detector constructs a CRC detector object H with default properties. It
constructs a CRC-CCITT detector, and is equivalent to:

h=
crc.detector('Polynomial','0x1021','InitialState','0xFFFF','ReflectI
nput',false,'ReflectRemainder',false,'FinalXOR','0x0000')

Properties
The following table describes the properties of a CRC detector object. All properties are
writable, except Type.

2 Functions — Alphabetical List

2-390

Property Description
Type Specifies the object as a 'CRC Detector'.
Polynomial The generator polynomial that defines

connections for a linear feedback shift
register. This property can be specified as a
binary vector representing descending
powers of the polynomial. In this case, the
leading '1' of the polynomial must be
included. It can also be specified as a
string, prefaced by '0x', that is a
hexadecimal representation of the
descending powers of the polynomial. In
this case, the leading '1' of the polynomial
is omitted.

InitialState The initial contents of the shift register.
This property can be specified as a binary
scalar, a binary vector, or as a string,
prefaced by '0x', that is a hexadecimal
representation of the binary vector. As a
binary vector, its length must be one less
than the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies whether
the input data should be flipped on a
bytewise basis prior to entering the shift
register.

ReflectRemainder A Boolean quantity that specifies whether
the binary output CRC checksum should be
flipped around its center after the input
data is completely through the shift
register.

 crc.detector

2-391

Property Description
FinalXOR The value with which the CRC checksum is

to be XORed just prior to detecting the
input data. This property can be specified
as a binary scalar, a binary vector or as a
string, prefaced by '0x', that is a
hexadecimal representation of the binary
vector. As a binary vector, its length must
be one less than the length of the binary
vector representation of the Polynomial.

A detect method is used with the object to detect errors in digital transmission.

CRC Generation Algorithm
For information pertaining to the CRC generation algorithm, see “Cyclic Redundancy
Check Codes”.

Detector Method
[OUTDATA ERROR] = DETECT(H, INDATA) detects transmission errors in the encoded
input message INDATA by regenerating a CRC checksum using the CRC detector object
H. The detector then compares the regenerated checksum with the checksum appended
to INDATA. The binary-valued INDATA can be either a column vector or a matrix. If it is a
matrix, each column is considered to be a separate channel. OUTDATA is identical to the
input message INDATA, except that it has the CRC checksum stripped off. ERROR is a
1xC logical vector indicating if the encoded message INDATA has errors, where C is the
number of channels in INDATA. An ERROR value of 0 indicates no errors, and a value of 1
indicates errors.

Examples
The following three examples demonstrate the use of constructing an object. The fourth
example demonstrates use of the detect method.

% Construct a CRC detector with a polynomial
% defined by x^4+x^3+x^2+x+1:
h = crc.detector([1 1 1 1 1])

2 Functions — Alphabetical List

2-392

This example generates the following output:

h =

 Type: CRC Detector
 Polynomial: 0xF
 InitialState: 0x0
 ReflectInput: false
 ReflectRemainder: false
 FinalXOR: 0x0

% Construct a CRC detector with a polynomial
% defined by x^3+x+1, with
% zero initial states, and with an all-ones
% final XOR value:
h = crc.detector('Polynomial', [1 0 1 1], ...
'InitialState', [0 0 0], 'FinalXOR', [1 1 1])

This example generates the following output:

h =

 Type: CRC Detector
 Polynomial: [1 0 1 1]
 InitialState: [0 0 0]
 ReflectInput: false
 ReflectRemainder: false
 FinalXOR: [1 1 1]

% Construct a CRC detector with a polynomial
% defined by x^4+x^3+x^2+x+1,
% all-ones initial states, reflected input, and all-zeros
% final XOR value:
 h = crc.detector('Polynomial', '0xF', 'InitialState', ...
 '0xF', 'ReflectInput', true, 'FinalXOR', '0x0')

This example generates the following output:

h =

 Type: CRC Detector
 Polynomial: 0xF
 InitialState: 0xF
 ReflectInput: true
 ReflectRemainder: false
 FinalXOR: 0x0

 crc.detector

2-393

% Create a CRC-16 CRC generator, then use it to generate
% a checksum for the
% binary vector represented by the
% ASCII sequence '123456789'.
% Introduce an error, then detect it
% using a CRC-16 CRC detector.
gen = crc.generator('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
det = crc.detector('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
% The message below is an ASCII representation
% of the digits 1-9
msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);
encoded = generate(gen, msg);
encoded(1) = ~encoded(1); % Introduce an error
[outdata error] = detect(det, encoded); % Detect the error
noErrors = isequal(msg, outdata) % Should be 0
error % Should be 1

This example generates the following output:

noErrors =

 0

error =

 1

See Also
Functions
crc.generator

Objects
comm.CRCDetector | comm.CRCGenerator

Blocks
General CRC Generator | General CRC Syndrome Detector

2 Functions — Alphabetical List

2-394

Introduced in R2008a

 crc.detector

2-395

crc.generator
Construct CRC generator object

Syntax
h = crc.generator(polynomial)

h = crc.generator(detectorObj)

h = crc.generator(‘Polynomial’, polynomial, ‘param1’, val1, etc.)

h = crc.generator

Description
h = crc.generator(polynomial) constructs a CRC generator object H defined by
the generator polynomial POLYNOMIAL.

h = crc.generator(detectorObj) constructs a CRC generator object H defined by
the parameters found in the CRC detector object DETECTOROBJ.

h = crc.generator(‘property1', val1, ...) constructs a CRC generator object
H with properties as specified by the PROPERTY/VALUE pairs.

h = crc.generator constructs a CRC generator object H with default properties. It
constructs a CRC-CCITT generator, and is equivalent to: h = crc.generator('Polynomial',
'0x1021', 'InitialState', '0xFFFF', ...

'ReflectInput', false, 'ReflectRemainder', false, 'FinalXOR', '0x0000').

Properties
The following table describes the properties of a CRC generator object. All properties are
writable, except Polynomial.

2 Functions — Alphabetical List

2-396

Property Description
Polynomial The generator polynomial that defines

connections for a linear feedback shift
register. This property can be specified as a
binary vector representing descending
powers of the polynomial. In this case, the
leading '1' of the polynomial must be
included. It can also be specified as a
string, prefaced by '0x', that is a
hexadecimal representation of the
descending powers of the polynomial. In
this case, the leading '1' of the polynomial
is omitted.

InitialState The initial contents of the shift register.
This property can be specified as a binary
scalar, a binary vector, or as a string,
prefaced by '0x', that is a hexadecimal
representation of the binary vector. As a
binary vector, its length must be one less
than the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies whether
the input data should be flipped on a
bytewise basis prior to entering the shift
register.

ReflectRemainder A Boolean quantity that specifies whether
the binary output CRC checksum should be
flipped around its center after the input
data is completely through the shift
register.

 crc.generator

2-397

Property Description
FinalXOR The value with which the CRC checksum is

to be XORed just prior to being appended to
the input data. This property can be
specified as a binary scalar, a binary vector,
or as a string, prefaced by '0x', that is a
hexadecimal representation of the binary
vector. As a binary vector, its length must
be one less than the length of the binary
vector representation of the Polynomial.

CRC Generation Algorithm
For information pertaining to the CRC generation algorithm, refer to the “CRC Non-Direct
Algorithm” section of the Communications Toolbox User's Guide.

Generator Method
encoded = generate(h, msg) generates a CRC checksum for an input message using the
CRC generator object H. It appends the checksum to the end of MSG. The binary-valued
MSG can be either a column vector or a matrix. If it is a matrix, then each column is
considered to be a separate channel.

Usage Example
The following examples demonstrate the use of this object.

% Construct a CRC generator with a polynomial defined
% by x^4+x^3+x^2+x+1:
h = crc.generator([1 1 1 1 1])

% Construct a CRC generator with a polynomial defined
% by x^4+x^3+x^2+x+1, all-ones initial states, reflected
% input, and all-zeros final XOR value:
h = crc.generator('Polynomial', '0xF', 'InitialState', ...
'0xF', 'ReflectInput', true, 'FinalXOR', '0x0')

% Create a CRC-16 CRC generator, then use it to generate
% a checksum for the
% binary vector represented by the ASCII sequence '123456789'.

2 Functions — Alphabetical List

2-398

gen = crc.generator('Polynomial', '0x8005', ...
'ReflectInput', true, 'ReflectRemainder', true);
% The message below is an ASCII representation of ...
% the digits 1-9
msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);
encoded = generate(gen, msg);

% Construct a CRC generator with a polynomial defined
% by x^3+x+1, with zero initial states,
% and with an all-ones final XOR value:
h = crc.generator('Polynomial', [1 0 1 1], ...
 'InitialState', [0 0 0], ...
 'FinalXOR', [1 1 1])

See Also
Functions
crc.detector

Objects
comm.CRCDetector | comm.CRCGenerator

Blocks
General CRC Generator | General CRC Syndrome Detector

Introduced in R2008a

 crc.generator

2-399

cyclgen
Produce parity-check and generator matrices for cyclic code

Syntax
h = cyclgen(n,pol)
h = cyclgen(n,pol,opt)
[h,g] = cyclgen(...)
[h,g,k] = cyclgen(...)

Description
For all syntaxes, the codeword length is n and the message length is k. A polynomial can
generate a cyclic code with codeword length n and message length k if and only if the
polynomial is a degree-(n-k) divisor of x^n-1. (Over the binary field GF(2), x^n-1 is the
same as x^n+1.) This implies that k equals n minus the degree of the generator
polynomial.

h = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a systematic
binary cyclic code having codeword length n. The row vector pol gives the binary
coefficients, in order of ascending powers, of the degree-(n-k) generator polynomial.
Alternatively, you can specify pol as a polynomial character vector. For more information,
see “Character Representation of Polynomials”.

h = cyclgen(n,pol,opt) is the same as the syntax above, except that the argument
opt determines whether the matrix should be associated with a systematic or
nonsystematic code. The values for opt are 'system' and 'nonsys'.

[h,g] = cyclgen(...) is the same as h = cyclgen(...), except that it also
produces the k-by-n generator matrix g that corresponds to the parity-check matrix h.

[h,g,k] = cyclgen(...) is the same as [h,g] = cyclgen(...), except that it also
returns the message length k.

2 Functions — Alphabetical List

2-400

Examples

Parity Check and Generator Matrices for Binary Cyclic Codes

Create parity check and generator matrices for a binary cyclic code having codeword
length 7 and message length 4.

Create the generator polynomial using cyclpoly.

pol = cyclpoly(7,4);

Create the parity check and generator matrices. The parity check matrix parmat has a 3-
by-3 identity matrix embedded in its leftmost columns.

[parmat,genmat,k] = cyclgen(7,pol)

parmat = 3×7

 1 0 0 1 1 1 0
 0 1 0 0 1 1 1
 0 0 1 1 1 0 1

genmat = 4×7

 1 0 1 1 0 0 0
 1 1 1 0 1 0 0
 1 1 0 0 0 1 0
 0 1 1 0 0 0 1

k = 4

Create a parity check matrix in which the code is not systematic. The matrix parmatn
does not have an embedded 3-by-3 identity matrix.

parmatn = cyclgen(7,pol,'nonsys')

parmatn = 3×7

 1 1 1 0 1 0 0
 0 1 1 1 0 1 0
 0 0 1 1 1 0 1

 cyclgen

2-401

Create the parity check and generator matrices for a (7,3) binary cyclic code. As this is a
systematic code, there is a 4-by-4 identity matrix in the leftmost columns of parmat2.

parmat2 = cyclgen(7,'1 + x^2 + x^3 + x^4')

parmat2 = 4×7

 1 0 0 0 1 1 0
 0 1 0 0 0 1 1
 0 0 1 0 1 1 1
 0 0 0 1 1 0 1

See Also
bchgenpoly | cyclpoly | decode | encode

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-402

cyclpoly
Produce generator polynomials for cyclic code

Syntax
pol = cyclpoly(n,k)
pol = cyclpoly(n,k,opt)

Description
For all syntaxes, a polynomial is represented as a row containing the coefficients in order
of ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one nontrivial generator
polynomial for a cyclic code having codeword length n and message length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial generator polynomials
for cyclic codes having codeword length n and message length k. The output pol depends
on the argument opt as shown in the table below.

opt Significance of pol Format of pol
'min' One generator polynomial

having the smallest possible
weight

Row vector representing the
polynomial

'max' One generator polynomial
having the greatest possible
weight

Row vector representing the
polynomial

'all' All generator polynomials Matrix, each row of which
represents one such
polynomial

a positive integer, L All generator polynomials
having weight L

Matrix, each row of which
represents one such
polynomial

 cyclpoly

2-403

The weight of a binary polynomial is the number of nonzero terms it has. If no generator
polynomial satisfies the given conditions, the output pol is empty and a warning message
is displayed.

Examples
Cyclic Code Generator Polynomials

Create [15,4] cyclic code generator polynomials.

Use the input 'all' to show all possible generator polynomials for a [15,4] cyclic code.
Use the input 'max' to show that 1 + x + x2 + x3 + x5 + x7 + x8 + x11 is one such
polynomial that has the largest number of nonzero terms.

c1 = cyclpoly(15,4,'all')

c1 = 3×12

 1 1 0 0 0 1 1 0 0 0 1 1
 1 0 0 1 1 0 1 0 1 1 1 1
 1 1 1 1 0 1 0 1 1 0 0 1

c2 = cyclpoly(15,4,'max')

c2 = 1×12

 1 1 1 1 0 1 0 1 1 0 0 1

This command shows that no generator polynomial for a [15,4] cyclic code has exactly
three nonzero terms.

c3 = cyclpoly(15,4,3)

Warning: No cyclic generator polynomial satisfies the given constraints.

c3 =

 []

2 Functions — Alphabetical List

2-404

Algorithms
If opt is 'min', 'max', or omitted, polynomials are constructed by converting decimal
integers to base p. Based on the decimal ordering, gfprimfd returns the first polynomial
it finds that satisfies the appropriate conditions. This algorithm is similar to the one used
in gfprimfd.

See Also
cyclgen | encode

Topics
“Block Codes”

Introduced before R2006a

 cyclpoly

2-405

de2bi
Convert decimal numbers to binary vectors

Syntax
b = de2bi(d)
b = de2bi(d,n)
b = de2bi(d,n,p)
b = de2bi(d,[],p)
b = de2bi(d,...,flg)

Description
b = de2bi(d) converts a nonnegative decimal integer d to a binary row vector. If d is a
vector, the output b is a matrix in which each row is the binary form of the corresponding
element in d.

b = de2bi(d,n) has an output with n columns.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a base-p row vector.

b = de2bi(d,[],p) specifies the base, p .

b = de2bi(d,...,flg) uses flg to determine whether the first column of b contains
the lowest-order or highest-order digits.

Input Arguments
d — Decimal input
scalar | vector | matrix

Decimal input which can be a scalar, vector, or matrix. Specify elements as nonnegative
integers. If d is a matrix, it is treated like the column vector d(:).
Example: 4

2 Functions — Alphabetical List

2-406

Example: [10; 5]

Note To ensure an accurate conversion, d must be less than or equal to 252.

n — Number of output columns
positive integer scalar

The number of output columns specified as a positive scalar. If necessary, the binary
representation of d is padded with extra zeros.
Example: 3

p — Base
positive integer scalar

An integer that specifies the base of the output b. Specify as an integer greater than or
equal to 2. The first column of b is the lowest base-p digit. The output is padded with
extra zeros if necessary so that it has n columns. If d is a nonnegative decimal vector, the
output b is a matrix in which each row is the base-p form of the corresponding element in
d. If d is a matrix, de2bi treats it like the vector d(:).
Example: 8

flg — MSB flag
'right-msb' | 'left-msb'

Character vector that determines whether the first column of b contains the lowest-order
or highest-order digits. If omitted, de2bi assumes 'right-msb'.

Output Arguments
b — Binary output
vector | matrix

Binary representation of d in the form of a row vector or matrix.

Examples

 de2bi

2-407

Convert Decimals to Binary Numbers

Convert decimals 1 through 10 into their equivalent binary representations.

d = (1:10)';
b = de2bi(d);
[d b]

ans = 10×5

 1 1 0 0 0
 2 0 1 0 0
 3 1 1 0 0
 4 0 0 1 0
 5 1 0 1 0
 6 0 1 1 0
 7 1 1 1 0
 8 0 0 0 1
 9 1 0 0 1
 10 0 1 0 1

Convert 3 and 9 into binary numbers. Each value is represented by a four-element row.

b = de2bi([3 9])

b = 2×4

 1 1 0 0
 1 0 0 1

Repeat the conversion with the number of columns set to 5. The output is now padded
with zeros in the fifth column.

bb = de2bi([3 9],5)

bb = 2×5

 1 1 0 0 0
 1 0 0 1 0

Convert the decimals 1 through 6 to their base 3 equivalents. Set the leftmost bit as the
most significant digit.

2 Functions — Alphabetical List

2-408

d = (1:6)';
t = de2bi(d,[],3,'left-msb');
[d t]

ans = 6×3

 1 0 1
 2 0 2
 3 1 0
 4 1 1
 5 1 2
 6 2 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bi2de

Introduced before R2006a

 de2bi

2-409

decode
Block decoder

Syntax
msg = decode(code,n,k,'hamming/fmt',prim_poly)
msg = decode(code,n,k,'linear/fmt',genmat,trt)
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt)
msg = decode(code,n,k)
[msg,err] = decode(...)
[msg,err,ccode] = decode(...)
[msg,err,ccode,cerr] = decode(...)

Optional Inputs
Input Default Value
fmt binary
prim_poly gfprimdf(m) where n = 2^m-1
genpoly cyclpoly(n,k)
trt Uses syndtable to create the syndrome

decoding table associated with the
method's parity-check matrix

Description

For All Syntaxes
The decode function aims to recover messages that were encoded using an error-
correction coding technique. The technique and the defining parameters must match
those that were used to encode the original signal.

2 Functions — Alphabetical List

2-410

The “For All Syntaxes” on page 2-507 section on the encode reference page explains the
meanings of n and k, the possible values of fmt, and the possible formats for code and
msg. You should be familiar with the conventions described there before reading the rest
of this section. Using the decode function with an input argument code that was not
created by the encode function might cause errors.

For Specific Syntaxes
msg = decode(code,n,k,'hamming/fmt',prim_poly) decodes code using the
Hamming method. For this syntax, n must have the form 2m-1 for some integer m greater
than or equal to 3, and k must equal n-m. prim_poly is a polynomial character vector or
a row vector that gives the binary coefficients, in order of ascending powers, of the
primitive polynomial for GF(2m) that is used in the encoding process. The default value of
prim_poly is gfprimdf(m). The decoding table that the function uses to correct a single
error in each codeword is syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code, which is a
linear block code determined by the k-by-n generator matrix genmat. genmat is required
as input. decode tries to correct errors using the decoding table trt, where trt is a
2^(n-k)-by-n matrix.

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the cyclic code
code and tries to correct errors using the decoding table trt, where trt is a 2^(n-k)-
by-n matrix. genpoly is a polynomial character vector or a row vector that gives the
coefficients, in order of ascending powers, of the binary generator polynomial of the code.
The default value of genpoly is cyclpoly(n,k). By definition, the generator polynomial
for an [n, k] cyclic code must have degree n-k and must divide xn-1.

msg = decode(code,n,k) is the same as msg = decode(code,n,k,'hamming/
binary').

[msg,err] = decode(...) returns a column vector err that gives information about
error correction. If the code is a convolutional code, err contains the metric calculations
used in the decoding decision process. For other types of codes, a nonnegative integer in
the rth row of err indicates the number of errors corrected in the rth message word; a
negative integer indicates that there are more errors in the rth word than can be
corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

 decode

2-411

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr whose
meaning depends on the format of code:

• If code is a binary vector, a nonnegative integer in the rth row of vec2matcerr
indicates the number of errors corrected in the rth codeword; a negative integer
indicates that there are more errors in the rth codeword than can be corrected.

• If code is not a binary vector, cerr = err.

Examples

Encoding and Decoding with Linear Block Codes

Encode and decode corrupted data using three types of linear block codes.

Hamming Code

Set the code parameters.

n = 15; % Code length
k = 11; % Message length

Create a binary message having length k.

data = randi([0 1],k,1);

Encode the message.

encData = encode(data,n,k,'hamming/binary');

Introduce an error in the 4th bit of the encoded sequence.

encData(4) = ~encData(4);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the
message.

decData = decode(encData,n,k,'hamming/binary');

numerr = biterr(data,decData)

numerr = 0

2 Functions — Alphabetical List

2-412

Linear Block Code

Set the code parameters.

n = 7; % Code length
k = 3; % Message length

Create a binary message having length k.

data = randi([0 1],k,1);

Create a cyclic generator polynomial. Then, create a parity-check matrix and convert it
into a generator matrix.

pol = cyclpoly(n,k);
parmat = cyclgen(n,pol);
genmat = gen2par(parmat);

Encode the message sequence by using the generator matrix.

encData = encode(data,n,k,'linear/binary',genmat);

Introduce an error in the 3rd bit of the encoded sequence.

encData(3) = ~encData(3);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the
message.

decData = decode(encData,n,k,'linear/binary',genmat);

Single-error patterns loaded in decoding table. 8 rows remaining.
2-error patterns loaded. 1 rows remaining.
3-error patterns loaded. 0 rows remaining.

numerr = biterr(data,decData)

numerr = 0

Cyclic Code

Set the code parameters.

n = 15; % Code length
k = 5; % Message length

 decode

2-413

Create a binary message having length k.

data = randi([0 1],k,1);

Create a generator polynomial for a cyclic code. Create a parity-check matrix by using the
generator polynomial.

gpol = cyclpoly(n,k);
parmat = cyclgen(n,gpol);

Create a syndrome decoding tabled by using the parity-check matrix.

trt = syndtable(parmat);

Single-error patterns loaded in decoding table. 1008 rows remaining.
2-error patterns loaded. 918 rows remaining.
3-error patterns loaded. 648 rows remaining.
4-error patterns loaded. 243 rows remaining.
5-error patterns loaded. 0 rows remaining.

Encode the data by using the generator polynomial.

encData = encode(data,n,k,'cyclic/binary',gpol);

Introduce errors in the 4th and 7th bits of the encoded sequence.

encData(4) = ~encData(4);
encData(7) = ~encData(7);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the
message.

decData = decode(encData,n,k,'cyclic/binary',gpol,trt);

numerr = biterr(data,decData)

numerr = 0

Algorithms
Depending on the decoding method, decode relies on such lower-level functions as
hammgen, syndtable, and cyclgen.

2 Functions — Alphabetical List

2-414

See Also
cyclpoly | encode | gen2par | syndtable

Topics
“Block Codes”

Introduced before R2006a

 decode

2-415

deintrlv
Restore ordering of symbols

Syntax
deintrlvd = deintrlv(data,elements)

Description
deintrlvd = deintrlv(data,elements) restores the original ordering of the
elements of data by acting as an inverse of intrlv. If data is a length-N vector or an N-
row matrix, elements is a length-N vector that permutes the integers from 1 to N. To use
this function as an inverse of the intrlv function, use the same elements input in both
functions. In that case, the two functions are inverses in the sense that applying intrlv
followed by deintrlv leaves data unchanged.

Examples
The code below illustrates the inverse relationship between intrlv and deintrlv.

p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p); % Rearrange [10 20 30 ... 100].
b = deintrlv(a,p) % Deinterleave a to restore ordering.

The output is

b =

 10 20 30 40 50 60 70 80 90 100

2 Functions — Alphabetical List

2-416

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
intrlv

Topics
“Interleaving”

Introduced before R2006a

 deintrlv

2-417

dfe
(To be removed) Construct decision-feedback equalizer object

Note will be removed in a future release. Use comm.DecisionFeedback instead.

Syntax
eqobj = dfe(nfwdweights,nfbkweights,alg)
eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst)
eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp)

Description
The dfe function creates an equalizer object that you can use with the equalize
function to equalize a signal. To learn more about the process for equalizing a signal, see
“Equalization”.

eqobj = dfe(nfwdweights,nfbkweights,alg) constructs a decision feedback
equalizer object. The equalizer's feedforward and feedback filters have nfwdweights and
nfbkweights symbol-spaced complex weights, respectively, which are initially all zeros.
alg describes the adaptive algorithm that the equalizer uses; you should create alg
using any of these functions: lms, signlms, normlms, varlms, rls, or cma. The signal
constellation of the desired output is [-1 1], which corresponds to binary phase shift
keying (BPSK).

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst) specifies the signal
constellation vector of the desired output.

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp) constructs a DFE
with a fractionally spaced forward filter. The forward filter has nfwdweights complex
weights spaced at T/nsamp, where T is the symbol period and nsamp is a positive integer.
nsamp = 1 corresponds to a symbol-spaced forward filter.

2 Functions — Alphabetical List

2-418

Properties
The table below describes the properties of the decision feedback equalizer object. To
learn how to view or change the values of a decision feedback equalizer object, see
“Equalization”.

Note To initialize or reset the equalizer object eqobj, enter reset(eqobj).

Property Description
EqType Fixed value, 'Decision Feedback

Equalizer'
AlgType Name of the adaptive algorithm

represented by alg
nWeights Number of weights in the forward filter and

the feedback filter, in the format
[nfwdweights, nfbkweights]. The
number of weights in the forward filter
must be at least 1.

nSampPerSym Number of input samples per symbol
(equivalent to nsamp input argument). This
value relates to both the equalizer structure
(see the use of K in “Equalization”) and an
assumption about the signal to be
equalized.

RefTap (except for CMA equalizers) Reference tap index, between 1 and
nfwdweights. Setting this to a value
greater than 1 effectively delays the
reference signal with respect to the
equalizer's input signal.

SigConst Signal constellation, a vector whose length
is typically a power of 2.

Weights Vector that concatenates the complex
coefficients from the forward filter and the
feedback filter. This is the set of wi values in
the schematic in “Equalization”.

 dfe

2-419

Property Description
WeightInputs Vector that concatenates the tap weight

inputs for the forward filter and the
feedback filter. This is the set of ui values in
the schematic in “Equalization”.

ResetBeforeFiltering If 1, each call to equalize resets the state
of eqobj before equalizing. If 0, the
equalization process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer processed
since the last reset. When you create or
reset eqobj, this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the adaptive
algorithm function that created alg: lms,
signlms, normlms, varlms, rls, or cma.

Relationships Among Properties
If you change nWeights, MATLAB maintains consistency in the equalizer object by
adjusting the values of the properties listed below.

Property Adjusted Value
Weights zeros(1,sum(nWeights))
WeightInputs zeros(1,sum(nWeights))
StepSize (Variable-step-size LMS
equalizers)

InitStep*ones(1,sum(nWeights))

InvCorrMatrix (RLS equalizers) InvCorrInit*eye(sum(nWeights))

Examples

Decision Feedback Equalization with LMS Adaptation

Equalize a signal using a decision feedback equalizer with least mean square (LMS)
adaptation.

2 Functions — Alphabetical List

2-420

Set Up Transmitter

Create a QPSK modulated transmission signal containing random message data. Pass the
signal through an arbitrary channel filter to add signal distortion.

M = 4; % Alphabet size for modulation
msg = randi([0 M-1],2500,1); % Random message
hMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = hMod(msg); % Modulate using QPSK
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion

Set Up Equalizer

Create a DFE object that has 5 forward taps, 3 feedback taps. Specify the least mean
square algorithm inline when creating the equalizer object. Initialize additional equalizer
properties.

dfeObj = dfe(5,3,lms(0.01));
% Set the signal constellation
dfeObj.SigConst = hMod((0:M-1)')';
% Maintain continuity between calls to equalize
dfeObj.ResetBeforeFiltering = 0;
% Define initial coefficients to help convergence
dfeObj.Weights = [0 1 0 0 0 0 0 0];

Equalize Received Signal

eqRxSig = equalize(dfeObj,filtmsg);

Plot Results

Compare the first 200 equalized symbols (initial) to the remaining equalized signal
(final).

initial = eqRxSig(1:200);
plot(real(initial),imag(initial),'+')
hold on
final = eqRxSig(end-200:end);
plot(real(final),imag(final),'ro')
legend('initial', 'final')

 dfe

2-421

Equalization of the received signal converges within approximately 200 samples.

Apply a Decision Feedback Equalizer (DFE) to An 8-PSK Modulated Signal

Apply a decision feedback equalizer (DFE) to an 8-PSK modulated signal impaired by a
frequency selective channel. The DFE uses 600 training symbols.

Create a PSK modulator System object™ and set the modulation order to 8.

modulator = comm.PSKModulator('ModulationOrder',8);

Create a column vector of 8-ary random integer symbols. Seed the random number
generator, rng, to produce a predictable sequence of numbers.

2 Functions — Alphabetical List

2-422

rng(12345);
data = randi([0 7],5000,1);

Use the modulator System object to modulate the random data.

modData = modulator(data);

Create a Rayleigh channel System object to define a static frequency selective channel
with four taps. Pass the modulated data through the channel object.

chan = comm.RayleighChannel('SampleRate',1000, ...
 'PathDelays',[0 0.002 0.004 0.008],'AveragePathGains',[0 -3 -6 -9]);
rxSig = chan(modData);

Create a DFE equalizer that has 10 feed forward taps and five feedback taps. The
equalizer uses the LMS update method with a step size of 0.01.

numFFTaps = 10;
numFBTaps = 5;
equalizerDFE = dfe(numFFTaps,numFBTaps,lms(0.01));

Set the SigConst property of the DFE equalizer to match the 8-PSK modulator reference
constellation. The reference constellation is determined by using the constellation
method. For decision directed operation, the DFE must use the same signal constellation
as the transmission scheme.

equalizerDFE.SigConst = constellation(modulator).';

Equalize the signal to remove the effects of channel distortion. Use the first 600 symbols
to train the equalizer.

trainlen = 600;
[eqSig,detectedSig] = equalize(equalizerDFE,rxSig, ...
 modData(1:trainlen));

Plot the received signal, equalizer output after training, and the ideal signal constellation.

hScatter = scatterplot(rxSig,1,trainlen,'bx');
hold on
scatterplot(eqSig,1,trainlen,'g.',hScatter);
scatterplot(equalizerDFE.SigConst,1,0,'m*',hScatter);
legend('Received signal','Equalized signal',...
 'Ideal signal constellation');
hold off

 dfe

2-423

Create a PSK demodulator System object. Use the object to demodulate the received
signal before and after equalization.

demod = comm.PSKDemodulator('ModulationOrder',8);
demodSig = demod(rxSig);
demodEqualizedSig = demod(detectedSig);

Compute the error rates for the two demodulated signals and compare the results.

errorCalc = comm.ErrorRate;
nonEqualizedSER = errorCalc(data(trainlen+1:end), ...
 demodSig(trainlen+1:end));
reset(errorCalc)
equalizedSER = errorCalc(data(trainlen+1:end), ...
 demodEqualizedSig(trainlen+1:end));
disp('Symbol error rates with and without equalizer:')
disp([equalizedSER(1) nonEqualizedSER(1)])

The equalizer helps eliminate the distortion introduced by the frequency selective channel
and reduces the error rate.

Compatibility Considerations

dfe will be removed
Not recommended starting in R2019a

dfe will be removed in a future release. Use comm.DecisionFeedback instead.

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

2 Functions — Alphabetical List

2-424

dftmtx
Discrete Fourier transform matrix in Galois field

Syntax
dm = dftmtx(alph)

Description
dm = dftmtx(alph) returns a Galois array that represents the discrete Fourier
transform operation on a Galois vector, with respect to the Galois scalar alph. The
element alph is a primitive nth root of unity in the Galois field GF(2m) = GF(n+1); that is,
n must be the smallest positive value of k for which alph^k equals 1. The discrete
Fourier transform has size n and dm is an n-by-n array. The array dm represents the
transform in the sense that dm times any length-n Galois column vector yields the
transform of that vector.

Note The inverse discrete Fourier transform matrix is dftmtx(1/alph).

Examples
The example below illustrates the discrete Fourier transform and its inverse, with respect
to the element gf(3,4). The example examines the first n powers of that element to
make sure that only the nth power equals one. Afterward, the example transforms a
random Galois vector, undoes the transform, and checks the result.

m = 4;
n = 2^m-1;
a = 3;
alph = gf(a,m);
mp = minpol(alph);
if (mp(1)==1 && isprimitive(mp)) % Check that alph has order n.
 disp('alph is a primitive nth root of unity.')
 dm = dftmtx(alph);

 dftmtx

2-425

 idm = dftmtx(1/alph);
 x = gf(randi([0 2^m-1],n,1),m);
 y = dm*x; % Transform x.
 z = idm*y; % Recover x.
 ck = isequal(x,z)
end

The output is

alph is a primitive nth root of unity.

ck =

 1

Limitations
The Galois field over which this function works must have 256 or fewer elements. In other
words, alph must be a primitive nth root of unity in the Galois field GF(2m), where m is
an integer between 1 and 8.

Algorithms
The element dm(a,b) equals alph^((a-1)*(b-1)).

See Also
fft | gf | ifft

Topics
“Signal Processing Operations in Galois Fields”

Introduced before R2006a

2 Functions — Alphabetical List

2-426

distspec
Compute distance spectrum of convolutional code

Syntax
spect = distspec(trellis,n)
spect = distspec(trellis)

Description
spect = distspec(trellis,n) computes the free distance and the first n
components of the weight and distance spectra of a linear convolutional code. Because
convolutional codes do not have block boundaries, the weight spectrum and distance
spectrum are semi-infinite and are most often approximated by the first few components.
The input trellis is a valid MATLAB trellis structure, as described in “Trellis
Description of a Convolutional Code”. The output, spect, is a structure with these fields:

Field Meaning
spect.dfree Free distance of the code. This is the

minimum number of errors in the encoded
sequence required to create an error event.

spect.weight A length-n vector that lists the total number
of information bit errors in the error events
enumerated in spect.event.

spect.event A length-n vector that lists the number of
error events for each distance between
spect.dfree and spect.dfree+n-1. The
vector represents the first n components of
the distance spectrum.

spect = distspec(trellis) is the same as spect = distspec(trellis,1).

 distspec

2-427

Examples
The example below performs these tasks:

• Computes the distance spectrum for the rate 2/3 convolutional code that is depicted
on the reference page for the poly2trellis function

• Uses the output of distspec as an input to the bercoding function, to find a
theoretical upper bound on the bit error rate for a system that uses this code with
coherent BPSK modulation

• Plots the upper bound using the berfit function

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])
spect = distspec(trellis,4)
berub = bercoding(1:10,'conv','hard',2/3,spect); % BER bound
berfit(1:10,berub); ylabel('Upper Bound on BER'); % Plot.

The output and plot are below.

trellis =

 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 128
 nextStates: [128x4 double]
 outputs: [128x4 double]

spect =

 dfree: 5
 weight: [1 6 28 142]
 event: [1 2 8 25]

2 Functions — Alphabetical List

2-428

Algorithms
The function uses a tree search algorithm implemented with a stack, as described in [2].

References
[1] Bocharova, I. E., and B. D. Kudryashov, “Rational Rate Punctured Convolutional Codes

for Soft-Decision Viterbi Decoding,” IEEE Transactions on Information Theory,
Vol. 43, No. 4, July 1997, pp. 1305–1313.

[2] Cedervall, M., and R. Johannesson, “A Fast Algorithm for Computing Distance
Spectrum of Convolutional Codes,” IEEE Transactions on Information Theory, Vol.
35, No. 6, Nov. 1989, pp. 1146–1159.

[3] Chang, J., D. Hwang, and M. Lin, “Some Extended Results on the Search for Good
Convolutional Codes,” IEEE Transactions on Information Theory, Vol. 43, No. 5,
Sep. 1997, pp. 1682–1697.

 distspec

2-429

[4] Frenger, P., P. Orten, and T. Ottosson, “Comments and Additions to Recent Papers on
New Convolutional Codes,” IEEE Transactions on Information Theory, Vol. 47, No.
3, March 2001, pp. 1199–1201.

See Also
bercoding | iscatastrophic | istrellis | poly2trellis

Introduced before R2006a

2 Functions — Alphabetical List

2-430

doppler
Construct Doppler spectrum structure

Syntax
s = doppler(specType)
s = doppler(specType, fieldValue)
s = doppler('BiGaussian', Name,Value)

Description
s = doppler(specType) constructs a Doppler spectrum structure of type specType
for use with a fading channel System object. The returned structure, s, has default values
for its dependent fields.

s = doppler(specType, fieldValue) constructs a Doppler spectrum structure of
type specType for use with a fading channel System object. The returned structure, s,
has its dependent field specified to fieldValue.

s = doppler('BiGaussian', Name,Value) constructs a BiGaussian Doppler
spectrum structure for use with a fading channel System object. The returned structure,
s, has dependent fields specified by Name,Value pair arguments.

Examples

Construct a Flat Doppler Spectrum Structure

Construct a flat Doppler structure variable for use with channel objects such as
comm.RayleighChannel.

Invoke the doppler function to create a flat Doppler structure variable.

s = doppler('Flat')

 doppler

2-431

s = struct with fields:
 SpectrumType: 'Flat'

Create a Bell Doppler Structure Variable

Use the doppler function to create a Doppler structure variable having the Bell
spectrum.

s = doppler('Bell')

s = struct with fields:
 SpectrumType: 'Bell'
 Coefficient: 9

Construct a Rounded Doppler Spectrum Structure with Specified Polynomial

Specify the coefficients of the Doppler spectrum structure variable.

Construct a Rounded Doppler spectrum structure with coefficients a0, a2, and a4 set to
2, 6, and 1, respectively.

s = doppler('Rounded', [2, 6, 1])

s = struct with fields:
 SpectrumType: 'Rounded'
 Polynomial: [2 6 1]

Construct a BiGaussian Doppler Spectrum Structure with Specified Field Values

Use the doppler function to create a Doppler spectrum structure with the parameters
specified for a BiGaussian spectrum.

s = doppler('BiGaussian','NormalizedCenterFrequencies', ...
 [.1 .85],'PowerGains',[1 2])

2 Functions — Alphabetical List

2-432

s = struct with fields:
 SpectrumType: 'BiGaussian'
 NormalizedStandardDeviations: [0.7071 0.7071]
 NormalizedCenterFrequencies: [0.1000 0.8500]
 PowerGains: [1 2]

The NormalizedStandardDeviations field is set to the default value. The
NormalizedCenterFrequencies, and PowerGains fields are set to the values
specified from the input arguments.

Input Arguments
specType — Spectrum type of Doppler spectrum structure for use with fading
channel System object
'Jakes' | 'Flat' | 'Rounded' | 'Bell' | 'Asymmetric Jakes' | 'Restricted
Jakes' | 'Gaussian' | 'BiGaussian'

The spectrum type of a Doppler spectrum structure for use with a fading channel System
object. Specify this value as a character vector.

The analytical expression for each Doppler spectrum type is described in the “Algorithms”
on page 2-436 section.
Data Types: char

fieldValue — Value of dependent field of Doppler spectrum structure
scalar | vector

The value of the dependent field of the Doppler spectrum structure, specified as a scalar
or vector of built-in data type. If you do not specify fieldValue , the dependent fields of
the spectrum type use the default values.

Spectrum Type Dependent Field Description Default Value
Jakes — — —
Flat — — —

 doppler

2-433

Spectrum Type Dependent Field Description Default Value

Rounded Polynomial

1-by-3 vector of real
finite values,
representing the
polynomial
coefficients, a0, a2
and a4

[1 -1.72 0.785]

Bell Coefficient

Nonnegative, finite,
real scalar
representing the Bell
spectrum coefficient

9

Asymmetric Jakes NormalizedFreque
ncyInterval

1-by-2 vector of real
values between –1
and 1, inclusive,
representing the
minimum and
maximum normalized
Doppler shifts

[0 1]

Restricted Jakes NormalizedFreque
ncyInterval

1-by-2 vector of real
values between 0
and 1, inclusive,
representing the
minimum and
maximum normalized
Doppler shifts

[0 1]

Gaussian NormalizedStanda
rdDeviation

Normalized standard
deviation of the
Gaussian Doppler
spectrum, specified
as a positive, finite,
real scalar

0.7071

BiGaussian
NormalizedStanda
rdDeviations

Normalized standard
deviations of the
BiGaussian Doppler
spectrum, specified
as a positive, finite,
real 1-by-2 vector

[0.7071 0.7071]

2 Functions — Alphabetical List

2-434

Spectrum Type Dependent Field Description Default Value

NormalizedCenter
Freqencies

Normalized center
frequencies of the
BiGaussian Doppler
spectrum specified
as a real 1-by-2
vector whose
elements fall
between –1 and 1

[0 0]

PowerGains

Linear power gains
of the BiGaussian
Doppler spectrum
specified as a real
nonnegative 1-by-2
vector

[0.5 0.5]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: s=doppler('BiGaussian', 'NormalizedStandardDeviations',
[.8 .75], 'NormalizedCenterFrequencies', [-.8 0], 'PowerGains',
[.6 .6])

NormalizedStandardDeviations — Normalized standard deviations of first and
second Gaussian functions
[1/sqrt(2) 1/sqrt(2)] (default) | 1-by-2 vector

The normalized standard deviation of the first and second Gaussian functions. You can
specify this value as a 1-by-2 vector of positive, finite, real values, of built-in data types.

When you do not specify this dependent field, the default value is [1/sqrt(2) 1/
sqrt(2)].

 doppler

2-435

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NormalizedCenterFrequencies — Normalized center frequencies of first and
second Gaussian functions
[0 0] (default) | 1-by-2 vector

The normalized center frequencies of the first and second Gaussian functions. You can
specify this value as a 1-by-2 vector of real values between –1 and 1, of built-in data types.

When you do not specify this dependent field, the default value is [0 0].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

PowerGains — Power gains of first and second Gaussian functions
[0.5 0.5] (default) | 1-by-2 vector

The power gains of the first and second Gaussian functions. You can specify this value as
a 1-by-2 nonnegative, finite, real vector of built-in data types.

When you do not specify this dependent field, the default value is [0.5 0.5].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Algorithms
The following algorithms represent the analytical expressions for each Doppler spectrum
type. In each case, fd denotes the maximum Doppler shift (MaximumDopplerShift
property) of the associated fading channel System object.

Jakes
The theoretical Jakes Doppler spectrum, S(f) has the analytic formula

S(f) = 1
πfd 1− (f / fd)2

, f ≤ fd

2 Functions — Alphabetical List

2-436

Flat
The theoretical Flat Doppler spectrum, S(f) has the analytic formula

S(f) = 1
2fd

, f ≤ fd

Rounded
The theoretical Rounded Doppler spectrum, S(f) has the analytic formula

S(f) = Cr a0 + a2
f
fd

2
+ a4

f
fd

4
, f ≤ fd

where

Cr = 1
2fd a0 +

a2
3 +

a4
5

and you can specify [a0, a2, a4] in the dependent field, polynomial.

Bell
The theoretical Bell Doppler spectrum, S(f) has the analytic formula

S(f) =
Cb

1 + A f
fd

2

f ≤ fd

where

Cb = A
πfd

You can specify A in the dependent field, coefficient.

 doppler

2-437

Asymmetric Jakes
The theoretical Asymmetric Jakes Doppler spectrum, S(f) has the analytic formula

S(f) =
Aa

πfd 1− (f / fd)2
, − fd ≤ fmin ≤ f ≤ fmax ≤ fd

Aa = 1
1
π sin−1 fmax

fd
− sin−1 fmin

fd

where you can specify fmin/ fd andfmax /fd in the dependent field,
NormalizedFrequencyInterval.

Restricted Jakes
The theoretical Restricted Jakes Doppler spectrum, S(f) has the analytic formula

S(f) =
Ar

πfd 1− (f / fd)2
, 0 ≤ fmin ≤ f ≤ fmax ≤ fd

where

Ar = 1
2
π sin−1 fmax

fd
− sin−1 fmin

fd

where you can specify fmin/ fd andfmax /fd in the dependent field,
NormalizedFrequencyInterval.

Gaussian
The theoretical Gaussian Doppler spectrum, S(f) has the analytic formula

SG(f) = 1
2πσG

2 exp − f 2

2σG
2

You can specify σG/ fd in the dependent field, NormalizedStandardDeviation.

2 Functions — Alphabetical List

2-438

BiGaussian
The theoretical BiGaussian Doppler spectrum, S(f) has the analytic formula

SG(f) = AG
CG1

2πσG1
2 exp −

(f − fG1)2

2σG1
2 +

CG2

2πσG2
2 exp −

(f − fG2)2

2σG2
2

where AG = 1
CG1 + CG2

 is a normalization coefficient.

You can specify σG1/fd and σG2/fd in the NormalizedStandardDeviations dependent
field.

You can specify fG1/fd and fG2/fd in the NormalizedCenterFrequencies dependent
field.

CG1 and CG2 are power gains that you can specify in the PowerGains dependent field.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
MIMO Channel | comm.MIMOChannel | comm.RayleighChannel |
comm.RicianChannel

Introduced in R2007a

 doppler

2-439

doppler.ajakes
(To be removed) Construct asymmetrical Doppler spectrum object

Syntax
dop = doppler.ajakes(freqminmaxajakes)
dop = doppler.ajakes

Note doppler.ajakes will be removed in a future release. Use
doppler('Asymmetric Jakes', ...) instead.

Description
The doppler.ajakes function creates an asymmetrical Jakes (AJakes) Doppler spectrum
object. This object is to be used for the DopplerSpectrum property of a channel object
created with the rayleighchan or the ricianchan functions.

dop = doppler.ajakes(freqminmaxajakes), where freqminmaxajakes is a row
vector of two finite real numbers between -1 and 1, creates a Jakes Doppler spectrum that
is nonzero only for normalized (by the maximum Doppler shift fd, in Hz) frequencies fnorm
such that −1 ≤ fmin, norm ≤ fnorm ≤ fmax, norm ≤ 1, where fmin, norm is given by
freqminmaxajakes(1) and fmax, norm is given by freqminmaxajakes(2). The
maximum Doppler shift fd is specified by the MaxDopplerShift property of the channel
object. Analytically: fmin, norm = fmin/ fd and fmax, norm = fmax/ fd, where fmin is the
minimum Doppler shift (in hertz) and fmax is the maximum Doppler shift (in hertz).

When dop is used as the DopplerSpectrum property of a channel object, space
freqminmaxajakes(1) and freqminmaxajakes(2) by more than 1/50. Assigning a
smaller spacing results in freqminmaxarjakes being reset to the default value of [0
1].

dop = doppler.ajakes creates an asymmetrical Doppler spectrum object with a
default freqminmaxajakes = [0 1]. This syntax is equivalent to constructing a Jakes
Doppler spectrum that is nonzero only for positive frequencies.

2 Functions — Alphabetical List

2-440

Properties
The AJakes Doppler spectrum object contains the following properties.

Property Description
SpectrumType Fixed value, 'AJakes'
FreqMinMaxAJakes Vector of minimum and maximum

normalized Doppler shifts, two real finite
numbers between -1 and 1

Theory and Applications
The Jakes power spectrum is based on the assumption that the angles of arrival at the
mobile receiver are uniformly distributed [1]: the spectrum then covers the frequency
range from − fd to fd, fd being the maximum Doppler shift. When the angles of arrival are
not uniformly distributed, then the Jakes power spectrum does not cover the full Doppler
bandwidth from − fd to fd. The AJakes Doppler spectrum object covers the case of a
power spectrum that is nonzero only for frequencies f such that
− fd ≤ fmin ≤ f ≤ fmax ≤ fd. It is an asymmetrical spectrum in the general case, but
becomes a symmetrical spectrum if fmin = − fmax.

The normalized AJakes Doppler power spectrum is given analytically by:

S(f) =
Aa

πfd 1− (f / fd)2
, − fd ≤ fmin ≤ f ≤ fmax ≤ fd

Aa = 1
1
π sin−1 fmax

fd
− sin−1 fmin

fd

where fmin and fmax denote the minimum and maximum frequencies where the spectrum
is nonzero. You can determine these values from the probability density function of the
angles of arrival.

 doppler.ajakes

2-441

Examples
The following MATLAB code first creates a Rayleigh channel object with a maximum
Doppler shift of fd = 10 Hz. It then creates an AJakes Doppler object with minimum
normalized Doppler shift fmin, norm = − 0.2 and maximum normalized Doppler shift
fmax, norm = 0.05. The Doppler object is then assigned to the DopplerSpectrum property
of the channel object. The channel then has a Doppler spectrum that is nonzero for
frequencies f such that − fd ≤ fmin ≤ f ≤ fmax ≤ fd, where fmin = fmin, norm × fd = − 2 Hz
and fmax = fmax, norm × fd = 0.5 Hz.

chan = rayleighchan(1/1000, 10);
dop_ajakes = doppler.ajakes([-0.2 0.05]);
chan.DopplerSpectrum = dop_ajakes;
chan.DopplerSpectrum

This code returns:

 SpectrumType: 'AJakes'
 FreqMinMaxAJakes: [-0.2000 0.0500]

References
[1] Jakes, W. C., Ed., Microwave Mobile Communications, Wiley, 1974.

[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd Ed.,
McGraw-Hill, 1998.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2007b

2 Functions — Alphabetical List

2-442

doppler.bell
(To be removed) Construct bell-shaped Doppler spectrum object

Syntax
doppler.bell
doppler.bell(coeffbell)

Note doppler.ajakes will be removed in a future release. Use
doppler('Bell', ...) instead.

Description
doppler.bell creates a bell Doppler spectrum object. You can use this object with the
DopplerSpectrum property of any channel object created with either the
rayleighchan function, the ricianchan function, or comm.MIMOChannel System
object™.

dop = doppler.bell creates a bell Doppler spectrum object with default coefficient.

dop = doppler.bell(coeffbell) creates a bell Doppler spectrum object with
coefficient given by coeffbell, where coeffbell is a positive, finite, real scalar.

Properties
The bell Doppler spectrum object has the following properties.

Property Description
SpectrumType Fixed value, 'Bell'
CoeffBell Bell spectrum coefficient, positive real

finite scalar.

 doppler.bell

2-443

Theory and Applications
A bell spectrum was proposed in [1] for the Doppler spectrum of indoor MIMO channels,
for 802.11n channel modeling.

The normalized bell Doppler spectrum is given analytically by:

S(f) =
Cb

1 + A f
fd

2

where

f ≤ fd

and

Cb = A
πfd

fd represents the maximum Doppler shift specified for the channel object, and A
represents a positive real finite scalar (CoeffBell). The indoor MIMO channel model of
IEEE 802.11n [1] uses the following parameter: A = 9. Since the channel is modeled as
Rician fading with a fixed line-of-sight (LOS) component, a Dirac delta is also present in
the Doppler spectrum at f = 0.

Examples
Construct a bell Doppler spectrum object with a coefficient of 8.5. Assign it to a Rayleigh
channel object with one path.

 dop = doppler.bell(8.5);
 chan = rayleighchan(1e-5, 10);
 chan.DopplerSpectrum = dop;

References
[1] IEEE P802.11 Wireless LANs, “TGn Channel Models”, IEEE 802.1103/940r4,
2004-05-10.

2 Functions — Alphabetical List

2-444

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2009a

 doppler.bell

2-445

doppler.bigaussian
(To be removed) Construct bi-Gaussian Doppler spectrum object

Note doppler.bigaussian will be removed in a future release. Use
doppler('BiGaussian', ...) instead.

Syntax
dop = doppler.bigaussian(property1,value1,...)
dop = doppler.bigaussian

Description
The doppler.bigaussian function creates a bi-Gaussian Doppler spectrum object to be
used for the DopplerSpectrum property of a channel object (created with either the
rayleighchan function or the ricianchan function).

dop = doppler.bigaussian(property1,value1,...) creates a bi-Gaussian
Doppler spectrum object with properties as specified by the property/value pairs. If you
do not specify a value for a property, the property is assigned a default value.

dop = doppler.bigaussian creates a bi-Gaussian Doppler spectrum object with
default properties. The constructed Doppler spectrum object is equivalent to a single
Gaussian Doppler spectrum centered at zero frequency. The equivalent command with
property/value pairs is:

dop = doppler.bigaussian('SigmaGaussian1', 1/sqrt(2), ...
 'SigmaGaussian2', 1/sqrt(2), ...
 'CenterFreqGaussian1', 0, ...
 'CenterFreqGaussian2', 0, ...
 'GainGaussian1', 0.5, ...
 'GainGaussian2', 0.5)

2 Functions — Alphabetical List

2-446

Properties
The bi-Gaussian Doppler spectrum object contains the following properties.

Property Description
SpectrumType Fixed value, 'BiGaussian'
SigmaGaussian1 Normalized standard deviation of first

Gaussian function (real positive finite scalar
value)

SigmaGaussian2 Normalized standard deviation of second
Gaussian function (real positive finite scalar
value)

CenterFreqGaussian1 Normalized center frequency of first
Gaussian function (real scalar value
between -1 and 1)

CenterFreqGaussian2 Normalized center frequency of second
Gaussian function (real scalar value
between -1 and 1)

GainGaussian1 Power gain of first Gaussian function (linear
scale, real nonnegative finite scalar value)

GainGaussian2 Power gain of second Gaussian function
(linear scale, real nonnegative finite scalar
value)

All properties are writable except for the SpectrumType property.

The properties SigmaGaussian1, SigmaGaussian2, GainGaussian1, and
GainGaussian2 are normalized by the MaxDopplerShift property of the associated
channel object.

Analytically, the normalized standard deviations of the first and second Gaussian
functions are determined as σG1, norm = σG1/ fd and σG2, norm = σG2/ fd, respectively, where
σG1 and σG2 are the standard deviations of the first and second Gaussian functions, and fd
is the maximum Doppler shift, in hertz. Similarly, the normalized center frequencies of the
first and second Gaussian functions are determined as fG1, norm = fG1/ fd and
fG2, norm = fG2/ fd, respectively, where fG1 and fG2 are the center frequencies of the first

 doppler.bigaussian

2-447

and second Gaussian functions. The properties GainGaussian1 and GainGaussian2
correspond to the power gains CG1 and CG2, respectively, of the two Gaussian functions.

Theory and Applications
The bi-Gaussian power spectrum consists of two frequency-shifted Gaussian spectra. The
COST207 channel models ([1], [2], [3]) specify two distinct bi-Gaussian Doppler spectra,
GAUS1 and GAUS2, to be used in modeling long echos for urban and hilly terrain profiles.

The normalized bi-Gaussian Doppler spectrum is given analytically by:

SG(f) = AG
CG1

2πσG1
2 exp −

(f − fG1)2

2σG1
2 +

CG2

2πσG2
2 exp −

(f − fG2)2

2σG2
2

where σG1 and σG2 are standard deviations, fG1 and fG2 are center frequencies, CG1 and

CG2 are power gains, and AG = 1
CG1 + CG2

 is a normalization coefficient.

If either fG1 = 0 or fG2 = 0, a frequency-shifted Gaussian Doppler spectrum is obtained.

Examples
The following MATLAB code first creates a bi-Gaussian Doppler spectrum object with the
same parameters as that of a COST 207 GAUS2 Doppler spectrum. It then creates a
Rayleigh channel object with a maximum Doppler shift of fd = 30 and assigns the
constructed Doppler spectrum object to its DopplerSpectrum property.

dop_bigaussian = doppler.bigaussian(‘SigmaGaussian1’, 0.1, ...
 ‘SigmaGaussian2’, 0.15, ‘CenterFreqGaussian1’, 0.7, ...
 ‘CenterFreqGaussian2’, -0.4, ‘GainGaussian1’, 1, ...
 ‘GainGaussian2’, 1/10^1.5)
chan = rayleighchan(1e-3, 30);
chan.DopplerSpectrum = dop_bigaussian;

2 Functions — Alphabetical List

2-448

References
[1] COST 207 WG1, Proposal on channel transfer functions to be used in GSM tests late

1986, COST 207 TD (86) 51 Rev. 3, Sept. 1986.

[2] COST 207, Digital land mobile radio communications, Office for Official Publications of
the European Communities, Final report, Luxembourg, 1989.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2007b

 doppler.bigaussian

2-449

doppler.flat
(To be removed) Construct flat Doppler spectrum object

Note doppler.flat will be removed in a future release. Use doppler('Flat')
instead.

Syntax
dop = doppler.flat

Description
dop = doppler.flat creates a flat Doppler spectrum object that is to be used for the
DopplerSpectrum property of a channel object (created with either the rayleighchan
or the ricianchan function). The maximum Doppler shift of the flat Doppler spectrum
object is specified by the MaxDopplerShift property of the channel object.

Properties
The flat Doppler spectrum object contains only one property, SpectrumType, which is
read-only and has a fixed value of 'Flat'.

Theory and Applications
In a 3-D isotropic scattering environment, where the angles of arrival are uniformly
distributed in the azimuth and elevation planes, the Doppler spectrum is found
theoretically to be flat [2]. A flat Doppler spectrum is also specified in some cases of the
ANSI J-STD-008 reference channel models for PCS, for both outdoor (pedestrian) and
indoor (commercial) [1] applications.

The normalized flat Doppler power spectrum is given analytically by:

2 Functions — Alphabetical List

2-450

S(f) = 1
2fd

, f ≤ fd

where fd is the maximum Doppler frequency.

Examples
%% Create a Rayleigh Channel with Flat Doppler Spectrum
% This example shows how to create a Rayleigh channel object with a flat Doppler spectrum.
%%
% Set the sample time and maximum Doppler shift.
ts = 1e-6; % sec
fd = 50; % Hz
% Create the Rayleigh channel object.
chan = rayleighchan(ts,fd);
% Observe that the default Doppler spectrum property, SpectrumType, is 'Jakes'.
chan.DopplerSpectrum

ans =

 SpectrumType: 'Jakes'

% Change the Doppler spectrum property of the channel by using doppler.flat.
chan.DopplerSpectrum = doppler.flat
chan =

 ChannelType: 'Rayleigh'
 InputSamplePeriod: 1.0000e-06
 DopplerSpectrum: [1x1 doppler.flat]
 MaxDopplerShift: 50
 PathDelays: 0
 AvgPathGaindB: 0
 NormalizePathGains: 1
 StoreHistory: 0
 StorePathGains: 0
 PathGains: -0.6760 + 0.6319i
 ChannelFilterDelay: 0
 ResetBeforeFiltering: 1
 NumSamplesProcessed: 0

 doppler.flat

2-451

References
[1] ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8 to

2.0 GHz Code Division Multiple Access (CDMA) Personal Communications
Systems, March 1995.

[2] Clarke, R. H., and Khoo, W. L., “3-D Mobile Radio Channel Statistics”, IEEE Trans.
Veh. Technol., Vol. 46, No. 3, pp. 798–799, August 1997.

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2007a

2 Functions — Alphabetical List

2-452

doppler.gaussian
(To be removed) Construct Gaussian Doppler spectrum object

Syntax
dop = doppler.gaussian
dop = doppler.gaussian(sigmagaussian)

Note doppler.gaussian will be removed in a future release. Use doppler
('Gaussian',...) instead.

Description
The doppler.gaussian function creates a Gaussian Doppler spectrum object that is to
be used for the DopplerSpectrum property of a channel object (created with either the
rayleighchan or the ricianchan function).

dop = doppler.gaussian creates a Gaussian Doppler spectrum object with a default
standard deviation (normalized by the maximum Doppler shift fd, in Hz) σG, norm = 1/ 2.
The maximum Doppler shift fd is specified by the MaxDopplerShift property of the
channel object. Analytically, σG, norm = σG/ fd = 1/ 2, where σG is the standard deviation
of the Gaussian Doppler spectrum.

dop = doppler.gaussian(sigmagaussian) creates a Gaussian Doppler spectrum
object with a normalized fd (by the maximum Doppler shift fd, in Hz) σG, norm of value
sigmagaussian.

Properties
The Gaussian Doppler spectrum object contains the following properties.

 doppler.gaussian

2-453

Property Description
SpectrumType Fixed value, 'Gaussian'
SigmaGaussian Normalized standard deviation of the

Gaussian Doppler spectrum (a real positive
number)

Theory and Applications
The Gaussian power spectrum is considered to be a good model for multipath components
with long delays in UHF communications [3]. It is also proposed as a model for the
aeronautical channel [2]. A Gaussian Doppler spectrum is also specified in some cases of
the ANSI J-STD-008 reference channel models for PCS applications, for both outdoor
(wireless loop) and indoor (residential, office) [1]. The normalized Gaussian Doppler
power spectrum is given analytically by:

SG(f) = 1
2πσG

2 exp − f 2

2σG
2

An alternate representation is [4]:

SG(f) = 1
fc

ln2
π exp −(ln2) f

fc

2

where fc = σG 2ln2 is the 3 dB cutoff frequency. If you set fc = fd ln2, where fd is the
maximum Doppler shift, or equivalently σG = fd/ 2, the Doppler spread of the Gaussian
power spectrum becomes equal to the Doppler spread of the Jakes power spectrum,
where Doppler spread is defined as:

σD =
∫
−∞

∞
f 2S(f)df

∫
−∞

∞
S(f)df

2 Functions — Alphabetical List

2-454

Examples
The following code creates a Rayleigh channel object with a maximum Doppler shift of
fd = 10. It then creates a Gaussian Doppler spectrum object with a normalized standard
deviation of σG,norm = 0.5, and assigns it to the DopplerSpectrum property of the
channel object.

chan = rayleighchan(1/1000,10);
dop_gaussian = doppler.gaussian(0.5);
chan.DopplerSpectrum = dop_gaussian;

References

[1] ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8 to
2.0 GHz Code Division Multiple Access (CDMA) Personal Communications
Systems, March 1995.

[2] Bello, P. A., “Aeronautical channel characterizations,” IEEE Trans. Commun., Vol. 21,
pp. 548–563, May 1973.

[3] Cox, D. C., “Delay Doppler characteristics of multipath propagation at 910 MHz in a
suburban mobile radio environment,” IEEE Transactions on Antennas and
Propagation, Vol. AP-20, No. 5, pp. 625–635, Sept. 1972.

[4] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2007a

 doppler.gaussian

2-455

doppler.jakes
(To be removed) Construct Jakes Doppler spectrum object

Syntax

Note doppler.jakes will be removed in a future release. Use doppler('Jakes')
instead.

Description
dop = doppler.jakes creates a Jakes Doppler spectrum object that is to be used for
the DopplerSpectrum property of a channel object (created with either the
rayleighchan or the ricianchan function). The maximum Doppler shift of the Jakes
Doppler spectrum object is specified by the MaxDopplerShift property of the channel
object. By default, channel objects are created with a Jakes Doppler spectrum.

Properties
The Jakes Doppler spectrum object contains only one property, SpectrumType, which is
read-only and has a fixed value of 'Jakes'.

Theory and Applications
The Jakes Doppler power spectrum model is actually due to Gans [2], who analyzed the
Clarke-Gilbert model ([1], [3], and [5]). The Clarke-Gilbert model is also called the
classical model.

The Jakes Doppler power spectrum applies to a mobile receiver. It derives from the
following assumptions [6]:

• The radio waves propagate horizontally.

2 Functions — Alphabetical List

2-456

• At the mobile receiver, the angles of arrival of the radio waves are uniformly
distributed over [− π, π].

• At the mobile receiver, the antenna is omnidirectional (i.e., the antenna pattern is
circular-symmetrical).

The normalized Jakes Doppler power spectrum is given analytically by:

S(f) = 1
πfd 1− (f / fd)2

, f ≤ fd

where fd is the maximum Doppler frequency.

Examples
Create a Rayleigh channel object with a maximum Doppler shift of fd=10 Hertz. Then,
create a Jakes Doppler spectrum object and assigns it to the DopplerSpectrum property
of the channel object.

chan = rayleighchan(1/1000,10);
dop_gaussian = doppler.jakes;
chan.DopplerSpectrum = dop_gaussian

References
[1] Clarke, R. H., “A Statistical Theory of Mobile-Radio Reception,” Bell System Technical

Journal, Vol. 47, No. 6, pp. 957–1000, July-August 1968.

[2] Gans, M. J., “A Power-Spectral Theory of Propagation in the Mobile-Radio
Environment,” IEEE Trans. Veh. Technol., Vol. VT-21, No. 1, pp. 27–38, Feb. 1972.

[3] Gilbert, E. N., “Energy Reception for Mobile Radio,” Bell System Technical Journal,
Vol. 44, No. 8, pp. 1779–1803, Oct. 1965.

[4] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.

[5] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd Ed.,
McGraw-Hill, 1998.

[6] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

 doppler.jakes

2-457

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2007a

2 Functions — Alphabetical List

2-458

doppler.rjakes
(To be removed) Construct restricted Jakes Doppler spectrum object

Syntax
dop = doppler.rjakes
dop = doppler.rjakes(freqminmaxrjakes)

Note doppler.rjakes will be removed in a future release. Use
doppler('Restricted Jakes', ...) instead.

Description
The doppler.rjakes function creates a restricted Jakes (RJakes) Doppler spectrum
object that is used for the DopplerSpectrum property of a channel object (created with
either the rayleighchan or the ricianchan function).

dop = doppler.rjakes creates a Doppler spectrum object equivalent to the Jakes
Doppler spectrum. The maximum Doppler shift of the RJakes Doppler spectrum object is
specified by the MaxDopplerShift property of the channel object.

dop = doppler.rjakes(freqminmaxrjakes), where freqminmaxrjakes is a row
vector of two finite real numbers between 0 and 1, creates a Jakes Doppler spectrum. This
spectrum is nonzero only for normalized frequencies (by the maximum Doppler shift, fd,
in Hertz), fnorm, such that 0 ≤ fmin, norm ≤ fnorm ≤ fmax, norm ≤ 1, where fmin, norm is
given by freqminmaxrjakes(1) and fmax, norm is given by freqminmaxrjakes(2). The
maximum Doppler shift fd is specified by the MaxDopplerShift property of the channel
object. Analytically, fmin, norm = fmin/ fd and fmax, norm = fmax/ fd, where fmin is the
minimum Doppler shift (in Hertz) and fmax is the maximum Doppler shift (in Hertz).

When dop is used as the DopplerSpectrum property of a channel object,
freqminmaxrjakes(1) and freqminmaxrjakes(2) should be spaced by more than
1/50. Assigning a smaller spacing results in freqminmaxrjakes being reset to the
default value of [0 1].

 doppler.rjakes

2-459

Properties
The RJakes Doppler spectrum object contains the following properties.

Property Description
SpectrumType Fixed value, 'RJakes'
FreqMinMaxRJakes Vector of minimum and maximum

normalized Doppler shifts (two real finite
numbers between 0 and 1)

Theory and Applications
The Jakes power spectrum is based on the assumption that the angles of arrival at the
mobile receiver are uniformly distributed [1], where the spectrum covers the frequency
range from − fd to fd, fd being the maximum Doppler shift. When the angles of arrival are
not uniformly distributed, the Jakes power spectrum does not cover the full Doppler
bandwidth from − fd to fd. This exception also applies to the case where the antenna
pattern is directional. This type of spectrum is known as restricted Jakes [3]. The RJakes
Doppler spectrum object covers only the case of a symmetrical power spectrum, which is
nonzero only for frequencies f such that 0 ≤ fmin ≤ f ≤ fmax ≤ fd.

The normalized RJakes Doppler power spectrum is given analytically by:

S(f) =
Ar

πfd 1− (f / fd)2
, 0 ≤ fmin ≤ f ≤ fmax ≤ fd

where

Ar = 1
2
π sin−1 fmax

fd
− sin−1 fmin

fd

fmin and fmax denote the minimum and maximum frequencies where the spectrum is
nonzero. They can be determined from the probability density function of the angles of
arrival.

2 Functions — Alphabetical List

2-460

Examples
The following code first creates a Rayleigh channel object with a maximum Doppler shift
of fd = 10. It then creates an RJakes Doppler object with minimum normalized Doppler
shift fmin, norm = 0.14 and maximum normalized Doppler shift fmax, norm = 0.9.

The Doppler object is assigned to the DopplerSpectrum property of the channel object.
The channel then has a Doppler spectrum that is nonzero for frequencies f such that
0 ≤ fmin ≤ f ≤ fmax ≤ fd, where fmin = fmin, norm × fd = 1.4 Hz and
fmax = fmax, norm × fd = 9 Hz.

chan = rayleighchan(1/1000, 10);
dop_rjakes = doppler.rjakes([0.14 0.9]);
chan.DopplerSpectrum = dop_rjakes;
chan.DopplerSpectrum

The output is:

 SpectrumType: 'RJakes'
 FreqMinMaxRJakes: [0.1400 0.9000]

References

[1] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.

[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd Ed.,
McGraw-Hill, 1998.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

 doppler.rjakes

2-461

Introduced in R2007a

2 Functions — Alphabetical List

2-462

doppler.rounded
(To be removed) Construct rounded Doppler spectrum object

Syntax
dop = doppler.rounded
dop = doppler.rounded(coeffrounded)

Note doppler.rounded will be removed in a future release. Use
doppler('Rounded', ...) instead.

Description
The doppler.rounded function creates a rounded Doppler spectrum object that is used
for the DopplerSpectrum property of a channel object (created with either the
rayleighchan or the ricianchan function).

dop = doppler.rounded creates a rounded Doppler spectrum object with default
polynomial coefficients a0 = 1, a2 = − 1.72, a4 = 0.785 (see “Theory and Applications” on
page 2-464 for the meaning of these coefficients). The maximum Doppler shift fd (in
Hertz) is specified by the MaxDopplerShift property of the channel object.

dop = doppler.rounded(coeffrounded), where coeffrounded is a row vector of
three finite real numbers, creates a rounded Doppler spectrum object with polynomial
coefficients, a0, a2, a4, given by coeffrounded(1), coeffrounded(2), and
coeffrounded(3), respectively.

Properties
The rounded Doppler spectrum object contains the following properties.

 doppler.rounded

2-463

Property Description
SpectrumType Fixed value, 'Rounded'
CoeffRounded Vector of three polynomial coefficients (real

finite numbers)

Theory and Applications
A rounded spectrum is proposed as an approximation to the measured Doppler spectrum
of the scatter component of fixed wireless channels at 2.5 GHz [1]. However, the shape of
the spectrum is influenced by the center carrier frequency.

The normalized rounded Doppler spectrum is given analytically by a polynomial in f of
order four, where only the even powers of f are retained:

S(f) = Cr a0 + a2
f
fd

2
+ a4

f
fd

4
, f ≤ fd

where

Cr = 1
2fd a0 +

a2
3 +

a4
5

fd is the maximum Doppler shift, and a0, a2, a4 are real finite coefficients. The fixed
wireless channel model of IEEE 802.16 [1] uses the following parameters: a0 = 1,
a2 = − 1.72, and a4 = 0.785. Because the channel is modeled as Rician fading with a fixed
line-of-sight (LOS) component, a Dirac delta is also present in the Doppler spectrum at
f = 0.

Examples
The following code creates a Rician channel object with a maximum Doppler shift of
fd = 10. It then creates a rounded Doppler spectrum object with polynomial coefficients
a0 = 1.0, a2 = − 0.5, a4 = 1.5, and assigns it to the DopplerSpectrum property of the
channel object.

2 Functions — Alphabetical List

2-464

chan = ricianchan(1/1000,10,1);
dop_rounded = doppler.rounded([1.0 -0.5 1.5]);
chan.DopplerSpectrum = dop_rounded;

References
[1] IEEE 802.16 Broadband Wireless Access Working Group, “Channel models for fixed

wireless applications,” IEEE 802.16a-03/01, 2003-06-27.

See Also
comm.RayleighChannel | comm.RicianChannel | doppler | stdchan

Topics
“Fading Channels”

Introduced in R2007a

 doppler.rounded

2-465

dpcmdeco
Decode using differential pulse code modulation

Syntax
sig = dpcmdeco(indx,codebook,predictor)
[sig,quanterror] = dpcmdeco(indx,codebook,predictor)

Description
sig = dpcmdeco(indx,codebook,predictor) implements differential pulse code
demodulation to decode the vector indx. The vector codebook represents the predictive-
error quantization codebook. The vector predictor specifies the predictive transfer
function. If the transfer function has predictive order M, predictor has length M+1 and
an initial entry of 0. To decode correctly, use the same codebook and predictor in
dpcmenco and dpcmdeco.

See “Represent Partitions”, “Represent Codebooks”, or the quantiz reference page, for
a description of the formats of partition and codebook.

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the same as the
syntax above, except that the vector quanterror is the quantization of the predictive
error based on the quantization parameters. quanterror is the same size as sig.

Note You can estimate the input parameters codebook, partition, and predictor
using the function dpcmopt.

Examples
See “Example: DPCM Encoding and Decoding” and “Example: Comparing Optimized and
Nonoptimized DPCM Parameters” for examples that use dpcmdeco.

2 Functions — Alphabetical List

2-466

References
[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons, 1994.

See Also
dpcmenco | dpcmopt | quantiz

Topics
“Differential Pulse Code Modulation”

Introduced before R2006a

 dpcmdeco

2-467

dpcmenco
Encode using differential pulse code modulation

Syntax
indx = dpcmenco(sig,codebook,partition,predictor)
[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description
indx = dpcmenco(sig,codebook,partition,predictor) implements differential
pulse code modulation to encode the vector sig. partition is a vector whose entries
give the endpoints of the partition intervals. codebook, a vector whose length exceeds
the length of partition by one, prescribes a value for each partition in the quantization.
predictor specifies the predictive transfer function. If the transfer function has
predictive order M, predictor has length M+1 and an initial entry of 0. The output
vector indx is the quantization index.

See “Differential Pulse Code Modulation” for more about the format of predictor. See
“Represent Partitions”, “Represent Partitions”, or the reference page for quantiz in this
chapter, for a description of the formats of partition and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the same
as the syntax above, except that quants contains the quantization of sig based on the
quantization parameters. quants is a vector of the same size as sig.

Note If predictor is an order-one transfer function, the modulation is called a delta
modulation.

Examples
See “Example: DPCM Encoding and Decoding” and “Example: Comparing Optimized and
Nonoptimized DPCM Parameters” for examples that use dpcmenco.

2 Functions — Alphabetical List

2-468

References
[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons, 1994.

See Also
dpcmdeco | dpcmopt | quantiz

Topics
“Differential Pulse Code Modulation”

Introduced before R2006a

 dpcmenco

2-469

dpcmopt
Optimize differential pulse code modulation parameters

Syntax
predictor = dpcmopt(training_set,ord)
[predictor,codebook,partition] = dpcmopt(training_set,ord,len)
[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb)

Description
predictor = dpcmopt(training_set,ord) returns a vector representing a
predictive transfer function of order ord that is appropriate for the training data in the
vector training_set. predictor is a row vector of length ord+1. See “Represent
Predictors” for more about its format.

Note dpcmopt optimizes for the data in training_set. For best results,
training_set should be similar to the data that you plan to quantize.

[predictor,codebook,partition] = dpcmopt(training_set,ord,len) is the
same as the syntax above, except that it also returns corresponding optimized codebook
and partition vectors codebook and partition. len is an integer that prescribes the
length of codebook. partition is a vector of length len-1. See “Represent Partitions”,
“Represent Codebooks”, or the reference page for quantiz in this chapter, for a
description of the formats of partition and codebook.

[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb) is
the same as the first syntax, except that it also returns corresponding optimized codebook
and partition vectors codebook and partition. ini_cb, a vector of length at least 2, is
the initial guess of the codebook values. The output codebook is a vector of the same
length as ini_cb. The output partition is a vector whose length is one less than the
length of codebook.

2 Functions — Alphabetical List

2-470

Examples
See “Example: Comparing Optimized and Nonoptimized DPCM Parameters” for an
example that uses dpcmopt.

See Also
dpcmdeco | dpcmenco | lloyds | quantiz

Topics
“Differential Pulse Code Modulation”

Introduced before R2006a

 dpcmopt

2-471

dpskdemod
Differential phase shift keying demodulation

Syntax
z = dpskdemod(y,M)
z = dpskdemod(y,M,phaserot)
z = dpskdemod(y,M,phaserot,symorder)

Description
z = dpskdemod(y,M) demodulates the complex envelope, y, of a DPSK-modulated
signal having modulation order M.

z = dpskdemod(y,M,phaserot) specifies the phase rotation of the DPSK modulation.

z = dpskdemod(y,M,phaserot,symorder) also specifies the symbol order.

Examples

DPSK Demodulation

Demodulate DPSK data in a communication channel in which a phase shift is introduced.

Generate a 4-ary data vector and modulate it using DPSK.

M = 4; % Alphabet size
dataIn = randi([0 M-1],1000,1); % Random message
txSig = dpskmod(dataIn,M); % Modulate

Apply the random phase shift resulting from the transmission process.

rxSig = txSig*exp(2i*pi*rand());

Demodulate the received signal.

2 Functions — Alphabetical List

2-472

dataOut = dpskdemod(rxSig,M);

The modulator and demodulator have the same initial condition. However, only the
received signal experiences a phase shift. As a result, the first demodulated symbol is
likely to be in error. Therefore, you should always discard the first symbol when using
DPSK.

Find the number of symbol errors.

errs = symerr(dataIn,dataOut)

errs = 1

One symbol is in error. Repeat the error calculation after discarding the first symbol.

errs = symerr(dataIn(2:end),dataIn(2:end))

errs = 0

Input Arguments
y — DPSK-modulated input signal
vector | matrix

DPSK-modulated input signal, specified as a real or complex vector or matrix. If y is a
matrix, the function processes the columns independently.
Data Types: double | single
Complex Number Support: Yes

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double | single

phaserot — Phase rotation
0 (default) | scalar | []

 dpskdemod

2-473

Phase rotation of the DPSK modulation, specified in radians as a real scalar. The total
phase shift per symbol is the sum of phaserot and the phase generated by the
differential modulation.

If you specify phaserot as empty, then dspkdemod uses a phase rotation of 0 degrees.
Example: pi/4
Data Types: double | single

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function
assigns binary vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

Output Arguments
z — DPSK-demodulated output signal
vector | matrix

DPSK-demodulated output signal, returned as a vector or matrix having the same number
of columns as input signal y.

Note The differential algorithm used in this function compares two successive elements
of a modulated signal. To determine the first element of vector z, or the first row of
matrix z, the function uses an initial phase rotation of 0.

Data Types: double | single

2 Functions — Alphabetical List

2-474

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
comm.DPSKDemodulator | dpskmod | pskdemod | pskmod

Topics
“Phase Modulation”

Introduced before R2006a

 dpskdemod

2-475

dpskmod
Differential phase shift keying modulation

Syntax
y = dpskmod(x,M)
y = dpskmod(x,M,phaserot)
y = dpskmod(x,M,phaserot,symorder)

Description
y = dpskmod(x,M) modulates the input signal using differential phase shift keying
(DPSK) with modulation order M.

y = dpskmod(x,M,phaserot) specifies the phase rotation of the DPSK modulation.

y = dpskmod(x,M,phaserot,symorder) also specifies the symbol order.

Examples

View Signal Trajectory of DPSK-Modulated Signal

Plot the output of the dspkmod function to view the possible transitions between DPSK
symbols.

Set the modulation order to 4 to model DQPSK modulation.

M = 4;

Generate a sequence of 4-ary random symbols.

x = randi([0 M-1],500,1);

Apply DQPSK modulation to the input symbols.

2 Functions — Alphabetical List

2-476

y = dpskmod(x,M,pi/8);

Specify a constellation diagram object to display a signal trajectory diagram and without
displaying the corresponding reference constellation. Display the trajectory.

cd = comm.ConstellationDiagram('ShowTrajectory',true,'ShowReferenceConstellation',false);
cd(y)

 dpskmod

2-477

Input Arguments
x — Input signal
vector | matrix

2 Functions — Alphabetical List

2-478

Input signal, specified as a vector or matrix of positive integers. The elements of x must
have values in the range of [0, M – 1].
Data Types: double | single

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double | single

phaserot — Phase rotation
0 (default) | scalar | []

Phase rotation of the DPSK modulation, specified in radians as a real scalar. The total
phase shift per symbol is the sum of phaserot and the phase generated by the
differential modulation.

If you specify phaserot as empty, then dpskmod uses a phase rotation of 0 degrees.
Example: pi/4
Data Types: double | single

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function
assigns binary vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

Output Arguments
y — DPSK-modulated output signal
vector | matrix

 dpskmod

2-479

Complex baseband representation of a DPSK-modulated output signal, returned as vector
or matrix. The columns represent independent channels.

Note An initial phase rotation of 0 is used in determining the first element of the output
y (or the first row of y if it is a matrix with multiple rows), because two successive
elements are required for a differential algorithm.

Data Types: double | single

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
comm.DPSKModulator | dpskdemod | pskdemod | pskmod

Topics
“Phase Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-480

dvbs2ldpc
Low-density parity-check codes from DVB-S.2 standard

Syntax
H = dvbs2ldpc(r)

Description
H = dvbs2ldpc(r) returns the parity-check matrix of the LDPC code with code rate r
from the DVB-S.2 standard. H is a sparse logical matrix.

Possible values for r are 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10. The block
length of the code is 64800.

The default parity-check matrix (32400-by-64800) corresponds to an irregular LDPC code
with the structure shown in the following table.

Row Number of 1s Per Row
1 6
2 to 32400 7

Column Number of 1s Per Column
1 to 12960 8
12961 to 32400 3

Columns 32401 to 64800 form a lower triangular matrix. Only the elements on its main
diagonal and the subdiagonal immediately below are 1s. This LDPC code is used in
conjunction with a BCH code in the Digital Video Broadcasting standard DVB-S.2 to
achieve a packet error rate below 10−7 at about 0.7 dB to 1 dB from the Shannon limit.

Examples

 dvbs2ldpc

2-481

Create LDPC Code Parity Check Matrix from DVB-S.2

Create an LDPC parity check matrix for a code rate of 3/5 from the DVB-S.2 standard.

p = dvbs2ldpc(3/5);

Create an LDPC encoder object from the parity check matrix p.

enc = comm.LDPCEncoder(p);

The parity check matrix has dimensions of (N-K)-by-N. Determine the length of the input
message.

msgLength = size(p,2) - size(p,1)

msgLength = 38880

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
comm.LDPCDecoder | comm.LDPCEncoder

Introduced in R2007a

2 Functions — Alphabetical List

2-482

dvbsapskdemod
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) demodulation

Syntax
z = dvbsapskdemod(y,M,stdSuffix)
z = dvbsapskdemod(y,M,stdSuffix,codeIDF)
z = dvbsapskdemod(y,M,stdSuffix,codeIDF,frameLength)
z = dvbsapskdemod(___ ,Name,Value)

Description
z = dvbsapskdemod(y,M,stdSuffix) demodulates an APSK input signal, y, that was
modulated in accordance with the digital video broadcast (DVB) standard identified by
stdSuffix and the modulation order, M. For a description of DVB-compliant APSK
demodulation, see “DVB Compliant APSK Hard Demodulation” on page 2-491 and “DVB
Compliant APSK Soft Demodulation” on page 2-492.

z = dvbsapskdemod(y,M,stdSuffix,codeIDF) specifies code identifier codeIDF, to
use when selecting the demodulation parameters.

z = dvbsapskdemod(y,M,stdSuffix,codeIDF,frameLength) specifies codeIDF
and frameLength to use when selecting the demodulation parameters.

z = dvbsapskdemod(___ ,Name,Value) specifies options using one or more name-
value pair arguments using any of the previous syntaxes. For example,
'OutputDataType','double' specifies the desired output data type. Specify name-
value pair arguments after all other input arguments.

Examples

 dvbsapskdemod

2-483

Demodulate DVB-S2X Specific 64-APSK Signal

Demodulate a 64-APSK signal that was modulated as specified in DVB-S2X. Compute hard
decision integer output and verify that the output matches the input.

Set the modulation order and standard suffix. Generate random data.

M = 64;
std = 's2x';
x = randi([0 M-1],1000,1);

Modulate the data.

y = dvbsapskmod(x,M,std);

Demodulate the received signal. Compare the demodulated data to the original data.

z = dvbsapskdemod(y,M,std);
isequal(z,x)

ans = logical
 1

Demodulate DVB-S2 Specific 32-APSK Signal

Demodulate a 32-APSK signal that was modulated as specified in DVB-S2. Compute hard
decision bit output and verify that the output matches the input.

Set the modulation order, standard suffix, and code identifier. Generate random bit data.

M = 32;
std = 's2';
codeIDF = '4/5';
numBitsPerSym = log2(M);
x = randi([0 1],100*numBitsPerSym,1,'uint32');

Modulate the data. Use a name-value pair to specify bit input data.

y = dvbsapskmod(x,M,std,codeIDF,'InputType','bit');

Demodulate the received signal. Compare the demodulated data to the original data.

2 Functions — Alphabetical List

2-484

z = dvbsapskdemod(y,M,std,'4/5','OutputType','bit', ...
 'OutputDataType','uint32');
isequal(z,x)

ans = logical
 1

Soft Bit Demodulate DVB-SH Specific 16-APSK Signal

Demodulate a DVB-SH compliant 16-APSK signal and calculate soft bits.

Set the modulation order and generate a random bit sequence.

M = 16;
std = 'sh';
numSym = 20000;
numBitsPerSym = log2(M);
x = randi([0 1],numSym*numBitsPerSym,1);

Modulate the data. Use a name-value pair to specify bit input data.

txSig = dvbsapskmod(x,M,std,'InputType','bit');

Pass the modulated signal through a noisy channel.

rxSig = awgn(txSig,10,'measured');

View the constellation of the received signal using a scatter plot.

scatterplot(rxSig)

 dvbsapskdemod

2-485

DVB-SH compliant constellations have unit average power. Demodulate the signal,
computing soft bits using the approximate LLR algorithm.

z = dvbsapskdemod(rxSig,M,std,'OutputType','approxllr', ...
 'NoiseVariance',0.1);

Input Arguments
y — APSK modulated signal
scalar | vector | matrix

2 Functions — Alphabetical List

2-486

APSK modulated signal, specified as a complex scalar, vector, or matrix. When y is a
matrix, each column is treated as an independent channel.

y must be modulated in accordance with Digital Video Broadcasting (DVB) - Satellite
Communications standard DVB-S2, DVB-S2X or DVB-SH. For more information, see [1],
[2], and [3].
Data Types: single | double
Complex Number Support: Yes

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total
number of points in the signal constellation.
Data Types: double

stdSuffix — Standard suffix
's2' | 's2x' | 's2h'

Standard suffix for DVBS modulation variant, specified as 's2', 's2x', or 's2h'.
Data Types: char | string

codeIDF — Code identifier
char | string

Code identifier, specified as a character vector or string. This table lists the acceptable
codeIDF values.

Constellation Order (M) Applicable Standard
(stdSuffix)

Acceptable Code
Identifier (CodeIDF)
Values

16 's2' or 's2x' '2/3', '3/4', '4/5',
'5/6', '8/9', '9/10'

 dvbsapskdemod

2-487

Constellation Order (M) Applicable Standard
(stdSuffix)

Acceptable Code
Identifier (CodeIDF)
Values

16 's2x' '26/45', '3/5', '28/45',
'23/36', '25/36',
'13/18', '7/9', '77/90',
'100/180', '96/180',
'90/180', '18/30',
'20/30'

32 's2' or 's2x' '3/4', '4/5', '5/6',
'8/9', '9/10'

32 's2x' '32/45', '11/15', '7/9',
'2/3'

64 's2x' '11/15', '7/9', '4/5',
'5/6', '128/180'

128 's2x' '3/4', '7/9'
256 's2x' '32/45', '3/4',

'116/180', '20/30',
'124/180', '22/30'

For more information, refer to Tables 9 and 10 in the DVB-S2 standard [1] and Table 17a
in the DVB-S2X standard [2].

Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

frameLength — Frame length
'normal' (default) | 'short'

Frame length, specified as 'normal' or 'short'. The function usesframeLength and
codeIDF to select the modulation parameters.

Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

2 Functions — Alphabetical List

2-488

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y =
dvbsapskdemod(x,M,stdSuffix,'InputType','bit','OutputDataType','sing
le');

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Output type, specified as the comma-separated pair consisting of OutputType and
'integer', 'bit', 'llr', or 'approxllr'. For a description of returned output, see
z.
Data Types: char | string

OutputDataType — Output data type
'double' (default) | ...

Output data type, specified as the comma-separated pair consisting of OutputDataType
and one of the indicated data types. Acceptable values for OutputDataType depend on
the OutputType value.

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8',

'uint16', or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8',

'uint16', 'uint32', or 'logical'

Dependencies

This name-value pair argument applies only when OutputType is set to 'integer' or
'bit'.
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

 dvbsapskdemod

2-489

Unit average power flag, specified as the comma-separated pair consisting of
UnitAveragePower and a logical scalar. When this flag is true, the function scales the
constellation to an average power of 1 watt referenced to 1 ohm. When this flag is false,
the function scales the constellation based on specifications in the relevant standard, as
described in [1] and [2].

Note When stdSuffix is set to 'sh', the constellation always has unit average power.

Dependencies

This name-value pair argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: logical

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as the comma-separated pair consisting of NoiseVariance and
a positive scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input
elements.

• When specified as a vector, the vector length must be equal to the number of columns
in the input signal.

When the noise variance or signal power result in computations involving extreme
positive or negative magnitudes, see “DVB Compliant APSK Soft Demodulation” on page
2-492 for algorithm selection considerations.
Dependencies

This name-value pair argument applies only when OutputType is set to 'llr' or
'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set
PlotConstellation to true.

2 Functions — Alphabetical List

2-490

Data Types: logical

Output Arguments
z — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of the output
vary depending on the specified OutputType value.

OutputType
Value

Return Value of
dvbsapskdemod

Dimensions of z

'integer' Demodulated integer values
from 0 to (M – 1)

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(sum(M))
times the number of rows in y. Each
demodulated symbol is mapped to a group
of log2(sum(M)) elements in a column,
where the first element represents the MSB
and the last element represents the LSB.

'llr' Log-likelihood ratio value
for each bit

'approxllr
'

Approximate log-likelihood
ratio value for each bit

More About

DVB-S2/S2X/SH
Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific
amplitude phase shift keying (APSK) modulation. For further information on the DVB-
S2/S2X/SH standards, see specified in [1], [2], and [3], respectively.

DVB Compliant APSK Hard Demodulation
The hard demodulation algorithm applies amplitude phase decoding as described in [4].

 dvbsapskdemod

2-491

DVB Compliant APSK Soft Demodulation
For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are
available: exact LLR and approximate LLR. This table compares these algorithms.

Algorithm Accuracy Execution Speed
Exact LLR more accurate slower execution
Approximate LLR less accurate faster execution

2 Functions — Alphabetical List

2-492

For further description of these algorithms, see “Exact LLR Algorithm” and “Approximate
LLR Algorithm”.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second

generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2), European Telecommunications Standards Institute,
Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second
generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2X), European Telecommunications Standards Institute,
Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing
structure, channel coding and modulation for Satellite Services to Handheld
devices (SH), European Telecommunications Standards Institute, Valbonne,
France, 2008-03.

[4] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied
Mathematics, Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V.
Mladenov, and Z. Bojkovic, eds.). Vouliagmeni, Athens, Greece: WSEAS Press,
2009.

 dvbsapskdemod

2-493

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
apskdemod | dvbsapskmod | genqamdemod | mil188qamdemod | pskdemod | qamdemod

Objects
comm.GeneralQAMDemodulator | comm.PSKDemodulator

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”

Introduced in R2018a

2 Functions — Alphabetical List

2-494

dvbsapskmod
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) modulation

Syntax
y = dvbsapskmod(x,M,stdSuffix)
y = dvbsapskmod(x,M,stdSuffix,codeIDF)
y = dvbsapskmod(x,M,stdSuffix,codeIDF,frameLength)
y = dvbsapskmod(___ ,Name,Value)

Description
y = dvbsapskmod(x,M,stdSuffix) performs APSK modulation on the input signal, x,
in accordance with the digital video broadcast (DVB) standard identified by stdSuffix
and the modulation order, M.

y = dvbsapskmod(x,M,stdSuffix,codeIDF) specifies the code identifier, codeIDF,
to use when selecting the modulation parameters.

y = dvbsapskmod(x,M,stdSuffix,codeIDF,frameLength) specifies codeIDF and
frameLength to use when selecting the modulation parameters.

y = dvbsapskmod(___ ,Name,Value) specifies options using one or more name-value
pair arguments using any of the previous syntaxes. For example,
'OutputDataType','double' specifies the desired output data type as double. Specify
name-value pair arguments after all other input arguments.

Examples

Apply DVB-S2X 32-APSK Modulation to Data

Modulate data using the DVB-S2X standard specified 32-APSK modulation scheme.
Display the result in a scatter plot.

 dvbsapskmod

2-495

Set the modulation order and the suffix identifying the DVB-S2X standard. Create a data
vector with all possible symbols.

M = 32;
stdSuffix = 's2x';
x = (0:M-1);

Modulate the data.

y = dvbsapskmod(x,M,stdSuffix);

Display the constellation using a scatter plot.

scatterplot(y)

2 Functions — Alphabetical List

2-496

Apply DVB-S2X 64-APSK Modulation Specifying Code Identifier

Modulate data using 64-APSK as specified in DVB-S2X standard. Plot constellation for
different code identifiers.

Set the modulation order and standard suffix. Generate 1000 symbols of random data in
one channel.

M = 64;
std = 's2x';
x = randi([0 M-1],1000,1);

Modulate the data according to the 64-APSK constellation for the code identifier 7/9 and
plot the reference constellation.

y1 = dvbsapskmod(x,M,std,'7/9','PlotConstellation',true);

 dvbsapskmod

2-497

Modulate setting the code identifier to 132/180 and observe the constellation structure
differences.

y2 = dvbsapskmod(x,M,std,'132/180','PlotConstellation',true);

2 Functions — Alphabetical List

2-498

Apply DVB-S2 16-APSK Modulation Change Frame Length

Modulate data using 16-APSK as specified in DVB-S2 standard for normal and short frame
lengths. Compute the output signal power.

Set the modulation order and the standard suffix. Generate random bit data for 1000
symbols in one channel.

M = 16;
std = 's2';
x = randi([0 1],1000*log2(M),1);

 dvbsapskmod

2-499

Set the input type to bit and modulate the data according to the 16-APSK constellation for
code identifier 2/3. Use the default normal frame length.

y1 = dvbsapskmod(x,M,std,'2/3','InputType','bit');

Modulate the data using different settings, set the code-identifier to 8/9 and use a short
frame length.

y2 = dvbsapskmod(x,M,std,'8/9','short','InputType','bit');

The average power of the modulated signal changes based on the code identifier.
Compute the average power of the modulated signals.

y1avgPow = mean(abs(y1).^2)

y1avgPow = 0.7590

y2avgPow = mean(abs(y2).^2)

y2avgPow = 0.7716

Normalize 16-APSK Modulated DVB Signals by Average Power

Modulate data applying 16-APSK as specified in the DVB-SH and DVB-S2 standards.
Normalize the modulator output so that it has an average signal power of 1 W.

Set the modulation order and generate all possible symbols.

M = 16;
x = 0:M-1;

Modulate the data applying 16-APSK as specified in DVB-SH. Use a name-value pair to
specify single data type output.

y1 = dvbsapskmod(x,M,'sh','OutputDataType','single');

Modulate the data applying 16-APSK as specified in DVB-S2. Use a name-value pair to
specify single data type output.

y2 = dvbsapskmod(x,M,'s2','OutputDataType','single');

Modulate the data applying 16-APSK as specified in DVB-S2. Use name-value pairs to set
unit average power to true and to specify single data type output.

2 Functions — Alphabetical List

2-500

y3 = dvbsapskmod(x,M,'s2','UnitAveragePower',true,'OutputDataType','single');

Check which signals have unit average power.

y1avgPow = mean(abs(y1).^2)

y1avgPow = single
 1

y2avgPow = mean(abs(y2).^2)

y2avgPow = single
 0.7752

y3avgPow = mean(abs(y3).^2)

y3avgPow = single
 1.0000

Input Arguments
x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The elements of x must be binary
values or integers that range from 0 to (M – 1), where M is the modulation order.

Note To process the input signal as binary elements, set 'InputType' value to 'bit'.
For binary inputs, the number of rows must be an integer multiple of log2(M). A group of
log2(M) bits in a column are mapped onto a symbol, with the first bit representing the
MSB and the last bit representing the LSB.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total
number of points in the signal constellation.

 dvbsapskmod

2-501

Data Types: double

stdSuffix — Standard suffix
's2' | 's2x' | 'sh'

Standard suffix for DVBS modulation variant, specified as 's2', 's2x', or 'sh'.
Data Types: char | string

codeIDF — Code identifier
char | string

Code identifier, specified as a character vector or string. This table lists the acceptable
codeIDF values.

Constellation Order (M) Applicable Standard
(stdSuffix)

Acceptable Code
Identifier (CodeIDF)
Values

16 's2' or 's2x' '2/3', '3/4', '4/5',
'5/6', '8/9', '9/10'

16 's2x' '26/45', '3/5', '28/45',
'23/36', '25/36',
'13/18', '7/9', '77/90',
'100/180', '96/180',
'90/180', '18/30',
'20/30'

32 's2' or 's2x' '3/4', '4/5', '5/6',
'8/9', '9/10'

32 's2x' '32/45', '11/15', '7/9',
'2/3'

64 's2x' '11/15', '7/9', '4/5',
'5/6', '128/180'

128 's2x' '3/4', '7/9'
256 's2x' '32/45', '3/4',

'116/180', '20/30',
'124/180', '22/30'

For more information, refer to Tables 9 and 10 in the DVB-S2 standard, [1], and Table 17a
in the DVB-S2X standard, [2].

2 Functions — Alphabetical List

2-502

Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

frameLength — Frame length
'normal' (default) | 'short'

Frame length, specified as 'normal' or 'short'. frameLength and codeIDF are used
to determine the modulation parameters.
Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y =
dvbsapskmod(x,M,std,'InputType','bit','OutputDataType','single');

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either
'integer' or 'bit'. To use 'integer', the input signal must consist of integer values
from 0 to (M – 1). To use 'bit', the input signal must contain binary values and the
number of rows must be an integer multiple of log2(M).
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of
'UnitAveragePower' and a logical scalar. When this flag is true, the function scales
the constellation to an average power of 1 watt referenced to 1 ohm. When this flag is

 dvbsapskmod

2-503

false, the function scales the constellation based on specifications in the relevant
standard, as described in [1] and [2].

Note When stdSuffix is set to 'sh', the constellation always has unit average power.

Dependencies

This name-value pair argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: logical

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as the comma-separated pair consisting of
'OutputDataType' and either 'double' or 'single'.
Data Types: char | string

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
y — Modulated signal
scalar | vector | matrix

Modulated signal, returned as a complex scalar, vector, or matrix. The dimensions of y
depend on the specified 'InputType' value.

'InputType' Value Dimensions of y
'integer' y has the same dimensions as input x.

2 Functions — Alphabetical List

2-504

'InputType' Value Dimensions of y
'bit' The number of rows in y equals the number of rows in x divided

by log2(M).

Data Types: double | single

More About

DVB-S2/S2X/SH
Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific
amplitude phase shift keying (APSK) modulation. For further information on the DVB-
S2/S2X/SH standards, see specified in [1], [2], and [3], respectively.

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second

generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2), European Telecommunications Standards Institute,
Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second
generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2X), European Telecommunications Standards Institute,
Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing
structure, channel coding and modulation for Satellite Services to Handheld
devices (SH), European Telecommunications Standards Institute, Valbonne,
France, 2008-03.

 dvbsapskmod

2-505

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
apskmod | dvbsapskdemod | genqammod | mil188qammod | pskmod | qammod

Objects
comm.GeneralQAMModulator | comm.PSKModulator

Introduced in R2018a

2 Functions — Alphabetical List

2-506

encode
Block encoder

Syntax
code = encode(msg,n,k,'linear/fmt',genmat)
code = encode(msg,n,k,'cyclic/fmt',genpoly)
code = encode(msg,n,k,'hamming/fmt',prim_poly)
code = encode(msg,n,k)
[code,added] = encode(...)

Optional Inputs
Input Default Value
fmt binary
genpoly cyclpoly(n,k)
prim_poly gfprimdf(n-k)

Description

For All Syntaxes
The encode function encodes messages using one of the following error-correction
coding methods:

• Linear block
• Cyclic
• Hamming

For all of these methods, the codeword length is n and the message length is k.

 encode

2-507

msg, which represents the messages, can have one of several formats. The Information
Formats table shows which formats are allowed for msg, how the argument fmt should
reflect the format of msg, and how the format of the output code depends on these
choices. The examples in the table are for k = 4. If fmt is not specified as input, its
default value is binary.

Information Formats

Dimension of msg Value of fmt Argument Dimension of code
Binary column or row vector binary Binary column or row vector
Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1].'
Binary matrix with k
columns

binary Binary matrix with n
columns

Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1]
Column or row vector of
integers in the range
[0, 2^k-1]

decimal Column or row vector of
integers in the range
[0, 2^n-1]

Example: msg = [6, 10, 9].'

Note If 2^n or 2^k is large, use the default binary format instead of the decimal
format. This is because the function uses a binary format internally, while the roundoff
error associated with converting many bits to large decimal numbers and back might be
substantial.

For Specific Syntaxes
code = encode(msg,n,k,'linear/fmt',genmat) encodes msg using genmat as the
generator matrix for the linear block encoding method. genmat, a k-by-n matrix, is
required as input.

code = encode(msg,n,k,'cyclic/fmt',genpoly) encodes msg and creates a
systematic cyclic code. genpoly is a polynomial character vector or a row vector that
gives the coefficients, in order of ascending powers, of the binary generator polynomial.
The default value of genpoly is cyclpoly(n,k). By definition, the generator polynomial
for an [n,k] cyclic code must have degree n-k and must divide xn-1.

2 Functions — Alphabetical List

2-508

code = encode(msg,n,k,'hamming/fmt',prim_poly) encodes msg using the
Hamming encoding method. For this syntax, n must have the form 2m-1 for some integer
m greater than or equal to 3, and k must equal n-m. prim_poly is a polynomial character
vector or a row vector that gives the binary coefficients, in order of ascending powers, of
the primitive polynomial for GF(2m) that is used in the encoding process. The default
value of prim_poly is the default primitive polynomial gfprimdf(m).

code = encode(msg,n,k) is the same as code = encode(msg,n,k,'hamming/
binary').

[code,added] = encode(...) returns the additional variable added. added is the
number of zeros that were placed at the end of the message matrix before encoding in
order for the matrix to have the appropriate shape. “Appropriate” depends on n, k, the
shape of msg, and the encoding method.

Examples

Encoding and Decoding with Linear Block Codes

Encode and decode corrupted data using three types of linear block codes.

Hamming Code

Set the code parameters.

n = 15; % Code length
k = 11; % Message length

Create a binary message having length k.

data = randi([0 1],k,1);

Encode the message.

encData = encode(data,n,k,'hamming/binary');

Introduce an error in the 4th bit of the encoded sequence.

encData(4) = ~encData(4);

 encode

2-509

Decode the corrupted sequence. Observe that the decoder has correctly recovered the
message.

decData = decode(encData,n,k,'hamming/binary');

numerr = biterr(data,decData)

numerr = 0

Linear Block Code

Set the code parameters.

n = 7; % Code length
k = 3; % Message length

Create a binary message having length k.

data = randi([0 1],k,1);

Create a cyclic generator polynomial. Then, create a parity-check matrix and convert it
into a generator matrix.

pol = cyclpoly(n,k);
parmat = cyclgen(n,pol);
genmat = gen2par(parmat);

Encode the message sequence by using the generator matrix.

encData = encode(data,n,k,'linear/binary',genmat);

Introduce an error in the 3rd bit of the encoded sequence.

encData(3) = ~encData(3);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the
message.

decData = decode(encData,n,k,'linear/binary',genmat);

Single-error patterns loaded in decoding table. 8 rows remaining.
2-error patterns loaded. 1 rows remaining.
3-error patterns loaded. 0 rows remaining.

numerr = biterr(data,decData)

2 Functions — Alphabetical List

2-510

numerr = 0

Cyclic Code

Set the code parameters.

n = 15; % Code length
k = 5; % Message length

Create a binary message having length k.

data = randi([0 1],k,1);

Create a generator polynomial for a cyclic code. Create a parity-check matrix by using the
generator polynomial.

gpol = cyclpoly(n,k);
parmat = cyclgen(n,gpol);

Create a syndrome decoding tabled by using the parity-check matrix.

trt = syndtable(parmat);

Single-error patterns loaded in decoding table. 1008 rows remaining.
2-error patterns loaded. 918 rows remaining.
3-error patterns loaded. 648 rows remaining.
4-error patterns loaded. 243 rows remaining.
5-error patterns loaded. 0 rows remaining.

Encode the data by using the generator polynomial.

encData = encode(data,n,k,'cyclic/binary',gpol);

Introduce errors in the 4th and 7th bits of the encoded sequence.

encData(4) = ~encData(4);
encData(7) = ~encData(7);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the
message.

decData = decode(encData,n,k,'cyclic/binary',gpol,trt);

numerr = biterr(data,decData)

 encode

2-511

numerr = 0

Algorithms
Depending on the encoding method, encode relies on such lower-level functions as
hammgen and cyclgen.

See Also
cyclgen | cyclpoly | decode | hammgen

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-512

equalize
(To be removed) Equalize signal using equalizer object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

Syntax
y = equalize(eqobj,x)
y = equalize(eqobj,x,trainsig)
[y,yd] = equalize(...)
[y,yd,e] = equalize(...)

Description
y = equalize(eqobj,x) processes the baseband signal vector x with equalizer object
eqobj and returns the equalized signal vector y. At the end of the process, eqobj
contains updated state information such as equalizer weight values and input buffer
values. To construct eqobj, use the lineareq or dfe function. The equalize function
assumes that the signal x is sampled at nsamp samples per symbol, where nsamp is the
value of the nSampPerSym property of eqobj. For adaptive algorithms other than CMA,
the equalizer adapts in decision-directed mode using a detector specified by the
SigConst property of eqobj. The delay of the equalizer is (eqobj.RefTap-1)/
eqobj.nSampPerSym.

Note that (eqobj.RefTap-1) must be an integer multiple of nSampPerSym. For a
fractionally-spaced equalizer, the taps are spaced at fractions of a symbol period. The
reference tap pertains to training symbols, and thus, must coincide with a whole number
of symbols (i.e., an integer number of samples per symbol). eqobj.RefTap=1
corresponds to the first symbol, eqobj.RefTap=nSampPerSym+1 to the second, and so
on. Therefore (eqobj.RefTap-1) must be an integer multiple of nSampPerSym.

If eqobj.ResetBeforeFiltering is 0, equalize uses the existing state information in
eqobj when starting the equalization operation. As a result, equalize(eqobj,[x1

 equalize

2-513

x2]) is equivalent to [equalize(eqobj,x1) equalize(eqobj,x2)]. To reset eqobj
manually, apply the reset function to eqobj.

If eqobj.ResetBeforeFiltering is 1, equalize resets eqobj before starting the
equalization operation, overwriting any previous state information in eqobj.

y = equalize(eqobj,x,trainsig) initially uses a training sequence to adapt the
equalizer. After processing the training sequence, the equalizer adapts in decision-
directed mode. The vector length of trainsig must be less than or equal to length(x)-
(eqobj.RefTap-1)/eqobj.nSampPerSym.

[y,yd] = equalize(...) returns the vector yd of detected data symbols.

[y,yd,e] = equalize(...) returns the result of the error calculation. For adaptive
algorithms other than CMA, e is the vector of errors between y and the reference signal,
where the reference signal consists of the training sequence or detected symbols.

Examples

Equalize Using a Training Sequence

You can equalize a signal by using the equalize function to apply an adaptive equalizer
object to the signal. The equalize function also updates the equalizer.

In typical applications, an equalizer begins by using a known sequence of transmitted
symbols when adapting the equalizer weights. The known sequence, called a training
sequence, enables the equalizer to gather information about the channel characteristics.
After the equalizer finishes processing the training sequence, it adapts the equalizer
weights in decision-directed mode using a detected version of the output signal. To use a
training sequence when invoking the equalize function, include the symbols of the
training sequence as an input vector.

Note as an exception, that CMA equalizers do not use a training sequence. If an equalizer
object is based on CMA, you should not include a training sequence as an input vector.

This code illustrates how to use equalize with a training sequence. The training sequence
in this case is just the beginning of the transmitted message.

2 Functions — Alphabetical List

2-514

Set up parameters and signals.
M = 4; % Alphabet size for modulation
msg = randi([0 M-1],1500,1); % Random message
qpskMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = qpskMod(msg); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

Equalize the received signal.
eq1 = lineareq(8, lms(0.01)); % Create an equalizer object.
eq1.SigConst = qpskMod((0:M-1)')'; % Set signal constellation.
[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

Compute error rates with and without equalization

Determine the number of errors that occurred in trying to recover the modulated
message with and without the equalizer. The symbol error rates show that the equalizer
improves the performance significantly.

qpskDemod = comm.QPSKDemodulator('PhaseOffset',0);
demodmsg_noeq = qpskDemod(filtmsg); % Demodulate unequalized signal.
demodmsg = qpskDemod(yd); % Demodulate detected signal from equalizer.
errorCalc = comm.ErrorRate; % ErrorRate calculator
ser_noEq = errorCalc(msg(trainlen+1:end), demodmsg_noeq(trainlen+1:end));
reset(errorCalc)
ser_Eq = errorCalc(msg(trainlen+1:end),demodmsg(trainlen+1:end));
disp('Symbol error rates with and without equalizer:')

Symbol error rates with and without equalizer:

disp([ser_Eq(1) ser_noEq(1)])

 0 0.3230

Plot the signals

Create a scatter plot showing the signal before and after equalization, as well as the
reference signal constellation for QPSK modulation. The points of the equalized signal are
clustered more closely around the points of the reference signal constellation, indicating
the signal improvement from equalization.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;
scatterplot(symbolest,1,trainlen,'g.',h);

 equalize

2-515

scatterplot(eq1.SigConst,1,0,'k*',h);
legend('Filtered signal','Equalized signal',...
 'Ideal signal constellation');
hold off;

For more examples that use training sequences, see “Adaptive Equalization”.

Equalizing Multiple Times Varying Mode

If you invoke equalize multiple times with the same equalizer object to equalize a series
of signal vectors, you might use a training sequence the first time you call the function
and omit the training sequence in subsequent calls. Each iteration of the equalize

2 Functions — Alphabetical List

2-516

function after the first one operates completely in decision-directed mode. However,
because the ResetBeforeFiltering property of the equalizer object is set to 0, the
equalize function uses the existing state information in the equalizer object when
starting equalization operation for each iteration. As a result, the training affects all
equalization operations, not just the first.

Notice in this code that the first call to equalize uses a training sequence as an input
argument, and the second call to equalize omits a training sequence.

Set up the signal transmission

Create a signal, QPSK modulate it, then filter it through a distortion channel.

M = 4; % Alphabet size for modulation
msg = randi([0 M-1],1500,1); % Random message
qpskMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = qpskMod(msg); % Modulate using QPSK

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion

Set up equalizer

Specify equalizer parameters and create an lms equalizer object

trainlen = 500; % Length of training sequence
eqlms = lineareq(8, lms(0.01)); % Create an equalizer object
eqlms.SigConst = qpskMod((0:M-1)')'; % Set signal constellation parameter in the equalizer

Maintain continuity between calls to equalize.

eqlms.ResetBeforeFiltering = 0;

Equalize the received signal in pieces

Process the training sequence.

s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));

Process some of the data in decision-directed mode.

s2 = equalize(eqlms,filtmsg(trainlen+1:800));

Process the rest of the data in decision-directed mode.

 equalize

2-517

s3 = equalize(eqlms,filtmsg(801:end));

Concatenate the signal segments to get the full output of equalizer.

s = [s1; s2; s3];

Delays from Equalization

For proper equalization using adaptive algorithms other than CMA, you should set the
reference tap so that it exceeds the delay, in symbols, between the transmitter's
modulator output and the equalizer input. When this condition is satisfied, the total delay
between the modulator output and the equalizer output is equal to (RefTap-1)/
nSampPerSym symbols. Because the channel delay is typically unknown, a common
practice is to set the reference tap to the center tap in a linear equalizer, or the center tap
of the forward filter in a decision-feedback equalizer.

For CMA equalizers, the expression above does not apply because a CMA equalizer has no
reference tap. If you need to know the delay, you can find it empirically after the equalizer
weights have converged. Use the xcorr function to examine cross-correlations of the
modulator output and the equalizer output.

Techniques for Working with Delays

Here are some typical ways to take a delay of D into account by padding or truncating
data:

• Pad your original data with D extra symbols at the end. Before comparing the original
data with the received data, omit the first D symbols of the received data. In this
approach, all the original data (not including the padding) is accounted for in the
received data.

• Before comparing the original data with the received data, omit the last D symbols of
the original data and the first D symbols of the received data. In this approach, some
of the original symbols are not accounted for in the received data.

This example illustrates the second approach by omitting the last D symbols to account
for the delay. For an example that illustrates both approaches in the context of
interleavers, see “Delays of Convolutional Interleavers”.

Create a random signal and BPSK modulate it. Assign a portion of the signal as a training
signal.

2 Functions — Alphabetical List

2-518

M = 2; % Use BPSK modulation
msg = randi([0 M-1],1000,1); % Random data
bpskMod = comm.BPSKModulator('PhaseOffset',0);
modmsg = bpskMod(msg); % Modulate
trainlen = 100; % Length of training sequence
trainsig = modmsg(1:trainlen); % Training sequence

Define an equalizer and equalize the received signal.

eqlin = lineareq(3,normlms(.0005,.0001),pskmod(0:M-1,M));
eqlin.RefTap = 2; % Set reference tap of equalizer.
[eqsig,detsym] = equalize(eqlin,modmsg,trainsig); % Equalize.

Demodulate the detected signal.

bpskDemod = comm.BPSKDemodulator('PhaseOffset',0);
detmsg = bpskDemod(detsym);

Compute bit error rate while compensating for delay introduced by RefTap and ignoring
training sequence.

D = (eqlin.RefTap-1)/eqlin.nSampPerSym;
hErrorCalc = comm.ErrorRate('ReceiveDelay',D);
berVec = step(hErrorCalc, msg(trainlen+1:end), detmsg(trainlen+1:end));
ber = berVec(1)

ber = 0

numerrs = berVec(2)

numerrs = 0

Compatibility Considerations

equalize will be removed
Not recommended starting in R2019a

equalize will be removed. Use comm.LinearEqualizer or comm.DecisionFeedback
instead.

 equalize

2-519

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

2 Functions — Alphabetical List

2-520

evdoForwardReferenceChannels
Define 1xEV-DO forward reference channel

Syntax
cfg = evdoForwardReferenceChannels(wv)
cfg = evdoForwardReferenceChannels(wv,numpackets)

Description
cfg = evdoForwardReferenceChannels(wv) returns a structure, cfg, that defines
1xEV-DO forward link parameters given the input waveform identifier, wv. Pass this
structure to the evdoForwardWaveformGenerator function to generate a forward link
reference channel waveform.

For all syntaxes, evdoForwardReferenceChannels creates a configuration structure
that is compliant with the cdma2000 high data rate packet specification, [1].

cfg = evdoForwardReferenceChannels(wv,numpackets) specifies the number of
packets to be generated.

Examples

Generate 1xEV-DO Release 0 Forward Link Waveform

Create a configuration structure for a Release 0 channel having a 921.6 kbps data rate
and transmitted over two slots.

config = evdoForwardReferenceChannels('Rel0-921600-2');

Display the number of slots and the data rate.

config.PacketSequence

 evdoForwardReferenceChannels

2-521

ans = struct with fields:
 MACIndex: 0
 DataRate: 921600
 NumSlots: 2

Generate the complex waveform using the associated waveform generator function,
evdoForwardWaveformGenerator.

wv = evdoForwardWaveformGenerator(config);

Generate 1xEV-DO Revision A Forward Link Waveform

Create a structure to transmit a Revision A 1xEV-DO channel consisting of three 1024-bit
packets transmitted over 2 slots with a 64-bit preamble length.

config = evdoForwardReferenceChannels('RevA-1024-2-64',3);

Verify that the function created a 1-by-3 structure array. Each element in the structure
array corresponds to a data packet.

config.PacketSequence

ans=3×4 struct
 MACIndex
 PacketSize
 NumSlots
 PreambleLength

Examine the first structure element to verify the packet size, number of slots, and
preamble length match what you specified in the function call.

config.PacketSequence(1)

ans = struct with fields:
 MACIndex: 0
 PacketSize: 1024
 NumSlots: 2
 PreambleLength: 64

Generate the waveform.

2 Functions — Alphabetical List

2-522

wv = evdoForwardWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector.

Parameter
Field

Values Description

wv 'Rel0-38400-16' |
'Rel0-76800-8' |
'Rel0-153600-4' |
'Rel0-307200-2' |
'Rel0-307200-4' |
'Rel0-614400-1' |
'Rel0-614400-2' |
'Rel0-921600-2' |
'Rel0-1228800-1' |
'Rel0-1228800-2' |
'Rel0-1843200-1' |
'Rel0-2457600-1'

Character vector representing the
1xEV-DO Release 0 reference channel
with data rate in bps and number of
slots. For example, you can specify
'Rel0-153600-4' to create a
structure that represents a reference
channel with a 153,600 bps data rate
and uses four slots.

 evdoForwardReferenceChannels

2-523

Parameter
Field

Values Description

'RevA-128-1-64' |
'RevA-128-2-128' |
'RevA-128-4-256' |
'RevA-128-4-1024' |
'RevA-128-8-512' |
'RevA-256-1-64' |
'RevA-256-2-128' |
'RevA-256-4-256' |
'RevA-256-4-1024' |
'RevA-256-8-512' |
'RevA-256-16-1024' |
'RevA-512-1-64' |
'RevA-512-2-64' |
'RevA-512-2-128' |
'RevA-512-4-128' |
'RevA-512-4-256' |
'RevA-512-4-1024' |
'RevA-512-8-512' |
'RevA-512-16-1024' |
'RevA-1024-1-64' |
'RevA-1024-2-64' |
'RevA-1024-2-128' |
'RevA-1024-4-128' |
'RevA-1024-4-256' |
'RevA-1024-8-512' |
'RevA-1024-16-1024' |
'RevA-2048-1-64' |
'RevA-2048-2-64' |
'RevA-2048-4-128' |
'RevA-3072-1-64' |
'RevA-3072-2-64'
'RevA-4096-1-64' |
'RevA-4096-2-64' |
'RevA-5120-1-64' |
'RevA-5120-2-64'

Character vector representing the
1xEV-DO Revision A reference
channel with the packet size in bits,
the number of slots, and the
preamble length in chips. For
example, you can specify
'RevA-256-1-64' to create a
reference channel having a 256-bit
packet, transmitted in one slot, with
a 64-bit preamble length.

Example: 'Rel0-614400-2'

2 Functions — Alphabetical List

2-524

Example: 'RevA-4096-2-64'
Data Types: char

numpackets — Number of packets
1 (default) | positive integer scalar

Number of packets, specified as a positive integer.
Example: 4
Data Types: double

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' |

'RevisionA'
1xEV-DO

PNOffset Nonnegative scalar integer
[0, 511]

PN offset of the base station

IdleSlotsWithContr
ol

'Off' | 'On' Include idle slots with control channels

EnableControl 'Off' | 'On' Enable control signaling
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer [1, 8] Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000short' |
'Custom' | 'Off'

Select filter type or disable filtering

 evdoForwardReferenceChannels

2-525

Parameter Field Values Description
CustomFilterCoeffi
cients

Real vector Custom filter coefficients (applies when the
FilterType field is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

PacketSequence Structure See PacketSequence substructure.
PacketDataSources Structure See PacketDataSources substructure.

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of
data packets for consecutive transmission. The PacketSequence substructure contains
these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet

Release 0
DataRate 38400 | 76800 | 153600 |

307200 | 614400 |
921600 | 1228800 |
1843200 | 2457600

Data rate (bps)

NumSlots Positive scalar integer Number of slots
Revision A

PacketSize 128 | 256 | 512 | 1024 |
2048 | 3072 | 4096 | 5120

Packet size (bits)

NumSlots 1 | 2 | 4 | 8 | 16 Number of slots
PreambleLength 64 | 128 | 256 | 512 |

1024
Preamble length (chips)

PacketDataSources Substructure

Include a PacketDataSources substructure in the cfg structure to define a set of
matching data sources for each MAC index. The PacketDataSources substructure
contains these fields.

2 Functions — Alphabetical List

2-526

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

EnableCoding 'Off' | 'On' Enable error correction coding

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface

Specification.” 3rd Generation Partnership Project 2.

See Also
evdoForwardWaveformGenerator | evdoReverseReferenceChannels

Introduced in R2015b

 evdoForwardReferenceChannels

2-527

evdoForwardWaveformGenerator
Generate 1xEV-DO forward link waveform

Syntax
waveform = evdoForwardWaveformGenerator(cfg)

Description
waveform = evdoForwardWaveformGenerator(cfg) returns the 1xEV-DO forward
link waveform as defined by the parameter configuration structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and
channel properties the function uses to generate a 1xEV-DO waveform. You can generate
cfg by using the evdoForwardReferenceChannels function.

Note The tables herein list the allowable values for the top-level parameters and
substructure fields. However, not all parameter combinations are supported. To ensure
that the input argument is valid, use the evdoForwardReferenceChannels function. If
you input the structure fields manually, consult [1] to ensure that the input parameter
combinations are permitted.

Examples

Generate 1xEV-DO Revision A Forward Link Waveform

Create a structure to transmit a Revision A 1xEV-DO channel consisting of three 1024-bit
packets transmitted over 2 slots with a 64-bit preamble length.

config = evdoForwardReferenceChannels('RevA-1024-2-64',3);

Verify that the function created a 1-by-3 structure array. Each element in the structure
array corresponds to a data packet.

2 Functions — Alphabetical List

2-528

config.PacketSequence

ans=3×4 struct
 MACIndex
 PacketSize
 NumSlots
 PreambleLength

Examine the first structure element to verify the packet size, number of slots, and
preamble length match what you specified in the function call.

config.PacketSequence(1)

ans = struct with fields:
 MACIndex: 0
 PacketSize: 1024
 NumSlots: 2
 PreambleLength: 64

Generate the waveform.

wv = evdoForwardWaveformGenerator(config);

Generate 1xEV-DO Forward Link Waveform with Custom Filter

Create a structure to generate two packets of a 1.8 Mbps Release 0 channel.

config = evdoForwardReferenceChannels('Rel0-1843200-1',2);

Calculate the sample rate of the waveform.

fs = 1.2288e6 * config.OversamplingRatio;

Disable the internal filter of the evdoForwardWaveformGenerator function. Generate
the 1xEV-DO waveform. Plot the spectrum of the waveform.

config.FilterType = 'off';
wv = evdoForwardWaveformGenerator(config);

sa = dsp.SpectrumAnalyzer('SampleRate',fs);
step(sa,wv)

 evdoForwardWaveformGenerator

2-529

Create a lowpass FIR filter with a 500 kHz passband, a 750 kHz stopband, and a stopband
attenuation of 60 dB.

d = designfilt('lowpassfir', ...
 'PassbandFrequency',500e3, ...
 'StopbandFrequency',750e3, ...
 'StopbandAttenuation',60, ...
 'SampleRate',fs);

Change the filter type to 'Custom' and specify the coefficients from the digital filter, d.

config.FilterType = 'Custom';
config.CustomFilterCoefficients = d.Coefficients;

Generate the waveform using the custom filter coefficients.

2 Functions — Alphabetical List

2-530

wv = evdoForwardWaveformGenerator(config);

Plot the spectrum of the filtered 1xEV-DO waveform.

step(sa,wv)

The filter attenuates the waveform by 60 dB for frequencies outside of 750 kHz.

Input Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

 evdoForwardWaveformGenerator

2-531

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' |

'RevisionA'
1xEV-DO

PNOffset Nonnegative scalar integer
[0, 511]

PN offset of the base station

IdleSlotsWithContr
ol

'Off' | 'On' Include idle slots with control channels

EnableControl 'Off' | 'On' Enable control signaling
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer [1, 8] Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000short' |
'Custom' | 'Off'

Select filter type or disable filtering

CustomFilterCoeffi
cients

Real vector Custom filter coefficients (applies when the
FilterType field is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

PacketSequence Structure See PacketSequence substructure.
PacketDataSources Structure See PacketDataSources substructure.

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of
data packets for consecutive transmission. The PacketSequence substructure contains
these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet

2 Functions — Alphabetical List

2-532

Parameter Field Values Description
Release 0

DataRate 38400 | 76800 | 153600 |
307200 | 614400 |
921600 | 1228800 |
1843200 | 2457600

Data rate (bps)

NumSlots Positive scalar integer Number of slots
Revision A

PacketSize 128 | 256 | 512 | 1024 |
2048 | 3072 | 4096 | 5120

Packet size (bits)

NumSlots 1 | 2 | 4 | 8 | 16 Number of slots
PreambleLength 64 | 128 | 256 | 512 |

1024
Preamble length (chips)

PacketDataSources Substructure

Include a PacketDataSources substructure in the cfg structure to define a set of
matching data sources for each MAC index. The PacketDataSources substructure
contains these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

EnableCoding 'Off' | 'On' Enable error correction coding

 evdoForwardWaveformGenerator

2-533

Output Arguments
waveform — Modulated baseband waveform comprising the primary physical
channels
complex vector array

Modulated baseband waveform comprising the primary cdma2000 physical channels,
returned as a complex vector array.

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface

Specification.” 3rd Generation Partnership Project 2.

See Also
cdma2000ForwardReferenceChannels | cdma2000ReverseWaveformGenerator

Introduced in R2015b

2 Functions — Alphabetical List

2-534

evdoReverseReferenceChannels
Define 1xEV-DO reverse reference channel

Syntax
cfg = evdoReverseReferenceChannels(wv)
cfg = evdoReverseReferenceChannels(wv,numpackets)

Description
cfg = evdoReverseReferenceChannels(wv) returns a structure, cfg, that defines
1xEV-DO reverse link parameters given the input waveform identifier, wv. Pass this
structure to the evdoReverseWaveformGenerator function to generate a reverse link
reference channel waveform.

For all syntaxes, evdoReverseReferenceChannels creates a structure that is
compliant with the cdma2000 high data rate packet specification,[1].

cfg = evdoReverseReferenceChannels(wv,numpackets) specifies the number of
packets to be generated.

Examples

Generate 1xEV-DO Reverse Channel Waveform

Create a structure to generate a Release 0, 1xEV-DO waveform having a 19.2 kbps data
rate.

config = evdoReverseReferenceChannels('Rel0-19200');

Verify that the packet has a data rate of 19.2 kbps.

config.PacketSequence.DataRate

ans = 19200

 evdoReverseReferenceChannels

2-535

Generate the complex waveform.

wv = evdoReverseWaveformGenerator(config);

Generate 1xEV-DO Revision A Reverse Link Waveform

Create a structure for a Revision A 1xEV-DO channel having 2048-bit packets, transmitted
in 12 slots. Specify that five packets are transmitted.

config = evdoReverseReferenceChannels('RevA-2048-12',5);

Verify that a 1-by-5 structure array is created. Each element in the structure array
corresponds to a data packet.

config.PacketSequence

ans=5×6 struct
 Power
 DataSource
 EnableCoding
 PayloadSize
 NumSlots
 DataRate

Examine the first structure element to verify the packet size and the number of slots are
as specified in the function call.

config.PacketSequence(1)

ans = struct with fields:
 Power: 0
 DataSource: {'PN9' [1]}
 EnableCoding: 'On'
 PayloadSize: 2048
 NumSlots: 12
 DataRate: 102400

Generate the waveform.

wv = evdoReverseWaveformGenerator(config);

2 Functions — Alphabetical List

2-536

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector.

Parameter
Field

Values Description

wv 'Rel0-9600' |
'Rel0-19200' |
'Rel0-38400' |
'Rel0-76800' |
'Rel0-153600'

Character vector representing the 1xEV-DO
Release 0 data rate in bps. For example, you
can specify 'Rel0-153600' to create a
structure corresponding to a Release 0
reference channel having a 153,600 bps data
rate.

 evdoReverseReferenceChannels

2-537

Parameter
Field

Values Description

'RevA-128-4' |
'RevA-128-8' |
'RevA-128-12' |
'RevA-128-16' |
'RevA-256-4' |
'RevA-256-8' |
'RevA-256-12' |
'RevA-256-16' |
'RevA-512-4' |
'RevA-512-8' |
'RevA-512-12' |
'RevA-512-16' |
'RevA-768-4' |
'RevA-768-8' |
'RevA-768-12' |
'RevA-768-16' |
'RevA-1024-4' |
'RevA-1024-8' |
'RevA-1024-12' |
'RevA-1024-16' |
'RevA-1536-4' |
'RevA-1536-8' |
'RevA-1536-12' |
'RevA-1536-16' |
'RevA-2048-4' |
'RevA-2048-8' |
'RevA-2048-12' |
'RevA-2048-16' |
'RevA-3072-4' |
'RevA-3072-8' |
'RevA-3072-12' |
'RevA-3072-16' |
'RevA-4096-4' |
'RevA-4096-8' |
'RevA-4096-12' |
'RevA-4096-16' |
'RevA-6144-4' |

Character vector representing the 1xEV-DO
Revision A packet size in bits and the
number of slots. For example, you can
specify 'RevA-256-4' to create a structure
corresponding to a Revision A reference
channel having 256-bit packets and
transmitted in four slots.

2 Functions — Alphabetical List

2-538

Parameter
Field

Values Description

'RevA-6144-8' |
'RevA-6144-12' |
'RevA-6144-16' |
'RevA-8192-4' |
'RevA-8192-8' |
'RevA-8192-12' |
'RevA-8192-16' |
'RevA-12288-4' |
'RevA-12288-8' |
'RevA-12288-12' |
'RevA-12288-16'

Example: 'Rel0-38400'
Example: 'RevA-3072-12'
Data Types: char

numpackets — Number of packets
1 (default) | positive integer scalar

Number of packets, specified as a positive integer.
Example: 2
Data Types: double

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

 evdoReverseReferenceChannels

2-539

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' |

'RevisionA'
1xEV-DO applicable standard

LongCodeMaskI 42-bit binary number Long code identifier for in-phase channel
LongCodeMaskQ 42-bit binary number Long code identifier for quadrature channel
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' |
'Custom' | 'Off'

Specify the filter type or disable filtering

CustomFilterCoeffi
cients

Real vector Custom filter coefficients (applies when
FilterType is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

ACKChannel Structure See ACKChannel substructure.
PilotChannel Structure See PilotChannel substructure.
AuxPilotChannel Not present or structure See AuxPilotChannel substructure.
PacketSequence Structure See PacketSequence substructure.

ACKChannel Substructure

Include the ACKChannel substructure in the cfg structure to specify the
acknowledgment channel. The ACKChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable

or disable the channel
Power Real scalar Channel power (dBW)

2 Functions — Alphabetical List

2-540

Parameter Fields Values Description
DataSource Cell array, {'PN Type',

RN Seed} or binary vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a
standard PN sequence with
a random number seed or a
custom vector.

PilotChannel Substructure

Include the PilotChannel substructure in the cfg structure to specify the pilot channel.
The PilotChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable

or disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type',

RN Seed} or binary vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a
standard PN sequence with
a random number seed or a
custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

AuxPilotChannel Substructure

Include the AuxPilotChannel substructure in the cfg structure to specify the auxiliary
pilot channel, which is available only for Revision A. The AuxPilotChannel substructure
contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable

or disable the channel
Power Real scalar Channel power (dBW)

 evdoReverseReferenceChannels

2-541

Parameter Fields Values Description
DataSource Cell array, {'PN Type',

RN Seed} or binary vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a
standard PN sequence with
a random number seed or a
custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of
data packets for consecutive transmission. The PacketSequence substructure contains
these fields.

Parameter Field Values Description
Power Real scalar MAC index associated with the packet

EnableCoding 'Off' | 'On' Enable error correction coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

Release 0
DataRate 9600 | 19200 | 38400 |

76800 | 153600
Data rate (bps)

Revision A
PacketSize 128 | 256 | 512 | 768 |

1024 | 1536 | 2048 | 3072
| 4096 | 6144 | 8192 |
12288

Packet size (bits)

NumSlots 4 | 8 | 12 | 16 Number of slots

2 Functions — Alphabetical List

2-542

Data Types: struct

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface

Specification.” 3rd Generation Partnership Project 2.

See Also
evdoForwardReferenceChannels | evdoReverseWaveformGenerator

Introduced in R2015b

 evdoReverseReferenceChannels

2-543

evdoReverseWaveformGenerator
Generate 1xEV-DO reverse link waveform

Syntax
waveform = evdoReverseWaveformGenerator(cfg)

Description
waveform = evdoReverseWaveformGenerator(cfg) returns the 1xEV-DO reverse
link waveform as defined by the parameter configuration structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and
channel properties used by the function to generate a 1xEV-DO waveform. You can
generate cfg by using the evdoReverseReferenceChannels function.

Note The tables herein list the allowable values for the top-level parameters and
substructure fields. However, not all parameter combinations are supported. To ensure
that the input argument is valid, use the evdoReverseReferenceChannels function. If
you input the structure fields manually, consult [1] to ensure that the input parameter
combinations are permitted.

Examples

Generate 1xEV-DO Reverse Channel Waveform

Create a structure to generate a Release 0, 1xEV-DO waveform having a 19.2 kbps data
rate.

config = evdoReverseReferenceChannels('Rel0-19200');

Verify that the packet has a data rate of 19.2 kbps.

2 Functions — Alphabetical List

2-544

config.PacketSequence.DataRate

ans = 19200

Generate the complex waveform.

wv = evdoReverseWaveformGenerator(config);

Generate 1xEV-DO Reverse Link Waveform with Custom Filter

Create a structure to generate four packets of a Revision A channel having 768-bit
packets transmitted over eight slots.

config = evdoReverseReferenceChannels('RevA-768-8',4);

Calculate the sample rate of the waveform.

fs = 1.2288e6 * config.OversamplingRatio;

Disable the internal filter of the evdoReverseWaveformGenerator. Generate the 1xEV-
DO waveform. Plot the spectrum of the waveform.

config.FilterType = 'off';
wv = evdoReverseWaveformGenerator(config);

sa = dsp.SpectrumAnalyzer('SampleRate',fs);
step(sa,wv)

 evdoReverseWaveformGenerator

2-545

Create a lowpass FIR filter with a 500 kHz passband, a 750 kHz stopband, and a stopband
attenuation of 60 dB.

d = designfilt('lowpassfir', ...
 'PassbandFrequency',500e3, ...
 'StopbandFrequency',750e3, ...
 'StopbandAttenuation',60, ...
 'SampleRate',fs);

Change the filter type to 'Custom' and specify the coefficients from the digital filter, d.

config.FilterType = 'Custom';
config.CustomFilterCoefficients = d.Coefficients;

Generate the waveform using the custom filter coefficients.

2 Functions — Alphabetical List

2-546

wv = evdoReverseWaveformGenerator(config);

Plot the spectrum of the filtered 1xEV-DO waveform.

step(sa,wv)

The filter attenuates the waveform by 60 dB for frequencies outside of 750 kHz.

Input Arguments
cfg — Configuration of the parameters and channels used by the waveform
generator
structure

 evdoReverseWaveformGenerator

2-547

Configuration of the parameters and channels used by the waveform generator. The
configuration structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' |

'RevisionA'
1xEV-DO applicable standard

LongCodeMaskI 42-bit binary number Long code identifier for in-phase channel
LongCodeMaskQ 42-bit binary number Long code identifier for quadrature channel
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' |
'Custom' | 'Off'

Specify the filter type or disable filtering

CustomFilterCoeffi
cients

Real vector Custom filter coefficients (applies when
FilterType is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequenc
y

Nonnegative scalar integer Carrier modulation frequency (applies when
EnableModulation is 'On')

ACKChannel Structure See ACKChannel substructure.
PilotChannel Structure See PilotChannel substructure.
AuxPilotChannel Not present or structure See AuxPilotChannel substructure.
PacketSequence Structure See PacketSequence substructure.

ACKChannel Substructure

Include the ACKChannel substructure in the cfg structure to specify the
acknowledgment channel. The ACKChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable

or disable the channel

2 Functions — Alphabetical List

2-548

Parameter Fields Values Description
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type',

RN Seed} or binary vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a
standard PN sequence with
a random number seed or a
custom vector.

PilotChannel Substructure

Include the PilotChannel substructure in the cfg structure to specify the pilot channel.
The PilotChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable

or disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type',

RN Seed} or binary vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a
standard PN sequence with
a random number seed or a
custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

AuxPilotChannel Substructure

Include the AuxPilotChannel substructure in the cfg structure to specify the auxiliary
pilot channel, which is available only for Revision A. The AuxPilotChannel substructure
contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable

or disable the channel

 evdoReverseWaveformGenerator

2-549

Parameter Fields Values Description
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type',

RN Seed} or binary vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a
standard PN sequence with
a random number seed or a
custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of
data packets for consecutive transmission. The PacketSequence substructure contains
these fields.

Parameter Field Values Description
Power Real scalar MAC index associated with the packet

EnableCoding 'Off' | 'On' Enable error correction coding
DataSource Cell array, {'PN Type',

RN Seed} or binary
vector.

Standard PN sequence
options are 'PN9',
'PN15', 'PN23', 'PN9-
ITU', and 'PN11'.

Data source. Specify a standard PN
sequence with a random number seed
or a custom vector.

Release 0
DataRate 9600 | 19200 | 38400 |

76800 | 153600
Data rate (bps)

Revision A
PacketSize 128 | 256 | 512 | 768 |

1024 | 1536 | 2048 | 3072
| 4096 | 6144 | 8192 |
12288

Packet size (bits)

2 Functions — Alphabetical List

2-550

Parameter Field Values Description
NumSlots 4 | 8 | 12 | 16 Number of slots

Output Arguments
waveform — Modulated baseband waveform comprising the physical channels
complex vector array

Modulated baseband waveform comprising the 1xEV-DO physical channels, returned as a
complex vector array.

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface

Specification.” 3rd Generation Partnership Project 2.

See Also
evdoForwardWaveformGenerator | evdoReverseReferenceChannels

Introduced in R2015b

 evdoReverseWaveformGenerator

2-551

eyediagram
Generate eye diagram

Syntax
eyediagram(x,n)
eyediagram(x,n,period)
eyediagram(x,n,period,offset)
eyediagram(x,n,period,offset,plotstring)
eyediagram(x,n,period,offset,plotstring,h)
h = eyediagram(...)

Description
eyediagram(x,n) creates an eye diagram for the signal x, plotting n samples in each
trace. n must be an integer greater than 1. The labels on the horizontal axis of the
diagram range between -1/2 and 1/2. The function assumes that the first value of the
signal, and every nth value thereafter, occur at integer times. The interpretation of x and
the number of plots depend on the shape and complexity of x:

• If x is a real two-column matrix, eyediagram interprets the first column as in-phase
components and the second column as quadrature components. The two components
appear in different subplots of a single figure window.

• If x is a complex vector, eyediagram interprets the real part as in-phase components
and the imaginary part as quadrature components. The two components appear in
different subplots of a single figure window.

• If x is a real vector, eyediagram interprets it as a real signal. The figure window
contains a single plot.

eyediagram(x,n,period) is the same as the syntax above, except that the labels on
the horizontal axis range between -period/2 and period/2.

eyediagram(x,n,period,offset) is the same as the syntax above, except that the
function assumes that the (offset+1)st value of the signal, and every nth value

2 Functions — Alphabetical List

2-552

thereafter, occur at times that are integer multiples of period. The variable offset must
be a nonnegative integer between 0 and n-1.

eyediagram(x,n,period,offset,plotstring) is the same as the syntax above,
except that plotstring determines the plotting symbol, line type, and color for the plot.
plotstring is a character vector whose format and meaning are the same as in the
plot function. The default value is 'b-', which produces a blue solid line.

eyediagram(x,n,period,offset,plotstring,h) is the same as the syntax above,
except that the eye diagram is in the figure whose handle is h, rather than in a new
figure. h must be a handle to a figure that eyediagram previously generated.

Note You cannot use hold on to plot multiple signals in the same figure.

h = eyediagram(...) is the same as the earlier syntaxes, except that h is the handle
to the figure that contains the eye diagram.

Examples
For an online demonstration, type showdemo scattereyedemo.

See Also
comm.EyeDiagram | plot | scatterplot

Introduced before R2006a

 eyediagram

2-553

EyeScope
(To be removed) Launch eye diagram scope for eye diagram object H

Note eyescope will be removed in a future release. Use comm.EyeDiagram instead.

Syntax
eyescope
eyescope(h)

Description
Eye Diagram Scope is a graphical user interface (GUI) that enables you to visualize and
measure the effects that various impairments, such as noise, jitter, and filtering, have on a
modulated signal. The scope performs a probability density function (pdf) analysis on the
signal to illustrate its trajectory in time, and to calculate such quantities as eye SNR, RMS
jitter, rise time, and fall time. The scope also enables you to import and compare
measurement results for eye diagrams of multiple signals.

There are two ways to call EyeScope:

• eyescope calls an empty scope
• eyescope(h) calls the scope and displays object h

Note You can call EyeScope with an eye diagram object as the input argument. EyeScope
uses the inputname function to resolve the caller’s work space name for the argument. If
the inputname function cannot resolve the caller’s work space name, then EyeScope
uses a default name. To learn about the cases when EyeScope cannot determine the work
space name, type help inputname at the MATLAB command line.

For more information, see “Eye Diagram Analysis”.

2 Functions — Alphabetical List

2-554

Starting EyeScope
To start EyeScope from the MATLAB command line, type:

eyescope

The following figure shows an EyeScope that does not have an eye diagram object loaded
in its memory.

Alternatively, you can start EyeScope so it displays an eye diagram object. To start
EyeScope so it displays an eye diagram object, type the following at the MATLAB
command line:

eyescope(h)

Note h is a handle to an eye diagram object in the workspace.

 EyeScope

2-555

The EyeScope Environment
• “EyeScope Menu Bar” on page 2-556
• “Eye Diagram Object Plot and Plot Controls” on page 2-556
• “Eye Diagram Object Settings Panel” on page 2-558
• “Measurements” on page 2-559

EyeScope Menu Bar
EyeScope Menu Bar

The EyeScope menu bar is comprised of four menus: File, Options, View, and Help.

• Use the File menu to control the session management functions, import an eye
diagram object into EyeScope, and export an eye diagram plot.

• Use the Options menu to setup the eye diagram scope by selecting which eye diagram
settings and measurements EyeScope displays.

• Use the View menu to toggle between Single eye diagram view or Compare
measurement results view, and to add or modify a legend for the eye diagram plot.

• The Help menu is used to access help pertaining to the eye diagram object and
EyeScope.

Eye Diagram Object Plot and Plot Controls
The Eye diagram object plot is the region of the GUI where the eye diagram plot appears.

2 Functions — Alphabetical List

2-556

Eye diagram plot controls are user-configurable settings that specify plot type, color
scale, minimum and maximum plot PDF range, and plot time offset for the eye diagram
being analyzed. To access the EyeScope plot controls Options > Eye Diagram Plot
Controls

 EyeScope

2-557

Note The value for the Plot time offset parameter can either be entered directly into
the text box or set using the slide bar control.

For more information pertaining to the eye diagram properties, refer to the
commscope.eyediagram reference page.

Eye Diagram Object Settings Panel
The eye diagram object settings panel displays the eye diagram object settings. The
default EyeScope configuration displays the following eye diagram object settings:

• Sampling frequency
• Symbol rate
• Eye level boundaries
• BER threshold
• Amplitude threshold

2 Functions — Alphabetical List

2-558

To specify which eye diagram object settings display in EyeScope, refer to “Selecting
Which Eye Diagram Object Settings To Display” on page 2-565. If you select additional
eye diagram object settings to display in EyeScope, use the scroll buttons to view all of
the settings.

Measurements
The Measurements panel displays the eye diagram measurement settings. The default
EyeScope configuration displays the following eye diagram object measurements:

• Horizontal Eye Opening
• Random Jitter
• Deterministic Jitter
• Total Jitter
• RMS Jitter
• Peak to Peak Jitter
• Vertical Opening
• Rise Time
• Fall Time
• Eye SNR

 EyeScope

2-559

To select which eye diagram measurements EyeScope displays, refer to “Selecting Which
Eye Diagram Measurements To Display” on page 2-566. If you select additional eye
diagram object measurements to display in EyeScope, use the scroll buttons to view all of
the settings.

Using EyeScope
• “Starting EyeScope with an Argument” on page 2-560
• “Starting a new Session” on page 2-561
• “Opening a Session” on page 2-561
• “Saving a Session” on page 2-562
• “Importing an Eye Diagram Object” on page 2-563
• “Printing to a Figure” on page 2-564
• “Selecting Which Eye Diagram Object Settings To Display” on page 2-565
• “Selecting Which Eye Diagram Measurements To Display” on page 2-566

Starting EyeScope with an Argument
You can start EyeScope so it is displaying an eye diagram object. To start EyeScope so it
is displaying an eye diagram object, type the following at the MATLAB command line:

2 Functions — Alphabetical List

2-560

eyescope(h)

Note h is a handle to an eye diagram object presently in the workspace.

Starting a new Session
Starting a new session purges EyeScope memory, returning EyeScope to an empty plot
display. If changes have been made to an open session and you start a new session, you
will be prompted to save the open session.

Opening a Session
To open session, choose the file name and location of the session file. The file extensions
for a session file is .eds, which stands for eye diagram scope. If changes have been made
to a session that is presently open and you try to open up a new session, you will be
prompted to save the session that is presently open before the new session can start.

To open a session:

1 Click File > Open Session.

The Select File To Open Window appears.

 EyeScope

2-561

2 Navigate to the EyeScope session file you want, and click Open.

Saving a Session
The Save Session selection saves the current session, updating the session file. A session
file includes the eye diagram object, eyescope options, and plot control selections.

If you attempt to save a session that you have not previously saved, EyeScope will prompt
you for a file name and location. Otherwise, the session is saved to the previously selected
file.

To save a session, follow these steps:

1 Click File > Save Session.
2 Navigate to the folder where you want to save the EyeScope session file and click

Save.

2 Functions — Alphabetical List

2-562

Importing an Eye Diagram Object
The Import menu selection imports an eye diagram object from either the workspace or a
MAT-file to EyeScope. The imported variable name will be reconstructed to reflect the
origin of the eye diagram object, as follows:

• If an object is imported from the workspace, the variable name will be ws_object
name, where object name is the name of the original variable.

• If the object is imported from a MATLAB file, then the file name (without the path)
precedes the object name.

Importing an object creates a copy of the object, using the naming convention previously
described. EyeScope displays the object's contents as configured when the object was
imported. EyeScope does not track any object changes made in the workspace (or to the
MATLAB file) from which the object was imported.

To import an eye diagram object:

1 Click File > Import Eye Diagram Object

The Import eye diagram object window appears.

 EyeScope

2-563

The contents panel of the Import eye diagram object window displays all eye diagram
objects available in the source location.

2 From the Import eye diagram object window, select the source for the object being
imported.

• Select From workspace to import an eye diagram object directly from the
workspace.

• Select From File to choose an eye diagram object file that was previously saved
and click Browse to select the file to be loaded.

3 Click Import.

Printing to a Figure
EyeScope allows you to print an eye diagram plot to a separate MATLAB figure window.
From the MATLAB figure window, along with other tasks, you can print, zoom, or edit the
plot.

To export an eye diagram figure:

• Click File > Print to Figure

The MATLAB figure window, containing the exported image, appears.

2 Functions — Alphabetical List

2-564

Selecting Which Eye Diagram Object Settings To Display
The Eye Diagram Object Settings View allows you to select which object settings
display in the eye diagram object settings panel. You make your selections in the
Configure eye diagram object settings view window, where a shuttle control allows you to
add, remove, or reorder the settings you are displaying.

To add an eye diagram object setting:

1 Click Options > Eye Diagram Object Settings View

The Configure eye diagram object settings view window appears.

 EyeScope

2-565

2 Locate any items to be added in the list of Available items, and left-click to select.

Note To select multiple items, you can either press and hold the <Shift> key and
left-click or press and hold the <Ctrl> key and left-click.

When you select an item, the Quick help panel displays information about the item.
If you select multiple items, Quick help displays information pertaining to the last
item you select.

3 Click Add.

Note Using the Move Up orMove Down buttons, you can change the order in which
the eye diagrams settings you select appear.

4 Click OK .

Selecting Which Eye Diagram Measurements To Display
You can modify the contents of the measurement panel by selecting which eye diagram
measurements display in the eye diagram object settings panel. You make your selections

2 Functions — Alphabetical List

2-566

in the Configure measurements view window, where a shuttle control allows you to add,
remove, or reorder the settings you are including.

Adding An Eye Diagram Measurement Setting

1 Click Options > Measurements View

The Configure measurements window appears.

2 Locate any items to be added in the list of Available items, and left-click to select.

Note To select multiple items, you can either press and hold the <Shift> key and
left-click or press and hold the <Ctrl> key and left-click.

When you select an item, the Quick help panel displays information about the item.
If you select multiple items, Quick help displays information pertaining to the last
item you select.

3 Click Add.

 EyeScope

2-567

Note Using the Move Up or Move Down buttons, you can change the order in
which the eye diagrams settings you select appear.

4 Click OK .

Compatibility Considerations

EyeScope will be removed
Warns starting in R2017b

EyeScope will be removed in a future release. Use comm.EyeDiagram instead.

See Also
comm.EyeDiagram

Introduced in R2008b

2 Functions — Alphabetical List

2-568

fft
Discrete Fourier transform

Syntax
fft(x)

Description
fft(x) is the discrete Fourier transform (DFT) of the Galois vector x. If x is in the Galois
field GF(2m), the length of x must be 2m-1.

Examples

Discrete Fourier Transform of Galois Vector

Set the order of the Galois field. Because x is in the Galois field (24), the length of x must
be 2m− 1.

m = 4;
n = 2^m-1;

Generate a random GF vector.

x = gf(randi([0 2^m-1],n,1),m);

Perform the Fourier transform.

y = fft(x);

Invert the transform.

z = ifft(y);

Confirm that the inverse transform z = x.

 fft

2-569

isequal(z,x)

ans = logical
 1

Limitations
The Galois field over which this function works must have 256 or fewer elements. In other
words, x must be in the Galois field GF(2m), where m is an integer between 1 and 8.

Algorithms
If x is a column vector, fft applies dftmtx to the primitive element of the Galois field
and multiplies the resulting matrix by x.

See Also
dftmtx | gf | ifft

Topics
“Signal Processing Operations in Galois Fields”

Introduced before R2006a

2 Functions — Alphabetical List

2-570

filter (channel)
(To be removed) Filter signal with channel object

Syntax
y = filter(chan,x)

Note This function will be removed in a future release. Use function associated with
comm.RicianChannel or comm.RayleighChannel instead.

Description
y = filter(chan,x) processes the baseband signal vector x with the channel object
chan. The result is the signal vector y. The final state of the channel is stored in chan.
You can construct chan using either rayleighchan or ricianchan. The filter
function assumes x is sampled at frequency 1/ts, where ts equals the
InputSamplePeriod property of chan.

If chan.ResetBeforeFiltering is 0, filter uses the existing state information in
chan when starting the filtering operation. As a result, filter(chan,[x1 x2]) is
equivalent to [filter(chan,x1) filter(chan,x2)]. To reset chan manually, apply
the reset function to chan.

If chan.ResetBeforeFiltering is 1, filter resets chan before starting the filtering
operation, overwriting any previous state information in chan.

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

 filter (channel)

2-571

See Also
comm.RayleighChannel | comm.RicianChannel

Topics
“Fading Channels”

Introduced in R2007a

2 Functions — Alphabetical List

2-572

filter (Galois field)
1-D digital filter over Galois field

Syntax
y = filter(b,a,x)
[y,zf] = filter(b,a,x)

Description
y = filter(b,a,x) filters the data in the vector x with the filter described by
numerator coefficient vector b and denominator coefficient vector a. The vectors b, a, and
x must be Galois vectors in the same field. If a(1) is not equal to 1, filter normalizes
the filter coefficients by a(1). As a result, a(1) must be nonzero.

The filter is a Direct Form II Transposed implementation of the standard difference
equation shown here:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) ...
 - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[y,zf] = filter(b,a,x) returns the final conditions of the filter delays in the Galois
vector zf. The length of the vector zf is max(size(a),size(b))-1.

Examples
Filter a Galois Field

When using the Galois 1-D digital filter function, the data is normalized by the first
element of the denominator coefficient vector.

a = gf([2 3 5 7],3);
b = gf([1 3],3);
x = gf(randi([0,7],10,1),3);
filt_x = filter(b,a,x)

 filter (Galois field)

2-573

filt_x = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 6
 6
 3
 4
 7
 4
 2
 2
 0
 5

The first coefficient of the denominator coefficient vector, a(1) = 2. To confirm the
function normalizes the data, manually normalize the filtered data. Use isequal to
compare the outputs, we see they are equal.

filt_x2 = a(1) * filter(b/a(1),a,x)

filt_x2 = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 6
 6
 3
 4
 7
 4
 2
 2
 0
 5

isequal(filt_x,filt_x2)

ans = logical
 1

2 Functions — Alphabetical List

2-574

See Also
gf

Introduced before R2006a

 filter (Galois field)

2-575

fmdemod
Frequency demodulation

Syntax
z = fmdemod(y,Fc,Fs,freqdev)
z = fmdemod(y,Fc,Fs,freqdev,ini_phase)

Description
z = fmdemod(y,Fc,Fs,freqdev) returns a demodulated signal z, given the input
frequency modulated (FM) signal y, where the carrier signal has frequency Fc and
sampling rate Fs. freqdev is the frequency deviation of the modulated signal.

Note

• The value of Fs must satisfy Fs ≥ 2Fc.
• The value of freqdev must satisfy freqdev < Fc.

z = fmdemod(y,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples

FM Modulate and Demodulate Sinusoidal Signal

Set the sampling frequency to 1kHz and carrier frequency to 200 Hz. Generate a time
vector having a duration of 0.2 s.

fs = 1000;
fc = 200;
t = (0:1/fs:0.2)';

2 Functions — Alphabetical List

2-576

Create two-tone sinusoidal signal with frequencies 30 and 60 Hz.

x = sin(2*pi*30*t)+2*sin(2*pi*60*t);

Set the frequency deviation to 50 Hz.

fDev = 50;

Frequency modulate x.

y = fmmod(x,fc,fs,fDev);

Demodulate z.

z = fmdemod(y,fc,fs,fDev);

Plot the original and demodulated signals.

plot(t,x,'c',t,z,'b--');
xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal','Demodulated Signal')

 fmdemod

2-577

The demodulated signal closely approximates the original.

Input Arguments
y — Frequency modulated input signal
scalar | vector | matrix | 3-D array

Frequency modulated input signal, specified as a scalar, vector, matrix, or 3-D array. Each
element of y must be real.
Data Types: single | double

2 Functions — Alphabetical List

2-578

Fc — Carrier frequency
positive real scalar

Carrier frequency in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

Fs — Sampling rate
positive real scalar

Sampling rate in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

freqdev — Frequency deviation
positive real scalar

Frequency deviation of the modulated signal in hertz (Hz), specified as a positive real
scalar.
Data Types: single | double

ini_phase — Initial phase
real scalar

Initial phase of the modulated signal in radians, specified as a real scalar.
Data Types: single | double

Output Arguments
z — Frequency demodulated output signal
scalar | vector | matrix | 3-D array

Frequency demodulated signal, returned as a scalar, vector, matrix, or 3-D array.

See Also
Functions
amdemod | fmmod | pmdemod

 fmdemod

2-579

Objects
comm.FMBroadcastDemodulator | comm.FMDemodulator

Topics
“Analog Passband Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-580

fmmod
Frequency modulation

Syntax
y = fmmod(x,Fc,Fs,freqdev)
y = fmmod(x,Fc,Fs,freqdev,ini_phase)

Description
y = fmmod(x,Fc,Fs,freqdev) returns a frequency modulated (FM) signal y, given the
input message signal x, where the carrier signal has frequency Fc and sampling rate Fs.
freqdev is the frequency deviation of the modulated signal.

Note

• The value of Fs must satisfy Fs ≥ 2Fc.
• The value of freqdev must satisfy freqdev < Fc.

y = fmmod(x,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the
modulated signal.

Examples

FM Modulate a Sinusoidal Signal

Set the sampling frequency to 1kHz and carrier frequency to 200 Hz. Generate a time
vector having a duration of 0.2 s.

fs = 1000;
fc = 200;
t = (0:1/fs:0.2)';

 fmmod

2-581

Create two tone sinusoidal signal with frequencies 30 and 60 Hz.

x = sin(2*pi*30*t)+2*sin(2*pi*60*t);

Set the frequency deviation to 50 Hz.

fDev = 50;

Frequency modulate x.

y = fmmod(x,fc,fs,fDev);

Plot the original and modulated signals.

plot(t,x,'c',t,y,'b--')
xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal','Modulated Signal')

2 Functions — Alphabetical List

2-582

Input Arguments
x — Input message signal
scalar | vector | matrix | 3-D array

Input message signal, specified as a scalar, vector, matrix, or a 3-D array. Each element of
x must be real.
Data Types: single | double

Fc — Carrier frequency
positive real scalar

 fmmod

2-583

Carrier frequency in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

Fs — Sampling rate
positive real scalar

Sampling rate in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

freqdev — Frequency deviation
positive real scalar

Frequency deviation of the modulated signal in hertz (Hz), specified as a positive real
scalar.
Data Types: single | double

ini_phase — Initial phase
real scalar

Initial phase of the modulated signal in radians, specified as a real scalar.
Data Types: single | double

Output Arguments
y — Frequency modulated output signal
scalar | vector | matrix | 3-D array

Frequency modulated signal, returned as a scalar, vector, matrix, or 3-D array.

See Also
Functions
ammod | fmdemod | pmmod

Objects
comm.FMModulator | comm.FMBroadcastModulator

2 Functions — Alphabetical List

2-584

Topics
“Analog Passband Modulation”

Introduced before R2006a

 fmmod

2-585

fskdemod
Frequency shift keying demodulation

Syntax
z = fskdemod(y,M,freq_sep,nsamp)
z = fskdemod(y,M,freq_sep,nsamp,Fs)
z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order)

Description
z = fskdemod(y,M,freq_sep,nsamp) noncoherently demodulates the complex
envelope y of a signal using the frequency shift key method. M is the alphabet size and
must be an integer power of 2. freq_sep is the frequency separation between successive
frequencies in Hz. nsamp is the required number of samples per symbol and must be a
positive integer greater than 1. The sampling frequency is 1 Hz. If y is a matrix with
multiple rows and columns, the function processes the columns independently.

z = fskdemod(y,M,freq_sep,nsamp,Fs) specifies the sampling frequency in Hz.

z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order) specifies how the function
assigns binary words to corresponding integers. If symbol_order is set to 'bin'
(default), the function uses a natural binary-coded ordering. If symbol_order is set to
'gray', it uses a Gray-coded ordering.

Examples

Modulation and Demodulation of an FSK Signal in AWGN

Pass an FSK signal through an AWGN channel and estimate the resulting bit error rate
(BER). Compare the estimated BER to the theoretical value.

Set the simulation parameters.

2 Functions — Alphabetical List

2-586

M = 2; % Modulation order
k = log2(M); % Bits per symbol
EbNo = 5; % Eb/No (dB)
Fs = 16; % Sample rate (Hz)
nsamp = 8; % Number of samples per symbol
freqsep = 10; % Frequency separation (Hz)

Generate random data symbols.

data = randi([0 M-1],5000,1);

Apply FSK modulation.

txsig = fskmod(data,M,freqsep,nsamp,Fs);

Pass the signal through an AWGN channel

rxSig = awgn(txsig,EbNo+10*log10(k)-10*log10(nsamp),...
 'measured',[],'dB');

Demodulate the received signal.

dataOut = fskdemod(rxSig,M,freqsep,nsamp,Fs);

Calculate the bit error rate.

[num,BER] = biterr(data,dataOut);

Determine the theoretical BER and compare it to the estimated BER. Your BER value
might vary because the example uses random numbers.

BER_theory = berawgn(EbNo,'fsk',M,'noncoherent');
[BER BER_theory]

ans = 1×2

 0.0958 0.1029

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper

Saddle River, NJ: Prentice-Hall, 2001.

 fskdemod

2-587

See Also
fskmod | pskdemod | pskmod

Topics
“Digital Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-588

fskmod
Frequency shift keying modulation

Syntax
y = fskmod(x,M,freq_sep,nsamp)
y = fskmod(x,M,freq_sep,nsamp,Fs)
y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont)
y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order)

Description
y = fskmod(x,M,freq_sep,nsamp) outputs the complex envelope y of the modulation
of the message signal x using frequency shift keying modulation. M is the alphabet size
and must be an integer power of 2. The message signal must consist of integers between
0 and M-1. freq_sep is the desired separation between successive frequencies in Hz.
nsamp denotes the number of samples per symbol in y and must be a positive integer
greater than 1. The sampling rate of y is 1 Hz. By the Nyquist sampling theorem,
freq_sep and M must satisfy (M-1)*freq_sep <= 1. If x is a matrix with multiple rows
and columns, the function processes the columns independently.

y = fskmod(x,M,freq_sep,nsamp,Fs) specifies the sampling rate of y in Hz.
Because the Nyquist sampling theorem implies that the maximum frequency must be no
larger than Fs/2, the inputs must satisfy (M-1)*freq_sep <= Fs.

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont) specifies the phase continuity.
Set phase_cont to 'cont' to force phase continuity across symbol boundaries in y, or
'discont' to avoid forcing phase continuity. The default is 'cont'.

y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order) specifies how
the function assigns binary words to corresponding integers. If symbol_order is set to
'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is
set to 'gray', it uses a Gray-coded ordering.

 fskmod

2-589

Examples

FSK Signal Spectrum Plot

Generate an FSK modulated signal and display its spectral characteristics.

Set the function parameters.

M = 4; % Modulation order
freqsep = 8; % Frequency separation (Hz)
nsamp = 8; % Number of samples per symbol
Fs = 32; % Sample rate (Hz)

Generate random M-ary symbols.

x = randi([0 M-1],1000,1);

Apply FSK modulation.

y = fskmod(x,M,freqsep,nsamp,Fs);

Create a spectrum analyzer System object? and use its step method to display a plot of
the signal spectrum.

h = dsp.SpectrumAnalyzer('SampleRate',Fs);
step(h,y)

2 Functions — Alphabetical List

2-590

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper

Saddle River, NJ: Prentice-Hall, 2001.

See Also
fskdemod | pskdemod | pskmod

Topics
“Digital Modulation”

 fskmod

2-591

Introduced before R2006a

2 Functions — Alphabetical List

2-592

hex2poly
Convert hexadecimal character vector to binary coefficients

Syntax
b = hex2poly(hex)
b = hex2poly(hex,ord)

Description
b = hex2poly(hex) converts a hexadecimal character vector, hex, to a vector of binary
coefficients, b.

b = hex2poly(hex,ord) specifies the power order, ord, of the coefficients that
comprise the output. If omitted, ord is 'descending'.

Examples

Convert Hexadecimal Polynomial to Binary Vector

Convert the hexadecimal polynomial '1AF' to a vector of binary coefficients. The
coefficients represent the polynomial x8 + x7 + x5 + x3 + x2 + x + 1.

b = hex2poly('1AF')

b = 1×9

 1 1 0 1 0 1 1 1 1

 hex2poly

2-593

Convert Hexadecimal into Ascending Order Binary Vector

Convert hexadecimal '0x82608EDB' to a vector of binary coefficients. Specify that the
binary coefficients are in ascending order.

b = hex2poly('0x82608EDB','ascending')

b = 1×32

 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1

The binary representation corresponds to a polynomial of
x31 + x25 + x22 + x21 + x15 + x11 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1.

Input Arguments
hex — Hexadecimal number
character vector

Hexadecimal number, specified as a character vector.
Example: 'FF'
Example: '0x3FA'
Data Types: char

ord — Power order
'descending' (default) | 'ascending'

Power order of the vector of binary coefficients, specified as a character vector having a
value of 'ascending' or 'descending'.
Data Types: char

Output Arguments
b — Binary coefficients
vector

2 Functions — Alphabetical List

2-594

Binary coefficients representing a polynomial, returned as a row vector having length
equal to p + 1, where p is the order of hexadecimal input.
Data Types: double

See Also
dec2hex | oct2poly

Introduced in R2015b

 hex2poly

2-595

oct2poly
Convert octal number to binary coefficients

Syntax
b = oct2poly(oct)
b = oct2poly(oct,ord)

Description
b = oct2poly(oct) converts an octal number, oct, to a vector of binary coefficients, b.

b = oct2poly(oct,ord) specifies the power order, ord, of the coefficients that
comprise the output. If omitted, ord is 'descending'.

Examples

Convert Octal Number to Binary Vector

Convert the octal number 11 to a binary vector.

b = oct2poly(11)

b = 1×4

 1 0 0 1

The binary vector corresponds to the polynomial x3 + 1.

2 Functions — Alphabetical List

2-596

Convert Octal Number to Ascending Order Binary Vector

Convert the octal number 65 to an ascending order binary vector.

b = oct2poly(65,'ascending')

b = 1×6

 1 0 1 0 1 1

Sixty-five octal is the generator polynomial of a (15,10) Hamming code in the Bluetooth
v4.0 standard. The binary representation of 65 octal is 110101 and the GF(2) polynomial
is 1 + x2 + x4 + x5 or [1 0 1 0 1 1] in ascending powers.

Input Arguments
oct — Octal number
scalar

Octal number, specified as a positive integer scalar.
Example: 15
Example: 3177
Data Types: double

ord — Power order
'descending' (default) | 'ascending'

Power order of the binary coefficients vector, specified as a character vector having a
value of 'ascending' or 'descending'.
Data Types: char

Output Arguments
b — Binary coefficients
vector

 oct2poly

2-597

Binary coefficients representing a polynomial, returned as a row vector having length
equal to p + 1, where p is the order of octal input.
Data Types: double

See Also
bi2de | de2bi | hex2poly | oct2dec

Introduced in R2015b

2 Functions — Alphabetical List

2-598

plotPhaseNoiseFilter
Plot response of phase noise filter block

Syntax
plotPhaseNoiseFilter(blockname)

Description
plotPhaseNoiseFilter(blockname) plots the response of the phase noise filter
associated with the Phase Noise block specified by the variable blockname.

Examples

View Filter Response of Phase Noise Block

This example shows how to use the plotPhaseNoiseFilter function to view the filter
response of a Phase Noise block in a Simulink model.

Load a Simulink model that contains a Phase Noise block. The load_system command
loads a model into memory without making its model window visible. The function will
also work with models whose window is visible. The example, slex_phasenoise,
contains a Phase Noise block.

load_system('slex_phasenoise')

Run the plotPhaseNoiseFilter function to view the filter response of the block Phase
Noise.

plotPhaseNoiseFilter('slex_phasenoise/Phase Noise')

 plotPhaseNoiseFilter

2-599

Input Arguments
blockname — Phase noise block name
character vector

The name of a Phase Noise block in a Simulink model
Example: plotPhaseNoiseFilter('Model Name/Phase Noise')
Data Types: char

2 Functions — Alphabetical List

2-600

See Also
Phase Noise

Introduced in R2014b

 plotPhaseNoiseFilter

2-601

gen2par
Convert between parity-check and generator matrices

Syntax
parmat = gen2par(genmat)
genmat = gen2par(parmat)

Description
parmat = gen2par(genmat) converts the standard-form binary generator matrix
genmat into the corresponding parity-check matrix parmat.

genmat = gen2par(parmat) converts the standard-form binary parity-check matrix
parmat into the corresponding generator matrix genmat.

The standard forms of the generator and parity-check matrices for an [n,k] binary linear
block code are shown in the table below

Type of Matrix Standard Form Dimensions
Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

.

where Ik is the identity matrix of size k and the ' symbol indicates matrix transpose. Two
standard forms are listed for each type, because different authors use different
conventions. For binary codes, the minus signs in the parity-check form listed above are
irrelevant; that is, -1 = 1 in the binary field.

Examples

2 Functions — Alphabetical List

2-602

Convert Parity-Check Matrix for a Hamming Code to Generator Matrix

Convert the parity-check matrix for a Hamming code into the corresponding generator
matrix and back again.

Create the parity-check matrix.

parmat = hammgen(3)

parmat = 3×7

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

Convert the parity-check matrix into the corresponding generator matrix.

genmat = gen2par(parmat)

genmat = 4×7

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

Convert the generator matrix back again. The output, parmat2, should be the same as
the original matrix, parmat.

parmat2 = gen2par(genmat)

parmat2 = 3×7

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

See Also
cyclgen | hammgen

 gen2par

2-603

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-604

genqamdemod
General quadrature amplitude demodulation

Syntax
z = genqamdemod(y,const)

Description
z = genqamdemod(y,const) demodulates the complex envelope y of a quadrature
amplitude modulated signal. The complex vector const specifies the signal mapping. If y
is a matrix with multiple rows, the function processes the columns independently.

Examples

General QAM Modulation and Demodulation

Create the points that describe a hexagonal constellation.

inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
quadr = [0 1 -1 2 -2 1 -1 0];
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;

Plot the constellation.

h = scatterplot(const);

 genqamdemod

2-605

Generate input data symbols. Modulate the symbols using this constellation.

x = [3 8 5 10 7];
y = genqammod(x,const);

Demodulate the modulated signal, y.

z = genqamdemod(y,const);

Plot the modulated signal in same figure.

hold on;
scatterplot(y,1,0,'ro',h);
legend('Constellation','Modulated signal');

2 Functions — Alphabetical List

2-606

Determine the number of symbol errors between the demodulated data to the original
sequence.

numErrs = symerr(x,z)

numErrs = 0

 genqamdemod

2-607

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
genqammod | pamdemod | pammod | qamdemod | qammod

Topics
“Digital Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-608

genqammod
General quadrature amplitude modulation

Syntax
y = genqammod(x,const)

Description
y = genqammod(x,const) outputs the complex envelope y of the modulation of the
message signal x using quadrature amplitude modulation. The message signal must
consist of integers between 0 and length(const)-1. The complex vector const
specifies the signal mapping. If x is a matrix with multiple rows, the function processes
the columns independently.

Examples

General QAM Modulation and Demodulation

Create the points that describe a hexagonal constellation.

inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
quadr = [0 1 -1 2 -2 1 -1 0];
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;

Plot the constellation.

h = scatterplot(const);

 genqammod

2-609

Generate input data symbols. Modulate the symbols using this constellation.

x = [3 8 5 10 7];
y = genqammod(x,const);

Demodulate the modulated signal, y.

z = genqamdemod(y,const);

Plot the modulated signal in same figure.

hold on;
scatterplot(y,1,0,'ro',h);
legend('Constellation','Modulated signal');

2 Functions — Alphabetical List

2-610

Determine the number of symbol errors between the demodulated data to the original
sequence.

numErrs = symerr(x,z)

numErrs = 0

 genqammod

2-611

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
genqamdemod | pamdemod | pammod | qamdemod | qammod

Topics
“Digital Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-612

gf
Create Galois field array

Syntax
x_gf = gf(x,m)
x_gf = gf(x,m,prim_poly)
x_gf = gf(x)

Description
x_gf = gf(x,m) creates a Galois field array from the matrix x. The Galois field has 2^m
elements, where m is an integer between 1 and 16. The elements of x must be integers
between 0 and 2^m-1. The output x_gf is a variable that MATLAB recognizes as a Galois
field array, rather than an array of integers. As a result, when you manipulate x_gf using
operators or functions such as + or det, MATLAB works within the Galois field you have
specified.

Note To learn how to manipulate x_gf using familiar MATLAB operators and functions,
see “Galois Field Computations”. To learn how the integers in x represent elements of
GF(2^m), see “How Integers Correspond to Galois Field Elements”.

x_gf = gf(x,m,prim_poly) is the same as the previous syntax, except it uses the
primitive polynomial prim_poly to define the field. prim_poly is a polynomial character
vector or the integer representation of a primitive polynomial. For example, the number
37 represents the polynomial D^5+D^2+1 because the binary form of 37 is 1 0 0 1 0 1.
For more information, see “Default Primitive Polynomials” on page 2-615.

x_gf = gf(x) creates a GF(2) array from the matrix x. Each element of x must be 0 or
1.

Examples

 gf

2-613

Create Sequence of GF(16) Elements

Set the order of the Galois field to 16, where the order equals 2m. The elements of x must
range from 0 to 2m− 1.

m = 4;
x = [3 2 9];
y = gf(x,m)

y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 3 2 9

Create GF Sequence with Specified Primitive Polynomial

Create a sequence of integers. Create a Galois field array, where m = 5.

x = [17 8 11 27];
y = gf(x,5)

y = GF(2^5) array. Primitive polynomial = D^5+D^2+1 (37 decimal)

Array elements =

 17 8 11 27

Determine all possible primitive polynomials for GF(2^5).

pp = primpoly(5,'all')

Primitive polynomial(s) =

D^5+D^2+1
D^5+D^3+1
D^5+D^3+D^2+D^1+1
D^5+D^4+D^2+D^1+1

2 Functions — Alphabetical List

2-614

D^5+D^4+D^3+D^1+1
D^5+D^4+D^3+D^2+1

pp = 6×1

 37
 41
 47
 55
 59
 61

Generate a GF array using the primitive polynomial that has a decimal equivalent of 59.

z = gf(x,5,'D5+D4+D3+D+1')

z = GF(2^5) array. Primitive polynomial = D^5+D^4+D^3+D+1 (59 decimal)

Array elements =

 17 8 11 27

More About

Default Primitive Polynomials
This table lists the default primitive polynomial used for each Galois field array GF(2M). To
use a different primitive polynomial, specify prim_poly as an input argument.
prim_poly must be in the range [(2M+1), (2(M+1)-1)] and must indicate an irreducible
polynomial. For more information, see “Specifying the Primitive Polynomial”.

M Default Primitive
Polynomial

Integer Representation

1 D + 1 3
2 D^2 + D + 1 7
3 D^3 + D + 1 11

 gf

2-615

M Default Primitive
Polynomial

Integer Representation

4 D^4 + D + 1 19
5 D^5 + D^2 + 1 37
6 D^6 + D + 1 67
7 D^7 + D^3 + 1 137
8 D^8 + D^4 + D^3 + D^2 +

1
285

9 D^9 + D^4 + 1 529
10 D^10 + D^3 + 1 1033
11 D^11 + D^2 + 1 2053
12 D^12 + D^6 + D^4 + D +

1
4179

13 D^13 + D^4 + D^3 + D +
1

8219

14 D^14 + D^10 + D^6 + D +
1

17475

15 D^15 + D + 1 32771
16 D^16 + D^12 + D^3 + D +

1
69643

Galois Computations
Operations supported for Galois field arrays include:

Operation Description
+ - Addition and subtraction of Galois arrays
* / \ Matrix multiplication and division of Galois

arrays
.* ./ .\ Elementwise multiplication and division of

Galois arrays
^ Matrix exponentiation of Galois array

2 Functions — Alphabetical List

2-616

Operation Description
.^ Elementwise exponentiation of Galois array
' .' Transpose of Galois array
==, ~= Relational operators for Galois arrays
all True if all elements of a Galois vector are

nonzero
any True if any element of a Galois vector is

nonzero
conv Convolution of Galois vectors
convmtx Convolution matrix of Galois field vector
deconv Deconvolution and polynomial division
det Determinant of square Galois matrix
dftmtx Discrete Fourier transform matrix in a

Galois field
diag Diagonal Galois matrices and diagonals of a

Galois matrix
fft Discrete Fourier transform
filter (gf) One-dimensional digital filter over a Galois

field
ifft Inverse discrete Fourier transform
inv Inverse of Galois matrix
length Length of Galois vector
log Logarithm in a Galois field
lu Lower-Upper triangular factorization of

Galois array
minpol Find the minimal polynomial for a Galois

element
mldivide Matrix left division \ of Galois arrays
polyval Evaluate polynomial in Galois field
rank Rank of a Galois array
reshape Reshape Galois array

 gf

2-617

Operation Description
roots Find polynomial roots across a Galois field
size Size of Galois array
tril Extract lower triangular part of Galois

array
triu Extract upper triangular part of Galois

array

See Also
cosets | gftable | isprimitive | primpoly

Topics
“Galois Field Computations”
“Error Detection and Correction”
“ElGamal Public Key Cryptosystem”

Introduced before R2006a

2 Functions — Alphabetical List

2-618

gfadd
Add polynomials over Galois field

Syntax
c = gfadd(a,b)
c = gfadd(a,b,p)
c = gfadd(a,b,p,len)
c = gfadd(a,b,field)

Description

Note This function performs computations in GF(pm) where p is prime. To work in
GF(2m), apply the + operator to Galois arrays of equal size. For details, see “Example:
Addition and Subtraction”.

c = gfadd(a,b) adds two GF(2) polynomials, a and b, which can be either polynomial
character vectors or numeric vectors. If a and b are vectors of the same orientation but
different lengths, then the shorter vector is zero-padded. If a and b are matrices they
must be of the same size.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime number. a, b, and c
are row vectors that give the coefficients of the corresponding polynomials in order of
ascending powers. Each coefficient is between 0 and p-1. If a and b are matrices of the
same size, the function treats each row independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous syntax, except
that it returns a row vector of length len. The output c is a truncated or extended
representation of the sum. If the row vector corresponding to the sum has fewer than len
entries (including zeros), extra zeros are added at the end; if it has more than len
entries, entries from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a positive integer. a
and b are the exponential format of the two elements, relative to some primitive element

 gfadd

2-619

of GF(pm). field is the matrix listing all elements of GF(pm), arranged relative to the
same primitive element. c is the exponential format of the sum, relative to the same
primitive element. See “Representing Elements of Galois Fields” for an explanation of
these formats. If a and b are matrices of the same size, the function treats each element
independently.

Examples

Add Two GF Arrays

Sum 2 + 3x + x2 and 4 + 2x + 3x2 over GF(5).

x = gfadd([2 3 1],[4 2 3],5)

x = 1×3

 1 0 4

Add the two polynomials and display the first two elements.

y = gfadd([2 3 1],[4 2 3],5,2)

y = 1×2

 1 0

For prime number p and exponent m, create a matrix listing all elements of GF(p^m)
given primitive polynomial 2 + 2x + x2.

p = 3;
m = 2;
primpoly = [2 2 1];
field = gftuple((-1:p^m-2)',primpoly,p);

Sum A2 and A4. The result is A.

g = gfadd(2,4,field)

g = 1

2 Functions — Alphabetical List

2-620

See Also
gfconv | gfdeconv | gfdiv | gfmul | gfsub | gftuple

Topics
“Arithmetic in Galois Fields”

Introduced before R2006a

 gfadd

2-621

gfconv
Multiply polynomials over Galois field

Syntax
c = gfconv(a,b)
c = gfconv(a,b,p)
c = gfconv(a,b,field)

c = gfconv(polys)
c = gfconv(polys,p)
c = gfconv(polys,field)

Description
c = gfconv(a,b) returns a row vector that specifies the GF(2) polynomial coefficients
in order of ascending powers. The returned vector results from the multiplication of GF(2)
polynomials a and b. The polynomial degree of the resulting GF(2) polynomial c equals
the degree of a plus the degree of b.

For additional information, see “Tips” on page 2-627.

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a prime number. a, b,
and c are in the same Galois field. a, b, and c are polynomials with coefficients in order of
ascending powers. Each coefficient is in the range [0, p–1].

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where field is a matrix
containing the m-tuple of all elements in GF(pm). p is a prime number, and m is a positive
integer. a, b, and c are in the same Galois field.

In this syntax, each coefficient is specified in exponential format, specifically [-Inf, 0, 1,
2, ...]. The elements in exponential format represent the field elements [0, 1, α, α2, ...]
relative to some primitive element α of GF(pm).

c = gfconv(polys) returns a row vector that specifies the GF(2) polynomial
coefficients in order of ascending powers. The returned vector results from the

2 Functions — Alphabetical List

2-622

multiplication of the GF(2) polynomials specified in polys. The polynomial degree of the
resulting GF(2) polynomial c equals the sum of the degrees of the polynomials contained
in polys. Use this syntax when polys specifies polynomials as a cell array of character
vectors or as a string array.

c = gfconv(polys,p) multiplies the GF(p) polynomials specified in polys, where p is
a prime number. polys and c are polynomials with coefficients in order of ascending
powers. Each coefficient is in the range [0, p–1]. a, b, and c are in the same Galois field.

c = gfconv(polys,field) multiplies the GF(pm) polynomials in polys, where field
is a matrix containing the m-tuple of all elements in GF(pm). p is a prime number, and m is
a positive integer. a, b, and c are in the same Galois field.

In this syntax, each coefficient is specified in exponential format, specifically [-Inf, 0, 1,
2, ...]. The elements in exponential format represent the field elements [0, 1, α, α2, ...]
relative to some primitive element α of GF(pm).

Examples

Multiply GF(2) Polynomials

Multiply 1 + 2x + 3x2 + 4x3 and 1 + x three times. Represent the polynomials as row
vectors, character vectors, and strings.

c_rv = gfconv([1 1 0 1],[1 1])

c_rv = 1×5

 1 0 1 1 1

c_cv = gfconv('1 + x + x^3','1 + x')

c_cv = 1×5

 1 0 1 1 1

c_s = gfconv("1 + x + x^3","1 + x")

c_s = 1×5

 gfconv

2-623

 1 0 1 1 1

The results corresponds to 1 + x2 + x3 + x4.

Multiply Polynomials Over GF(3)

Multiply 1 + x + x4 and x + x2 over the Galois field GF(3).

gfc = gfconv([1 1 0 0 1],[0 1 1],3)

gfc = 1×7

 0 1 2 1 0 1 1

The result corresponds to x + 2x2 + x3 + x5 + x6.

Multiply Polynomials Over GF(2^4) Using Field Input

Multiply 1 + 2x + 3x2 + 4x3 + 5x4 and 1 + x in the Galois field GF(24).

field = gftuple([-1:2^4-2]',4,2);
c = gfconv('1 + 2x + 3x^2 + 4x^3 + 5x^4','1 + x',field)

c = 1×6

 2 6 7 8 9 6

Use the gfpretty function to display the result in polynomial form.

gfpretty(c)

 2 3 4 5
 2 + 6 X + 7 X + 8 X + 9 X + 6 X

2 Functions — Alphabetical List

2-624

Multiply GF(2) Polynomials Specified As Cell Array

Create a cell array containing three polynomials that result in the DVB-S2 generator
polynomial for t = 3 when multiplied together.

polyCell = {'1 + x + x3 + x5 + x14', ...
 '1 + x6 + x8 + x11 + x14','1 + x + x2 + x6 + x9 + x10 + x14'};
gp = gfconv(polyCell); % DVB-S2 for t=3

Use the gfpretty function to display the result in polynomial form.

gfpretty(gp)

 4 6 8 10 11 13 16 17 20 24 25 26 27
1 + X + X + X + X + X + X + X + X + X + X + X + X + X

 30 31 32 33 34 35 36 37 38 39 42
 + X + X + X + X + X + X + X + X + X + X + X

Multiply Polynomials Expressed As Strings in GF(2^4) Using Field Input

Multiply 1 + 2x + 3x2 + 4x3 + 5x4, 1 + x, and 1 + x3 in the Galois field GF(24).

field = gftuple((-1:2^4-2)', 4, 2);
c = gfconv(["1 + 2x + 3x^2 + 4x^3 + 5x^4","1 + x","1 + x3"],field)

c = 1×9

 4 13 14 9 2 1 7 8 8

Use the gfpretty function to display the result in polynomial form.

gfpretty(c)

 2 3 4 5 6 7 8
 4 + 13 X + 14 X + 9 X + 2 X + X + 7 X + 8 X + 8 X

 gfconv

2-625

Input Arguments
a — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. a can be
either a “Character Representation of Polynomials” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The
value of p is as specified when included, 2 when omitted, or implied when field is
specified.
Example: [1 2 3 4] is the polynomial 1+2x+3x2+4x3 in GF(5) expressed as a row
vector.
Data Types: double | char | string

b — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. b can be
either a “Character Representation of Polynomials” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The
value of p is as specified when included, 2 when omitted, or implied when field is
specified.
Example: '1 + x' is a polynomial in GF(24) expressed as a character vector.
Data Types: double | char | string

p — Prime number
2 (default) | prime number

Prime number, specified as a prime number.
Data Types: double

field — m-tuple of all elements in GF(pm)
matrix

m-tuple of all elements in GF(pm), specified as a matrix. field is the matrix listing all
elements of GF(pm), arranged relative to the same primitive element. To generate the m-
tuple of all elements in GF(pm), use

2 Functions — Alphabetical List

2-626

field =gftuple([-1:p^m-2]',m,p)

The coefficients, specified in exponential format, represent the field elements in GF(pm).
For an explanation of these formats, see “Representing Elements of Galois Fields”.
Data Types: double

polys — Galois field polynomial list
cell array of character vectors | string array

Galois field polynomial list, specified as a cell array of character vectors or a string array.
Example: ["1+x+x3+x5+x14","1+x6+x8+x11+x14"] is a string array of polynomials.
Data Types: cell | string

Output Arguments
c — Galois field polynomial
row vector

Galois field polynomial, returned as a row vector of the polynomial coefficients in order of
ascending powers. The polynomial degree of the resulting GF(pm) polynomial c equals the
sum of the degrees of the input polynomials. c is in the same Galois field as the input
polynomials.

Tips
• The gfconv function performs computations in GF(pm), where p is prime, and m is a

positive integer. It multiplies polynomials over a Galois field. To work in GF(2m), you
can also use the conv function of the gf object with Galois arrays. For details, see
“Multiplication and Division of Polynomials”.

• To multiply elements of a Galois field, use gfmul instead of gfconv. Algebraically,
multiplying polynomials over a Galois field is equivalent to convolving vectors
containing the coefficients of the polynomials. This convolution operation uses
arithmetic over the same Galois field.

 gfconv

2-627

See Also
Functions
gfadd | gfdeconv | gfmul | gfpretty | gfsub | gftuple

Topics
“Character Representation of Polynomials”
“Representing Elements of Galois Fields”
“Multiplication and Division of Polynomials”

Introduced before R2006a

2 Functions — Alphabetical List

2-628

gfcosets
Produce cyclotomic cosets for Galois field

Syntax
c = gfcosets(m)
c = gfcosets(m,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the cosets function.

c = gfcosets(m) produces cyclotomic cosets mod(2m - 1). Each row of the output GFCS
contains one cyclotomic coset.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(p^m), where m is a positive
integer and p is a prime number.

The output matrix c is structured so that each row represents one coset. The row
represents the coset by giving the exponential format of the elements of the coset,
relative to the default primitive polynomial for the field. For a description of exponential
formats, see “Representing Elements of Galois Fields”.

The first column contains the coset leaders. Because the lengths of cosets might vary,
entries of NaN are used to fill the extra spaces when necessary to make c rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal polynomial. For
more details on cyclotomic cosets, see the works listed in “References” on page 2-630.

Examples
The command below finds the cyclotomic cosets for GF(9).

 gfcosets

2-629

c = gfcosets(2,3)

The output is

c =

 0 NaN
 1 3
 2 6
 4 NaN
 5 7

The gfminpol function can check that the elements of, for example, the third row of c
indeed belong in the same coset.

m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.

The output is

m =

 1 0 1
 1 0 1

References

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA,
Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

See Also
gfminpol | gfprimdf | gfroots

Introduced before R2006a

2 Functions — Alphabetical List

2-630

gfdeconv
Divide polynomials over Galois field

Syntax
[q,r] = gfdeconv(b,a)
[q,r] = gfdeconv(b,a,p)
[q,r] = gfdeconv(b,a,field)

Description
[q,r] = gfdeconv(b,a) returns the quotient q and remainder r as row vectors that
specify GF(2) polynomial coefficients in order of ascending powers. The returned vectors
result from the division b by a. a, b, and q are in GF(2).

For additional information, see “Tips” on page 2-635.

[q,r] = gfdeconv(b,a,p) divides two GF(p) polynomials, where p is a prime number.
b, a, and q are in the same Galois field. b, a, q, and r are polynomials with coefficients in
order of ascending powers. Each coefficient is in the range [0, p–1].

[q,r] = gfdeconv(b,a,field) divides two GF(pm) polynomials, where field is a
matrix containing the m-tuple of all elements in GF(pm). p is a prime number, and m is a
positive integer. b, a, and q are in the same Galois field.

In this syntax, each coefficient is specified in exponential format, specifically [-Inf, 0, 1,
2, ...]. The elements in exponential format represent the field elements [0, 1, α, α2, ...]
relative to some primitive element α of GF(pm).

Examples

 gfdeconv

2-631

Divide Polynomials in GF(3)

Divide x + x3 + x4 by 1 + x in the Galois field GF(3) three times. Represent the
polynomials as row vectors, character vectors, and strings.

p = 3;

Represent the polynomials using row vectors and divide them in GF(3).

b = [0 1 0 1 1];
a = [1 1];
[q_rv,r_rv] = gfdeconv(b,a,p)

q_rv = 1×4

 1 0 0 1

r_rv = 2

To confirm the output, compare the original Galois field polynomials to the result of
adding the remainder to the product of the quotient and the divisor.

bnew = gfadd(gfconv(q_rv,a,p),r_rv,p);
isequal(b,bnew)

ans = logical
 1

Represent the polynomials using character vectors and divide them in GF(3).

b = 'x + x^3 + x^4';
a = '1 + x';
[q_cv,r_cv] = gfdeconv(b,a,p)

q_cv = 1×4

 1 0 0 1

r_cv = 2

Represent the polynomials using strings and divide them in GF(3) .

2 Functions — Alphabetical List

2-632

b = "x + x^3 + x^4";
a = "1 + x";
[q_s,r_s] = gfdeconv(b,a,p)

q_s = 1×4

 1 0 0 1

r_s = 2

Use the gfpretty function to display the result without the remainder in polynomial
form.

gfpretty(q_s)

 3
 1 + X

Check for Irreducibility and Primitiveness Over GF(3^k)

In the Galois field GF(3), output polynomials of the form xk− 1 for k in the range [2, 8]
that are evenly divisible by 1 + x2. An irreducible polynomial over GF(p) of degree at least
2 is primitive if and only if it does not divide −1 + xk evenly for any positive integer k less
than pm− 1. For more information, see the gfprimck function.

The irreducibility of 1 + x2 over GF(3), along with the polynomials that are output,
indicates that 1 + x2 is not primitive for GF(32).

p = 3; m = 2;
a = [1 0 1]; % 1+x^2
for ii = 2:p^m-1
 b = gfrepcov(ii); % x^ii
 b(1) = p-1; % -1+x^ii
 [quot,remd] = gfdeconv(b,a,p);
 % Display -1+x^ii if a divides it evenly.
 if remd==0
 multiple{ii}=b;
 gfpretty(b)

 gfdeconv

2-633

 end
end

 4
 2 + X

 8
 2 + X

Input Arguments
b — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. b can be
either a “Character Representation of Polynomials” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The
value of p is as specified when included, 2 when omitted, or implied when field is
specified.
Example: '1 + x' is a polynomial in GF(24) expressed as a character vector.
Data Types: double | char | string

a — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. a can be
either a “Character Representation of Polynomials” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The
value of p is as specified when included, 2 when omitted, or implied when field is
specified.
Example: [1 2 3 4] is the polynomial 1+2x+3x2+4x3 in GF(5) expressed as a row
vector.
Data Types: double | char | string

p — Prime number
2 (default) | prime number

2 Functions — Alphabetical List

2-634

Prime number, specified as a prime number.
Data Types: double

field — m-tuple of all elements in GF(pm)
matrix

m-tuple of all elements in GF(pm), specified as a matrix. field is the matrix listing all
elements of GF(pm), arranged relative to the same primitive element. To generate the m-
tuple of all elements in GF(pm), use

field =gftuple([-1:p^m-2]',m,p)

The coefficients, specified in exponential format, represent the field elements in GF(pm).
For an explanation of these formats, see “Representing Elements of Galois Fields”.
Data Types: double

Output Arguments
q — Galois field polynomial
row vector

Galois field polynomial, returned as a row vector of the polynomial coefficients in order of
ascending powers. q is the quotient from the division of b by a and is in the same Galois
field as the input polynomials.

r — Division remainder
scalar | row vector

Division remainder, returned as a scalar or a row vector of the polynomial coefficients in
order of ascending powers. r is the remainder resulting from the division of b by a.

Tips
• The gfdeconv function performs computations in GF(pm), where p is prime, and m is a

positive integer. It divides polynomials over a Galois field. To work in GF(2m), use the
deconv function of the gf object with Galois arrays. For details, see “Multiplication
and Division of Polynomials”.

 gfdeconv

2-635

• To divide elements of a Galois field, you can also use gfdiv instead of gfdeconv.
Algebraically, dividing polynomials over a Galois field is equivalent to deconvolving
vectors containing the coefficients of the polynomials. This deconvolution operation
uses arithmetic over the same Galois field.

See Also
Functions
gfadd | gfconv | gfdiv | gfsub | gftuple

Topics
“Tips” on page 2-627
“Character Representation of Polynomials”
“Representing Elements of Galois Fields”
“Multiplication and Division of Polynomials”

Introduced before R2006a

2 Functions — Alphabetical List

2-636

gfdiv
Divide elements of Galois field

Syntax
quot = gfdiv(b,a)
quot = gfdiv(b,a,p)
quot = gfdiv(b,a,field)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), apply the ./ operator to Galois arrays. For details, see “Example: Division”.

The gfdiv function divides elements of a Galois field. (To divide polynomials over a
Galois field, use gfdeconv instead.)

quot = gfdiv(b,a) divides b by a in GF(2) element-by-element. a and b are scalars,
vectors or matrices of the same size. Each entry in a and b represents an element of
GF(2). The entries of a and b are either 0 or 1.

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient. p is a prime
number. If a and b are matrices of the same size, the function treats each element
independently. All entries of b, a, and quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the quotient. p is a
prime number and m is a positive integer. If a and b are matrices of the same size, then
the function treats each element independently. All entries of b, a, and quot are the
exponential formats of elements of GF(pm) relative to some primitive element of GF(pm).
field is the matrix listing all elements of GF(pm), arranged relative to the same primitive
element. See “Representing Elements of Galois Fields” for an explanation of these
formats.

In all cases, an attempt to divide by the zero element of the field results in a “quotient” of
NaN.

 gfdiv

2-637

Examples
The code below displays lists of multiplicative inverses in GF(5) and GF(25). It uses
column vectors as inputs to gfdiv.

% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';
quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element inverse')
disp([a, quot1])

% Find inverses of nonzero elements of GF(25).
m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element inverse')
disp([a, quot2])

See Also
gfconv | gfdeconv | gfmul | gftuple

Introduced before R2006a

2 Functions — Alphabetical List

2-638

gffilter (prime Galois field)
Filter data using polynomials over prime Galois field

Syntax
y = gffilter(b,a,x)
y = gffilter(b,a,x,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the filter function with Galois arrays. For details, see “Filtering”.

y = gffilter(b,a,x) filters the data in vector x with the filter described by vectors b
and a. The vectors b, a and x must be in GF(2), that is, be binary and y is also in GF(2).

y = gffilter(b,a,x,p) filters the data x using the filter described by vectors a and b.
y is the filtered data in GF(p). p is a prime number, and all entries of a and b are between
0 and p-1.

By definition of the filter, y solves the difference equation

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B)
 -a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where

• A+1 is the length of the vector a
• B+1 is the length of the vector b
• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x^2+...+a(A+1)x^A

 gffilter (prime Galois field)

2-639

Examples
The impulse response of a particular filter is given in the code and diagram below.

b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);
axis([0 20 -.1 1.1])

See Also
filter | gfadd | gfconv

Introduced before R2006a

2 Functions — Alphabetical List

2-640

gflineq
Find particular solution of Ax = b over prime Galois field

Syntax
x = gflineq(A,b)
x = gflineq(A,b,p)
[x,vld] = gflineq(...)

Description

Note This function performs computations in GF(p), where p is prime. To work in GF(2m),
apply the \ or / operator to Galois arrays. For details, see “Solving Linear Equations”.

x = gflineq(A,b) outputs a particular solution of the linear equation A x = b in
GF(2). The elements in a, b and x are either 0 or 1. If the equation has no solution, then x
is empty.

x = gflineq(A,b,p) returns a particular solution of the linear equation A x = b over
GF(p), where p is a prime number. If A is a k-by-n matrix and b is a vector of length k, x is
a vector of length n. Each entry of A, x, and b is an integer between 0 and p-1. If no
solution exists, x is empty.

[x,vld] = gflineq(...) returns a flag vld that indicates the existence of a solution.
If vld = 1, the solution x exists and is valid; if vld = 0, no solution exists.

Examples
The code below produces some valid solutions of a linear equation over GF(3).

A = [2 0 1;
 1 1 0;
 1 1 2];

 gflineq

2-641

% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0],3)

The output is below.

x =

 2
 1
 0

vld =

 1

By contrast, the command below finds that the linear equation has no solutions.

[x2,vld2] = gflineq(zeros(3,3),[2;0;0],3)

The output is below.

This linear equation has no solution.

x2 =

 []

vld2 =

 0

Algorithms
gflineq uses Gaussian elimination.

See Also
conv | gfadd | gfconv | gfdiv | gfrank | gfroots

2 Functions — Alphabetical List

2-642

Introduced before R2006a

 gflineq

2-643

gfminpol
Find minimal polynomial of Galois field element

Syntax
pol = gfminpol(k,m)
pol = gfminpol(k,m,p)
pol = gfminpol(k,prim_poly,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the minpol function with Galois arrays. For details, see “Minimal
Polynomials”.

pol = gfminpol(k,m) produces a minimal polynomial for each entry in k. k must be
either a scalar or a column vector. Each entry in k represents an element of GF(2m) in
exponential format. That is, k represents alpha^k, where alpha is a primitive element in
GF(2m). The ith row of pol represents the minimal polynomial of k(i). The coefficients of
the minimal polynomial are in the base field GF(2) and listed in order of ascending
exponents.

pol = gfminpol(k,m,p) finds the minimal polynomial of Ak over GF(p), where p is a
prime number, m is an integer greater than 1, and A is a root of the default primitive
polynomial for GF(p^m). The format of the output is as follows:

• If k is a nonnegative integer, pol is a row vector that gives the coefficients of the
minimal polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative integers, pol is a
matrix having len rows; the rth row of pol gives the coefficients of the minimal
polynomial of Ak(r) in order of ascending powers.

pol = gfminpol(k,prim_poly,p) is the same as the first syntax listed, except that A
is a root of the primitive polynomial for GF(pm) specified by prim_poly. prim_poly is a

2 Functions — Alphabetical List

2-644

polynomial character vector or a row vector that gives the coefficients of the degree-m
primitive polynomial in order of ascending powers.

Examples
The syntax gfminpol(k,m,p) is used in the sample code in “Characterization of
Polynomials”.

See Also
gfcosets | gfprimdf | gfroots

Introduced before R2006a

 gfminpol

2-645

gfmul
Multiply elements of Galois field

Syntax
c = gfmul(a,b,p)
c = gfmul(a,b,field)

Description

Note This function performs computations in GF(pm) where p is prime. To work in
GF(2m), apply the .* operator to Galois arrays. For details, see “Example: Multiplication”.

The gfmul function multiplies elements of a Galois field. (To multiply polynomials over a
Galois field, use gfconv instead.)

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b is between 0 and
p-1. p is a prime number. If a and b are matrices of the same size, the function treats each
element independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a prime number and
m is a positive integer. a and b represent elements of GF(pm) in exponential format
relative to some primitive element of GF(pm). field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. c is the exponential format of
the product, relative to the same primitive element. See “Representing Elements of Galois
Fields” for an explanation of these formats. If a and b are matrices of the same size, the
function treats each element independently.

Examples
“Arithmetic in Galois Fields” contains examples. Also, the code below shows that

A2 ⋅ A4 = A6

2 Functions — Alphabetical List

2-646

where A is a root of the primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
a = gfmul(2,4,field)

The output is

a =

 6

See Also
gfadd | gfdeconv | gfdiv | gfsub | gftuple

Introduced before R2006a

 gfmul

2-647

gfpretty
Polynomial in traditional format

Syntax
gfpretty(a)
gfpretty(a,st)
gfpretty(a,st,n)

Description
gfpretty(a) displays a polynomial in a traditional format, using X as the variable and
the entries of the row vector a as the coefficients in order of ascending powers. The
polynomial is displayed in order of ascending powers. Terms having a zero coefficient are
not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the content of st is
used as the variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that the content of st
is used as the variable instead of X, and each line of the display has width n instead of the
default value of 79.

Note For all syntaxes: If you do not use a fixed-width font, the spacing in the display
might not look correct.

Examples
Display statements about the elements of GF(81).

p = 3; m = 4;
ii = randi([1,p^m-2],1,1); % Random exponent for prim element
primpolys = gfprimfd(m,'all',p);
[rows, cols] = size(primpolys);

2 Functions — Alphabetical List

2-648

jj = randi([1,rows],1,1); % Random primitive polynomial

disp('If A is a root of the primitive polynomial')
gfpretty(primpolys(jj,:)) % Polynomial in X
disp('then the element')
gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii
disp('can also be expressed as')
gfpretty(gftuple(ii,m,p),'A') % Polynomial in A

Below is a sample of the output.

If A is a root of the primitive polynomial

 3 4
 2 + 2 X + X
then the element

 22
 A
can also be expressed as

 2 3
 2 + A + A

See Also
gfprimdf | gftuple

Introduced before R2006a

 gfpretty

2-649

gfprimck
Check whether polynomial over Galois field is primitive

Syntax
ck = gfprimck(a)
ck = gfprimck(a,p)

Description

Note This function performs computations in GF(pm), where p is prime. If you are
working in GF(2m), use the isprimitive function. For details, see Finding Primitive
Polynomials in “Primitive Polynomials and Element Representations”.

ck = gfprimck(a) checks whether the degree-m GF(2) polynomial a is a primitive
polynomial for GF(2m), where m = length(a) - 1. The output ck is as follows:

• -1 if a is not an irreducible polynomial
• 0 if a is irreducible but not a primitive polynomial for GF(pm)
• 1 if a is a primitive polynomial for GF(pm)

ck = gfprimck(a,p) checks whether the degree-m GF(P) polynomial a is a primitive
polynomial for GF(pm). p is a prime number.

a is either a polynomial character vector or a row vector representing the polynomial by
listing its coefficients in ascending order. For example, in GF(5), '4 + 3x + 2x^3' and
[4 3 0 2] are equivalent.

This function considers the zero polynomial to be “not irreducible” and considers all
polynomials of degree zero or one to be primitive.

2 Functions — Alphabetical List

2-650

Examples
“Characterization of Polynomials” contains examples.

Algorithms
An irreducible polynomial over GF(p) of degree at least 2 is primitive if and only if it does
not divide -1 + xk for any positive integer k smaller than pm-1.

References
[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital

Communications, New York, Plenum, 1981.

[2] Krogsgaard, K., and T., Karp, Fast Identification of Primitive Polynomials over Galois
Fields: Results from a Course Project, ICASSP 2005, Philadelphia, PA, 2004.

See Also
gfadd | gfminpol | gfprimdf | gfprimfd | gftuple

Introduced before R2006a

 gfprimck

2-651

gfprimdf
Provide default primitive polynomials for Galois field

Syntax
pol = gfprimdf(m)
pol = gfprimdf(m,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the primpoly function. For details, see Finding Primitive Polynomials in
“Primitive Polynomials and Element Representations”.

pol = gfprimdf(m) outputs the default primitive polynomial pol in GF(2m).

pol = gfprimdf(m,p) returns the row vector that gives the coefficients, in order of
ascending powers, of the default primitive polynomial for GF(pm). m is a positive integer
and p is a prime number.

Examples
The command below shows that 2 + x + x2 is the default primitive polynomial for GF(52).

pol = gfprimdf(2,5)
pol =

 2 1 1

The code below displays the default primitive polynomial for each of the fields GF(3m),
where m ranges between 3 and 5.

2 Functions — Alphabetical List

2-652

for m = 3:5
 gfpretty(gfprimdf(m,3))
end

The output is below.

 3
 1 + 2 X + X

 4
 2 + X + X

 5
 1 + 2 X + X

See Also
gfminpol | gfprimck | gfprimfd | gftuple

Introduced before R2006a

 gfprimdf

2-653

gfprimfd
Find primitive polynomials for Galois field

Syntax
pol = gfprimfd(m,opt,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the primpoly function. For details, see Finding Primitive Polynomials in
“Primitive Polynomials and Element Representations”.

• If m = 1, pol = [1 1].
• A polynomial is represented as a row containing the coefficients in order of ascending

powers.

pol = gfprimfd(m,opt,p) searches for one or more primitive polynomials for
GF(p^m), where p is a prime number and m is a positive integer. If m = 1, pol = [1 1]. If
m > 1, the output pol depends on the argument opt as shown in the table below. Each
polynomial is represented in pol as a row containing the coefficients in order of
ascending powers.

opt Significance of pol Format of pol
'min' One primitive polynomial for

GF(p^m) having the smallest
possible number of nonzero
terms

The row vector representing
the polynomial

'max' One primitive polynomial for
GF(p^m) having the greatest
possible number of nonzero
terms

The row vector representing
the polynomial

2 Functions — Alphabetical List

2-654

opt Significance of pol Format of pol
'all' All primitive polynomials for

GF(p^m)
A matrix, each row of which
represents one such
polynomial

A positive integer All primitive polynomials for
GF(p^m) that have opt
nonzero terms

A matrix, each row of which
represents one such
polynomial

Examples
The code below seeks primitive polynomials for GF(81) having various other properties.
Notice that fourterms is empty because no primitive polynomial for GF(81) has exactly
four nonzero terms. Also notice that fewterms represents a single polynomial having
three terms, while threeterms represents all of the three-term primitive polynomials for
GF(81).

p = 3; m = 4; % Work in GF(81).
fewterms = gfprimfd(m,'min',p)
threeterms = gfprimfd(m,3,p)
fourterms = gfprimfd(m,4,p)

The output is below.

fewterms =

 2 1 0 0 1

threeterms =

 2 1 0 0 1
 2 2 0 0 1
 2 0 0 1 1
 2 0 0 2 1

No primitive polynomial satisfies the given constraints.

fourterms =

 []

 gfprimfd

2-655

Algorithms
gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max', or omitted,
polynomials are constructed by converting decimal integers to base p. Based on the
decimal ordering, gfprimfd returns the first polynomial it finds that satisfies the
appropriate conditions.

See Also
gfminpol | gfprimck | gfprimdf | gftuple

Introduced before R2006a

2 Functions — Alphabetical List

2-656

gfrank
Compute rank of matrix over Galois field

Syntax
rk = gfrank(A,p)

Description

Note This function performs computations in GF(p) where p is prime. If you are working
in GF(2m), use the rank function with Galois arrays. For details, see “Computing Ranks”.

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where p is a prime
number.

Examples
In the code below, gfrank says that the matrix A has less than full rank. This conclusion
makes sense because the determinant of A is zero mod p.

A = [1 0 1;
 2 1 0;
 0 1 1];
p = 3;
det_a = det(A); % Ordinary determinant of A
detmodp = rem(det(A),p); % Determinant mod p
rankp = gfrank(A,p);
disp(['Determinant = ',num2str(det_a)])
disp(['Determinant mod p is ',num2str(detmodp)])
disp(['Rank over GF(p) is ',num2str(rankp)])

The output is below.

 gfrank

2-657

Determinant = 3
Determinant mod p is 0
Rank over GF(p) is 2

Algorithms
gfrank uses an algorithm similar to Gaussian elimination.

Introduced before R2006a

2 Functions — Alphabetical List

2-658

gfrepcov
Convert one binary polynomial representation to another

Syntax
polystandard = gfrepcov(poly2)

Description
Two logical ways to represent polynomials over GF(2) are listed below.

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

A_0 + A_1x + A_2x2 +⋯+ A_(m‐1)xm− 1

Each entry A_k is either one or zero.
2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

xA_0 + xA_1 + xA_2 +⋯+ xA_(m‐1)

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this toolbox, but there
are some cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to the first, for
polynomials of degree at least 2. poly2 and polystandard are row vectors. The entries
of poly2 are distinct integers, and at least one entry must exceed 1. Each entry of
polystandard is either 0 or 1.

Examples
The command below converts the representation format of the polynomial 1 + x2 + x5.

polystandard = gfrepcov([0 2 5])

 gfrepcov

2-659

polystandard =

 1 0 1 0 0 1

See Also
gfpretty

Introduced before R2006a

2 Functions — Alphabetical List

2-660

gfroots
Find roots of polynomial over prime Galois field

Syntax
rt = gfroots(f,m,p)
rt = gfroots(f,prim_poly,p)
[rt,rt_tuple] = gfroots(...)
[rt,rt_tuple,field] = gfroots(...)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the roots function with Galois arrays. For details, see “Roots of
Polynomials”.

For all syntaxes, f is a polynomial character vector or a row vector that gives the
coefficients, in order of ascending powers, of a degree-d polynomial.

Note gfroots lists each root exactly once, ignoring multiplicities of roots.

rt = gfroots(f,m,p) finds roots in GF(p^m) of the polynomial that f represents. rt is
a column vector each of whose entries is the exponential format of a root. The exponential
format is relative to a root of the default primitive polynomial for GF(p^m).

rt = gfroots(f,prim_poly,p) finds roots in GF(pm) of the polynomial that f
represents. rt is a column vector each of whose entries is the exponential format of a
root. The exponential format is relative to a root of the degree-m primitive polynomial for
GF(pm) that prim_poly represents.

[rt,rt_tuple] = gfroots(...) returns an additional matrix rt_tuple, whose kth
row is the polynomial format of the root rt(k). The polynomial and exponential formats
are both relative to the same primitive element.

 gfroots

2-661

[rt,rt_tuple,field] = gfroots(...) returns additional matrices rt_tuple and
field. rt_tuple is described in the preceding paragraph. field gives the list of
elements of the extension field. The list of elements, the polynomial format, and the
exponential format are all relative to the same primitive element.

Note For a description of the various formats that gfroots uses, see “Representing
Elements of Galois Fields”.

Examples
“Roots of Polynomials” contains a description and example of the use of gfroots.

The code below finds the polynomial format of the roots of the primitive polynomial
2 + x3 + x4 for GF(81). It then displays the roots in traditional form as polynomials in
alph. (The output is omitted here.) Because prim_poly is both the primitive polynomial
and the polynomial whose roots are sought, alph itself is a root.

p = 3; m = 4;
prim_poly = [2 0 0 1 1]; % A primitive polynomial for GF(81)
f = prim_poly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,prim_poly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)
 gfpretty(rt_tuple(ii,:),'alpha')
end

See Also
gfprimdf

Introduced before R2006a

2 Functions — Alphabetical List

2-662

gfsub
Subtract polynomials over Galois field

Syntax
c = gfsub(a,b,p)
c = gfsub(a,b,p,len)
c = gfsub(a,b,field)

Description

Note This function performs computations in GF(pm), where p is prime. To work in
GF(2m), apply the - operator to Galois arrays of equal size. For details, see “Example:
Addition and Subtraction”.

c = gfsub(a,b,p) calculates a minus b, where a and b represent polynomials over
GF(p) and p is a prime number. a, b, and c are row vectors that give the coefficients of
the corresponding polynomials in order of ascending powers. Each coefficient is between
0 and p-1. If a and b are matrices of the same size, the function treats each row
independently. Alternatively, a and b can be represented as polynomial character vectors.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above, except that it
returns a row vector of length len. The output c is a truncated or extended
representation of the answer. If the row vector corresponding to the answer has fewer
than len entries (including zeros), extra zeros are added at the end; if it has more than
len entries, entries from the end are removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are the exponential
format of two elements of GF(pm), relative to some primitive element of GF(pm). p is a
prime number and m is a positive integer. field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. c is the exponential format of
the answer, relative to the same primitive element. See “Representing Elements of Galois
Fields” for an explanation of these formats. If a and b are matrices of the same size, the
function treats each element independently.

 gfsub

2-663

Examples

Subtract Two GF Arrays

Calculate (2 + 3x + x2)− (4 + 2x + 3x2) over GF(5).

x = gfsub([2 3 1],[4 2 3],5)

x = 1×3

 3 1 3

Subtract the two polynomials and display the first two elements.

y = gfsub([2 3 1],[4 2 3],5,2)

y = 1×2

 3 1

For prime number p and exponent m, create a matrix listing all elements of GF(p^m)
given primitive polynomial 2 + 2x + x2.

p = 3;
m = 2;
primpoly = [2 2 1];
field = gftuple((-1:p^m-2)',primpoly,p);

Subtract A4 from A2. The result is A7.

g = gfsub(2,4,field)

g = 7

See Also
gfadd | gfconv | gfdeconv | gfdiv | gfmul | gftuple

2 Functions — Alphabetical List

2-664

Introduced before R2006a

 gfsub

2-665

gftable
Generate file to accelerate Galois field computations

Syntax
gftable(m,prim_poly);

Description
gftable(m,prim_poly) generates a file that can help accelerate computations in the
field GF(2^m) as described by the nondefault primitive polynomial prim_poly, which can
be either a polynomial character vector or an integer. prim_poly represents a primitive
polynomial for GF(2^m), where 1 < m < 16, using the format described in “Specifying the
Primitive Polynomial”. The function places the file, called userGftable.mat, in your
current working folder. If necessary, the function overwrites any writable existing version
of the file.

Note If prim_poly is the default primitive polynomial for GF(2^m) listed in the table on
the gf reference page, this function has no effect. A MAT-file in your MATLAB installation
already includes information that facilitates computations with respect to the default
primitive polynomial.

Examples
In the example below, you expect t3 to be similar to t1 and to be significantly smaller
than t2, assuming that you do not already have a userGftable.mat file that includes
the (m, prim_poly) pair (8, 501). Notice that before executing the gftable command,
MATLAB displays a warning and that after executing gftable, there is no warning. By
executing the gftable command you save the GF table for faster calculations.

% Sample code to check how much gftable improves speed.
tic; a = gf(repmat([0:2^8-1],1000,1),8); b = a.^100; t1 = toc;
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t2 = toc;

2 Functions — Alphabetical List

2-666

gftable(8,501); % Include this primitive polynomial in the file.
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t3 = toc;

See Also
gf

Topics
“Speed and Nondefault Primitive Polynomials”

Introduced before R2006a

 gftable

2-667

gftrunc
Minimize length of polynomial representation

Syntax
c = gftrunc(a)

Description
c = gftrunc(a) truncates a row vector, a, that gives the coefficients of a GF(p)
polynomial in order of ascending powers. If a(k) = 0 whenever k > d + 1, the polynomial
has degree d. The row vector c omits these high-order zeros and thus has length d + 1.

Examples
In the code below, zeros are removed from the end, but not from the beginning or middle,
of the row-vector representation of x2 + 2x3 + 3x4 + 4x7 + 5x8.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])
c =

 0 0 1 2 3 0 0 4 5

See Also
gfadd | gfconv | gfdeconv | gfsub | gftuple

Introduced before R2006a

2 Functions — Alphabetical List

2-668

gftuple
Simplify or convert Galois field element formatting

Syntax
tp = gftuple(a,m)
tp = gftuple(a,prim_poly)
tp = gftuple(a,m,p)
tp = gftuple(a,prim_poly,p)
tp = gftuple(a,prim_poly,p,prim_ck)
[tp,expform] = gftuple(...)

Description

Note This function performs computations in GF(pm), where p is prime. To perform
equivalent computations in GF(2m), apply the .^ operator and the log function to Galois
arrays. For more information, see “Example: Exponentiation” and “Example: Elementwise
Logarithm”.

For All Syntaxes
gftuple serves to simplify the polynomial or exponential format of Galois field elements,
or to convert from one format to another. For an explanation of the formats that gftuple
uses, see “Representing Elements of Galois Fields”.

In this discussion, the format of an element of GF(pm) is called “simplest” if all exponents
of the primitive element are

• Between 0 and m-1 for the polynomial format
• Either -Inf, or between 0 and pm-2, for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element of a Galois field.
The format of a determines how MATLAB interprets it:

 gftuple

2-669

• If a is a column of integers, MATLAB interprets each row as an exponential format of
an element. Negative integers are equivalent to -Inf in that they all represent the
zero element of the field.

• If a has more than one column, MATLAB interprets each row as a polynomial format of
an element. (Each entry of a must be an integer between 0 and p-1.)

The exponential or polynomial formats mentioned above are all relative to a primitive
element specified by the second input argument. The second argument is described
below.

For Specific Syntaxes
tp = gftuple(a,m) returns the simplest polynomial format of the elements that a
represents, where the kth row of tp corresponds to the kth row of a. The formats are
relative to a root of the default primitive polynomial for GF(2^m), where m is a positive
integer.

tp = gftuple(a,prim_poly) is the same as the syntax above, except that prim_poly
is a polynomial character vector or a row vector that lists the coefficients of a degree m
primitive polynomial for GF(2^m) in order of ascending exponents.

tp = gftuple(a,m,p) is the same as tp = gftuple(a,m) except that 2 is replaced
by a prime number p.

tp = gftuple(a,prim_poly,p) is the same as tp = gftuple(a,prim_poly)
except that 2 is replaced by a prime number p.

tp = gftuple(a,prim_poly,p,prim_ck) is the same as tp =
gftuple(a,prim_poly,p) except that gftuple checks whether prim_poly
represents a polynomial that is indeed primitive. If not, then gftuple generates an error
and tp is not returned. The input argument prim_ck can be any number or character
vector; only its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix expform. The kth row
of expform is the simplest exponential format of the element that the kth row of a
represents. All other features are as described in earlier parts of this “Description”
section, depending on the input arguments.

2 Functions — Alphabetical List

2-670

Examples
• “List of All Elements of a Galois Field” (end of section)
• “Converting to Simplest Polynomial Format”

As another example, the gftuple command below generates a list of elements of
GF(p^m), arranged relative to a root of the default primitive polynomial. Some functions
in this toolbox use such a list as an input argument.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of the input matrix.
In the first command, a column vector is treated as a sequence of elements expressed in
exponential format. In the second command, a row vector is treated as a single element
expressed in polynomial format.

tp1 = gftuple([0; 1],3,3)
tp2 = gftuple([0, 0, 0, 1],3,3)

The output is below.

tp1 =

 1 0 0
 0 1 0

tp2 =

 2 1 0

The outputs reflect that, according to the default primitive polynomial for GF(33), the
relations below are true.

α0 = 1 + 0α + 0α2

α1 = 0 + 1α + 0α2

0 + 0α + 0α2 + α3 = 2 + α + 0α2

 gftuple

2-671

Algorithms
gftuple uses recursive callbacks to determine the exponential format.

See Also
gfadd | gfconv | gfdeconv | gfdiv | gfmul | gfprimdf

Introduced before R2006a

2 Functions — Alphabetical List

2-672

gfweight
Calculate minimum distance of linear block code

Syntax
wt = gfweight(genmat)
wt = gfweight(genmat,'gen')
wt = gfweight(parmat,'par')
wt = gfweight(genpoly,n)

Description
The minimum distance, or minimum weight, of a linear block code is defined as the
smallest positive number of nonzero entries in any n-tuple that is a codeword.

wt = gfweight(genmat) returns the minimum distance of the linear block code whose
generator matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the linear block
code whose generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the linear block
code whose parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the cyclic code whose
codeword length is n and whose generator polynomial is represented by genpoly.
genpoly is a polynomial character vector or a row vector that gives the coefficients of
the generator polynomial in order of ascending powers.

Examples

Calculate Minimum Distance of Linear Block Code

Calculate the minimum distance of a cyclic code using several methods.

 gfweight

2-673

Create the generate polynomial for a (7,4) cyclic code.

n = 7;
genpoly = cyclpoly(n,4);

Calculate the minimum distance for the cyclic code using:

1 Generator polynomial genmat
2 Parity check matrix parmat
3 Generator polynomial genpoly
4 Generator polynomial specified as a character vector

[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen') gfweight(parmat,'par'),...
 gfweight(genpoly,n) gfweight('1+x2+x3',n)]

wts = 1×4

 3 3 3 3

See Also
bchgenpoly | cyclpoly | hammgen

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-674

gray2bin
Convert Gray-encoded positive integers to corresponding Gray-decoded integers

Syntax
y = gray2bin(x,modulation,M)
[y,map] = gray2bin(x,modulation,M)

Description
y = gray2bin(x,modulation,M) generates a Gray-decoded output vector or matrix y
with the same dimensions as its input parameter x. x can be a scalar, vector, matrix, or 3-
D array. modulation is the modulation type and must be 'qam', 'pam', 'fsk', 'dpsk',
or 'psk'. M is the modulation order that can be an integer power of 2.

[y,map] = gray2bin(x,modulation,M) generates a Gray-decoded output y with its
respective Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map output gives the
Gray encoded labels for the corresponding modulation. See the example below.

Note If you are converting binary coded data to Gray-coded data and modulating the
result immediately afterwards, you should use the appropriate modulation object or
function with the'Gray' option, instead of BIN2GRAY.

Examples

Binary to Gray Symbol Mapping

This example shows how to use the bin2gray and gray2bin functions to map integer
inputs from a natural binary order symbol mapping to a Gray coded signal constellation
and vice versa, assuming 16-QAM modulation. In addition, a visual representation of the
difference between Gray and binary coded symbol mappings is shown.

 gray2bin

2-675

Create a complete vector of 16-QAM integers.

M= 16;
x = (0:M-1)';

Convert the input vector from a natural binary order to a Gray encoded vector using
bin2gray.

[y,mapy] = bin2gray(x,'qam',M);

Convert the Gray encoded symbols, y, back to a binary ordering using gray2bin.

z = gray2bin(y,'qam',M);

Verify that the original data, x, and the final output vector, z are identical.

isequal(x,z)

ans = logical
 1

To create a constellation plot showing the different symbol mappings, use the qammod
function to find the complex symbol values.

sym = qammod(x,M);

Plot the constellation symbols and label them using the Gray, y, and binary, z, output
vectors. The binary representation of the Gray coded symbols is shown in black while the
binary representation of the naturally ordered symbols is shown in red. Set the axes
scaling so that all points are displayed.

scatterplot(sym,1,0,'b*');
for k = 1:16
 text(real(sym(k))-0.3,imag(sym(k))+0.3,...
 dec2base(mapy(k),2,4));

 text(real(sym(k))-0.3,imag(sym(k))-0.3,...
 dec2base(z(k),2,4),'Color',[1 0 0]);
end
axis([-4 4 -4 4])

2 Functions — Alphabetical List

2-676

Observe that only a single bit differs between adjacent constellation points when using
Gray coding.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 gray2bin

2-677

See Also
bin2gray

Introduced before R2006a

2 Functions — Alphabetical List

2-678

gsmCheckTimeMask
Inspect GSM burst against time mask

Syntax
gsmCheckTimeMask(gsmCfg)
gsmCheckTimeMask(gsmCfg,tn)

pf = gsmCheckTimeMask(gsmCfg)
pf = gsmCheckTimeMask(gsmCfg,tn)

Description
gsmCheckTimeMask(gsmCfg) plots the burst for the first time slot and the upper and
lower time masks for the input GSM configuration object. The RiseTime, RiseDelay,
FallTime, and FallDelay properties of the configuration object define the power level
versus time characteristics. For more information, see “Time Mask” on page 2-697.

gsmCheckTimeMask(gsmCfg,tn) plots the burst for the specified time slot, tn.

pf = gsmCheckTimeMask(gsmCfg) returns a pass or fail result for the specified
configuration object indicating compliance of the burst in the first time slot with the time
mask defined in the GSM standard. For more information, see “Time Mask” on page 2-
697.

pf = gsmCheckTimeMask(gsmCfg,tn) returns a pass or fail result indicating
compliance of the burst in the specified time slot, tn.

Examples

 gsmCheckTimeMask

2-679

Check GSM Burst Against Time Mask

Create a GSM uplink TDMA frame configuration object with default settings. The GSM
TDMA frame has eight time slots. Check the burst in the first time slot against the time
mask specified by the GSM standard.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig;

Use the gsmCheckTimeMask function to view the time mask and verify that the
configured rise and fall characteristics of the burst comply with the time mask specified
in the GSM standard. Plot the GSM burst and time mask. When no time slot number is
provided, the gsmCheckTimeMask function shows the first time slot, TN=0.

pf = gsmCheckTimeMask(cfggsmul);
if pf
 disp('Time mask test passed.')
else
 disp('Time mask test failed.')
end

Time mask test passed.

gsmCheckTimeMask(cfggsmul);

2 Functions — Alphabetical List

2-680

Adjust the rise time of the GSM uplink TDMA frame configuration object, specifying a
value that causes a time mask failure.

cfggsmul.RiseTime = 5

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 5
 RiseDelay: 0

 gsmCheckTimeMask

2-681

 FallTime: 2
 FallDelay: 0

Use the gsmCheckTimeMask function to inspect the time mask of cfggsmul. The pass or
fail result shows that the cfggsmul configuration now fails the time mask and the plot
shows the upper time mask fails.

pf = gsmCheckTimeMask(cfggsmul);
if pf
 disp('Time mask test passed.')
else
 disp('Time mask test failed.')
end

Time mask test failed.

gsmCheckTimeMask(cfggsmul);

2 Functions — Alphabetical List

2-682

Check GSM Burst in Specified Time Slot Against Time Mask

Create a GSM uplink TDMA frame configuration object with default settings. The GSM
TDMA frame has eight time slots. Check the burst in the specified time slot against the
time mask specified by the GSM standard.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmul = gsmDownlinkConfig;

 gsmCheckTimeMask

2-683

Use the gsmCheckTimeMask function to view the time mask and verify that the
configured rise and fall characteristics of the burst in the specified time slot comply with
the time mask specified by the GSM standard. Plot the GSM burst and time mask.

tn = 6; % Time slot number 6
pf = gsmCheckTimeMask(cfggsmul,tn);
if pf
 disp('Time mask test passed.')
else
 disp('Time mask test failed.')
end

Time mask test passed.

gsmCheckTimeMask(cfggsmul,tn);

2 Functions — Alphabetical List

2-684

Adjust the fall delay of the GSM downlink TDMA frame configuration object, specifying a
value that causes a time mask failure.

cfggsmul.FallDelay = 4

cfggsmul =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 4

Use the gsmCheckTimeMask function to inspect the time mask of cfggsmul. The pass or
fail result shows that the cfggsmul configuration now fails the time mask and the plot
shows the upper time mask fails.

pf = gsmCheckTimeMask(cfggsmul,tn);
if pf
 disp('Time mask test passed.')
else
 disp('Time mask test failed.')
end

Time mask test failed.

gsmCheckTimeMask(cfggsmul,tn);

 gsmCheckTimeMask

2-685

Check Time Mask for GSM Bursts

Create GSM downlink and uplink TDMA frame configuration objects that use the various
burst types available.

• Normal bursts and bursts with no data are valid for downlink and uplink frames.
• Frequency correction, synchronization, and dummy bursts are valid in downlink

frames only.
• Access bursts are valid in uplink frames only.

2 Functions — Alphabetical List

2-686

View time masks for the different burst types against the time mask specified by the GSM
standard for the downlink and uplink frames.

Create a GSM downlink TDMA frame configuration object that configures the times slot
bursts as [NB FB SB Dummy Off Off Off Off].

cfggsmdl = gsmDownlinkConfig('BurstType',["NB" "FB" "SB" "Dummy" "Off" "Off" "Off" "Off"])

cfggsmdl =
 gsmDownlinkConfig with properties:

 BurstType: [NB FB SB Dummy Off Off Off Off]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Use the gsmCheckTimeMask function to view the time mask for the different time slot
burst types. For downlink GSM TDMA frames the same time mask limits applies for all
burst types.

for tn = 0:4
 [dlbt,dlbtVal] = enumeration(cfggsmdl.BurstType);
 dlBurstInfo = ['Downlink (TN=',num2str(tn),'), BurstType: ',dlbtVal{tn+1}];
 disp(dlBurstInfo)
 gsmCheckTimeMask(cfggsmdl,tn);
end

Downlink (TN=0), BurstType: NB

 gsmCheckTimeMask

2-687

Downlink (TN=1), BurstType: FB

2 Functions — Alphabetical List

2-688

Downlink (TN=2), BurstType: SB

 gsmCheckTimeMask

2-689

Downlink (TN=3), BurstType: Dummy

2 Functions — Alphabetical List

2-690

Downlink (TN=4), BurstType: Off

 gsmCheckTimeMask

2-691

Create a GSM uplink TDMA frame configuration object that configures the times slot
bursts as [NB AB Off Off Off Off Off Off].

cfggsmul = gsmUplinkConfig('BurstType',["NB" "AB" "Off" "Off" "Off" "Off" "Off" "Off"])

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB AB Off Off Off Off Off Off]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0

2 Functions — Alphabetical List

2-692

 FallTime: 2
 FallDelay: 0

Use the gsmCheckTimeMask function to view the time masks for the different time slot
burst types. For uplink GSM TDMA frames the access burst has a shorter time mask than
the normal burst or no data burst.

for tn = 0:2
 [ulbt,ulbtVal] = enumeration(cfggsmul.BurstType);
 ulBurstInfo = ['Uplink (TN=',num2str(tn),'), BurstType: ',ulbtVal{tn+1}];
 disp(ulBurstInfo)
 gsmCheckTimeMask(cfggsmul,tn);
end

Uplink (TN=0), BurstType: NB

 gsmCheckTimeMask

2-693

Uplink (TN=1), BurstType: AB

2 Functions — Alphabetical List

2-694

Uplink (TN=2), BurstType: Off

 gsmCheckTimeMask

2-695

Input Arguments
gsmCfg — GSM configuration
gsmUplinkConfig object | gsmDownlinkConfig object

GSM configuration, specified as a gsmUplinkConfig or gsmDownlinkConfig object.

tn — Time slot number
0 (default) | integer in the range [0, 7]

Time slot number, specified as an integer in the range [0, 7].

2 Functions — Alphabetical List

2-696

Data Types: double

Output Arguments
pf — Pass or fail result
0 | 1

Pass or fail result, returned as:

• 1 if the time mask passes
• 0 if the time mask fails

For more information, see “Time Mask” on page 2-697.

More About

Time Mask
The time mask defines the allowable transmitted power level versus time for time slot
bursts in a GSM TDMA frame. This figure, from Annex B of TS 45.005, shows the upper
and lower power limits for the time mask of a burst.

 gsmCheckTimeMask

2-697

References
[1] 3GPP TS 45.005. "GSM/EDGE Radio transmission and reception." 3rd Generation

Partnership Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Outputting a plot is not supported for code generation.

2 Functions — Alphabetical List

2-698

See Also
Objects
gsmDownlinkConfig | gsmUplinkConfig

Functions
gsmFrame | gsmInfo

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”

Introduced in R2019b

 gsmCheckTimeMask

2-699

gsmFrame
Create GSM waveform

Syntax
gsmWaveform = gsmFrame(gsmCfg)
gsmWaveform = gsmFrame(gsmCfg,numFrames)

Description
gsmWaveform = gsmFrame(gsmCfg) creates a GSM waveform with one TDMA frame
based on the input GSM configuration object. The encrypted bit field of the transmission
data bursts is filled with random data. For more information, see “GSM Frames, Time
Slots, and Bursts” on page 2-708.

gsmWaveform = gsmFrame(gsmCfg,numFrames) creates a GSM waveform, with
numFrames identically configured TDMA frames. In each frame, the encrypted bit field of
the transmission data bursts is filled with random data. For more information, see “GSM
Frames, Time Slots, and Bursts” on page 2-708.

Examples

Create GSM Uplink Waveform

Create a GSM uplink TDMA frame configuration object with default settings, and then
create a GSM waveform containing one TDMA frame. GSM TDMA frames have eight time
slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the
GSM waveform.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig

cfggsmul =
 gsmUplinkConfig with properties:

2 Functions — Alphabetical List

2-700

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform.

waveform = gsmFrame(cfggsmul);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on

 gsmFrame

2-701

title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

Create GSM Uplink Waveform Containing Five TDMA Frames

Create a GSM downlink TDMA frame configuration object with default settings, and then
create a GSM waveform containing five TDMA frames. GSM TDMA frames have eight
time slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms.
Plot the GSM waveform.

2 Functions — Alphabetical List

2-702

Create a GSM uplink TDMA frame configuration object, specifying 3 dB of attenuation in
the last time slot to help identify the end of each frame.

cfggsmul = gsmUplinkConfig('Attenuation',[0 0 0 0 0 0 0 3])

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 3]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the
gsmInfo function. Assign the frame length in samples to a variable, spf, for use in
computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

spf = wfInfo.FrameLengthInSamples;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform. The last time slot of each frame is 3 dB less than the other time slots in that
frame.

numFrames = 5;
waveform = gsmFrame(cfggsmul,numFrames);

t = 8*(0:length(waveform)-1)/spf;

 gsmFrame

2-703

numTS = 8*numFrames;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 numTS 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time Slots')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time Slots')
ylabel('Phase (rad)')

2 Functions — Alphabetical List

2-704

Create GSM Downlink Waveform

Create a GSM downlink TDMA frame configuration object with default settings, and then
create a GSM waveform containing one TDMA frame. The GSM TDMA frame has eight
time slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms.
Plot the GSM waveform.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmdl = gsmDownlinkConfig

cfggsmdl =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

 gsmFrame

2-705

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform.

waveform = gsmFrame(cfggsmdl);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

2 Functions — Alphabetical List

2-706

Input Arguments
gsmCfg — GSM configuration
gsmUplinkConfig object | gsmDownlinkConfig object

GSM configuration, specified as a gsmUplinkConfig or gsmDownlinkConfig object.

numFrames — Number of TDMA frames
16 (default) | positive integer

Number of TDMA frames in the waveform, specified as a positive integer.

 gsmFrame

2-707

Data Types: double

Output Arguments
gsmWaveform — Output time-domain waveform
complex-valued column vector

Output time-domain waveform, returned as a complex-valued column vector of length Ns,
where Ns represents the number of time-domain samples. The function generates this
waveform in the form of complex in-phase quadrature (IQ) samples.

More About

GSM Frames, Time Slots, and Bursts
In GSM, transmissions consist of TDMA frames. Each GSM TDMA frame consists of eight
time slots. The transmission data content of a time slot is called a burst. As described in
Section 5.2 of 3GPP TS 45.011, a GSM time slot has a 156.25-symbol duration when using
the normal symbol period, which is a time interval of 15/26 ms or about 576.9
microseconds. A guard period of 8.25 symbols or about 30.46 microseconds separates
each time slot. The GSM standards describes a symbol as one bit period. Since GSM uses
GMSK modulation, there is one bit per bit period. The transmission timing of a burst
within a time slot is defined in terms of the bit number (BN). The BN refers to a particular
bit period within a time slot. The bit with the lowest BN is transmitted first. BN0 is the
first bit period, and BN156 is the last quarter-bit period.

This image from 3GPP TS 45.011 shows the relationship between different frame types
and the relationship between different burst types.

2 Functions — Alphabetical List

2-708

This table shows the supported burst types and their characteristics.

Burst Type Description Link Direction Useful Duration
NB Normal burst Uplink/Downlink 147
FB Frequency correction

burst
Downlink 147

SB Synchronization
burst

Downlink 147

Dummy Dummy burst Downlink 147
AB Access burst Uplink 87
Off No burst sent Uplink/Downlink 0

Useful duration, described in Section 5.2.2 of 3GPP TS 45.002, is a characteristic of GSM
bursts. The useful duration, or useful part, of a burst is defined as beginning halfway
through BN0 and ending half a bit period before the start of the guard period. The guard
period is the period between bursts in successive time slots. This figure, from Section 2.2

 gsmFrame

2-709

of 3GPP TS 45.004, shows the leading and trailing ½ bit difference between the useful
and active parts of the burst.

For more information, see “GSM TDMA Frame Parameterization for Waveform
Generation”.

Training Sequence Code (TSC)
Normal bursts include a training sequence bits field assigned a bit pattern based on the
specified TSC. For GSM, you can select one of these eight training sequences for normal
burst type time slots.

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62,
…, BN86)

0 (0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,
1,1,1)

1 (0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,
1,1,1)

2 (0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,
1,1,0)

2 Functions — Alphabetical List

2-710

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62,
…, BN86)

3 (0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,
1,1,0)

4 (0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,
0,1,1)

5 (0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,
0,1,0)

6 (1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,
1,1,1)

7 (1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,
1,0,0)

For more information, see Section 5.2.3 in 3GPP TS 45.002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gsmDownlinkConfig | gsmUplinkConfig

Functions
gsmCheckTimeMask | gsmInfo

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”

Introduced in R2019b

 gsmFrame

2-711

gsmInfo
View GSM waveform information

Syntax
infostruct= gsmInfo(gsmCfg)

Description
infostruct= gsmInfo(gsmCfg) returns a structure containing characteristic
waveform information for the input GSM configuration object.

Examples

View GSM Configuration Object Information

View information from downlink and uplink GSM configuration objects.

Create a GSM downlink configuration object with default settings and use gsmInfo to
view the waveform information structure.

cfgDL = gsmDownlinkConfig;
infostructDL = gsmInfo(cfgDL)

infostructDL = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

2 Functions — Alphabetical List

2-712

Create a GSM uplink configuration object with default settings and use gsmInfo to view
the waveform information structure.

cfgUL = gsmUplinkConfig;
infostructUL = gsmInfo(cfgUL)

infostructUL = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Create GSM Uplink Waveform Containing Five TDMA Frames

Create a GSM downlink TDMA frame configuration object with default settings, and then
create a GSM waveform containing five TDMA frames. GSM TDMA frames have eight
time slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms.
Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object, specifying 3 dB of attenuation in
the last time slot to help identify the end of each frame.

cfggsmul = gsmUplinkConfig('Attenuation',[0 0 0 0 0 0 0 3])

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 3]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

 gsmInfo

2-713

Display information about the configured gsmUplinkConfig object by using the
gsmInfo function. Assign the frame length in samples to a variable, spf, for use in
computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

spf = wfInfo.FrameLengthInSamples;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform. The last time slot of each frame is 3 dB less than the other time slots in that
frame.

numFrames = 5;
waveform = gsmFrame(cfggsmul,numFrames);

t = 8*(0:length(waveform)-1)/spf;

numTS = 8*numFrames;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 numTS 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time Slots')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time Slots')
ylabel('Phase (rad)')

2 Functions — Alphabetical List

2-714

Input Arguments
gsmCfg — GSM configuration
gsmUplinkConfig object | gsmDownlinkConfig object

GSM configuration, specified as a gsmUplinkConfig or gsmDownlinkConfig object.

 gsmInfo

2-715

Output Arguments
infostruct — Structure containing object information
struct

Structure containing these fields with information about the characteristic GSM
waveform based on the input configuration object.

SymbolRate — GSM symbol rate
positive integer

GSM symbol rate in symbols per second, returned as a positive integer.

SampleRate — GSM sample rate
positive integer

GSM sample rate in samples per second, returned as a positive integer.

BandwidthTimeProduct — Product of bandwidth and symbol time of Gaussian
pulse
positive integer

Product of bandwidth and symbol time of Gaussian pulse for the GMSK modulator,
returned as a positive integer.

BurstLengthInSymbols — GSM burst length
positive scalar

GSM burst length in symbols, returned as a positive scalar.

NumBurstsPerFrame — Number of bursts in GSM TDMA frame
positive integer

Number of bursts in a GSM TDMA frame, returned as a positive integer.

BurstLengthInSamples — GSM burst length
positive integer

GSM burst length in samples, returned as a positive integer.

FrameLengthInSamples — GSM frame length
positive integer

2 Functions — Alphabetical List

2-716

GSM frame length in samples, returned as a positive integer.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gsmDownlinkConfig | gsmUplinkConfig

Functions
gsmCheckTimeMask | gsmFrame

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”

Introduced in R2019b

 gsmInfo

2-717

hammgen
Produce parity-check and generator matrices for Hamming code

Syntax
h = hammgen(m)
h = hammgen(m,pol)
[h,g] = hammgen(...)
[h,g,n,k] = hammgen(...)

Description
For all syntaxes, the codeword length is n. n has the form 2m – 1 for some positive integer
m greater than or equal to 2. The message length, k, has the form n – m.

h = hammgen(m) produces an m-by-n parity-check matrix for a Hamming code having
codeword length n = 2^m-1. The input m is a positive integer greater than or equal to 2.
The message length of the code is n – m. The binary primitive polynomial used to produce
the Hamming code is the default primitive polynomial for GF(2^m), represented by
gfprimdf(m).

h = hammgen(m,pol) produces an m-by-n parity-check matrix for a Hamming code
having codeword length n = 2^m-1. The input m is a positive integer greater than or
equal to 2. The message length of the code is n – m. pol is a row vector that gives the
coefficients, in order of ascending powers, of the binary primitive polynomial for GF(2^m)
that is used to produce the Hamming code. Alternatively, you can specify pol as a
polynomial character vector. hammgen produces an error if pol represents a polynomial
that is not, in fact, primitive.

[h,g] = hammgen(...) is the same as h = hammgen(...) except that it also
produces the k-by-n generator matrix g that corresponds to the parity-check matrix h. k,
the message length, equals n-m, or 2^m-1-m.

[h,g,n,k] = hammgen(...) is the same as [h,g] = hammgen(...) except that it
also returns the codeword length n and the message length k.

2 Functions — Alphabetical List

2-718

Note If your value of m is less than 25 and if your primitive polynomial is the default
primitive polynomial for GF(2^m), the syntax hammgen(m) is likely to be faster than the
syntax hammgen(m,pol).

Examples

Generate Hamming Code Parity Check Matrices

Generate Hamming code matrices given codeword length.

Generate the parity check matrix h, the generator matrix g, the codeword length n, and
the message length k for the Hamming code with m = 3.

[h,g,n,k] = hammgen(3)

h = 3×7

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

g = 4×7

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

n = 7

k = 4

Generate the parity check matrices for m = 4 for the primitive polynomials D4 + D + 1
and D4 + D3 + 1.

h1 = hammgen(4,'D^4+D+1');
h2 = hammgen(4,'D^4+D^3+1');

Remove the embedded 4-by-4 identity matrices (leftmost columns of both h1 and h2) and
verify that the two matrices differ.

 hammgen

2-719

h1(:,5:end)

ans = 4×11

 1 0 0 1 1 0 1 0 1 1 1
 1 1 0 1 0 1 1 1 1 0 0
 0 1 1 0 1 0 1 1 1 1 0
 0 0 1 1 0 1 0 1 1 1 1

h2(:,5:end)

ans = 4×11

 1 1 1 1 0 1 0 1 1 0 0
 0 1 1 1 1 0 1 0 1 1 0
 0 0 1 1 1 1 0 1 0 1 1
 1 1 1 0 1 0 1 1 0 0 1

Algorithms
Unlike gftuple, which processes one m-tuple at a time, hammgen generates the entire
sequence from 0 to 2^m-1. The computation algorithm uses all previously computed
values to produce the computation result.

See Also
decode | encode | gen2par

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-720

hank2sys
Convert Hankel matrix to linear system model

Syntax
[num,den] = hank2sys(h,ini,tol)
[num,den,sv] = hank2sys(h,ini,tol)
[a,b,c,d] = hank2sys(h,ini,tol)
[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description
[num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a linear system
transfer function with numerator num and denominator den. The vectors num and den list
the coefficients of their respective polynomials in ascending order of powers of z-1. The
argument ini is the system impulse at time zero. If tol > 1, tol is the order of the
conversion. If tol < 1, tol is the tolerance in selecting the conversion order based on
the singular values. If you omit tol, its default value is 0.01. This conversion uses the
singular value decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists the singular
values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to a corresponding
linear system state-space model. a, b, c, and d are matrices. The input parameters are the
same as in the first syntax above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax above, except that
sv is a vector that lists the singular values of h.

Examples
h = hankel([1 0 1]);
[num,den,sv] = hank2sys(h,0,.01)

 hank2sys

2-721

The output is

num =

 0 1.0000 0.0000 1.0000

den =

 1.0000 0.0000 0.0000 0.0000

sv =

 1.6180
 1.0000
 0.6180

See Also
hankel

Introduced before R2006a

2 Functions — Alphabetical List

2-722

heldeintrlv
Restore ordering of symbols permuted using helintrlv

Syntax
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp)
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state)
deintrlved = heldeintrlv(data,col,ngrp,stp,init_state)

Description
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp) restores the ordering
of symbols in data by placing them in an array row by row and then selecting groups in a
helical fashion to place in the output, deintrlved. data must have col*ngrp elements.
If data is a matrix with multiple rows and columns, it must have col*ngrp rows, and the
function processes the columns independently. state is a structure that holds the final
state of the array. state.value stores input symbols that remain in the col columns of
the array and do not appear in the output.

The function uses the array internally for its computations. The array has unlimited rows
indexed by 1, 2, 3,..., and col columns. The function initializes the top of the array with
zeros. It then places col*ngrp symbols from the input into the next ngrp rows of the
array. The function places symbols from the array in the output, intrlved, placing ngrp
symbols at a time; the kth group of ngrp symbols comes from the kth column of the array,
starting from row 1+(k-1)*stp. Some output symbols are default values of 0 rather than
input symbols; similarly, some input symbols are left in the array and do not appear in the
output.

[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state)
initializes the array with the symbols contained in init_state.value instead of zeros.
The structure init_state is typically the state output from a previous call to this same
function, and is unrelated to the corresponding interleaver. In this syntax, some output
symbols are default values of 0, some are input symbols from data, and some are
initialization values from init_state.value.

 heldeintrlv

2-723

deintrlved = heldeintrlv(data,col,ngrp,stp,init_state) is the same as the
syntax above, except that it does not record the deinterleaver's final state. This syntax is
appropriate for the last in a series of calls to this function. However, if you plan to call this
function again to continue the deinterleaving process, the syntax above is more
appropriate.

Using an Interleaver-Deinterleaver Pair
To use this function as an inverse of the helintrlv function, use the same col, ngrp,
and stp inputs in both functions. In that case, the two functions are inverses in the sense
that applying helintrlv followed by heldeintrlv leaves data unchanged, after you
take their combined delay of col*ngrp*ceil(stp*(col-1)/ngrp) into account. To
learn more about delays of convolutional interleavers, see “Delays of Convolutional
Interleavers”.

Note Because the delay is an integer multiple of the number of symbols in data, you
must use heldeintrlv at least twice (possibly more times, depending on the actual
delay value) before the function returns results that represent more than just the delay.

Examples
Recover interleaved data, taking into account the delay of the interleaver-deinterleaver
pair.

col = 4; ngrp = 3; stp = 2; % Helical interleaver parameters
% Compute the delay of interleaver-deinterleaver pair.
delayval = col * ngrp * ceil(stp * (col-1)/ngrp);

len = col*ngrp; % Process this many symbols at one time.
data = randi([0 9],len,1); % Random symbols
data_padded = [data; zeros(delayval,1)]; % Pad with zeros.

% Interleave zero-padded data.
[i1,istate] = helintrlv(data_padded(1:len),col,ngrp,stp);
[i2,istate] = helintrlv(data_padded(len+1:2*len),col,ngrp, ...
 stp,istate);
i3 = helintrlv(data_padded(2*len+1:end),col,ngrp,stp,istate);

% Deinterleave.

2 Functions — Alphabetical List

2-724

[d1,dstate] = heldeintrlv(i1,col,ngrp,stp);
[d2,dstate] = heldeintrlv(i2,col,ngrp,stp,dstate);
d3 = heldeintrlv(i3,col,ngrp,stp,dstate);

% Check the results.
d0 = [d1; d2; d3]; % All the deinterleaved data
d0_trunc = d0(delayval+1:end); % Remove the delay.
ser = symerr(data,d0_trunc)

The output below shows that no symbol errors occurred.

ser =

 0

See Also
helintrlv

Topics
“Interleaving”

Introduced before R2006a

 heldeintrlv

2-725

helintrlv
Permute symbols using helical array

Syntax
intrlved = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)

Description
intrlved = helintrlv(data,col,ngrp,stp) permutes the symbols in data by
placing them in an unlimited-row array in helical fashion and then placing rows of the
array in the output, intrlved. data must have col*ngrp elements. If data is a matrix
with multiple rows and columns, it must have col*ngrp rows, and the function processes
the columns independently.

The function uses the array internally for its computations. The array has unlimited rows
indexed by 1, 2, 3,..., and col columns. The function partitions col*ngrp symbols from
the input into consecutive groups of ngrp symbols. The function places the kth group in
the array along column k, starting from row 1+(k-1)*stp. Positions in the array that do
not contain input symbols have default values of 0. The function places col*ngrp
symbols from the array in the output, intrlved, by reading the first ngrp rows
sequentially. Some output symbols are default values of 0 rather than input symbols;
similarly, some input symbols are left in the array and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp) returns a structure that
holds the final state of the array. state.value stores input symbols that remain in the
col columns of the array and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state) initializes the
array with the symbols contained in init_state.value. The structure init_state is
typically the state output from a previous call to this same function, and is unrelated to
the corresponding deinterleaver. In this syntax, some output symbols are default values of
0, some are input symbols from data, and some are initialization values from
init_state.value.

2 Functions — Alphabetical List

2-726

Examples
The example below rearranges the integers from 1 to 24.

% Interleave some symbols. Record final state of array.
[i1,state] = helintrlv([1:12]',3,4,1);
% Interleave more symbols, remembering the symbols that
% were left in the array from the earlier command.
i2 = helintrlv([13:24]',3,4,1,state);

disp('Interleaved data:')
disp([i1,i2]')
disp('Values left in array after first interleaving operation:')
state.value{:}

During the successive calls to helintrlv, it internally creates the three-column arrays

[1 0 0;
 2 5 0;
 3 6 9;
 4 7 10;
 0 8 11;
 0 0 12]

and

[13 8 11;
 14 17 12;
 15 18 21;
 16 19 22;
 0 20 23;
 0 0 24]

In the second array shown above, the 8, 11, and 12 are values left in the array from the
previous call to the function. Specifying the init_state input in the second call to the
function causes it to use those values rather than the default values of 0.

The output from this example is below. (The matrix has been transposed for display
purposes.) The interleaved data comes from the top four rows of the three-column arrays
shown above. Notice that some of the symbols in the first half of the interleaved data are
default values of 0, some of the symbols in the second half of the interleaved data were
left in the array from the first call to helintrlv, and some of the input symbols (20, 23,
and 24) do not appear in the interleaved data at all.

 helintrlv

2-727

Interleaved data:
 Columns 1 through 10

 1 0 0 2 5 0 3 6 9 4
 13 8 11 14 17 12 15 18 21 16

 Columns 11 through 12

 7 10
 19 22

Values left in array after first interleaving operation:

ans =

 []

ans =

 8

ans =

 11 12

The example on the reference page for heldeintrlv also uses this function.

See Also
heldeintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-728

helscandeintrlv
Restore ordering of symbols in helical pattern

Syntax
deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)

Description
deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep) rearranges the
elements in data by filling a temporary matrix with the elements in a helical fashion and
then sending the matrix contents to the output row by row. Nrows and Ncols are the
dimensions of the temporary matrix. hstep is the slope of the diagonal, that is, the
amount by which the row index increases as the column index increases by one. hstep
must be a nonnegative integer less than Nrows.

Helical fashion means that the function places input elements along diagonals of the
temporary matrix. The number of elements in each diagonal is exactly Ncols, after the
function wraps past the edges of the matrix when necessary. The function traverses
diagonals so that the row index and column index both increase. Each diagonal after the
first one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple
rows and columns, data must have Nrows*Ncols rows and the function processes the
columns independently.

To use this function as an inverse of the helscanintrlv function, use the same Nrows,
Ncols, and hstep inputs in both functions. In that case, the two functions are inverses in
the sense that applying helscanintrlv followed by helscandeintrlv leaves data
unchanged.

Examples
The command below rearranges a vector using a 3-by-4 temporary matrix and diagonals
of slope 1.

 helscandeintrlv

2-729

d = helscandeintrlv(1:12,3,4,1)
d =

 Columns 1 through 10

 1 10 7 4 5 2 11 8 9 6

 Columns 11 through 12

 3 12

Internally, the function creates the 3-by-4 temporary matrix

[1 10 7 4;
 5 2 11 8;
 9 6 3 12]

using length-four diagonals. The function then sends the elements, row by row, to the
output d.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
helscanintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-730

helscanintrlv
Reorder symbols in helical pattern

Syntax
intrlvd = helscanintrlv(data,Nrows,Ncols,hstep)

Description
intrlvd = helscanintrlv(data,Nrows,Ncols,hstep) rearranges the elements in
data by filling a temporary matrix with the elements row by row and then sending the
matrix contents to the output in a helical fashion. Nrows and Ncols are the dimensions of
the temporary matrix. hstep is the slope of the diagonal, that is, the amount by which the
row index increases as the column index increases by one. hstep must be a nonnegative
integer less than Nrows.

Helical fashion means that the function selects elements along diagonals of the temporary
matrix. The number of elements in each diagonal is exactly Ncols, after the function
wraps past the edges of the matrix when necessary. The function traverses diagonals so
that the row index and column index both increase. Each diagonal after the first one
begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple
rows and columns, data must have Nrows*Ncols rows and the function processes the
columns independently.

Examples
The command below rearranges a vector using diagonals of two different slopes.

i1 = helscanintrlv(1:12,3,4,1) % Slope of diagonal is 1.
i2 = helscanintrlv(1:12,3,4,2) % Slope of diagonal is 2.

The output is below.

 helscanintrlv

2-731

i1 =

 Columns 1 through 10

 1 6 11 4 5 10 3 8 9 2

 Columns 11 through 12

 7 12

i2 =

 Columns 1 through 10

 1 10 7 4 5 2 11 8 9 6

 Columns 11 through 12

 3 12

In each case, the function internally creates the temporary 3-by-4 matrix

[1 2 3 4;
 5 6 7 8;
 9 10 11 12]

To form i1, the function forms each slope-one diagonal by moving one row down and one
column to the right. The first diagonal contains 1, 6, 11, and 4, while the second diagonal
starts with 5 because that is beneath 1 in the temporary matrix.

To form i2, the function forms each slope-two diagonal by moving two rows down and
one column to the right. The first diagonal contains 1, 10, 7, and 4, while the second
diagonal starts with 5 because that is beneath 1 in the temporary matrix.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions — Alphabetical List

2-732

See Also
helscandeintrlv

Topics
“Interleaving”

Introduced before R2006a

 helscanintrlv

2-733

hide
Package: comm

Hide scope window

Syntax
hide(scope)

Description
hide(scope) hides the window of the System object scope.

Examples

Hide and Show Scope

Create a comm.ConstellationDiagram object.

scope = comm.ConstellationDiagram;

Hide the constellation diagram scope window.

if(isVisible(scope))
 hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
 show(scope)
end

Hide the constellation diagram scope window again.

2 Functions — Alphabetical List

2-734

if(isVisible(scope))
 hide(scope)
end

Hide and Show Constellation Diagram

Generate a 16-QAM reference constellation and a signal to display.

M = 16;
xRef = (0:M-1)';
refConst = qammod(xRef,M);
signal = randi([0 M-1],1000,1);

Create a constellation diagram System object™, specifying the constellation reference
points and axes limits using name-value pairs.

scope = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
 'XLimits',[-4 4],'YLimits',[-4 4]);

Modulate the random data signal using QAM. Add Gaussian white noise to the QAM
symbols. Display the QAM symbols and noisy symbols with the constellation diagram
object.

sym = qammod(signal,M);
rcv = awgn(sym,20,'measured');
scope([sym rcv]);

 hide

2-735

Hide the constellation diagram scope window.

if(isVisible(scope))
 hide(scope)
end

2 Functions — Alphabetical List

2-736

Show the constellation diagram scope window.

if(~isVisible(scope))
 show(scope)
end

 hide

2-737

Clear the workspace variables.

clear scope sym rcv M refConst signal xRef

Input Arguments
scope — Scope System object
scope System object

Scope System object, specified as a comm.ConstellationDiagram or
comm.EyeDiagram System object.
Example: scope = comm.EyeDiagram;

See Also
Functions
isVisible | show

Objects
comm.ConstellationDiagram | comm.EyeDiagram

Introduced in R2013a

2 Functions — Alphabetical List

2-738

hilbiir
Design Hilbert transform IIR filter

Syntax
hilbiir
hilbiir(ts)
hilbiir(ts,dly)
hilbiir(ts,dly,bandwidth)
hilbiir(ts,dly,bandwidth,tol)
[num,den] = hilbiir(...)
[num,den,sv] = hilbiir(...)
[a,b,c,d] = hilbiir(...)
[a,b,c,d,sv] = hilbiir(...)

Description
The function hilbiir designs a Hilbert transform filter. The output is either

• A plot of the filter's impulse response, or
• A quantitative characterization of the filter, using either a transfer function model or a

state-space model

Background Information
An ideal Hilbert transform filter has the transfer function H(s) = -jsgn(s), where
sgn(.) is the signum function (sign in MATLAB). The impulse response of the Hilbert
transform filter is

h(t) = 1
πt

Because the Hilbert transform filter is a noncausal filter, the hilbiir function introduces
a group delay, dly. A Hilbert transform filter with this delay has the impulse response

 hilbiir

2-739

h(t) = 1
π(t − dly)

Choosing a Group Delay Parameter
The filter design is an approximation. If you provide the filter's group delay as an input
argument, these two suggestions can help improve the accuracy of the results:

• Choose the sample time ts and the filter's group delay dly so that dly is at least a
few times larger than ts and rem(dly,ts) = ts/2. For example, you can set ts to
2*dly/N, where N is a positive integer.

• At the point t = dly, the impulse response of the Hilbert transform filter can be
interpreted as 0, -Inf, or Inf. If hilbiir encounters this point, it sets the impulse
response there to zero. To improve accuracy, avoid the point t = dly.

Syntaxes for Plots
Each of these syntaxes produces a plot of the impulse response of the filter that the
hilbiir function designs, as well as the impulse response of a corresponding ideal
Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert transform filter with
a one-second group delay. The sample time is 2/7 seconds. In this particular design, the
tolerance index is 0.05. The plot also displays the impulse response of the ideal Hilbert
transform filter with a one-second group delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert transform filter with a
sample time of ts seconds and a group delay of ts*7/2 seconds. The tolerance index is
0.05. The plot also displays the impulse response of the ideal Hilbert transform filter
having a sample time of ts seconds and a group delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the filter's group delay is
dly for both the ideal filter and the filter that hilbiir designs. See “Choosing a Group
Delay Parameter” on page 2-740 above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except that bandwidth
specifies the assumed bandwidth of the input signal and that the filter design might use a
compensator for the input signal. If bandwidth = 0 or bandwidth > 1/(2*ts), hilbiir
does not use a compensator.

2 Functions — Alphabetical List

2-740

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above, except that tol is
the tolerance index. If tol < 1, the order of the filter is determined by

truncated‐singular‐value
maximum‐singular‐value < tol

If tol > 1, the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities
Each of these syntaxes produces quantitative information about the filter that hilbiir
designs, but does not produce a plot. The input arguments for these syntaxes (if you
provide any) are the same as those described in “Syntaxes for Plots” on page 2-740.

[num,den] = hilbiir(...) outputs the numerator and denominator of the IIR filter's
transfer function.

[num,den,sv] = hilbiir(...) outputs the numerator and denominator of the IIR
filter's transfer function, and the singular values of the Hankel matrix that hilbiir uses
in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space model of the
designed Hilbert transform filter. a, b, c, and d are matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space model of the
designed Hilbert transform filter, and the singular values of the Hankel matrix that
hilbiir uses in the computation.

Examples
For an example using the function's default values, type one of the following commands at
the MATLAB prompt.

hilbiir
[num,den] = hilbiir

 hilbiir

2-741

Algorithms
The hilbiir function calculates the impulse response of the ideal Hilbert transform
filter response with a group delay. It fits the response curve using a singular-value
decomposition method. See the book by Kailath [1].

References
[1] Kailath, Thomas, Linear Systems, Englewood Cliffs, NJ, Prentice-Hall, 1980.

See Also
grpdelay

Introduced before R2006a

2 Functions — Alphabetical List

2-742

huffmandeco
Huffman decoder

Syntax
dsig = huffmandeco(comp,dict)

Description
dsig = huffmandeco(comp,dict) decodes the numeric Huffman code vector comp
using the code dictionary dict. The argument dict is an N-by-2 cell array, where N is
the number of distinct possible symbols in the original signal that was encoded as comp.
The first column of dict represents the distinct symbols and the second column
represents the corresponding codewords. Each codeword is represented as a numeric
row vector, and no codeword in dict is allowed to be the prefix of any other codeword in
dict. You can generate dict using the huffmandict function and comp using the
huffmanenco function. If all signal values in dict are numeric, dsig is a vector; if any
signal value in dict is alphabetical, dsig is a one-dimensional cell array.

Examples

Huffman Encoding and Decoding

Create unique symbols, and assign probabilities of occurrence to them.

symbols = 1:6;
p = [.5 .125 .125 .125 .0625 .0625];

Create a Huffman dictionary based on the symbols and their probabilities.

dict = huffmandict(symbols,p);

Generate a vector of random symbols.

sig = randsrc(100,1,[symbols; p]);

 huffmandeco

2-743

Encode the random symbols.

comp = huffmanenco(sig,dict);

Decode the data. Verify that the decoded data matches the original data.

dsig = huffmandeco(comp,dict);
isequal(sig,dsig)

ans = logical
 1

Convert the original signal to binary, and determine its length.

binarySig = de2bi(sig);
seqLen = numel(binarySig)

seqLen = 300

Convert the Huffman encoded signal and determine its length.

binaryComp = de2bi(comp);
encodedLen = numel(binaryComp)

encodedLen = 224

The Huffman encoded data required 224 bits, which is a 25% savings over the uncoded
data.

Huffman Encoding and Decoding with Alphanumeric Signal

Define an alphanumeric signal in cell array form.

 sig = {'a2', 44, 'a3', 55, 'a1'}

sig=1×5 cell
 {'a2'} {[44]} {'a3'} {[55]} {'a1'}

Define a dictionary. Codes for signal letters must be numeric.

 dict = {'a1',0; 'a2',[1,0]; 'a3',[1,1,0]; 44,[1,1,1,0]; 55,[1,1,1,1]}

2 Functions — Alphabetical List

2-744

dict=5×2 cell
 {'a1'} {[0]}
 {'a2'} {1x2 double}
 {'a3'} {1x3 double}
 {[44]} {1x4 double}
 {[55]} {1x4 double}

Encode the alphanumeric symbols.

comp = huffmanenco(sig,dict);

Decode the data and verify that the decoded data matches the original data.

dsig = huffmandeco(comp,dict)

dsig=1×5 cell
 {'a2'} {[44]} {'a3'} {[55]} {'a1'}

isequal(sig,dsig)

ans = logical
 1

References
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,

2000.

See Also
huffmandict | huffmanenco

Topics
“Huffman Coding”

Introduced before R2006a

 huffmandeco

2-745

huffmandict
Generate Huffman code dictionary for source with known probability model

Syntax
[dict,avglen] = huffmandict(symbols,p)
[dict,avglen] = huffmandict(symbols,p,N)
[dict,avglen] = huffmandict(symbols,p,N,variance)

Description

For All Syntaxes
The huffmandict function generates a Huffman code dictionary corresponding to a
source with a known probability model. The required inputs are

• symbols, which lists the distinct signal values that the source produces. It can have
the form of a numeric vector, numeric cell array, or alphanumeric cell array. If it is a
cell array, it must be either a row or a column.

• p, a probability vector whose kth element is the probability with which the source
produces the kth element of symbols. The length of p must equal the length of
symbols.

The outputs of huffmandict are

• dict, a two-column cell array in which the first column lists the distinct signal values
from symbols and the second column lists the corresponding Huffman codewords. In
the second column, each Huffman codeword is represented as a numeric row vector.

• avglen, the average length among all codewords in the dictionary, weighted
according to the probabilities in the vector p.

2 Functions — Alphabetical List

2-746

For Specific Syntaxes
[dict,avglen] = huffmandict(symbols,p) generates a binary Huffman code
dictionary using the maximum variance algorithm.

[dict,avglen] = huffmandict(symbols,p,N) generates an N-ary Huffman code
dictionary using the maximum variance algorithm. N is an integer between 2 and 10 that
must not exceed the number of source symbols whose probabilities appear in the vector
p.

[dict,avglen] = huffmandict(symbols,p,N,variance) generates an N-ary
Huffman code dictionary with the minimum variance if variance is 'min' and the
maximum variance if variance is 'max'. N is an integer between 2 and 10 that must not
exceed the length of the vector p.

Examples
Generate Huffman Code and View Return Values

Generate a binary Huffman code dictionary. Assign the second output to return the
average code length.

Specify symbol alphabet and probability vectors.

symbols = (1:5); % Alphabet vector
prob = [.3 .3 .2 .1 .1]; % Symbol probability vector

Generate binary Huffman code. View the average code length and the cell array
containing the codeword dictionary.

[dict, avglen] = huffmandict(symbols,prob);
avglen

avglen = 2.2000

dict

dict=5×2 cell
 {[1]} {1x2 double}
 {[2]} {1x2 double}
 {[3]} {1x2 double}
 {[4]} {1x3 double}

 huffmandict

2-747

 {[5]} {1x3 double}

View the fifth codeword from the dictionary.

samplecode = dict{5,2} % Codeword for fifth signal value

samplecode = 1×3

 1 1 0

Generate Ternary Huffman Codes

Use the code dictionary generator for Huffman coder function to generate binary and
ternary Huffman codes.

Specify symbol alphabet and probability vectors

symbols = (1:5); % Alphabet vector
prob = [.3 .3 .2 .1 .1]; % Symbol probability vector

Generate binary Huffman code.

[dict, avglen] = huffmandict(symbols, prob);
dict(:, 2) = cellfun(@num2str, dict(:, 2), 'UniformOutput', false)

dict=5×2 cell
 {[1]} {'0 1' }
 {[2]} {'0 0' }
 {[3]} {'1 0' }
 {[4]} {'1 1 1'}
 {[5]} {'1 1 0'}

Generate ternary Huffman code

[dict,avglen] = huffmandict(symbols,prob, 3);
dict(:, 2) = cellfun(@num2str, dict(:, 2), 'UniformOutput', false)

dict=5×2 cell
 {[1]} {'2' }
 {[2]} {'1' }
 {[3]} {'0 0'}
 {[4]} {'0 2'}

2 Functions — Alphabetical List

2-748

 {[5]} {'0 1'}

References
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,

2000.

See Also
huffmandeco | huffmanenco

Topics
“Huffman Coding”

Introduced before R2006a

 huffmandict

2-749

huffmanenco
Huffman encoder

Syntax
comp = huffmanenco(sig,dict)

Description
comp = huffmanenco(sig,dict) encodes the signal sig using the Huffman codes
described by the code dictionary dict. The argument sig can have the form of a numeric
vector, numeric cell array, or alphanumeric cell array. If sig is a cell array, it must be
either a row or a column. dict is an N-by-2 cell array, where N is the number of distinct
possible symbols to be encoded. The first column of dict represents the distinct symbols
and the second column represents the corresponding codewords. Each codeword is
represented as a numeric row vector, and no codeword in dict can be the prefix of any
other codeword in dict. You can generate dict using the huffmandict function.

Examples

Huffman Encoding and Decoding

Create unique symbols, and assign probabilities of occurrence to them.

symbols = 1:6;
p = [.5 .125 .125 .125 .0625 .0625];

Create a Huffman dictionary based on the symbols and their probabilities.

dict = huffmandict(symbols,p);

Generate a vector of random symbols.

sig = randsrc(100,1,[symbols; p]);

2 Functions — Alphabetical List

2-750

Encode the random symbols.

comp = huffmanenco(sig,dict);

Decode the data. Verify that the decoded data matches the original data.

dsig = huffmandeco(comp,dict);
isequal(sig,dsig)

ans = logical
 1

Convert the original signal to binary, and determine its length.

binarySig = de2bi(sig);
seqLen = numel(binarySig)

seqLen = 300

Convert the Huffman encoded signal and determine its length.

binaryComp = de2bi(comp);
encodedLen = numel(binaryComp)

encodedLen = 224

The Huffman encoded data required 224 bits, which is a 25% savings over the uncoded
data.

Huffman Encoding and Decoding with Alphanumeric Signal

Define an alphanumeric signal in cell array form.

 sig = {'a2', 44, 'a3', 55, 'a1'}

sig=1×5 cell
 {'a2'} {[44]} {'a3'} {[55]} {'a1'}

Define a dictionary. Codes for signal letters must be numeric.

 dict = {'a1',0; 'a2',[1,0]; 'a3',[1,1,0]; 44,[1,1,1,0]; 55,[1,1,1,1]}

 huffmanenco

2-751

dict=5×2 cell
 {'a1'} {[0]}
 {'a2'} {1x2 double}
 {'a3'} {1x3 double}
 {[44]} {1x4 double}
 {[55]} {1x4 double}

Encode the alphanumeric symbols.

comp = huffmanenco(sig,dict);

Decode the data and verify that the decoded data matches the original data.

dsig = huffmandeco(comp,dict)

dsig=1×5 cell
 {'a2'} {[44]} {'a3'} {[55]} {'a1'}

isequal(sig,dsig)

ans = logical
 1

References
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,

2000.

See Also
huffmandeco | huffmandict

Topics
“Huffman Coding”

Introduced before R2006a

2 Functions — Alphabetical List

2-752

ifft
Inverse discrete Fourier transform

Syntax
ifft(x)

Description
ifft(x) is the inverse discrete Fourier transform (DFT) of the Galois vector x. If x is in
the Galois field GF(2m), the length of x must be 2m-1.

Examples
For an example using ifft, see the reference page for fft.

Limitations
The Galois field over which this function works must have 256 or fewer elements. In other
words, x must be in the Galois field GF(2m), where m is an integer between 1 and 8.

Algorithms
If x is a column vector, ifft applies dftmtx to the multiplicative inverse of the primitive
element of the Galois field and multiplies the resulting matrix by x.

See Also
dftmtx | fft | gf

 ifft

2-753

Topics
“Signal Processing Operations in Galois Fields”

Introduced before R2006a

2 Functions — Alphabetical List

2-754

intdump
Integrate and dump

Syntax
y = intdump(x,nsamp)

Description
y = intdump(x,nsamp) integrates the signal x for one symbol period, then outputs the
averaged one value into Y. nsamp is the number of samples per symbol. For two-
dimensional signals, the function treats each column as one channel.

Examples
An example in “Combine Pulse Shaping and Filtering with Modulation” uses this function
in conjunction with modulation.

Processes two independent channels, each of which contain three symbols of data made
up of four samples.

s = rng;
rng(68521);
nsamp = 4; % Number of samples per symbol
ch1 = randi([0 1],3*nsamp,1); % Random binary channel
ch2 = rectpulse([1 2 3]',nsamp); % Rectangular pulses
x = [ch1 ch2]; % Two-channel signal
y = intdump(x,nsamp)
rng(s);

The output is below. Each column corresponds to one channel, and each row corresponds
to one symbol.

y =

 0.5000 1.0000

 intdump

2-755

 0.5000 2.0000
 1.0000 3.0000

See Also
rectpulse

Introduced before R2006a

2 Functions — Alphabetical List

2-756

intrlv
Reorder sequence of symbols

Syntax
intrlvd = intrlv(data,elements)

Description
intrlvd = intrlv(data,elements) rearranges the elements of data without
repeating or omitting any elements. If data is a length-N vector or an N-row matrix,
elements is a length-N vector that permutes the integers from 1 to N. The sequence in
elements is the sequence in which elements from data or its columns appear in
intrlvd. If data is a matrix with multiple rows and columns, the function processes the
columns independently.

Examples
The command below rearranges the elements of a vector. Your output might differ
because the permutation vector is random in this example.

p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p)

The output is below.

a =

 10 90 60 30 50 80 100 20 70 40

The command below rearranges each of two columns of a matrix.

b = intrlv([.1 .2 .3 .4 .5; .2 .4 .6 .8 1]',[2 4 3 5 1])
b =

 0.2000 0.4000

 intrlv

2-757

 0.4000 0.8000
 0.3000 0.6000
 0.5000 1.0000
 0.1000 0.2000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
deintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-758

isVisible
Package: comm

Determine visibility of scope window

Syntax
visibility = isVisible(scope)

Description
visibility = isVisible(scope) returns a logical to verify in the System object
scope is open. visibility is 1 if the scope window is open and 0 otherwise.

Examples

Hide and Show Scope

Create a comm.ConstellationDiagram object.

scope = comm.ConstellationDiagram;

Hide the constellation diagram scope window.

if(isVisible(scope))
 hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
 show(scope)
end

Hide the constellation diagram scope window again.

 isVisible

2-759

if(isVisible(scope))
 hide(scope)
end

Hide and Show Constellation Diagram

Generate a 16-QAM reference constellation and a signal to display.

M = 16;
xRef = (0:M-1)';
refConst = qammod(xRef,M);
signal = randi([0 M-1],1000,1);

Create a constellation diagram System object™, specifying the constellation reference
points and axes limits using name-value pairs.

scope = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
 'XLimits',[-4 4],'YLimits',[-4 4]);

Modulate the random data signal using QAM. Add Gaussian white noise to the QAM
symbols. Display the QAM symbols and noisy symbols with the constellation diagram
object.

sym = qammod(signal,M);
rcv = awgn(sym,20,'measured');
scope([sym rcv]);

2 Functions — Alphabetical List

2-760

Hide the constellation diagram scope window.

if(isVisible(scope))
 hide(scope)
end

 isVisible

2-761

Show the constellation diagram scope window.

if(~isVisible(scope))
 show(scope)
end

2 Functions — Alphabetical List

2-762

Clear the workspace variables.

clear scope sym rcv M refConst signal xRef

Input Arguments
scope — Scope System object
scope System object

Scope System object, specified as a comm.ConstellationDiagram or
comm.EyeDiagram System object.
Example: scope = comm.ConstellationDiagram;

See Also
Functions
hide | show

Objects
comm.ConstellationDiagram | comm.EyeDiagram

Introduced in R2013a

 isVisible

2-763

iqcoef2imbal
Convert compensator coefficient to amplitude and phase imbalance

Syntax
[A,P] = iqcoef2imbal(C)

Description
[A,P] = iqcoef2imbal(C) converts compensator coefficient C to its equivalent
amplitude and phase imbalance.

Examples

Estimate I/Q Imbalance from Compensator Coefficient

Use iqcoef2imbal to estimate the amplitude and phase imbalance for a given complex
coefficient. The coefficients are an output from the step function of the
IQImbalanceCompensator.

Create a raised cosine transmit filter to generate a 64-QAM signal.

M = 64;
txFilt = comm.RaisedCosineTransmitFilter;

Modulate and filter random 64-ary symbols.

data = randi([0 M-1],100000,1);
dataMod = qammod(data,M);
txSig = step(txFilt,dataMod);

Specify amplitude and phase imbalance.

ampImb = 2; % dB
phImb = 15; % degrees

2 Functions — Alphabetical List

2-764

Apply the specified I/Q imbalance.

gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Normalize the power of the received signal

rxSig = rxSig/std(rxSig);

Remove the I/Q imbalance using the comm.IQImbalanceCompensator System object.
Set the compensator object such that the complex coefficients are made available as an
output argument.

hIQComp = comm.IQImbalanceCompensator('CoefficientOutputPort',true);
[compSig,coef] = step(hIQComp,rxSig);

Estimate the imbalance from the last value of the compensator coefficient.

[ampImbEst,phImbEst] = iqcoef2imbal(coef(end));

Compare the estimated imbalance values with the specified ones. Notice that there is
good agreement.

[ampImb phImb; ampImbEst phImbEst]

ans = 2×2

 2.0000 15.0000
 2.0178 14.5740

Input Arguments
C — Compensator coefficient
complex-valued scalar or vector

Coefficient used to compensate for an I/Q imbalance, specified as a complex-valued
vector.
Example: 0.4+0.6i

 iqcoef2imbal

2-765

Example: [0.1+0.2i; 0.3+0.5i]
Data Types: single | double

Output Arguments
A — Amplitude imbalance
real-valued vector

Amplitude imbalance in dB, returned as a real-valued vector with the same dimensions as
C.

P — Phase imbalance
real-valued vector

Phase imbalance in degrees, returned as a real-valued vector with the same dimensions
as C.

More About

I/Q Imbalance Compensation
The function iqcoef2imbal is a supporting function for the
comm.IQImbalanceCompensator System object.

Given a scaling and rotation factor, G, compensator coefficient, C, and received signal, x,
the compensated signal, y, has the form

y = G x + Cconj(x) .

In matrix form, this can be rewritten as

Y = RX ,

where X is a 2-by-1 vector representing the imbalanced signal [XI, XQ] and Y is a 2-by-1
vector representing the compensator output [YI, YQ].

The matrix R is expressed as

2 Functions — Alphabetical List

2-766

R =
1 + Re C Im C

Im C 1− Re C

For the compensator to perfectly remove the I/Q imbalance, R = K-1 because X = K S,
where K is a 2-by-2 matrix whose values are determined by the amplitude and phase
imbalance and S is the ideal signal. Define a matrix M with the form

M =
1 −α
α 1

Both M and M-1 can be thought of as scaling and rotation matrices that correspond to the
factor G. Because K = R-1, the product M-1 R K M is the identity matrix, where M-1 R
represents the compensator output and K M represents the I/Q imbalance. The
coefficient α is chosen such that

KM = L
Igaincos(θI) Qgaincos(θQ)
Igainsin(θI) Qgainsin(θQ)

where L is a constant. From this form, we can obtain Igain, Qgain, θI, and θQ. For a given
phase imbalance, ΦImb, the in-phase and quadrature angles can be expressed as

θI = − π/2 ΦImb/180
θQ = π/2 + π/2 ΦImb/180

Hence, cos(θQ) = sin(θI) and sin(θQ) = cos(θI) so that

L
Igaincos(θI) Qgaincos(θQ)
Igainsin(θI) Qgainsin(θQ)

= L
Igaincos(θI) Qgainsin(θI)
Igainsin(θI) Qgaincos(θI)

The I/Q imbalance can be expressed as

KM =
K11 + αK12 −αK11 + K12
K21 + αK22 −αK21 + K22

= L
Igaincos(θI) Qgainsin(θI)
Igainsin(θI) Qgaincos(θI)

Therefore,

K21 + αK22 / K11 + αK12 = −αK11 + K12 / −αK21 + K22 = sin(θI)/cos(θI)

 iqcoef2imbal

2-767

The equation can be written as a quadratic equation to solve for the variable α, that is
D1α2 + D2α + D3 = 0, where

D1 = − K11K12 + K22K21

D2 = K12
2 + K21

2 − K11
2 − K22

2

D3 = K11K12− K21K22

When |C| ≤ 1, the quadratic equation has the following solution:

α =
−D2− D2− 4D1D3

2D1

Otherwise, when |C| > 1, the solution has the following form:

α =
−D2 + D2− 4D1D3

2D1

Finally, the amplitude imbalance, AImb, and the phase imbalance, ΦImb, are obtained.

K′ = K 1 −α
α 1

AImb = 20log10 K′11/K′22

ΦImb = − 2tan−1 K′21/K′11 180/π

Note

• If C is real and |C| ≤ 1, the phase imbalance is 0 and the amplitude imbalance is
20log10((1–C)/(1+C))

• If C is real and |C| > 1, the phase imbalance is 180° and the amplitude imbalance is
20log10((C+1)/(C−1)).

• If C is imaginary, AImb = 0.

2 Functions — Alphabetical List

2-768

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
comm.IQImbalanceCompensator | iqimbal2coef

Introduced in R2014b

 iqcoef2imbal

2-769

iqimbal2coef
Convert I/Q imbalance to compensator coefficient

Syntax
C = iqimbal2coef(A,P)

Description
C = iqimbal2coef(A,P) converts an I/Q amplitude and phase imbalance to its
equivalent compensator coefficient.

Examples

Generate Coefficients for I/Q Imbalance Compensation

Generate coefficients for the I/Q imbalance compensator System object™ using
iqimbal2coef. The compensator corrects for an I/Q imbalance using the generated
coefficients.

Create a raised cosine transmit filter System object.

txRCosFilt = comm.RaisedCosineTransmitFilter;

Modulate and filter random 64-ary symbols.

M= 64;
data = randi([0 M-1],100000,1);
dataMod = qammod(data,M);
txSig = txRCosFilt(dataMod);

Specify amplitude and phase imbalance.

ampImb = 2; % dB
phImb = 15; % degrees

2 Functions — Alphabetical List

2-770

Apply the specified I/Q imbalance.

gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Normalize the power of the received signal.

rxSig = rxSig/std(rxSig);

Remove the I/Q imbalance by creating and applying a comm.IQImbalanceCompensator
object. Set the compensator such that the complex coefficients are made available as an
output argument.

iqComp = comm.IQImbalanceCompensator('CoefficientOutputPort',true);
[compSig,coef] = iqComp(rxSig);

Compare the final compensator coefficient to the coefficient generated by the
iqimbal2coef function. Observe that there is good agreement.

idealcoef = iqimbal2coef(ampImb,phImb);
[coef(end); idealcoef]

ans = 2×1 complex

 -0.1137 + 0.1296i
 -0.1126 + 0.1334i

Input Arguments
A — Amplitude imbalance
real-valued scalar or vector

Amplitude imbalance in dB, specified as a real-valued row or column vector.
Example: 3
Example: [0; 5]
Data Types: single | double

 iqimbal2coef

2-771

P — Phase imbalance
real-valued scalar or vector

Phase imbalance in degrees, specified as a real-valued row or column vector.
Example: 10
Example: [15; 45]
Data Types: single | double

Output Arguments
C — Compensator coefficient
complex-valued vector

Coefficient that perfectly compensates for the I/Q imbalance, returned as a complex-
valued vector having the same dimensions as A and P.

More About

I/Q Imbalance Compensation
The function iqimbal2coef is a supporting function for the
comm.IQImbalanceCompensator System object.

Define S and X as 2-by-1 vectors representing the I and Q components of the ideal and I/Q
imbalanced signals, respectively.

X = K ⋅ S

where K is a 2-by-2 matrix whose values are determined by the amplitude imbalance, A,
and phase imbalance, P. A is expressed in dB and P is expressed in degrees.

The imbalance can be expressed as:

2 Functions — Alphabetical List

2-772

Igain = 100.5A/20

Qgain = 10−0.5A/20

θi = − P
2

π
180

θq = π
2 + P

2
π

180

Then K has the form:

K =
Igaincos(θi) Qgaincos(θq)
Igainsin(θi) Qgainsin(θq)

The vector Y is defined as the I/Q imbalance compensator output.

Y = R ⋅ X

For the compensator to perfectly remove the I/Q imbalance, R must be the matrix
inversion of K, namely:

R = K−1

Using complex notation, the vector Y can be rewritten as:

y = w1x + w2conj(x)

= w1 x + w2 w1 conj(x)

where,

Re w1 = (R11 + R22)/2
Im w1 = (R21− R12)/2
Re w2 = (R11− R22)/2
Im w2 = (R21 + R12)/2

The output of the function is w2/w1. To exactly obtain the original signal, the compensator
output needs to be scaled and rotated by the complex number w1.

Note There are cases for which the output of iqimbal2coef is unreliable.

 iqimbal2coef

2-773

• If the phase imbalance is ±90°, the in-phase and quadrature components will become
co-linear; consequently, the I/Q imbalance cannot be compensated.

• If the amplitude imbalance is 0 dB and the phase imbalance is 180°, w1 = 0 and w2 =
1i; therefore, the compensator takes the form of y = 1i*conj(x).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
comm.IQImbalanceCompensator | iqcoef2imbal

Introduced in R2014b

2 Functions — Alphabetical List

2-774

iqimbal
Apply I/Q imbalance to input signal

Syntax
y = iqimbal(x,A)
y = iqimbal(x,A,P)

Description
y = iqimbal(x,A) applies I/Q amplitude imbalance A to input signal x.

y = iqimbal(x,A,P) applies I/Q amplitude imbalance A and phase imbalance P to
input signal x.

Examples

Apply Amplitude Imbalance to 16-QAM

Generate a 16-QAM signal. Display the scatter plot.

x = qammod(randi([0 15],1000,1),16);
h = scatterplot(x);
hold on

 iqimbal

2-775

Apply a 10 dB amplitude imbalance. A positive amplitude imbalance causes horizontal
stretching of the constellation.

y = iqimbal(x,10);
scatterplot(y,1,0,'ro',h)

2 Functions — Alphabetical List

2-776

Apply a -10 dB amplitude imbalance. A negative amplitude imbalance causes vertical
stretching of the constellation.

z = iqimbal(x,-10);
scatterplot(z,1,0,'k*',h)
hold off

 iqimbal

2-777

Apply Phase and Amplitude Imbalance to 16-QAM Signal

Generate a 16-QAM signal having two channels.

x = qammod(randi([0 15],1000,2),16);

Apply a 3 dB amplitude imbalance and a 10 degree phase imbalance to the first channel.
Apply a –5 dB amplitude imbalance and a –15 degree phase imbalance to the second
channel.

y = iqimbal(x,[3 -5],[10 -15]);

2 Functions — Alphabetical List

2-778

Plot the constellation diagram of both channels of the impaired signal.

h = scatterplot(y(:,1),1,0,'b*');
hold on
scatterplot(y(:,2),1,0,'ro',h)
hold off

The first channel is stretched horizontally, and the second channel is stretched vertically.

 iqimbal

2-779

Apply I/Q Imbalance and DC Offset to QPSK

Apply a 1 dB, 5 degree I/Q imbalance to a QPSK signal. Then apply a DC offset. Visualize
the offset using a spectrum analyzer.

Generate a QPSK sequence.

x = pskmod(randi([0 3],1e4,1),4,pi/4);

Apply a 1 dB amplitude imbalance and 5 degree phase imbalance to a QPSK signal. Apply
a 0.5 + 0.3i DC offset.

y = iqimbal(x,1,5);
z = y + complex(0.5,0.3);

Plot the spectrum of the impaired signal.

sa = dsp.SpectrumAnalyzer('SampleRate',1000,'YLimits',[-50 30]);
sa(z)

2 Functions — Alphabetical List

2-780

Display the corresponding scatter plot.

scatterplot(z)
grid

 iqimbal

2-781

The effect of the I/Q imbalance and the DC offset is observable.

Correct I/Q Imbalance on Noisy 8-PSK Signal

Generate random data and apply 8-PSK modulation.

data = randi([0 7],2000,1);
txSig = pskmod(data,8,pi/8);

Pass the transmitted signal through an AWGN channel. Apply an I/Q imbalance.

noisySig = awgn(txSig,20);
rxSig = iqimbal(noisySig,2,20);

2 Functions — Alphabetical List

2-782

Create a constellation diagram object that displays only the last 1000 symbols. Plot the
constellation diagram of the impaired signal.

cd = comm.ConstellationDiagram('ReferenceConstellation',pskmod(0:7,8,pi/8), ...
 'SymbolsToDisplaySource','Property','SymbolsToDisplay',1000);
cd(rxSig)

 iqimbal

2-783

Correct for the I/Q imbalance by using a comm.IQImbalanceCompensator object. Plot
the constellation diagram of the signal after compensation.

iqComp = comm.IQImbalanceCompensator('StepSize',1e-3);
compSig = iqComp(rxSig);

2 Functions — Alphabetical List

2-784

cd(compSig)

 iqimbal

2-785

The compensator removes the I/Q imbalance.

Input Arguments
x — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. The function supports multichannel
operations, where the number of columns corresponds to the number of channels.
Example: pskmod(randi([0 3],100,1),4,pi/4)
Data Types: single | double

A — Amplitude imbalance
real scalar | row vector

Amplitude imbalance in dB, specified as a real scalar or row vector.

• If A is a scalar, the function applies the same amplitude imbalance to each channel.
• If A is a vector, then each element specifies the amplitude imbalance that is applied to

the corresponding column (channel) of the input signal. The number of elements in A
must equal the number of columns in x.

Example: 3
Example: [0 5]
Data Types: single | double

P — Phase imbalance
0 (default) | real scalar | row vector

Phase imbalance in degrees, specified as a real scalar or row vector.

• If P is omitted, a phase imbalance of zero degrees is used.
• If P is a scalar, the function applies the same phase imbalance to each channel.
• If P is a vector, then each element specifies the phase imbalance that is applied to the

corresponding column (channel) of the input signal. The number of elements in P must
equal the number of columns in x.

Example: 10

2 Functions — Alphabetical List

2-786

Example: [2.5 7]
Data Types: single | double

Output Arguments
y — Output signal
vector | matrix

Output signal, returned as a vector or matrix having the same dimensions as x. The
number of columns in y corresponds to the number of channels.
Data Types: single | double

Algorithms
The iqimbal function applies an I/Q amplitude and phase imbalance to an input signal.

Given amplitude imbalance Ia in dB, the gain, g, resulting from the imbalance is defined
as

g ≜ gr + igi = 100.5
Ia
20 + i 10−0.5

Ia
20 .

Applying the I/Q imbalance to input signal x results in output signal y such that

y = Re(x) ⋅ gre
−i0.5Ip π/180 + iIm(x) ⋅ gie

i0.5Ip π/180 ,

where g is the imbalance gain and Ip is the phase imbalance in degrees.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 iqimbal

2-787

See Also
I/Q Imbalance | comm.IQImbalanceCompensator | iqcoef2imbal | iqimbal2coef

Introduced in R2016b

2 Functions — Alphabetical List

2-788

iscatastrophic
True for trellis corresponding to catastrophic convolutional code

Syntax
iscatastrophic(s)

Description
iscatastrophic(s) returns true if the trellis s corresponds to a convolutional code
that causes catastrophic error propagation. Otherwise, it returns false.

Examples

Determine if a Convolutional Code is Catastrophic

Determine if a convolutional code causes catastrophic error propagation.

Create the trellis for the standard, rate 1/2, constraint length 7 convolutional code.

t = poly2trellis(7,[171 133]);

Verify that the code is not catastrophic.

iscatastrophic(t)

ans = logical
 0

Create a trellis for a different convolutional code using the poly2trellis function.

u = poly2trellis(7,[161 143]);

Verify that the code is catastrophic.

 iscatastrophic

2-789

iscatastrophic(u)

ans = logical
 1

References
[1] Stephen B. Wicker, Error Control Systems for Digital Communication and Storage,

Prentice-Hall, 1995, pp. 274-275.

See Also
convenc | istrellis | poly2trellis | struct

Topics
“Convolutional Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-790

isprimitive
True for primitive polynomial for Galois field

Syntax
isprimitive(a)

Description
isprimitive(a) returns 1 if the polynomial that a represents is primitive for the Galois
field GF(2m), and 0 otherwise. The input a can represent the polynomial using one of
these formats:

• A nonnegative integer less than 217. The binary representation of this integer indicates
the coefficients of the polynomial. In this case, m is floor(log2(a)).

• A Galois row vector in GF(2), listing the coefficients of the polynomial in order of
descending powers. In this case, m is the order of the polynomial represented by a.

Examples
The example below finds all primitive polynomials for GF(8) and then checks using
isprimitive whether specific polynomials are primitive.

a = primpoly(3,'all','nodisplay'); % All primitive polys for GF(8)

isp1 = isprimitive(13) % 13 represents a primitive polynomial.

isp2 = isprimitive(14) % 14 represents a nonprimitive polynomial.

The output is below. If you examine the vector a, notice that isp1 is true because 13 is an
element in a, while isp2 is false because 14 is not an element in a.

isp1 =

 1

 isprimitive

2-791

isp2 =

 0

See Also
gf | primpoly

Topics
“Galois Field Computations”

Introduced before R2006a

2 Functions — Alphabetical List

2-792

istrellis
True for valid trellis structure

Syntax
[isok,status] = istrellis(s)

Description
[isok,status] = istrellis(s) checks if the input s is a valid trellis structure. If
the input is a valid trellis structure, isok is 1 and status is an empty character vector.
Otherwise, isok is 0 and status indicates why s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as in the table below.

Fields of a Valid Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning
numInputSymbols Scalar Number of input symbols to

the encoder: 2k

numOutputSymbols Scalar Number of output symbols
from the encoder: 2n

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2k matrix Next states for all
combinations of current
state and current input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current
state and current input

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The
element in the sth row and uth column denotes the next state when the starting state is
s-1 and the input bits have decimal representation u-1. To convert the input bits to a

 istrellis

2-793

decimal value, use the first input bit as the most significant bit (MSB). For example, the
second column of the nextStates matrix stores the next states when the current set of
input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1, the shift register that
receives the first input stream in the encoder provides the least significant bits in the
state number, and the shift register that receives the last input stream in the encoder
provides the most significant bits in the state number.

In the outputs matrix, the element in the sth row and uth column denotes the encoder's
output when the starting state is s-1 and the input bits have decimal representation u-1.
To convert to decimal value, use the first output bit as the MSB.

Examples
These commands assemble the fields into a very simple trellis structure, and then verify
the validity of the trellis structure.

trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)

The output is below.

isok =

 1

status =

 ''

Another example of a trellis is in “Trellis Description of a Convolutional Code”.

2 Functions — Alphabetical List

2-794

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
convenc | poly2trellis | struct | vitdec

Topics
“Convolutional Codes”

Introduced before R2006a

 istrellis

2-795

legacychannelsim
(To be removed) Toggles random number generation mode for channel objects

Syntax
b = legacychannelsim
legacychannelsim(true)
legacychannelsim(false)
oldmode = legacychannelsim(newmode)

Note legacychannelsim will be removed in a future release. Use
comm.RayleighChannel or comm.RicianChannel instead.

Description
b = legacychannelsim returns FALSE if the code you are running uses the R2009b (or
later) version of the random number generator for rayleighchan or ricianchan. (By
default, these use the 2009b random number generator.) It returns TRUE if pre-R2009b
versions are used. See Version 4.4. (R2009b) Communications Toolbox Release Notes for
more information.

legacychannelsim(true) reverts the random number generation mode for channel
objects to pre-2009b version.

Note legacychannelsim(true) will support the reset(chan,randstate)
functionality.

legacychannelsim(false) sets the random number generation mode for channel
objects to 2009b and later versions.

oldmode = legacychannelsim(newmode) sets the random number generation mode
for channel objects to newmode and returns the previous mode, oldmode.

2 Functions — Alphabetical List

2-796

Introduced in R2009b

 legacychannelsim

2-797

lineareq
(To be removed) Construct linear equalizer object

Note will be removed in a future release. Use comm.LinearEqualizer instead.

Syntax
eqobj = lineareq(nweights,alg)
eqobj = lineareq(nweights,alg,sigconst)
eqobj = lineareq(nweights,alg,sigconst,nsamp)

Description
The lineareq function creates an equalizer object that you can use with the equalize
function to equalize a signal. To learn more about the process for equalizing a signal, see
“Equalization”.

eqobj = lineareq(nweights,alg) constructs a symbol-spaced linear equalizer
object. The equalizer has nweights complex weights, which are initially all zeros. alg
describes the adaptive algorithm that the equalizer uses; you should create alg using any
of these functions: lms, signlms, normlms, varlms, rls, or cma. The signal
constellation of the desired output is [-1 1], which corresponds to binary phase shift
keying (BPSK).

eqobj = lineareq(nweights,alg,sigconst) specifies the signal constellation
vector of the desired output.

eqobj = lineareq(nweights,alg,sigconst,nsamp) constructs a fractionally
spaced linear equalizer object. The equalizer has nweights complex weights spaced at
T/nsamp, where T is the symbol period and nsamp is a positive integer. nsamp = 1
corresponds to a symbol-spaced equalizer.

2 Functions — Alphabetical List

2-798

Properties
The table below describes the properties of the linear equalizer object. To learn how to
view or change the values of a linear equalizer object, see “Equalization”.

Tip To initialize or reset the equalizer object eqobj, enter reset(eqobj).

Property Description
EqType Fixed value, 'Linear Equalizer'
AlgType Name of the adaptive algorithm

represented by alg
nWeights Number of weights
nSampPerSym Number of input samples per symbol

(equivalent to nsamp input argument). This
value relates to both the equalizer structure
(see the use of K in “Equalization”) and an
assumption about the signal to be
equalized.

RefTap (except for CMA equalizers) Reference tap index, between 1 and
nWeights. Setting this to a value greater
than 1 effectively delays the reference
signal and the output signal by RefTap-1
with respect to the equalizer's input signal.

SigConst Signal constellation, a vector whose length
is typically a power of 2

Weights Vector of complex coefficients. This is the
set of wi values in the schematic in
“Equalization”.

WeightInputs Vector of tap weight inputs. This is the set
of ui values in the schematic in
“Equalization”.

 lineareq

2-799

Property Description
ResetBeforeFiltering If 1, each call to equalize resets the state

of eqobj before equalizing. If 0, the
equalization process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer processed
since the last reset. When you create or
reset eqobj, this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the adaptive
algorithm function that created alg: lms,
signlms, normlms, varlms, rls, or cma.

Relationships Among Properties
If you change nWeights, MATLAB maintains consistency in the equalizer object by
adjusting the values of the properties listed below.

Property Adjusted Value
Weights zeros(1,nWeights)
WeightInputs zeros(1,nWeights)
StepSize (Variable-step-size LMS
equalizers)

InitStep*ones(1,nWeights)

InvCorrMatrix (RLS equalizers) InvCorrInit*eye(nWeights)

Examples

Equalize Using a Training Sequence

You can equalize a signal by using the equalize function to apply an adaptive equalizer
object to the signal. The equalize function also updates the equalizer.

In typical applications, an equalizer begins by using a known sequence of transmitted
symbols when adapting the equalizer weights. The known sequence, called a training
sequence, enables the equalizer to gather information about the channel characteristics.
After the equalizer finishes processing the training sequence, it adapts the equalizer

2 Functions — Alphabetical List

2-800

weights in decision-directed mode using a detected version of the output signal. To use a
training sequence when invoking the equalize function, include the symbols of the
training sequence as an input vector.

Note as an exception, that CMA equalizers do not use a training sequence. If an equalizer
object is based on CMA, you should not include a training sequence as an input vector.

This code illustrates how to use equalize with a training sequence. The training sequence
in this case is just the beginning of the transmitted message.

Set up parameters and signals.

M = 4; % Alphabet size for modulation
msg = randi([0 M-1],1500,1); % Random message
qpskMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = qpskMod(msg); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

Equalize the received signal.

eq1 = lineareq(8, lms(0.01)); % Create an equalizer object.
eq1.SigConst = qpskMod((0:M-1)')'; % Set signal constellation.
[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

Compute error rates with and without equalization

Determine the number of errors that occurred in trying to recover the modulated
message with and without the equalizer. The symbol error rates show that the equalizer
improves the performance significantly.

qpskDemod = comm.QPSKDemodulator('PhaseOffset',0);
demodmsg_noeq = qpskDemod(filtmsg); % Demodulate unequalized signal.
demodmsg = qpskDemod(yd); % Demodulate detected signal from equalizer.
errorCalc = comm.ErrorRate; % ErrorRate calculator
ser_noEq = errorCalc(msg(trainlen+1:end), demodmsg_noeq(trainlen+1:end));
reset(errorCalc)
ser_Eq = errorCalc(msg(trainlen+1:end),demodmsg(trainlen+1:end));
disp('Symbol error rates with and without equalizer:')

Symbol error rates with and without equalizer:

disp([ser_Eq(1) ser_noEq(1)])

 lineareq

2-801

 0 0.3230

Plot the signals

Create a scatter plot showing the signal before and after equalization, as well as the
reference signal constellation for QPSK modulation. The points of the equalized signal are
clustered more closely around the points of the reference signal constellation, indicating
the signal improvement from equalization.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;
scatterplot(symbolest,1,trainlen,'g.',h);
scatterplot(eq1.SigConst,1,0,'k*',h);
legend('Filtered signal','Equalized signal',...
 'Ideal signal constellation');
hold off;

2 Functions — Alphabetical List

2-802

For more examples that use training sequences, see “Adaptive Equalization”.

Equalizing Multiple Times Varying Mode

If you invoke equalize multiple times with the same equalizer object to equalize a series
of signal vectors, you might use a training sequence the first time you call the function
and omit the training sequence in subsequent calls. Each iteration of the equalize
function after the first one operates completely in decision-directed mode. However,
because the ResetBeforeFiltering property of the equalizer object is set to 0, the
equalize function uses the existing state information in the equalizer object when

 lineareq

2-803

starting equalization operation for each iteration. As a result, the training affects all
equalization operations, not just the first.

Notice in this code that the first call to equalize uses a training sequence as an input
argument, and the second call to equalize omits a training sequence.

Set up the signal transmission

Create a signal, QPSK modulate it, then filter it through a distortion channel.

M = 4; % Alphabet size for modulation
msg = randi([0 M-1],1500,1); % Random message
qpskMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = qpskMod(msg); % Modulate using QPSK

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion

Set up equalizer

Specify equalizer parameters and create an lms equalizer object

trainlen = 500; % Length of training sequence
eqlms = lineareq(8, lms(0.01)); % Create an equalizer object
eqlms.SigConst = qpskMod((0:M-1)')'; % Set signal constellation parameter in the equalizer

Maintain continuity between calls to equalize.

eqlms.ResetBeforeFiltering = 0;

Equalize the received signal in pieces

Process the training sequence.

s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));

Process some of the data in decision-directed mode.

s2 = equalize(eqlms,filtmsg(trainlen+1:800));

Process the rest of the data in decision-directed mode.

s3 = equalize(eqlms,filtmsg(801:end));

Concatenate the signal segments to get the full output of equalizer.

2 Functions — Alphabetical List

2-804

s = [s1; s2; s3];

Compatibility Considerations

lineareq will be removed
Not recommended starting in R2019a

lineareq will be removed. Use comm.LinearEqualizer instead.

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

 lineareq

2-805

lloyds
Optimize quantization parameters using Lloyd algorithm

Syntax
[partition,codebook] = lloyds(training_set,initcodebook)
[partition,codebook] = lloyds(training_set,len)
[partition,codebook] = lloyds(training_set,...,tol)
[partition,codebook,distor] = lloyds(...)
[partition,codebook,distor,reldistor] = lloyds(...)

Description
[partition,codebook] = lloyds(training_set,initcodebook) optimizes the
scalar quantization parameters partition and codebook for the training data in the
vector training_set. initcodebook, a vector of length at least 2, is the initial guess of
the codebook values. The output codebook is a vector of the same length as
initcodebook. The output partition is a vector whose length is one less than the
length of codebook.

See “Represent Partitions”, “Represent Codebooks”, or the reference page for quantiz
in this chapter, for a description of the formats of partition and codebook.

Note lloyds optimizes for the data in training_set. For best results, training_set
should be similar to the data that you plan to quantize.

[partition,codebook] = lloyds(training_set,len) is the same as the first
syntax, except that the scalar argument len indicates the size of the vector codebook.
This syntax does not include an initial codebook guess.

[partition,codebook] = lloyds(training_set,...,tol) is the same as the two
syntaxes above, except that tol replaces 10-7 in condition 1 of the algorithm description
below.

2 Functions — Alphabetical List

2-806

[partition,codebook,distor] = lloyds(...) returns the final mean square
distortion in the variable distor.

[partition,codebook,distor,reldistor] = lloyds(...) returns a value
reldistor that is related to the algorithm's termination. In condition 1 of the algorithm
below, reldistor is the relative change in distortion between the last two iterations. In
condition 2, reldistor is the same as distor.

Examples
The code below optimizes the quantization parameters for a sinusoidal transmission via a
three-bit channel. Because the typical data is sinusoidal, training_set is a sampled
sine wave. Because the channel can transmit three bits at a time, lloyds prepares a
codebook of length 23.

% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]*pi/500);
[partition,codebook] = lloyds(x,2^3)

The output is below.

partition =

 Columns 1 through 6

 -0.8540 -0.5973 -0.3017 0.0031 0.3077 0.6023

 Column 7

 0.8572

codebook =

 Columns 1 through 6

 -0.9504 -0.7330 -0.4519 -0.1481 0.1558 0.4575

 Columns 7 through 8

 0.7372 0.9515

 lloyds

2-807

Algorithms
lloyds uses an iterative process to try to minimize the mean square distortion. The
optimization processing ends when either

• The relative change in distortion between iterations is less than 10-7.
• The distortion is less than eps*max(training_set), where eps is the MATLAB
floating-point relative accuracy.

References
[1] Lloyd, S.P., “Least Squares Quantization in PCM,” IEEE Transactions on Information

Theory, Vol. IT-28, March, 1982, pp. 129–137.

[2] Max, J., “Quantizing for Minimum Distortion,” IRE Transactions on Information
Theory, Vol. IT-6, March, 1960, pp. 7–12.

See Also
dpcmopt | quantiz

Topics
“Source Coding”

Introduced before R2006a

2 Functions — Alphabetical List

2-808

lms
(To be removed) Construct least mean square (LMS) adaptive algorithm object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedbackEqualizer instead.

Syntax
alg = lms(stepsize)
alg = lms(stepsize,leakagefactor)

Description
The lms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about the
process for equalizing a signal, see “Equalization”.

alg = lms(stepsize) constructs an adaptive algorithm object based on the least mean
square (LMS) algorithm with a step size of stepsize.

alg = lms(stepsize,leakagefactor) sets the leakage factor of the LMS algorithm.
leakagefactor must be between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, and a value of 0 corresponds to a memoryless update algorithm.

Properties
The table below describes the properties of the LMS adaptive algorithm object. To learn
how to view or change the values of an adaptive algorithm object, see “Equalization”.

Property Description
AlgType Fixed value, 'LMS'

 lms

2-809

Property Description
StepSize LMS step size parameter, a nonnegative

real number
LeakageFactor LMS leakage factor, a real number between

0 and 1

Examples

Equalize Using a Training Sequence

You can equalize a signal by using the equalize function to apply an adaptive equalizer
object to the signal. The equalize function also updates the equalizer.

In typical applications, an equalizer begins by using a known sequence of transmitted
symbols when adapting the equalizer weights. The known sequence, called a training
sequence, enables the equalizer to gather information about the channel characteristics.
After the equalizer finishes processing the training sequence, it adapts the equalizer
weights in decision-directed mode using a detected version of the output signal. To use a
training sequence when invoking the equalize function, include the symbols of the
training sequence as an input vector.

Note as an exception, that CMA equalizers do not use a training sequence. If an equalizer
object is based on CMA, you should not include a training sequence as an input vector.

This code illustrates how to use equalize with a training sequence. The training sequence
in this case is just the beginning of the transmitted message.

Set up parameters and signals.

M = 4; % Alphabet size for modulation
msg = randi([0 M-1],1500,1); % Random message
qpskMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = qpskMod(msg); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

2 Functions — Alphabetical List

2-810

Equalize the received signal.

eq1 = lineareq(8, lms(0.01)); % Create an equalizer object.
eq1.SigConst = qpskMod((0:M-1)')'; % Set signal constellation.
[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

Compute error rates with and without equalization

Determine the number of errors that occurred in trying to recover the modulated
message with and without the equalizer. The symbol error rates show that the equalizer
improves the performance significantly.

qpskDemod = comm.QPSKDemodulator('PhaseOffset',0);
demodmsg_noeq = qpskDemod(filtmsg); % Demodulate unequalized signal.
demodmsg = qpskDemod(yd); % Demodulate detected signal from equalizer.
errorCalc = comm.ErrorRate; % ErrorRate calculator
ser_noEq = errorCalc(msg(trainlen+1:end), demodmsg_noeq(trainlen+1:end));
reset(errorCalc)
ser_Eq = errorCalc(msg(trainlen+1:end),demodmsg(trainlen+1:end));
disp('Symbol error rates with and without equalizer:')

Symbol error rates with and without equalizer:

disp([ser_Eq(1) ser_noEq(1)])

 0 0.3230

Plot the signals

Create a scatter plot showing the signal before and after equalization, as well as the
reference signal constellation for QPSK modulation. The points of the equalized signal are
clustered more closely around the points of the reference signal constellation, indicating
the signal improvement from equalization.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;
scatterplot(symbolest,1,trainlen,'g.',h);
scatterplot(eq1.SigConst,1,0,'k*',h);
legend('Filtered signal','Equalized signal',...
 'Ideal signal constellation');
hold off;

 lms

2-811

For more examples that use training sequences, see “Adaptive Equalization”.

Equalizing Multiple Times Varying Mode

If you invoke equalize multiple times with the same equalizer object to equalize a series
of signal vectors, you might use a training sequence the first time you call the function
and omit the training sequence in subsequent calls. Each iteration of the equalize
function after the first one operates completely in decision-directed mode. However,
because the ResetBeforeFiltering property of the equalizer object is set to 0, the
equalize function uses the existing state information in the equalizer object when

2 Functions — Alphabetical List

2-812

starting equalization operation for each iteration. As a result, the training affects all
equalization operations, not just the first.

Notice in this code that the first call to equalize uses a training sequence as an input
argument, and the second call to equalize omits a training sequence.

Set up the signal transmission

Create a signal, QPSK modulate it, then filter it through a distortion channel.

M = 4; % Alphabet size for modulation
msg = randi([0 M-1],1500,1); % Random message
qpskMod = comm.QPSKModulator('PhaseOffset',0);
modmsg = qpskMod(msg); % Modulate using QPSK

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion

Set up equalizer

Specify equalizer parameters and create an lms equalizer object

trainlen = 500; % Length of training sequence
eqlms = lineareq(8, lms(0.01)); % Create an equalizer object
eqlms.SigConst = qpskMod((0:M-1)')'; % Set signal constellation parameter in the equalizer

Maintain continuity between calls to equalize.

eqlms.ResetBeforeFiltering = 0;

Equalize the received signal in pieces

Process the training sequence.

s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));

Process some of the data in decision-directed mode.

s2 = equalize(eqlms,filtmsg(trainlen+1:800));

Process the rest of the data in decision-directed mode.

s3 = equalize(eqlms,filtmsg(801:end));

Concatenate the signal segments to get the full output of equalizer.

 lms

2-813

s = [s1; s2; s3];

Algorithms
Referring to the schematics presented in “Equalization”, define w as the vector of all
weights wi and define u as the vector of all inputs ui. Based on the current set of weights,
w, this adaptive algorithm creates the new set of weights given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

Compatibility Considerations

lms will be removed
Not recommended starting in R2019a

lms will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,
John Wiley & Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, John Wiley &
Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

2 Functions — Alphabetical List

2-814

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

 lms

2-815

log
Logarithm in Galois field

Syntax
y = log(x)

Description
y = log(x) computes the logarithm of each element in the Galois array x. y is an
integer array that solves the equation A.^y = x, where A is the primitive element used
to represent elements in x. More explicitly, the base A of the logarithm is gf(2,x.m) or
gf(2,x.m,x.prim_poly). All elements in x must be nonzero because the logarithm of
zero is undefined.

Examples
The code below illustrates how the logarithm operation inverts exponentiation.

m = 4; x = gf([8 1 6; 3 5 7; 4 9 2],m);
y = log(x);
primel = gf(2,m); % Primitive element in the field
z = primel .^ y; % This is now the same as x.
ck = isequal(x,z)

The output is

ck =

 1

The code below shows that the logarithm of 1 is 0 and that the logarithm of the base
(primel) is 1.

m = 4; primel = gf(2,m);
yy = log([1, primel])

2 Functions — Alphabetical List

2-816

The output is

yy =

 0 1

See Also
gf

Introduced before R2006a

 log

2-817

marcumq
Generalized Marcum Q function

Syntax
Q = marcumq(a,b)
Q = marcumq(a,b,m)

Description
Q = marcumq(a,b) computes the Marcum Q function of a and b, defined by

Q(a, b) = ∫
b

∞
xexp − x2 + a2

2 I0(ax)dx

where a and b are nonnegative real numbers. In this expression, I0 is the modified Bessel
function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

Q(a, b) = 1
am− 1∫

b

∞
xmexp − x2 + a2

2 Im− 1(ax)dx

where a and b are nonnegative real numbers, and m is a positive integer. In this
expression, Im-1 is the modified Bessel function of the first kind of order m-1.

If any of the inputs is a scalar, it is expanded to the size of the other inputs.

Examples

2 Functions — Alphabetical List

2-818

Generate and Plot Marcum Q Function Data

This example shows how to use the marcumq function.

Create an input vector, x.

x = (0:0.1:10)';

Generate two output vectors for a=0 and a=2.

Q1 = marcumq(0,x);
Q2 = marcumq(2,x);

Plot the resultant Marcum Q functions.

plot(x,[Q1 Q2])

 marcumq

2-819

References

[1] Cantrell, P. E., and A. K. Ojha, “Comparison of Generalized Q-Function Algorithms,”
IEEE Transactions on Information Theory, Vol. IT-33, July, 1987, pp. 591–596.

[2] Marcum, J. I., “A Statistical Theory of Target Detection by Pulsed Radar: Mathematical
Appendix,” RAND Corporation, Santa Monica, CA, Research Memorandum
RM-753, July 1, 1948. Reprinted in IRE Transactions on Information Theory, Vol.
IT-6, April, 1960, pp. 59–267.

2 Functions — Alphabetical List

2-820

[3] Shnidman, D. A., “The Calculation of the Probability of Detection and the Generalized
Marcum Q-Function,” IEEE Transactions on Information Theory, Vol. IT-35,
March, 1989, pp. 389–400.

See Also
besseli

Introduced before R2006a

 marcumq

2-821

mask2shift
Convert mask vector to shift for shift register configuration

Syntax
shift = mask2shift(prpoly,mask)

Description
shift = mask2shift(prpoly,mask) returns the shift that is equivalent to a mask, for
a linear feedback shift register whose connections are specified by the primitive
polynomial prpoly. The prpoly input can have one of these formats:

• A polynomial character vector
• A binary vector that lists the coefficients of the primitive polynomial in order of

descending powers
• An integer scalar whose binary representation gives the coefficients of the primitive

polynomial, where the least significant bit is the constant term

The mask input is a binary vector whose length is the degree of the primitive polynomial.

Note To save time, mask2shift does not check that prpoly is primitive. If it is not
primitive, the output is not meaningful. To find primitive polynomials, use primpoly or
see [2].

For more information about how masks and shifts are related to pseudonoise sequence
generators, see shift2mask.

Definition of Equivalent Shift
If A is a root of the primitive polynomial and m(A) is the mask polynomial evaluated at A,
the equivalent shift s solves the equation As = m(A). To interpret the vector mask as a
polynomial, treat mask as a list of coefficients in order of descending powers.

2 Functions — Alphabetical List

2-822

Examples

Convert Mask to Shift

Convert masks into shifts for a linear feedback shift register.

Convert a mask of x3 + 1 into an equivalent shift for the linear feedback shift register
whose connections are specified by the primitive polynomial x4 + x3 + 1.

s1 = mask2shift([1 1 0 0 1],[1 0 0 1])

s1 = 4

Convert a mask of 1 to a shift. The mask is equivalent to a shift of 0.

s2 = mask2shift([1 1 0 0 1],[0 0 0 1])

s2 = 0

Convert a mask of x2 into an equivalent shift for the primitive polynomial x3 + x + 1.

s3 = mask2shift('x3+x+1','x2')

s3 = 2

References

[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech
House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications Handbook,
New York, McGraw-Hill, 1994.

See Also
isprimitive | log | primpoly | shift2mask

 mask2shift

2-823

Introduced before R2006a

2 Functions — Alphabetical List

2-824

matdeintrlv
Restore ordering of symbols by filling matrix by columns and emptying it by rows

Syntax
deintrlvd = matdeintrlv(data,Nrows,Ncols)

Description
deintrlvd = matdeintrlv(data,Nrows,Ncols) rearranges the elements in data
by filling a temporary matrix with the elements column by column and then sending the
matrix contents, row by row, to the output. Nrows and Ncols are the dimensions of the
temporary matrix. If data is a vector, it must have Nrows*Ncols elements. If data is a
matrix with multiple rows and columns, data must have Nrows*Ncols rows and the
function processes the columns independently.

To use this function as an inverse of the matintrlv function, use the same Nrows and
Ncols inputs in both functions. In that case, the two functions are inverses in the sense
that applying matintrlv followed by matdeintrlv leaves data unchanged.

Examples
The code below illustrates the inverse relationship between matintrlv and
matdeintrlv.

Nrows = 2; Ncols = 3;
data = [1 2 3 4 5 6; 2 4 6 8 10 12]';
a = matintrlv(data,Nrows,Ncols); % Interleave.
b = matdeintrlv(a,Nrows,Ncols) % Deinterleave.

The output below shows that b is the same as data.

b =

 1 2

 matdeintrlv

2-825

 2 4
 3 6
 4 8
 5 10
 6 12

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-826

matintrlv
Reorder symbols by filling matrix by rows and emptying it by columns

Syntax
intrlvd = matintrlv(data,Nrows,Ncols)

Description
intrlvd = matintrlv(data,Nrows,Ncols) rearranges the elements in data by
filling a temporary matrix with the elements row by row and then sending the matrix
contents, column by column, to the output. Nrows and Ncols are the dimensions of the
temporary matrix. If data is a vector, it must have Nrows*Ncols elements. If data is a
matrix with multiple rows and columns, data must have Nrows*Ncols rows and the
function processes the columns independently.

Examples
The command below rearranges each of two columns of a matrix.

b = matintrlv([1 2 3 4 5 6; 2 4 6 8 10 12]',2,3)
b =

 1 2
 4 8
 2 4
 5 10
 3 6
 6 12

To form the first column of the output, the function creates the temporary 2-by-3 matrix
[1 2 3; 4 5 6]. Then the function reads down each column of the temporary matrix to
get [1 4 2 5 3 6].

 matintrlv

2-827

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matdeintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-828

mil188qamdemod
MIL-STD-188-110 B/C standard-specific quadrature amplitude demodulation

Syntax
z = mil188qamdemod(y,M)
z = mil188qamdemod(y,M,Name,Value)

Description
z = mil188qamdemod(y,M) performs QAM demodulation on an input signal, y, that
was modulated in accordance with MIL-STD-188-110 and the modulation order, M. For a
description of MIL-STD-188-110 QAM demodulation, see “MIL-STD-188-110 QAM Hard
Demodulation” on page 2-838 and “MIL-STD-188-110 QAM Soft Demodulation” on page
2-838.

z = mil188qamdemod(y,M,Name,Value) specifies options using one or more name-
value pair arguments. For example, 'OutputDataType','double' specifies the desired
output data type as double. Specify name-value pair arguments after all other input
arguments.

Examples

Demodulate MIL-STD-188-110B Specific 16-QAM Signal

Demodulate a 16-QAM signal that was modulated as specified in MIL-STD-188-110B. Plot
the received constellation and verify that the output matches the input.

Set the modulation order and generate random data.

M = 16;
numSym = 20000;
x = randi([0 M-1],numSym,1);

 mil188qamdemod

2-829

Modulate the data and pass through a noisy channel.

txSig = mil188qammod(x,M);
rxSig = awgn(txSig,25,'measured');

Plot the transmitted and received signal.

plot(rxSig,'b*')
hold on; grid
plot(txSig,'r*')
xlim([-1.5 1.5]);
ylim([-1.5 1.5])
xlabel('In-Phase')
ylabel('Quadrature')
legend('Received constellation','Reference constellation')

2 Functions — Alphabetical List

2-830

Demodulate the received signal. Compare the demodulated data to the original data.

z = mil188qamdemod(rxSig,M);
isequal(x,z)

ans = logical
 1

Demodulate MIL-STD-188-110C Specific 64-QAM Signal

Demodulate a 64-QAM signal that was modulated as specified in MIL-STD-188-110C.
Compute hard decision bit output and that verify the output matches the input.

Set the modulation order and generate random bit data.

M = 64;
numBitsPerSym = log2(M);
x = randi([0 1],1000*numBitsPerSym,1);

Modulate the data. Use name-value pairs to specify bit input data and to plot the
constellation.

txSig = mil188qammod(x,M,'InputType','bit','PlotConstellation',true);

 mil188qamdemod

2-831

Demodulate the received signal. Compare the demodulated data to the original data.

z = mil188qamdemod(txSig,M,'OutputType','bit');
isequal(z,x)

ans = logical
 1

Soft Bit Demodulate MIL-STD-188-110 Specific 32-QAM Signal

Demodulate a 32-QAM signal and calculate soft bits.

2 Functions — Alphabetical List

2-832

Set the modulation order and generate a random bit sequence.

M = 32;
numSym = 20000;
numBitsPerSym = log2(M);
x = randi([0 1], numSym*numBitsPerSym,1);

Modulate the data. Use name-value pairs to specify bit input data and unit average power,
and to plot the constellation.

txSig = mil188qammod(x,M,'InputType','bit','UnitAveragePower',true, ...
 'PlotConstellation',true);

Pass the transmitted data through white Gaussian noise.

 mil188qamdemod

2-833

rxSig = awgn(txSig,10,'measured');

View the constellation using a scatter plot.

scatterplot(rxSig)

Demodulate the signal, computing soft bits using the approximate LLR algorithm.

z = mil188qamdemod(rxSig,M,'OutputType','approxllr', ...
 'NoiseVariance',10^(-1));

2 Functions — Alphabetical List

2-834

Input Arguments
y — Modulated signal
scalar | vector | matrix

Modulated signal, specified as a complex scalar, vector, or matrix. When y is a matrix,
each column is treated as an independent channel.

y must be modulated in accordance with MIL-STD-188-110 [1].
Data Types: single | double
Complex Number Support: Yes

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total
number of points in the signal constellation.
Example: 16
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y =
mil188qamdemod(x,M,'OutputType','bit','OutputDataType','single');

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Output type, specified as the comma-separated pair consisting of OutputType and
'integer', 'bit', 'llr', or 'approxllr'.
Data Types: char | string

OutputDataType — Output data type
'double' (default) | ...

 mil188qamdemod

2-835

Output data type, specified as the comma-separated pair consisting of OutputDataType
and one of the indicated data types. Acceptable values for OutputDataType depend on
the OutputType value.

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8',

'uint16', or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8',

'uint16', 'uint32', or 'logical'

Dependencies

This name-value pair argument applies only when OutputType is set to 'integer' or
'bit'.
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of
UnitAveragePower and a logical scalar. When this flag is true, the function scales the
constellation to an average power of 1 watt referenced to 1 ohm. When this flag is false,
the function scales the constellation based on specifications in the relevant standard, as
described in [1].
Data Types: logical

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as the comma-separated pair consisting of NoiseVariance and
a positive scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input
elements.

• When specified as a vector, the vector length must be equal to the number of columns
in the input signal.

When the noise variance or signal power result in computations involving extreme
positive or negative magnitudes, see “MIL-STD-188-110 QAM Soft Demodulation” on
page 2-838 for algorithm selection considerations.

2 Functions — Alphabetical List

2-836

Dependencies

This name-value pair argument applies only when OutputType is set to 'llr' or
'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
z — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of z depend
on the specified OutputType value.

OutputType
Value

Return Value of
mil188qamdemod

Dimensions of z

'integer' Demodulated integer values
from 0 to (M – 1)

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(sum(M))
times the number of rows in y. Each
demodulated symbol is mapped to a group
of log2(sum(M)) elements in a column,
where the first element represents the MSB
and the last element represents the LSB.

'llr' Log-likelihood ratio value
for each bit

'approxllr
'

Approximate log-likelihood
ratio value for each bit

 mil188qamdemod

2-837

More About

MIL-STD-188-110 QAM Hard Demodulation
The hard demodulation algorithm uses optimum decision region-based demodulation.
Since all the constellation points are equally probable, maximum a posteriori probability
(MAP) detection reduces to a maximum likelihood (ML) detection. The ML detection rule
is equivalent to choosing the closest constellation point to the received symbol. The
decision region for each constellation point is designed by drawing perpendicular
bisectors between adjacent points. A received symbol is mapped to the proper
constellation point based on which decision region it lies in.

Since all MIL-STD constellations are quadrant-based symmetric, for each symbol the
optimum decision region-based demodulation:

• Maps the received symbol into the first quadrant
• Chooses the decision region for the symbol
• Maps the constellation point back to its original quadrant using the sign of real and

imaginary parts of the received symbol

MIL-STD-188-110 QAM Soft Demodulation
For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are
available: exact LLR and approximate LLR. This table compares these algorithms.

Algorithm Accuracy Execution Speed
Exact LLR more accurate slower execution
Approximate LLR less accurate faster execution

For further description of these algorithms, see “Exact LLR Algorithm” and “Approximate
LLR Algorithm”.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value

2 Functions — Alphabetical List

2-838

• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data

Modems." Department of Defense Interface Standard, USA.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
apskdemod | dvbsapskdemod | genqamdemod | mil188qammod | pskdemod | qamdemod

Objects
comm.GeneralQAMDemodulator | comm.PSKDemodulator

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”

Introduced in R2018a

 mil188qamdemod

2-839

mil188qammod
MIL-STD-188-110 B/C standard-specific quadrature amplitude modulation (QAM)

Syntax
y = mil188qammod(x,M)
y = mil188qammod(x,M,Name,Value)

Description
y = mil188qammod(x,M) performs QAM modulation on the input signal, x, in
accordance with MIL-STD-188-110 and the modulation order, M. For more information,
see “MIL-STD-188-110” on page 2-847.

y = mil188qammod(x,M,Name,Value) specifies options using one or more name-value
pair arguments. For example, 'OutputDataType','double' specifies the desired
output data type as double. Specify name-value pair arguments after all other input
arguments.

Examples

Apply 32-QAM to Data Per MIL-STD-188-110C

Modulate data using 32-QAM as specified in the MIL-188-110C standard. Display the
result using a scatter plot.

Set M to 32 and create a data vector containing all possible symbols.

M = 32;
x = (0:M-1);

Modulate the data using QAM as specified in MIL-STD-188-110C.

y = mil188qammod(x,M);

2 Functions — Alphabetical List

2-840

Display the constellation as a scatter plot.

scatterplot(y)

Normalize 16-QAM Modulated MIL-STD-188-110B Signal by Average Power

Modulate data using 16-QAM as specified in the MIL-STD-188-110B standard. Normalize
the modulator output so that it has an average signal power of 1 W.

Set M and generate random data.

 mil188qammod

2-841

M = 16;
x = randi([0 M-1],1e5,1);

Modulate the data applying 16-QAM as specified in MIL-STD-188-110B. Using name-value
pairs, set the unit average power to true and enable the constellation plot.

y = mil188qammod(x,M,'UnitAveragePower',true,'PlotConstellation',true);

Verify that the signal has approximately unit average power.

avgPow = mean(abs(y).^2)

avgPow = 1.0012

2 Functions — Alphabetical List

2-842

Apply 64-QAM MIL-STD-188-110B Modulation to Bit Data

Modulate a sequence of bits using 64-QAM as specified by MIL-STD188-110B. Display the
constellation.

Set the modulation order and generate a sequence of random bits.

M = 64;
numBitsPerSym = log2(M);
data = randi([0 1],1000*numBitsPerSym,1);

Modulate the data applying 64-QAM as specified by MIL-STD-188-110B, and output
constellation symbols of single data type.

y = mil188qammod(data,M,'InputType','bit','OutputDataType','single');

Plot the result constellation using a scatter plot.

scatterplot(y)

 mil188qammod

2-843

Input Arguments
x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The elements of x must be binary
values or integers that range from 0 to (M – 1), where M is the modulation order.

Note To process input signal as binary elements, set the 'InputType' value to 'bit'.
For binary inputs, the number of rows must be an integer multiple of log2(M). Groups of

2 Functions — Alphabetical List

2-844

log2(M) bits in a column are mapped onto a symbol, with the first bit representing the
MSB and the last bit representing the LSB.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total
number of points in the signal constellation.
Example: 16
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y = mil188qammod(data,M,'InputType','bit','OutputDataType','single');

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either
'integer' or 'bit'. If you specify 'integer', the input signal must consist of integers
from 0 to M – 1. If you specify 'bit', the input signal must contain binary values, and the
number of rows must be an integer multiple of log2(M).
Data Types: char | string

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as the comma-separated pair consisting of OutputDataType
and 'double' or 'single'.
Data Types: char | string

 mil188qammod

2-845

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of
'UnitAveragePower' and a logical scalar. When this flag is true, the function scales
the constellation to an average power of 1 watt referenced to 1 ohm. When this flag is
false, the function scales the constellation based on specifications in the relevant
standard, as described in [1].
Data Types: logical

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
y — Modulated signal
scalar | vector | matrix

Modulated signal, returned as a complex scalar, vector, or matrix. The dimension of the
output depends on the specified InputType value.

InputType Dimensions of Output
'integer' y has the same dimensions as input x.
'bit' The number of rows in y equals the number of rows in x divided

by log2(M).

Data Types: double | single

2 Functions — Alphabetical List

2-846

More About

MIL-STD-188-110
MIL-STD-188-110 is a US Department of Defense standard for HF communications using
serial PSK mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul
communications. The modulation scheme specified by the standard is a mix of QAM and
APSK. For a detailed description of the modulation scheme, see [1].

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data

Modems". Department of Defense Interface Standard, USA.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
apskmod | dvbsapskmod | genqammod | mil188qamdemod | pskmod | qammod

Objects
comm.GeneralQAMModulator | comm.PSKModulator

Introduced in R2018a

 mil188qammod

2-847

minpol
Find minimal polynomial of Galois field element

Syntax
pl = minpol(x)

Description
pl = minpol(x) finds the minimal polynomial of each element in the Galois column
vector, x. The output pl is an array in GF(2). The kth row of pl lists the coefficients, in
order of descending powers, of the minimal polynomial of the kth element of x.

Note The output is in GF(2) even if the input is in a different Galois field.

Examples
The code below uses m = 4 and finds that the minimal polynomial of gf(2,m) is just the
primitive polynomial used for the field GF(2^m). This is true for any value of m, not just the
value used in the example.

m = 4;
A = gf(2,m)
pl = minpol(A)

The output is below. Notice that the row vector [1 0 0 1 1] represents the polynomial
D^4 + D + 1.

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 2

2 Functions — Alphabetical List

2-848

pl = GF(2) array.

Array elements =

 1 0 0 1 1

Another example is in “Minimal Polynomials”.

See Also
cosets | gf

Topics
“Polynomials over Galois Fields”

Introduced before R2006a

 minpol

2-849

mldivide
Matrix left division \ of Galois arrays

Syntax
x = A\B

Description
x = A\B divides the Galois array A into B to produce a particular solution of the linear
equation A*x = B. In the special case when A is a nonsingular square matrix, x is the
unique solution, inv(A)*B, to the equation.

Examples
The code below shows that A \ eye(size(A)) is the inverse of the nonsingular square
matrix A.

m = 4; A = gf([8 1 6; 3 5 7; 4 9 2],m);
Id = gf(eye(size(A)),m);
X = A \ Id;
ck1 = isequal(X*A, Id)
ck2 = isequal(A*X, Id)

The output is below.

ck1 =

 1

ck2 =

 1

Other examples are in “Solving Linear Equations”.

2 Functions — Alphabetical List

2-850

Limitations
The matrix A must be one of these types:

• A nonsingular square matrix
• A matrix, in which there are more rows than columns, such that A'*A is nonsingular
• A matrix, in which there are more columns than rows, such that A*A' is nonsingular

Algorithms
If A is an M-by-N matrix where M > N, A \ B is the same as (A'*A) \ (A'*B).

If A is an M-by-N matrix where M < N, A \ B is the same as A' * ((A*A') \ B). This
solution is not unique.

See Also
gf

Topics
“Linear Algebra in Galois Fields”

Introduced before R2006a

 mldivide

2-851

mlseeq
Equalize linearly modulated signal using MLSE

Syntax
y = mlseeq(x,chcffs,const,tblen,opmode)
y = mlseeq(___ ,nsamp)

y = mlseeq(___ ,nsamp,preamble,postamble)

y = mlseeq(___ ,nsamp,init_metric,init_states,init_inputs)
[y,final_metric,final_states,final_inputs] = mlseeq(___)

Description
y = mlseeq(x,chcffs,const,tblen,opmode) equalizes the baseband signal vector
x using the maximum likelihood sequence estimation (MLSE). chcffs provides estimated
channel coefficients. const provides the ideal signal constellation points. tblen specifies
the traceback depth. opmode specifies the operation mode of the equalizer. MLSE is
implemented using the “Viterbi Algorithm” on page 2-861.

y = mlseeq(___ ,nsamp) specifies the number of samples per symbol in x, in addition
to arguments in the previous syntax.

y = mlseeq(___ ,nsamp,preamble,postamble) specifies the number of samples per
symbol in x, preamble, and postamble, in addition to arguments in the first syntax. This
syntax applies when opmode is 'rst' only. For more information, see “Preamble and
Postamble in Reset Operation Mode” on page 2-861.

y = mlseeq(___ ,nsamp,init_metric,init_states,init_inputs)specifies the
number of samples per symbol in x, initial likelihood state metrics, initial traceback
states, and initial traceback inputs for the equalizer, in addition to arguments in the first
syntax. These three inputs are typically the final_metric, final_states, and
final_inputs outputs from a previous call to this function. This syntax applies when
opmode is 'cont' only. For more information, see “Initialization in Continuous Operation
Mode” on page 2-862.

2 Functions — Alphabetical List

2-852

[y,final_metric,final_states,final_inputs] = mlseeq(___) returns the
normalized final likelihood state metrics, final traceback states, and final traceback inputs
at the end of the traceback decoding process, using any of the previous input argument
syntaxes. This syntax applies when opmode is 'cont' only. For more information, see
“Initialization in Continuous Operation Mode” on page 2-862.

Examples

Using MLSE Equalizer Reset Operating Mode

Use the reset operating mode of the mlseeq equalizer. Demodulate the signal and check
the bit error rate.

Specify the modulation order, equalizer traceback depth, number of samples per symbol,
and message length.

M = 2;
tblen = 10;
nsamp = 2;
msgLen = 1000;

Generate the reference constellation.

const = pammod([0:M-1],M);

Generate a message with random data. Modulate and upsample the signal.

msgData = randi([0 M-1],msgLen,1);
msgSym = pammod(msgData,M);
msgSymUp = upsample(msgSym,nsamp);

Filter the data through a distortion channel and add Gaussian noise to the signal.

chanest = [0.986; 0.845; 0.237; 0.12345+0.31i];
msgFilt = filter(chanest,1,msgSymUp);
msgRx = awgn(msgFilt,5,'measured');

Equalize and then demodulate the signal to recover the message. To initialize the
equalizer, provide the channel estimate, reference constellation, equalizer traceback
depth, number of samples per symbol, and set the operating mode to reset. Check the
message bit error rate. Your results might vary because this example uses random
numbers.

 mlseeq

2-853

eqSym = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp);
eqMsg = pamdemod(eqSym,M);

[nerrs ber] = biterr(msgData, eqMsg)

nerrs = 1

ber = 1.0000e-03

Recover Message Containing Preamble

Recover a message that includes a preamble, equalize the signal, and check the symbol
error rate.

Specify the modulation order, equalizer traceback depth, number of samples per symbol,
preamble, and message length.

M = 4;
tblen = 16;
nsamp = 1;
preamble = [3;1];
msgLen = 500;

Generate the reference constellation.

const = pskmod(0:3,4);

Generate a message by using random data and prepend the preamble to the message.
Modulate the random data.

msgData = randi([0 M-1],msgLen,1);
msgData = [preamble; msgData];
msgSym = pskmod(msgData,M);

Filter the data through a distortion channel and add Gaussian noise to the signal.

chcoeffs = [0.623; 0.489+0.234i; 0.398i; 0.21];
chanest = chcoeffs;
msgFilt = filter(chcoeffs,1,msgSym);
msgRx = awgn(msgFilt,9,'measured');

Equalize the received signal. To configure the equalizer, provide the channel estimate,
reference constellation, equalizer traceback depth, operating mode, number of samples

2 Functions — Alphabetical List

2-854

per symbol, and preamble. The same preamble symbols appear at the beginning of the
message vector and in the syntax for mlseeq. Because the system does not use a
postamble, an empty vector is specified as the last input argument in this mlseeq syntax.

Check the symbol error rate of the equalized signal. Run-to-run results vary due to use of
random numbers.

eqSym = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp,preamble,[]);
[nsymerrs,ser] = symerr(msgSym,eqSym)

nsymerrs = 8

ser = 0.0159

Using MLSE Equalizer Continuous Operating Mode

Use the continuous operating mode of the mlseeq equalizer. Demodulate received signal
packets and check the symbol error statistics.

Specify the modulation order, equalizer traceback depth, number of samples per symbol,
message length, and number of packets to process.

M = 4;
tblen = 10;
nsamp = 1;
msgLen = 1000;
numPkts = 25;

Generate the reference constellation.

const = pskmod(0:M-1,M);

Set the initial input parameters for the metric, states, and inputs of the equalizer to
empty vectors. These initial assignments represent the parameters for the first packet
transmitted.

eq_metric = [];
eq_states = [];
eq_inputs = [];

Assign variables for symbol error statistics.

 mlseeq

2-855

ttlSymbErrs = 0;
aggrPktSER = 0;

Send and receive multiple message packets in a simulation loop. Between the packet
transmission and reception filter each packet through a distortion channel and add
Gaussian noise.

for jj = 1:numPkts

Generate a message with random data. Modulate the signal.

 msgData = randi([0 M-1],msgLen,1);
 msgMod = pskmod(msgData,M);

Filter the data through a distortion channel and add Gaussian noise to the signal.

 chanest = [.986; .845; .237; .12345+.31i];
 msgFilt = filter(chanest,1,msgMod);
 msgRx = awgn(msgFilt,10,'measured');

Equalize the received symbols. To configure the equalizer, provide the channel estimate,
reference constellation, equalizer traceback depth, operating mode, number of samples
per symbol, and the equalizer initialization information. Continuous operating mode is
specified for the equalizer. In continuous operating mode, the equalizer initialization
information (metric, states, and inputs) are returned and used as inputs in the next
iteration of the for loop.

 [eqSym,eq_metric,eq_states,eq_inputs] = ...
 mlseeq(msgRx,chanest,const,tblen,'cont',nsamp, ...
 eq_metric,eq_states,eq_inputs);

Save the symbol error statistics. Update the symbol error statistics with the aggregate
results. Display the total number of errors. Your results might vary because this example
uses random numbers.

 [nsymerrs,ser] = symerr(msgMod(1:end-tblen),eqSym(tblen+1:end));
 ttlSymbErrs = ttlSymbErrs + nsymerrs;
 aggrPktSER = aggrPktSER + ser;
end
printTtlErr = 'A total of %d symbol errors over the %d packets received.\n';
fprintf(printTtlErr,ttlSymbErrs,numPkts);

A total of 155 symbol errors over the 25 packets received.

Display the aggregate symbol error rate.

2 Functions — Alphabetical List

2-856

printAggrSER = 'The aggregate symbol error rate was %6.5d.\n';
fprintf(printAggrSER,aggrPktSER/numPkts);

The aggregate symbol error rate was 6.26263e-03.

Input Arguments
x — Input signal
vector

Input signal, specified as a vector of modulated symbols. The vector length of x must be
an integer multiple of nsamp.
Data Types: double
Complex Number Support: Yes

chcffs — Channel coefficients
vector

Channel coefficients, specified as a vector. The channel coefficients provide an estimate of
the channel response. When nsamp > 1, the chcffs input specifies the oversampled
channel coefficients.
Data Types: double
Complex Number Support: Yes

const — Reference constellation
vector

Reference constellation, specified as a vector with M elements. M is the modulation order.
const lists the ideal signal constellation points in the sequence used by the modulator.
Data Types: double
Complex Number Support: Yes

tblen — Traceback depth
positive integer

Traceback depth, specified as a positive integer. The equalizer traces back from the
likelihood state with the maximum metric.
Data Types: double

 mlseeq

2-857

opmode — Operation mode
'rst' | 'cont'

Operation mode, specified as 'rst' or 'cont'.

Value Usage
'rst' Run equalizer using reset operating mode. Enables you to

specify a preamble and postamble that accompany the
input signal. The function processes the input signal, x,
independently of the input signal from any other invocations
of this function. This operating mode does not incur an
output delay. For more information, see “Preamble and
Postamble in Reset Operation Mode” on page 2-861.

'cont' Run equalizer using continuous operating mode. Enables
you to save the internal state information of the equalizer
for use in a subsequent invocation of this function.
Continuous operating mode is useful if the input signal is
partitioned into a stream of packets processed within a
loop. This operating mode incurs an output delay of tblen
symbols. For more information, see “Initialization in
Continuous Operation Mode” on page 2-862.

Data Types: char

nsamp — Number of samples per symbol
1 (default) | positive integer

Number of samples per symbol, specified as a positive integer. nsamp is the oversampling
factor.

Dependencies

The input signal, x, must be an integer multiple of nsamp.
Data Types: double

preamble — Input signal preamble
vector of integers

Input signal preamble, specified as a vector of integers between 0 and M–1, where M is
the modulation order. To omit a preamble, specify [].

2 Functions — Alphabetical List

2-858

For more information, see “Preamble and Postamble in Reset Operation Mode” on page 2-
861.

Dependencies

This input argument applies only when opmode is set to 'rst'.
Data Types: double

postamble — Input signal postamble
vector of integers

Input signal postamble, specified as a vector of integers between 0 and M–1, where M is
the modulation order. To omit a postamble, specify [].

For more information, see “Preamble and Postamble in Reset Operation Mode” on page 2-
861.

Dependencies

This input argument applies only when opmode is set to 'rst'.
Data Types: double

init_metric — Initial state metrics
[] (default) | column vector

Initial state metrics, specified as a column vector with Nstates elements. For the description
of Nstates, see “Number of Likelihood States” on page 2-863.

For more information, see “Initialization in Continuous Operation Mode” on page 2-862.

Dependencies

This input argument applies only when opmode is set to 'cont'. If specifying [] for
init_metric, you must also specify [] for init_states and init_inputs.
Data Types: double

init_states — Initial traceback states
[] (default) | matrix of integers

Initial traceback states, specified as an Nstates-by-tblen matrix of integers with values
between 0 and Nstates–1. For the description of Nstates, see “Number of Likelihood States”
on page 2-863.

 mlseeq

2-859

For more information, see “Initialization in Continuous Operation Mode” on page 2-862.
Dependencies

This input argument applies only when opmode is set to 'cont'. If specifying [] for
init_states, you must also specify [] for init_metric and init_inputs.
Data Types: double

init_inputs — Initial traceback inputs
[] (default) | matrix of integers

Initial traceback inputs, specified as an Nstates-by-tblen matrix of integers with values
between 0 and M–1. For the description of Nstates, see “Number of Likelihood States” on
page 2-863.

For more information, see “Initialization in Continuous Operation Mode” on page 2-862.
Dependencies

This input argument applies only when opmode is set to 'cont'. If specifying [] for
init_inputs, you must also specify [] for init_metric and init_states.
Data Types: double

Output Arguments
y — Output signal
vector

Output signal, returned as a vector of modulated symbols.

final_metric — Final normalized state metrics
vector

Final normalized state metrics, returned as a vector with Nstates elements. final_metric
corresponds to the final state metrics at the end of the traceback decoding process. For
the description of Nstates, see “Number of Likelihood States” on page 2-863.

For more information, see “Initialization in Continuous Operation Mode” on page 2-862.

final_states — Final traceback states
vector

2 Functions — Alphabetical List

2-860

Final traceback states, returned as a Nstates-by-tblen matrix of integers with values
between 0 and Nstates–1. final_states corresponds to the final traceback states at the
end of the traceback decoding process. For the description of Nstates, see “Number of
Likelihood States” on page 2-863.

For more information, see “Initialization in Continuous Operation Mode” on page 2-862.

final_inputs — Final traceback inputs
vector

Final traceback inputs, returned as an Nstates-by-tblen matrix of integers with values
between 0 and M–1. final_inputs corresponds to the final traceback inputs at the end
of the traceback decoding process. M is the order of the modulation. For the description
of Nstates, see “Number of Likelihood States” on page 2-863.

For more information, see “Initialization in Continuous Operation Mode” on page 2-862.

More About

Viterbi Algorithm
The Viterbi algorithm is a sequential trellis search algorithm used to perform maximum
likelihood sequence detection.

The MLSE equalizer uses the Viterbi algorithm to recursively search for the sequences
that maximize the likelihood function. Using the Viterbi algorithm reduces the number of
sequences in the trellis search by eliminating sequences as new data is received. The
metric used to determine the maximum likelihood sequence is the correlation between
the received signal and an estimated signal for each received symbol over the “Number of
Likelihood States” on page 2-863.

For more information, see [1] and [2].

Preamble and Postamble in Reset Operation Mode
When operating the MLSE equalizer in reset mode, you can specify a preamble and
postamble as input arguments. Specify preamble and postamble as vectors equal to the
preamble and postamble that are prepended and appended, respectively, to the input
signal. The preamble and postamble vectors consist of integers between 0 and M-1,

 mlseeq

2-861

where M is the number of elements in const. To omit the preamble or postamble input
argument, specify [].

When the function applies the Viterbi algorithm, it initializes state metrics in a way that
depends on whether you specify a preamble, a postamble, or both:

• If preamble is nonempty, the function decodes the preamble and assigns a metric of 0
to the decoded state. If the preamble does not decode to a unique state (that is, if the
length of the preamble is less than the channel memory), the decoder assigns a metric
of 0 to all states that are represented by the preamble. The traceback path ends at one
of the states represented by the preamble.

• If preamble is [], the decoder initializes the metrics of all states to 0.
• If postamble is nonempty, the traceback path begins at the smallest of all possible

decoded states that are represented by the postamble.
• If postamble is [], the traceback path starts at the state with the smallest metric.

Initialization in Continuous Operation Mode
When operating the MLSE equalizer in continuous mode, you can initialize the
equalization based on values returned in the previous call of the function.

At the end of the traceback decoding process, the function returns final_metric,
final_states, and final_inputs. When opmode is 'cont', assign these outputs to
init_metric, init_states, and init_inputs, respectively for the next call of the
function. These assignments initialize the equalizer to start with the final state metrics,
final traceback states, and final traceback inputs from the previous call of the function.

Each real number in init_metric represents the starting state metric of the
corresponding state. init_states and init_inputs jointly specify the initial traceback
memory of the equalizer.

Output
Argument

Input
Argument

Meaning Matrix Size Range of Values

final_metric init_metric State metrics 1-by-Nstates Real numbers
final_states init_states Traceback

states
Nstates-by-tblen Integers between 0

and Nstates–1
fianl_inputs init_inputs Traceback

inputs
Nstates-by-tblen Integers between 0

and M–1

2 Functions — Alphabetical List

2-862

To use default values for init_metric, init_states, and init_inputs, specify each
as []. For the description of Nstates, see “Number of Likelihood States” on page 2-863.

Number of Likelihood States
The number of likelihood states, Nstates, is the number of correlative phase states in the
trellis. Nstates is equal to ML-1, where M is the number of elements in const and L is the
number of symbols in the nonoversampled impulse response of the channel.

References
[1] Proakis, John G. Digital Communications, Fourth Edition. New York: McGraw-Hill,

2001.

[2] Steele, Raymond, Ed. Mobile Radio Communications. Chichester, England: John Wiley
& Sons, 1996.

See Also
Functions
dfe | lineareq | lms | rls

Objects
comm.MLSEEqualizer

Topics
“MLSE Equalizers”
“Recover Message Containing Preamble”
“Use mlseeq to Equalize a Vector in Continuous Operation Mode”

Introduced before R2006a

 mlseeq

2-863

modnorm
Scaling factor for normalizing modulation output

Syntax
normfactor = modnorm(refconst,type,power)

Description
normfactor = modnorm(refconst,type,power) returns a scale factor for
normalizing a PAM or QAM modulator output using the specified reference constellation,
normalization type, and output power.

Examples

Normalize Power of QAM Signal

Generate a 16-QAM reference constellation.

refconst = qammod(0:15,16);

Generate random symbols and apply 16-QAM modulation.

x = randi([0 15],1000,1);
y = qammod(x,16);

Plot the constellation.

h = scatterplot(y);

2 Functions — Alphabetical List

2-864

Compute the normalization factor so that the output signal has a peak power of 1 W.

nf = modnorm(refconst,'peakpow',1);
z = nf*y;

Confirm that no element of the normalized signal has a power greater than 1 W.

max(z.*conj(z))

ans = 1.0000

Plot the scatter plot of the normalized constellation.

 modnorm

2-865

hold on
scatterplot(z,1,0,'r+',h)
hold off

Input Arguments
refconst — Reference constellation
vector

Reference constellation, specified as a vector of complex elements that comprise the
reference constellation points.

2 Functions — Alphabetical List

2-866

Example: qammod(0:15,16)
Data Types: double | single
Complex Number Support: Yes

type — Normalization type
'avpow' | 'peakpow'

Normalization type, specified as either 'avpow' or 'peakpow'.

• If type is 'avpow', the normalization factor is calculated based on average power.
• If type is 'peakpow', the normalization factor is calculated based on peak power.

Data Types: char

power — Target power
scalar

Target power, specified as a real scalar. The target power is the intended power of the
modulated signal multiplied by normfactor.
Data Types: double | single

Output Arguments
normfactor — Normalization factor
scalar

Normalization factor, returned as a real scalar. When a modulated signal is multiplied by
the normalization factor, its average or peak power matches the target power. The
function assumes that the signal you want to normalize has a minimum distance of 2.
Data Types: double | single

See Also
pamdemod | pammod | qamdemod | qammod

Introduced before R2006a

 modnorm

2-867

mskdemod
Minimum shift keying demodulation

Syntax
z = mskdemod(y,nsamp)
z = mskdemod(y,nsamp,dataenc)
z = mskdemod(y,nsamp,dataenc,ini_phase)
z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state)
[z,phaseout] = mskdemod(...)
[z,phaseout,stateout] = mskdemod(...)

Description
z = mskdemod(y,nsamp) demodulates the complex envelope y of a signal using the
differentially encoded minimum shift keying (MSK) method. nsamp denotes the number of
samples per symbol and must be a positive integer. The initial phase of the demodulator is
0. If y is a matrix with multiple rows and columns, the function treats the columns as
independent channels and processes them independently.

z = mskdemod(y,nsamp,dataenc) specifies the method of encoding data for MSK.
dataenc can be either 'diff' for differentially encoded MSK or 'nondiff' for
nondifferentially encoded MSK.

z = mskdemod(y,nsamp,dataenc,ini_phase) specifies the initial phase of the
demodulator. ini_phase is a row vector whose length is the number of channels in y and
whose values are integer multiples of pi/2. To avoid overriding the default value of
dataenc, set dataenc to [].

z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state) specifies the initial state
of the demodulator. ini_state contains the last half symbol of the previously received
signal. ini_state is an nsamp-by-C matrix, where C is the number of channels in y.

[z,phaseout] = mskdemod(...) returns the final phase of y, which is important for
demodulating a future signal. The output phaseout has the same dimensions as the
ini_phase input, and assumes the values 0, pi/2, pi, and 3*pi/2.

2 Functions — Alphabetical List

2-868

[z,phaseout,stateout] = mskdemod(...) returns the final nsamp values of y,
which is useful for demodulating the first symbol of a future signal. stateout has the
same dimensions as the ini_state input.

Examples

MSK Demodulation

Modulate and demodulate a noisy MSK signal. Display the number of received errors.

Define the number of samples per symbol for the MSK signal.

nsamp = 16;

Initialize the simulation parameters.

numerrs = 0;
modPhase = zeros(1,2);
demodPhase = zeros(1,2);
demodState = complex(zeros(nsamp,2));

The main processing loop includes these steps:

• Generate binary data.
• MSK modulate the data.
• Pass the signal through an AWGN channel.
• Demodulate the MSK signal.
• Determine the number of bit errors.

for iRuns = 1:20
 txData = randi([0 1],100,2);
 [modSig,modPhase] = mskmod(txData,nsamp,[],modPhase);
 rxSig = awgn(modSig,20,'measured');
 [rxData,demodPhase,demodState] = mskdemod(rxSig,nsamp,[],demodPhase,demodState);
 numerrs = numerrs + biterr(txData,rxData);
end

Display the number of bit errors.

numerrs

 mskdemod

2-869

numerrs = 0

References
[1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally Efficient Modulation,”

IEEE Communications Magazine, July, 1979, pp. 14–22.

See Also
comm.MSKDemodulator | fskdemod | fskmod | mskmod

Topics
“Digital Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-870

mskmod
Minimum shift keying modulation

Syntax
y = mskmod(x,nsamp)
y = mskmod(x,nsamp,dataenc)
y = mskmod(x,nsamp,dataenc,ini_phase)
[y,phaseout] = mskmod(...)

Description
y = mskmod(x,nsamp) outputs the complex envelope y of the modulation of the
message signal x using differentially encoded minimum shift keying (MSK) modulation.
The elements of x must be 0 or 1. nsamp denotes the number of samples per symbol in y
and must be a positive integer. The initial phase of the MSK modulator is 0. If x is a
matrix with multiple rows and columns, the function treats the columns as independent
channels and processes them independently.

y = mskmod(x,nsamp,dataenc) specifies the method of encoding data for MSK.
dataenc can be either 'diff' for differentially encoded MSK or 'nondiff' for
nondifferentially encoded MSK.

y = mskmod(x,nsamp,dataenc,ini_phase) specifies the initial phase of the MSK
modulator. ini_phase is a row vector whose length is the number of channels in y and
whose values are integer multiples of pi/2. To avoid overriding the default value of
dataenc, set dataenc to [].

[y,phaseout] = mskmod(...) returns the final phase of y. This is useful for
maintaining phase continuity when you are modulating a future bit stream with
differentially encoded MSK. phaseout has the same dimensions as the ini_phase input,
and assumes the values 0, pi/2, pi, and 3*pi/2.

Examples

 mskmod

2-871

Eye Diagram of MSK Signal

Generate a random binary signal.

x = randi([0 1],100,1);

MSK modulate the data.

y = mskmod(x,8,[],pi/2);

Pass the signal through an AWGN channel. Display the eye diagram.

z = awgn(y,30,'measured');
eyediagram(z,16);

2 Functions — Alphabetical List

2-872

 mskmod

2-873

References
[1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally Efficient Modulation,”

IEEE Communications Magazine, July, 1979, pp. 14–22.

See Also
comm.MSKModulator | fskdemod | fskmod | mskdemod

Introduced before R2006a

2 Functions — Alphabetical List

2-874

muxdeintrlv
Restore ordering of symbols using specified shift registers

Syntax
deintrlved = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay,init_state)

Description
deintrlved = muxdeintrlv(data,delay) restores the ordering of elements in data
by using a set of internal shift registers, each with its own delay value. delay is a vector
whose entries indicate how many symbols each shift register can hold. The length of
delay is the number of shift registers. Before the function begins to process data, it
initializes all shift registers with zeros. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

[deintrlved,state] = muxdeintrlv(data,delay) returns a structure that holds
the final state of the shift registers. state.value stores any unshifted symbols.
state.index is the index of the next register to be shifted.

[deintrlved,state] = muxdeintrlv(data,delay,init_state) initializes the
shift registers with the symbols contained in init_state.value and directs the first
input symbol to the shift register referenced by init_state.index. The structure
init_state is typically the state output from a previous call to this same function, and
is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair
To use this function as an inverse of the muxintrlv function, use the same delay input
in both functions. In that case, the two functions are inverses in the sense that applying
muxintrlv followed by muxdeintrlv leaves data unchanged, after you take their
combined delay of length(delay)*max(delay) into account. To learn more about
delays of convolutional interleavers, see “Delays of Convolutional Interleavers”.

 muxdeintrlv

2-875

Examples
The example below illustrates how to use the state input and output when invoking
muxdeintrlv repeatedly. Notice that [deintrlved1; deintrlved2] is the same as
deintrlved.
delay = [0 4 8 12]; % Delays in shift registers
symbols = 100; % Number of symbols to process
% Interleave random data.
intrlved = muxintrlv(randi([0 1],symbols,1),delay);

% Deinterleave some of the data, recording state for later use.
[deintrlved1,state] = muxdeintrlv(intrlved(1:symbols/2),delay);
% Deinterleave the rest of the data, using state as an input argument.
deintrlved2 = muxdeintrlv(intrlved(symbols/2+1:symbols),delay,state);

% Deinterleave all data in one step.
deintrlved = muxdeintrlv(intrlved,delay);

isequal(deintrlved,[deintrlved1; deintrlved2])

The output is below.

ans =

 1

Another example using this function is in “Convolutional Interleaving and Deinterleaving
Using a Sequence of Consecutive Integers in MATLAB”.

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

See Also
muxintrlv

Topics
“Interleaving”

2 Functions — Alphabetical List

2-876

Introduced before R2006a

 muxdeintrlv

2-877

muxintrlv
Permute symbols using shift registers with specified delays

Syntax
intrlved = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay,init_state)

Description
intrlved = muxintrlv(data,delay) permutes the elements in data by using
internal shift registers, each with its own delay value. delay is a vector whose entries
indicate how many symbols each shift register can hold. The length of delay is the
number of shift registers. Before the function begins to process data, it initializes all shift
registers with zeros. If data is a matrix with multiple rows and columns, the function
processes the columns independently.

[intrlved,state] = muxintrlv(data,delay) returns a structure that holds the
final state of the shift registers. state.value stores any unshifted symbols.
state.index is the index of the next register to be shifted.

[intrlved,state] = muxintrlv(data,delay,init_state) initializes the shift
registers with the symbols contained in init_state.value and directs the first input
symbol to the shift register referenced by init_state.index. The structure
init_state is typically the state output from a previous call to this same function, and
is unrelated to the corresponding deinterleaver.

Examples
The examples in “Convolutional Interleaving and Deinterleaving Using a Sequence of
Consecutive Integers in MATLAB” and on the reference page for the convintrlv
function use muxintrlv.

2 Functions — Alphabetical List

2-878

The example on the reference page for muxdeintrlv illustrates how to use the state
output and init_state input with that function; the process is analogous for this
function.

References
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic

Publishers, 1999.

See Also
convintrlv | helintrlv | muxdeintrlv

Topics
“Interleaving”

Introduced before R2006a

 muxintrlv

2-879

noisebw
Equivalent noise bandwidth of filter

Syntax
bw = noisebw(num, den, numsamp, Fs)

Description
bw = noisebw(num, den, numsamp, Fs) returns the two-sided equivalent noise
bandwidth, in Hz, of a digital lowpass filter given in descending powers of z by numerator
vector num and denominator vector den. The bandwidth is calculated over numsamp
samples of the impulse response. Fs is the sampling rate of the signal that the filter would
process; this is used as a scaling factor to convert a normalized unitless quantity into a
bandwidth in Hz.

Examples

Noise Equivalent Bandwidth of Butterworth Filter

Computes the equivalent noise bandwidth of a Butterworth filter over 100 samples of the
impulse response.

Set the sampling rate, Nyquist frequency, and carrier frequency.

fs = 16;
fNyq = fs/2;
fc = 0.5;

Generate the Butterworth filter.

[num,den] = butter(2,fc/fNyq);

Determine the noise bandwidth.

2 Functions — Alphabetical List

2-880

bw = noisebw(num,den,100,fs)

bw = 1.1049

Algorithms
The two-sided equivalent noise bandwidth is

Fs ∑
i = 1

N
h(i) 2

∑
i = 1

N
h(i)

2

where h is the impulse response of the filter described by num and den, and N is
numsamp.

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of

Communication Systems, New York, Plenum Press, 1992.

Introduced before R2006a

 noisebw

2-881

normlms
(To be removed) Construct normalized least mean square (LMS) adaptive algorithm object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

Syntax
alg = normlms(stepsize)
alg = normlms(stepsize,bias)

Description
The normlms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about the
process for equalizing a signal, see “Equalization”.

alg = normlms(stepsize) constructs an adaptive algorithm object based on the
normalized least mean square (LMS) algorithm with a step size of stepsize and a bias
parameter of zero.

alg = normlms(stepsize,bias) sets the bias parameter of the normalized LMS
algorithm. bias must be between 0 and 1. The algorithm uses the bias parameter to
overcome difficulties when the algorithm's input signal is small.

Properties
The table below describes the properties of the normalized LMS adaptive algorithm
object. To learn how to view or change the values of an adaptive algorithm object, see
“Equalization”.

2 Functions — Alphabetical List

2-882

Property Description
AlgType Fixed value, 'Normalized LMS'
StepSize LMS step size parameter, a nonnegative

real number
LeakageFactor LMS leakage factor, a real number between

0 and 1. A value of 1 corresponds to a
conventional weight update algorithm,
while a value of 0 corresponds to a
memoryless update algorithm.

Bias Normalized LMS bias parameter, a
nonnegative real number

Examples

Delays from Equalization

For proper equalization using adaptive algorithms other than CMA, you should set the
reference tap so that it exceeds the delay, in symbols, between the transmitter's
modulator output and the equalizer input. When this condition is satisfied, the total delay
between the modulator output and the equalizer output is equal to (RefTap-1)/
nSampPerSym symbols. Because the channel delay is typically unknown, a common
practice is to set the reference tap to the center tap in a linear equalizer, or the center tap
of the forward filter in a decision-feedback equalizer.

For CMA equalizers, the expression above does not apply because a CMA equalizer has no
reference tap. If you need to know the delay, you can find it empirically after the equalizer
weights have converged. Use the xcorr function to examine cross-correlations of the
modulator output and the equalizer output.

Techniques for Working with Delays

Here are some typical ways to take a delay of D into account by padding or truncating
data:

• Pad your original data with D extra symbols at the end. Before comparing the original
data with the received data, omit the first D symbols of the received data. In this
approach, all the original data (not including the padding) is accounted for in the
received data.

 normlms

2-883

• Before comparing the original data with the received data, omit the last D symbols of
the original data and the first D symbols of the received data. In this approach, some
of the original symbols are not accounted for in the received data.

This example illustrates the second approach by omitting the last D symbols to account
for the delay. For an example that illustrates both approaches in the context of
interleavers, see “Delays of Convolutional Interleavers”.

Create a random signal and BPSK modulate it. Assign a portion of the signal as a training
signal.

M = 2; % Use BPSK modulation
msg = randi([0 M-1],1000,1); % Random data
bpskMod = comm.BPSKModulator('PhaseOffset',0);
modmsg = bpskMod(msg); % Modulate
trainlen = 100; % Length of training sequence
trainsig = modmsg(1:trainlen); % Training sequence

Define an equalizer and equalize the received signal.

eqlin = lineareq(3,normlms(.0005,.0001),pskmod(0:M-1,M));
eqlin.RefTap = 2; % Set reference tap of equalizer.
[eqsig,detsym] = equalize(eqlin,modmsg,trainsig); % Equalize.

Demodulate the detected signal.

bpskDemod = comm.BPSKDemodulator('PhaseOffset',0);
detmsg = bpskDemod(detsym);

Compute bit error rate while compensating for delay introduced by RefTap and ignoring
training sequence.

D = (eqlin.RefTap-1)/eqlin.nSampPerSym;
hErrorCalc = comm.ErrorRate('ReceiveDelay',D);
berVec = step(hErrorCalc, msg(trainlen+1:end), detmsg(trainlen+1:end));
ber = berVec(1)

ber = 0

numerrs = berVec(2)

2 Functions — Alphabetical List

2-884

numerrs = 0

Algorithms
Referring to the schematics presented in “Equalization”, define w as the vector of all
weights wi and define u as the vector of all inputs ui. Based on the current set of weights,
w, this adaptive algorithm creates the new set of weights given by

(LeakageFactor)w + (StepSize)u*e
uHu + Bias

where the * operator denotes the complex conjugate and H denotes the Hermitian
transpose.

Compatibility Considerations

normlms will be removed
Not recommended starting in R2019a

normlms will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

John Wiley & Sons, 1998.

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

 normlms

2-885

Introduced before R2006a

2 Functions — Alphabetical List

2-886

oct2dec
Convert octal to decimal numbers

Syntax
d = oct2dec(c)

Description
d = oct2dec(c) converts an octal matrix c to a decimal matrix d, element by element.
In both octal and decimal representations, the rightmost digit is the least significant.

Examples

Convert Octal Matrix to Decimal Equivalent

Convert a 2-by-2 octal matrix its decimal equivalent.

d = oct2dec([12 144;0 25])

d = 2×2

 10 100
 0 21

The octal number 144 is equivalent to 100 because 144 = 1(82) + 4(81) + 4(80) = 100.

 oct2dec

2-887

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bi2de

Introduced before R2006a

2 Functions — Alphabetical List

2-888

ofdmdemod
Demodulate time-domain signal using orthogonal frequency division multiplexing (OFDM)

Syntax
outSym = ofdmdemod(ofdmSig,nfft,cplen)
outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset)
outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx)
[outSym,pilots] = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx,
pilotidx)

Description
outSym = ofdmdemod(ofdmSig,nfft,cplen) performs OFDM demodulation on the
input time domain signal specified in ofdmSig, using an FFT size specified by nfft and
cyclic prefix length specified by cplen. For information, see “OFDM Demodulation” on
page 2-896.

outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset) applies the symbol
sampling offset, symOffset, for each OFDM symbol before demodulation of the input.

outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx) removes null
subcarriers from the locations specified in nullidx. For this syntax, the symbol sampling
offset is applied to each OFDM symbol and the number of rows in the output is nfft –
length(nullidx), which accounts for the removal of null subcarriers. Use null
subcarriers to account for guard bands and DC subcarriers. For information, see
“Subcarrier Allocation and Guard Bands” on page 2-897.

[outSym,pilots] = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx,
pilotidx) returns pilot subcarriers for the pilot indices specified in pilotidx. For this
syntax, the symbol sampling offset is applied to each OFDM symbol and number of rows
in the output is nfft – length(nullidx) – length(pilotidx), which accounts for the
removal of null and pilot subcarriers. The function assumes that pilot subcarrier locations
are the same across each OFDM symbol and transmit antenna.

 ofdmdemod

2-889

Examples

OFDM Demodulation with Different CP Lengths

OFDM-demodulate a signal with different CP lengths for different symbols.

Initialize input parameters defining locations for null and pilot subcarriers. Generate
random data and perform OFDM modulation.

nfft = 64;
cplen = [16 32];
nSym = 2;
dataIn = complex(randn(nfft,nSym),randn(nfft,nSym));
y1 = ofdmmod(dataIn,nfft,cplen);

Demodulate the OFDM symbols. Compare the results to the original input data. The
difference between the signals is negligible.

x1 = ofdmdemod(y1,nfft,cplen);
max(x1-dataIn)

ans = 1×2 complex
10-15 ×

 0.2220 - 0.7772i 0.2498 - 0.8882i

OFDM Mod-Demod SISO link

Apply OFDM multiplexing to a 16-QAM signal SISO link with Rayleigh fading.

s1 = RandStream('mt19937ar','Seed',12345);
nFFT = 64;
cpLen = 16;
nullIdx = [1:6 33 64-4:64].';
numTones = nFFT-length(nullIdx);

modOrd = 4;
qam = comm.RectangularQAMModulator('ModulationOrder',2^modOrd, ...

2 Functions — Alphabetical List

2-890

 'BitInput',true,'NormalizationMethod','Average power');

maxDopp = 1;
pathDelays = [0 4e-3 8e-3];
pathGains = [0 -2 -3];
sRate = 1000;
sampIdx = round(pathDelays/(1/sRate)) + 1;

chan = comm.RayleighChannel('PathGainsOutputPort',true, ...
 'MaximumDopplerShift',maxDopp,'PathDelays',pathDelays, ...
 'AveragePathGains',pathGains,'SampleRate',sRate, ...
 'RandomStream','mt19937ar with seed');

data = randi(s1,[0 1],modOrd*numTones,1);
modOut = qam(data);

Apply OFDM modulation and pass the signal through the channel.

y = ofdmmod(modOut,nFFT,cpLen,nullIdx);
[fadSig, pg] = chan(y);

Determine symbol sampling offset. OFDM demodulate the received signal.

symOffset = min(max(sampIdx),cpLen)
x = ofdmdemod(fadSig,nFFT,cpLen,symOffset,nullIdx); % with a time shift

symOffset =

 9

Convert path gains, pg, to scalar taps gains. Use the tap gains for equalization during
signal recovery.

hImp = complex(zeros(1,nFFT));
hImp(:,sampIdx) = mean(pg,1);
hall = fftshift(fft(hImp.'),1);
dataIdx = double(setdiff((1:nFFT)',nullIdx));
h = hall(dataIdx);

Equalize the signal.

eqH = conj(h)./(conj(h).*h);
eqSig = eqH.*x;

 ofdmdemod

2-891

cdScope = comm.ConstellationDiagram('ShowReferenceConstellation',true, ...
 'ReferenceConstellation',constellation(qam));
cdScope(eqSig);

2 Functions — Alphabetical List

2-892

Demodulate the 16-QAM symbols to recover the signal. Compute the bit error rate.

qamdem = comm.RectangularQAMDemodulator('ModulationOrder',2^modOrd, ...
 'BitOutput',true,'NormalizationMethod','Average power');
rxBits = qamdem(eqSig);

numErr = biterr(data,rxBits);
disp(['Number of bit errors: ' num2str(numErr) ' out of ' num2str(length(data)) ' bits.'])

Number of bit errors: 3 out of 208 bits.

OFDM Demodulation with Null and Pilot Packing

OFDM-demodulate data input that includes null and pilot packing.

Initialize input parameters, defining locations for null and pilot subcarriers. Generate
random data and perform OFDM modulation.

nfft = 64;
cplen = 16;
nSym = 10;
nullIdx = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';
numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
dataIn = complex(randn(numDataCarrs,nSym),randn(numDataCarrs,nSym));
pilots = repmat(pskmod((0:3).',4),1,nSym);
y2 = ofdmmod(dataIn,nfft,cplen,nullIdx,pilotIdx,pilots);

Demodulate the OFDM symbols. Compare the results to the original input data to show
that there is negligible difference between the demodulated signal and the original data
and pilot signals.

symOffset = cplen;
[x2,rxPilots] = ofdmdemod(y2,nfft,cplen,symOffset,nullIdx,pilotIdx);
max(x2-dataIn)

ans = 1×10 complex
10-15 ×

 0.5551 + 0.2220i 0.2220 + 0.4441i 0.4441 - 0.2220i 0.4718 - 0.3331i -0.1665 - 0.4441i -0.3331 - 0.8049i 0.6661 - 0.2220i 0.0000 + 0.5829i 0.2220 + 0.4441i 0.3331 + 0.4441i

max(rxPilots-pilots)

 ofdmdemod

2-893

ans = 1×10 complex
10-15 ×

 0.0000 + 0.3331i 0.1837 - 0.2220i -0.4441 - 0.2776i 0.2220 + 0.2220i 0.2220 - 0.1665i 0.0000 - 0.3445i 0.3331 + 0.0441i -0.4441 - 0.1225i 0.4441 + 0.1943i 0.4441 + 0.3192i

Input Arguments
ofdmSig — Modulated OFDM symbols
2-D array of complex symbols

Modulated OFDM symbols, specified as a 2-D array of complex symbols.

• If cplen is a scalar, the array size is ((nfft + cplen) × NSym)-by-NR.
• If cplen is a row vector, the array size is ((nfft × NSym) + sum(cplen))-by-NR.

NSym is the number of symbols per antenna and NR is the number of receive antennas.

Data Types: double | single
Complex Number Support: Yes

nfft — FFT length
integer greater than or equal to 8

FFT length, specified as an integer greater than or equal to 8. nfft is equivalent to the
number of subcarriers used in the demodulation process.
Data Types: double

cplen — Cyclic prefix length
scalar | row vector of length NSym

Cyclic prefix length, specified as a scalar or as a row vector of length NSym.

• When you specify cplen as a scalar, the cyclic prefix length is the same for all symbols
through all antennas.

• When you specify cplen as a row vector of length NSym, the cyclic prefix length can
vary across symbols but remains the same length through all antennas.

Data Types: double

2 Functions — Alphabetical List

2-894

symOffset — Symbol sampling offset
cplen (default) | scalar | row vector

Symbol sampling offset, specified as values from 0 to cplen.

• If you do not specify symOffset, the default value is an offset equal to cplen.
• If you specify symOffset as a scalar, the same offset is used for all symbols.
• If you specify symOffset as a row vector, the offset value can be different for each

symbol.

For information, see “Windowing and Symbol Offset” on page 2-898.
Data Types: double

nullidx — Indices of null subcarrier locations
column vector

Indices of null subcarrier locations, specified as a column vector with element values from
1 to nfft. If you specify nullidx, the number of rows in outSym is (nfft-
length(nullidx)). For information, see “Subcarrier Allocation and Guard Bands” on
page 2-897.
Data Types: double

pilotidx — Indices of pilot subcarrier locations
column vector

Indices of pilot subcarrier locations, specified as a column vector with element values
from 1 to nfft. If you specify pilotidx, the number of rows in outSym is (nfft-
length(nullidx)-length(pilotidx)).For information, see “Subcarrier Allocation
and Guard Bands” on page 2-897.
Data Types: double

Output Arguments
outSym — Output demodulated symbols
numeric 3-D array

Output demodulated symbols, returned as an ND-by-NSym-by-NR numeric array of symbols.
ND must equal nfft – length(nullidx) – length(pilotidx). NSym is the number of

 ofdmdemod

2-895

OFDM symbols per antenna. NR is the number of receive antennas. For information, see
“OFDM Demodulation” on page 2-896.

pilots — Pilot subcarriers
numeric 3-D array

Pilot subcarriers, returned as an NPilot-by-NSym-by-NR numeric array of symbols. NPilot must
equal the length of pilotidx. NSym is the number of OFDM symbols per antenna. NR is
the number of receive antennas. The function assumes that the pilot subcarrier locations
are the same across each OFDM symbol and transmit antenna. Use the
comm.OFDMDemodulator to vary pilot subcarrier locations across OFDM symbols or
antennas.

More About

OFDM Demodulation
An OFDM demodulator demultiplexes a multi-subcarrier time-domain signal using
orthogonal frequency division modulation.

The OFDM demodulation uses an FFT operation that results in N parallel data streams.
An OFDM demodulator consists of a bank of N correlators, with one correlator assigned
to each OFDM subcarrier, followed by a parallel-to-serial conversion.

2 Functions — Alphabetical List

2-896

Subcarrier Allocation and Guard Bands
Individual OFDM subcarriers are allocated as data, pilot, or null subcarriers.

As shown here, subcarriers are designated as data, DC, pilot, of guard band subcarriers.

 ofdmdemod

2-897

• Data subcarriers transmit user data.
• Pilot subcarriers are used for channel estimation.
• Null subcarriers transmit no data. Subcarriers with no data are used to provide a DC

null and serve as buffers between OFDM resource blocks.

• The null DC subcarrier is the center of the frequency band with an index value of
(nfft/2 + 1) if nfft is even, or ((nfft + 1) / 2) if nfft is odd.

• The guard bands provide buffers between consecutive OFDM symbols to protect
the integrity of transmitted signals by reducing intersymbol interference.

Null subcarriers enable you to model guard bands and DC subcarrier locations for
specific standards, such as the various 802.11 formats, LTE, WiMAX, or for custom
allocations. You can allocate the location of nulls by assigning a vector of null subcarrier
indices.

Windowing and Symbol Offset
To reduce intersymbol interference (ISI) introduced by signal windowing applied at the
transmitter, the function applies a fractional symbol offset before demodulation of each
OFDM symbol. Signal windowing is often applied to transmitted OFDM symbols to
smooth the discontinuity between consecutive OFDM symbols. Windowing reduces
intersymbol out-of-band emissions but increases ISI.

The windowed OFDM symbol consists of the cyclic prefix (CP), ODFM symbol data, plus
windowing regions at the beginning and end of the symbol. The leading and trailing
windowing shoulders have tails as shown in the figure.

2 Functions — Alphabetical List

2-898

To reduce ISI, you can align signal sample timing by specifying a symbol sampling offset
that gets applied before OFDM symbol demodulation.

Specify the symbol sampling offset as a value from 0 to LCP.

• When the symbol sampling offset is a scalar from 0 to LCP, the FFT window begins at
the X+1 sample of the CP length.

 ofdmdemod

2-899

• When the symbol sampling offset is zero, no offset is applied and the FFT window
starts at the first sample of the symbol.

• When the symbol sampling offset is the cyclic prefix length, LCP, the FFT window
begins after the last CP sample. This offset is the default setting if symbol sampling
offset is not specified.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
genqamdemod | ofdmmod | qamdemod

Objects
comm.GeneralQAMDemodulator | comm.OFDMDemodulator |
comm.OQPSKDemodulator

Introduced in R2018a

2 Functions — Alphabetical List

2-900

ofdmmod
Modulate frequency-domain signal using orthogonal frequency division multiplexing
(OFDM)

Syntax
ofdmSig = ofdmmod(inSym,nfft,cplen)
ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx)
ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx,pilotidx,pilots)

Description
ofdmSig = ofdmmod(inSym,nfft,cplen) performs OFDM modulation on the
frequency-domain input data subcarriers, inSym, using an FFT size specified by nfft and
cyclic prefix length specified by cplen. For information, see “OFDM Modulation” on page
2-906.

ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx) inserts null subcarriers into the
frequency domain input data signal prior to performing OFDM modulation. The null
subcarriers are inserted at index locations from 1 to nfft, as specified by nullidx. For
this syntax, the number of rows in the input inSym must be nfft – length(nullidx).
Use null carriers to account for guard bands and DC subcarriers. For information, see
“Subcarrier Allocation and Guard Bands” on page 2-907.

ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx,pilotidx,pilots) inserts null
and pilot subcarriers into the frequency domain input data symbols prior to performing
OFDM modulation. The null subcarriers are inserted at the index locations specified by
nullidx. The pilot subcarriers, pilots, are inserted at the index locations specified by
pilotidx. For this syntax, the number of rows in the input inSym must be nfft –
length(nullidx) – length(pilotidx). The function assumes pilot subcarrier
locations are the same across each OFDM symbol and transmit antenna.

Examples

 ofdmmod

2-901

OFDM Modulation Over Two Antennas

OFDM-modulate a fully packed input over two transmit antennas.

Initialize input parameters, generate random data, and perform OFDM modulation.

nfft = 128;
cplen = 16;
nSym = 5;
nt = 2;
dataIn = complex(randn(nfft,nSym,nt),randn(nfft,nSym,nt));

y1 = ofdmmod(dataIn,nfft,cplen);

Apply OFDM Assigning Null Subcarriers

Apply OFDM modulation assigning null subcarriers.

Initialize input parameters and generate random data.

M = 16; % Modulation order for 16QAM
nfft = 64;
cplen = 16;
nSym = 10;
nullIdx = [1:6 33 64-4:64]';
numDataCarrs = nfft-length(nullIdx);
inSig = randi([0 M-1],numDataCarrs,nSym);

QAM modulate data. Perform OFDM modulation.

qamSym = qammod(inSig,M,'UnitAveragePower',true);
outSig = ofdmmod(qamSym,nfft,cplen,nullIdx);

Perform OFDM Modulation Varying Cyclic Prefix per Symbol

Perform OFDM modulation to input frequency domain data signal varying cyclic prefix
length applied to each symbol.

Initialize input parameters and generate random data.

2 Functions — Alphabetical List

2-902

M = 16; % Modulation order for 16QAM
nfft = 64;
cplen = [4 8 10 7 2 2 4 11 16 3];
nSym = 10;
nullIdx = [1:6 33 64-4:64]';
numDataCarrs = nfft-length(nullIdx);
inSig = randi([0 M-1],numDataCarrs,nSym);

QAM modulate data. Perform OFDM modulation.

qamSym = qammod(inSig,M,'UnitAveragePower',true);
outSig = ofdmmod(qamSym,nfft,cplen,nullIdx);

Apply OFDM to QPSK Signal Spatially Multiplexed Over Two Antennas

Apply OFDM modulation to a QPSK signal that is spatially multiplexed over two transmit
antennas.

Initialize input parameters and generate random data for each antenna.

M = 4; % Modulation order for QPSK
nfft = 64;
cplen = 16;
nSym = 5;
nt = 2;
nullIdx = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';
numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
pilots = repmat(pskmod((0:M-1).',M),1,nSym,2);

ant1 = randi([0 M-1],numDataCarrs,nSym);
ant2 = randi([0 M-1],numDataCarrs,nSym);

QPSK modulate data individually for each antenna. Perform OFDM modulation.

qpskSym(:,:,1) = pskmod(ant1,M);
qpskSym(:,:,2) = pskmod(ant2,M);
y1 = ofdmmod(qpskSym,nfft,cplen,nullIdx,pilotIdx,pilots);

 ofdmmod

2-903

OFDM Modulation with Null and Pilot Packing

OFDM-modulate data input, specifying null and pilot packing.

Initialize input parameters, defining locations for null and pilot subcarriers. Generate
random data and perform OFDM modulation.

nfft = 64;
cplen = 16;
nSym = 10;

nullIdx = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';

numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
dataIn = complex(randn(numDataCarrs,nSym),randn(numDataCarrs,nSym));
pilots = repmat(pskmod((0:3).',4),1,nSym);

y2 = ofdmmod(dataIn,nfft,cplen,nullIdx,pilotIdx,pilots);

Input Arguments
inSym — Input data subcarriers
numeric 3-D array

Input data subcarriers, specified as an ND-by-NSym-by-NT numeric array of symbols. The
number of data subcarriers, ND, must equal nfft – length(nullidx) –
length(pilotidx). NSym is the number of OFDM symbols per transmit antenna, NT is
the number of transmit antennas.

Input data symbols to an OFDM modulator are typically created with a baseband digital
modulator, such as qammod.
Data Types: double | single
Complex Number Support: Yes

nfft — FFT length
integer greater than or equal to 8

FFT length, specified as an integer greater than or equal to 8. nfft is equivalent to the
number of subcarriers used in the modulation process.

2 Functions — Alphabetical List

2-904

Data Types: double

cplen — Cyclic prefix length
scalar | row vector of length NSym

Cyclic prefix length, specified as a scalar or as a row vector of length NSym.

• When you specify cplen as a scalar, the cyclic prefix length is the same for all symbols
through all antennas.

• When you specify cplen as a row vector of length NSym, the cyclic prefix length can
vary across symbols but remains the same length through all antennas.

For more information, see “Guard Intervals” on page 2-908.
Data Types: double

nullidx — Indices of null subcarrier locations
column vector

Indices of null subcarrier locations, specified as a column vector with element values from
1 to nfft.
Data Types: double

pilotidx — Indices of pilot subcarrier locations
column vector

Indices of pilot subcarrier locations, specified as a column vector with element values
from 1 to nfft.
Data Types: double

pilots — Pilot subcarriers
numeric 3-D array

Pilot subcarriers, specified as an NPilot-by-NSym-by-NT numeric array of symbols. NPilot must
equal the length of pilotidx. NSym is the number of OFDM symbols per transmit
antenna. NT is the number of transmit antennas. The function assumes pilot subcarrier
locations are the same across each OFDM symbol and transmit antenna. Use the
comm.OFDMModulator to vary pilot subcarrier locations across OFDM symbols or
antennas.
Data Types: double | single

 ofdmmod

2-905

Output Arguments
ofdmSig — Modulated OFDM symbols
2-D array of complex symbols

Modulated OFDM symbols, returned as a 2-D array of complex symbols.

• If cplen is a scalar, the array size is ((nfft + cplen) × NSym)-by-NT.
• If cplen is a row vector, the array size is ((nfft × NSym) + sum(cplen))-by-NT.

NSym is the number of symbols per transmit antenna and NT is the number of transmit
antennas.

More About

OFDM Modulation
An OFDM modulator multiplexes a frequency-domain input signal over multiple
subcarriers using orthogonal frequency division modulation.

The OFDM operation divides a high-rate transmit data stream into N lower data rate
substreams. The individual substreams are sent over N parallel and orthogonal
subchannels. Using an inverse fast Fourier transform (IFFT) to process the transmission
data, OFDM can be transmitted with a single radio. Intersymbol interference (ISI) is
reduced because the lower data rate substreams have symbol durations larger than the
channel delay spread.

The output is a baseband representation of the modulated signal:

v(t) = ∑
k = 0

N − 1
Xke j2πkΔf t, 0 ≤ t ≤ T,

where {Xk} are data symbols, N is the number of subcarriers, and T is the OFDM symbol
time. Using a subcarrier spacing of Δf = 1/T, the subcarriers are orthogonal over each
symbol period, as expressed in this equation:

1
T∫0 T

e j2πmΔf t * e j2πnΔf t dt = 1
T∫0 T

e j2π(m− n)Δf t dt = 0 for m ≠ n .

2 Functions — Alphabetical List

2-906

The data symbols, Xk, are typically complex and can be from any digital modulation
alphabet (for example, QPSK, 16-QAM, 64-QAM).

An OFDM modulator consists of a serial-to-parallel conversion followed by a bank of N
complex modulators, individually corresponding to each OFDM subcarrier.

Subcarrier Allocation and Guard Bands
Individual OFDM subcarriers are allocated as data, pilot, or null subcarriers.

As shown here, subcarriers are designated as data, DC, pilot, of guard band subcarriers.

 ofdmmod

2-907

• Data subcarriers transmit user data.
• Pilot subcarriers are used for channel estimation.
• Null subcarriers transmit no data. Subcarriers with no data are used to provide a DC

null and serve as buffers between OFDM resource blocks.

• The null DC subcarrier is the center of the frequency band with an index value of
(nfft/2 + 1) if nfft is even, or ((nfft + 1) / 2) if nfft is odd.

• The guard bands provide buffers between consecutive OFDM symbols to protect
the integrity of transmitted signals by reducing intersymbol interference.

Null subcarriers enable you to model guard bands and DC subcarrier locations for
specific standards, such as the various 802.11 formats, LTE, WiMAX, or for custom
allocations. You can allocate the location of nulls by assigning a vector of null subcarrier
indices.

Guard Intervals
Similar to guard bands, guard intervals are used in OFDM to protect the integrity of
transmitted signals by reducing intersymbol interference.

Assignment of guard intervals is analogous to the assignment of guard bands. You can
model guard intervals to provide temporal separation between OFDM symbols. The guard
intervals help preserve intersymbol orthogonality after the signal passes through time-
dispersive channels. Guard intervals are created by using cyclic prefixes. Cyclic prefix
insertion copies the last part of an OFDM symbol as the first part of the OFDM symbol.

2 Functions — Alphabetical List

2-908

As long as the span of the time dispersion does not exceed the duration of the cyclic
prefix, the benefit of cyclic prefix insertion is maintained.

Inserting a cyclic prefix results in a fractional reduction of user data throughput because
the cyclic prefix occupies bandwidth that could be used for data transmission.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
genqammod | ofdmdemod | qammod

Objects
comm.GeneralQAMModulator | comm.OFDMModulator | comm.OQPSKModulator

 ofdmmod

2-909

Introduced in R2018a

2 Functions — Alphabetical List

2-910

oqpskdemod
(Removed) Offset quadrature phase shift keying demodulation

Note oqpskdemod has been removed. Use comm.OQPSKDemodulator instead.

Syntax
z = oqpskdemod(y)
z = oqpskdemod(y,ini_phase)

Description
z = oqpskdemod(y) demodulates the complex envelope of an OQPSK modulated signal.
The function upsamples by a factor of 2, because OQPSK does not permit an odd number
of samples per symbol.

z = oqpskdemod(y,ini_phase) specifies the initial phase of the modulated signal.

Examples

Modulate and Demodulate OQPSK Signal in AWGN

Generate random 4-ary data. Create modulator and demodulator objects.

dataIn = randi([0 3],100,1);
oqpskmod = comm.OQPSKModulator;
oqpskdemod = comm.OQPSKDemodulator;

OQPSK modulate the data, and pass it through an AWGN channel.

txSig = oqpskmod(dataIn);
rxSig = awgn(txSig,10);

OQPSK demodulate the received signal. Determine the number of symbol errors.

 oqpskdemod

2-911

dataOut = oqpskdemod(rxSig);
numErrs = symerr(dataIn,dataOut)

numErrs = 79

Input Arguments
y — OQPSK-modulated input signal
vector | matrix

OQPSK-modulated input signal, specified as a complex vector or matrix. If y is a matrix,
the function processes the columns independently.
Data Types: single | double
Complex Number Support: Yes

ini_phase — Initial phase
0 (default) | scalar

Initial phase of the OQPSK modulation, specified in radians as a real scalar.
Example: pi/4
Data Types: double | single

Output Arguments
z — OQPSK-demodulated output signal
vector | matrix

OQPSK-demodulated output signal, returned as a vector or matrix having the same
number of columns as input signal y.
Data Types: double | single

Compatibility Considerations
opskdemod has been removed
Errors starting in R2019b

2 Functions — Alphabetical List

2-912

oqpsdekmod has been removed. Use comm.OQPSKModulator instead.

See Also
Functions
modnorm

Objects
comm.OQPSKDemodulator | comm.OQPSKModulator

Topics
“Phase Modulation”

Introduced before R2006a

 oqpskdemod

2-913

oqpskmod
(Removed) Offset quadrature phase shift keying modulation

Note oqpskmod has been removed. Use comm.OQPSKModulator instead.

Syntax
y = oqpskmod(x)
y = oqpskmod(x,ini_phase)

Description
y = oqpskmod(x) modulates the input signal, x, using offset quadrature phase shift
keying (OQPSK). The function upsamples by a factor of 2, because OQPSK does not
permit an odd number of samples per symbol.

y = oqpskmod(x,ini_phase) specifies the initial phase of the modulated signal.

Examples

Modulate and Demodulate OQPSK Signal in AWGN

Generate random 4-ary data. Create modulator and demodulator objects.

dataIn = randi([0 3],100,1);
oqpskmod = comm.OQPSKModulator;
oqpskdemod = comm.OQPSKDemodulator;

OQPSK modulate the data, and pass it through an AWGN channel.

txSig = oqpskmod(dataIn);
rxSig = awgn(txSig,10);

OQPSK demodulate the received signal. Determine the number of symbol errors.

2 Functions — Alphabetical List

2-914

dataOut = oqpskdemod(rxSig);
numErrs = symerr(dataIn,dataOut)

numErrs = 79

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix of positive integers. The elements of x must
have values in the range of [0, 3].
Data Types: double | single

ini_phase — Initial phase
0 (default) | scalar

Initial phase of the OQPSK modulation, specified in radians as a real scalar.
Example: pi/4
Data Types: double | single

Output Arguments
y — OQPSK-modulated output signal
vector | matrix

Complex baseband representation of an OQPSK-modulated output signal, returned as a
vector or matrix. The columns of y represent independent channels.
Data Types: double | single

Compatibility Considerations

opskmod has been removed
Errors starting in R2019b

 oqpskmod

2-915

oqpskmod has been removed. Use comm.OQPSKModulator instead.

See Also
Functions
modnorm

Objects
comm.OQPSKDemodulator | comm.OQPSKModulator

Topics
“Phase Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-916

pamdemod
Pulse amplitude demodulation

Syntax
z = pamdemod(y,M)
z = pamdemod(y,M,ini_phase)
z = pamdemod(y,M,ini_phase,symbol_order)

Description
z = pamdemod(y,M) demodulates the complex envelope y of a pulse amplitude
modulated signal. M is the alphabet size. The ideal modulated signal should have a
minimum Euclidean distance of 2.

z = pamdemod(y,M,ini_phase) specifies the initial phase of the modulated signal in
radians.

z = pamdemod(y,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray-coded ordering.

Examples

Demodulate PAM Signal

Modulate and demodulate random integers using pulse amplitude modulation. Verify that
the output data matches the original data.

Set the modulation order and generate 100 M-ary data symbols.

M = 12;
dataIn = randi([0 M-1],100,1);

 pamdemod

2-917

Perform modulation and demodulation operations.

modData = pammod(dataIn,M);
dataOut = pamdemod(modData,M);

Compare the first five symbols.

[dataIn(1:5) dataOut(1:5)]

ans = 5×2

 9 9
 10 10
 1 1
 10 10
 7 7

Verify that there are no symbol errors in the entire sequence.

symErrors = symerr(dataIn,dataOut)

symErrors = 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pammod | pskdemod | pskmod | qamdemod | qammod

Topics
“Digital Modulation”
“Comparing Theoretical and Empirical Error Rates”

2 Functions — Alphabetical List

2-918

Introduced before R2006a

 pamdemod

2-919

pammod
Pulse amplitude modulation

Syntax
y = pammod(x,M)
y = pammod(x,M,ini_phase)
y = pammod(x,M,ini_phase,symbol_order)

Description
y = pammod(x,M) outputs the complex envelope y of the modulation of the message
signal x using pulse amplitude modulation. M is the alphabet size. The message signal
must consist of integers between 0 and M-1. The modulated signal has a minimum
Euclidean distance of 2. If x is a matrix with multiple rows, the function processes the
columns independently.

y = pammod(x,M,ini_phase) specifies the initial phase of the modulated signal in
radians.

y = pammod(x,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray constellation ordering.

Examples

Modulate Data Symbols with PAM

Generate random data symbols and apply pulse amplitude modulation.

Set the modulation order.

M = 8;

2 Functions — Alphabetical List

2-920

Generate random integers and apply PAM modulation having an initial phase of π/4.

data = randi([0 M-1],100,1);
modData = pammod(data,M,pi/4);

Display the PAM constellation diagram.

scatterplot(modData)

 pammod

2-921

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB
Coder).

See Also
pamdemod | pskdemod | pskmod | qamdemod | qammod

Topics
“Digital Modulation”
“Comparing Theoretical and Empirical Error Rates”

Introduced before R2006a

2 Functions — Alphabetical List

2-922

plot (channel)
(To be removed) Plot channel characteristics with channel visualization tool

Syntax
plot(h)

Note This function will be removed in a future release. Use function associated with
comm.RicianChannel or comm.RayleighChannel instead.

Description
plot(h), where h is a channel object, launches the channel visualization tool. This GUI
tool allows you to plot channel characteristics in various ways. See Channel Visualization
for details.

ExamplesVisualize RF Impairments
Apply various RF impairments to a QAM signal. Observe the effects by using constellation
diagrams, time-varying error vector magnitude (EVM) plots, and spectrum plots. Estimate
the equivalent signal-to-noise ratio (SNR).

Initialization

Set the sample rate, modulation order, and SNR. Calculate the reference constellation
points.

fs = 1000;
M = 16;
snrdB = 30;
refConst = qammod(0:M-1,M,'UnitAveragePower',true);

Create constellation diagram and time scope objects to visualize the impairment effects.

 plot (channel)

2-923

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);
timeScope = dsp.TimeScope('YLimits',[0 40],'SampleRate',fs,'TimeSpan',1, ...
 'ShowGrid',true,'YLabel','EVM (%)');

White Noise

Generate a 16-QAM signal, and pass it through an AWGN channel. Plot its constellation.

data = randi([0 M-1],1000,1);
modSig = qammod(data,M,'UnitAveragePower',true);
noisySig = awgn(modSig,snrdB);

constDiagram(noisySig)

2 Functions — Alphabetical List

2-924

Estimate the EVM of the noisy signal from the reference constellation points.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation',refConst, ...
 'Normalization','Average constellation power');

 plot (channel)

2-925

rmsEVM = evm(noisySig)

rmsEVM =

 3.1768

The modulation error rate (MER) closely corresponds to the SNR. Create an MER object,
and estimate the SNR.

mer = comm.MER('ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation',refConst);
snrEst = mer(noisySig)

snrEst =

 30.1071

The estimate is quite close to the specified SNR of 30 dB.

Amplifier Distortion

Create an amplifier using the memoryless nonlinearity object.

amp = comm.MemorylessNonlinearity('IIP3',38,'AMPMConversion',0);

Pass the modulated signal through the nonlinear amplifier, and plot its constellation
diagram.

txSig = amp(modSig);
constDiagram(txSig)

2 Functions — Alphabetical List

2-926

The corner points of the constellation have moved toward the origin due to amplifier gain
compression.

Introduce a small AM/PM conversion, and display the received signal constellation.

 plot (channel)

2-927

amp.AMPMConversion = 1;
txSig = amp(modSig);
constDiagram(txSig)

2 Functions — Alphabetical List

2-928

The constellation has rotated due to the AM/PM conversion. To compute the time-varying
EVM, release the EVM object and set the AveragingDimensions property to 2. To
estimate the EVM against an input signal, omit the ReferenceSignalSource property
definition. This method produces more accurate results.

evm = comm.EVM('AveragingDimensions',2);
evmTime = evm(modSig,txSig);

Plot the time-varying EVM of the distorted signal.

timeScope(evmTime)

 plot (channel)

2-929

Compute the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

2 Functions — Alphabetical List

2-930

 35.5919

Compute the MER.

mer = comm.MER;
snrEst = mer(modSig,txSig)

snrEst =

 8.1392

The SNR (≈8 dB) is reduced from its initial value (∞) due to amplifier distortion.

Specify input power levels ranging from 0 to 40 dBm. Convert those levels to their linear
equivalent in W. Initialize the output power vector.

powerIn = 0:40;
pin = 10.^((powerIn-30)/10);
powerOut = zeros(length(powerIn),1);

Measure the amplifier output power for the range of input power levels.

for k = 1:length(powerIn)
 data = randi([0 15],1000,1);
 txSig = qammod(data,16,'UnitAveragePower',true)*sqrt(pin(k));
 ampSig = amp(txSig);
 powerOut(k) = 10*log10(var(ampSig))+30;
end

Plot the power output versus power input curve.

figure
plot(powerIn,powerOut,powerIn,powerIn,'--')
legend('Amplifier Output','Ideal Output','location','se')
xlabel('Power In (dBm)')
ylabel('Power Out (dBm)')
grid

 plot (channel)

2-931

The output power levels off at 30 dBm. The amplifier exhibits nonlinear behavior for input
power levels greater than 25 dBm.

I/Q Imbalance

Apply an amplitude and phase imbalance to the modulated signal.

ampImb = 3;
phImb = 10;
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(modSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(modSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

2 Functions — Alphabetical List

2-932

Plot the received constellation.

constDiagram(rxSig)

 plot (channel)

2-933

The magnitude and phase of the constellation has changed as a result of the I/Q
imbalance.

Calculate and plot the time-varying EVM.

evmTime = evm(modSig,rxSig);
timeScope(evmTime)

2 Functions — Alphabetical List

2-934

The EVM exhibits a behavior that is similar to that experienced with a nonlinear amplifier
though the variance is smaller.

Create a 100 Hz sine wave having a 1000 Hz sample rate.

sinewave = dsp.SineWave('Frequency',100,'SampleRate',1000, ...
 'SamplesPerFrame',1e4,'ComplexOutput',true);

x = sinewave();

Apply the same 3 dB and 10 degree I/Q imbalance.

ampImb = 3;
phImb = 10;
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(x)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(x)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
y = imbI + imbQ;

Plot the spectrum of the imbalanced signal.

spectrum = dsp.SpectrumAnalyzer('SampleRate',1000,'PowerUnits','dBW');

spectrum(y)

 plot (channel)

2-935

The I/Q imbalance introduces a second tone at -100 Hz, which is the inverse of the input
tone.

Phase Noise

Apply phase noise to the transmitted signal. Plot the resulting constellation diagram.

pnoise = comm.PhaseNoise('Level',-50,'FrequencyOffset',20,'SampleRate',fs);
pnoiseSig = pnoise(modSig);
constDiagram(pnoiseSig)

2 Functions — Alphabetical List

2-936

The phase noise introduces a rotational jitter.

Compute and plot the EVM of the received signal.

 plot (channel)

2-937

evmTime = evm(modSig,pnoiseSig);
timeScope(evmTime)

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

2 Functions — Alphabetical List

2-938

evmRMS =

 6.1989

Filter Effects

Specify the samples per symbol parameter. Create a pair of raised cosine matched filters.

sps = 4;
txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.2,'FilterSpanInSymbols',8, ...
 'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));

rxfilter = comm.RaisedCosineReceiveFilter('RolloffFactor',0.2,'FilterSpanInSymbols',8, ...
 'InputSamplesPerSymbol',sps,'Gain',1/sqrt(sps), ...
 'DecimationFactor',sps);

Determine the delay through the matched filters.

fltDelay = 0.5*(txfilter.FilterSpanInSymbols + rxfilter.FilterSpanInSymbols);

Pass the modulated signal through the matched filters.

filtSig = txfilter(modSig);
rxSig = rxfilter(filtSig);

To account for the delay through the filters, discard the first fltDelay samples.

rxSig = rxSig(fltDelay+1:end);

To accommodate the change in the number of received signal samples, create new
constellation diagram and time scope objects.

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);
timeScope = dsp.TimeScope('YLimits',[0 40],'SampleRate',fs,'TimeSpan',1, ...
 'ShowGrid',true,'YLabel','EVM (%)');

Estimate EVM. Plot the received signal constellation diagram and the time-varying EVM.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation',refConst, ...
 'Normalization','Average constellation power','AveragingDimensions',2);
evmTime = evm(rxSig);
constDiagram(rxSig)
timeScope(evmTime)

 plot (channel)

2-939

2 Functions — Alphabetical List

2-940

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

 plot (channel)

2-941

 2.7199

Determine the equivalent SNR.

mer = comm.MER;
snrEst = mer(modSig(1:end-fltDelay),rxSig)

snrEst =

 31.4603

Combined Effects

Combine the effects of the filters, nonlinear amplifier, AWGN, and phase noise. Display the
constellation and EVM diagrams.

Create EVM, time scope and constellation diagram objects.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation',refConst, ...
 'Normalization','Average constellation power','AveragingDimensions',2);
timeScope = dsp.TimeScope('YLimits',[0 40],'SampleRate',fs,'TimeSpan',1, ...
 'ShowGrid',true,'YLabel','EVM (%)');
constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);

Specify the nonlinear amplifier and phase noise objects.

amp = comm.MemorylessNonlinearity('IIP3',45,'AMPMConversion',0);
pnoise = comm.PhaseNoise('Level',-55,'FrequencyOffset',20,'SampleRate',fs);

Filter and then amplify the modulated signal.

txfiltOut = txfilter(modSig);
txSig = amp(txfiltOut);

Add phase noise. Pass the impaired signal through the AWGN channel. Plot the
constellation diagram.

rxSig = awgn(txSig,snrdB);
pnoiseSig = pnoise(rxSig);
rxfiltOut = rxfilter(pnoiseSig);
constDiagram(rxfiltOut)

2 Functions — Alphabetical List

2-942

Calculate the time-varying EVM. Plot the result.

evmTime = evm(rxfiltOut);
timeScope(evmTime)

 plot (channel)

2-943

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

2 Functions — Alphabetical List

2-944

 6.6444

Estimate the SNR.

mer = comm.MER('ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation',refConst);
snrEst = mer(rxfiltOut)

snrEst =

 23.6978

This value is approximately 6 dB worse than the specified value of 30 dB, which means
that the effects of the other impairments are significant and will degrade the bit error
rate performance.

More About

Use the Channel Visualization Tool
You can use a graphical plotting function that helps you visualize the characteristics of a
fading channel. For example, the following code opens the channel visualization tool
showing a three-path Rayleigh channel through which a random signal is passed:

% Three-Path Rayleigh channel
h = rayleighchan(1/100000, 130, [0 1.5e-5 3.2e-5], [0, -3, -3]);
tx = randi([0 1],500,1); % Random bit stream
hmod = comm.DBPSKModulator; % Create DBPSKModulator
dpskSig = step(hmod,tx); % DPSK signal
h.StoreHistory = true; % Allow states to be stored
y = filter(h, dpskSig); % Run signal through channel
plot(h); % Call Channel Visualization Tool

See “Fading Channels” for a description of fading channels and objects.

 plot (channel)

2-945

See Also
comm.RayleighChannel | comm.RicianChannel

Introduced before R2006a

2 Functions — Alphabetical List

2-946

pmdemod
Phase demodulation

Syntax
z = pmdemod(y,Fc,Fs,phasedev)
z = pmdemod(y,Fc,Fs,phasedev,ini_phase)

Description
z = pmdemod(y,Fc,Fs,phasedev) demodulates the phase-modulated signal y at the
carrier frequency Fc (hertz). z and the carrier signal have sampling rate Fs (hertz),
where Fs must be at least 2*Fc. The phasedev argument is the phase deviation of the
modulated signal, in radians.

z = pmdemod(y,Fc,Fs,phasedev,ini_phase) specifies the initial phase of the
modulated signal, in radians.

Examples

Recover Phase Modulated Signal from AWGN Channel

Set the sample rate. To plot the signals, create a time vector.

fs = 50;
t = (0:2*fs+1)'/fs;

Create a sinusoidal input signal.

x = sin(2*pi*t) + sin(4*pi*t);

Set the carrier frequency and phase deviation.

fc = 10;
phasedev = pi/2;

 pmdemod

2-947

Modulate the input signal.

tx = pmmod(x,fc,fs,phasedev);

Pass the signal through an AWGN channel.

rx = awgn(tx,10,'measured');

Demodulate the noisy signal.

y = pmdemod(rx,fc,fs,phasedev);

Plot the original and recovered signals.

figure; plot(t,[x y]);
legend('Original signal','Recovered signal');
xlabel('Time (s)')
ylabel('Amplitude (V)')

2 Functions — Alphabetical List

2-948

See Also
fmdemod | fmmod | pmmod

Topics
“Digital Modulation”

Introduced before R2006a

 pmdemod

2-949

pmmod
Phase modulation

Syntax
y = pmmod(x,Fc,Fs,phasedev)
y = pmmod(x,Fc,Fs,phasedev,ini_phase)

Description
y = pmmod(x,Fc,Fs,phasedev) modulates the message signal x using phase
modulation. The carrier signal has frequency Fc (hertz) and sampling rate Fs (hertz),
where Fs must be at least 2*Fc. The phasedev argument is the phase deviation of the
modulated signal in radians.

y = pmmod(x,Fc,Fs,phasedev,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples

Recover Phase Modulated Signal from AWGN Channel

Set the sample rate. To plot the signals, create a time vector.

fs = 50;
t = (0:2*fs+1)'/fs;

Create a sinusoidal input signal.

x = sin(2*pi*t) + sin(4*pi*t);

Set the carrier frequency and phase deviation.

fc = 10;
phasedev = pi/2;

2 Functions — Alphabetical List

2-950

Modulate the input signal.

tx = pmmod(x,fc,fs,phasedev);

Pass the signal through an AWGN channel.

rx = awgn(tx,10,'measured');

Demodulate the noisy signal.

y = pmdemod(rx,fc,fs,phasedev);

Plot the original and recovered signals.

figure; plot(t,[x y]);
legend('Original signal','Recovered signal');
xlabel('Time (s)')
ylabel('Amplitude (V)')

 pmmod

2-951

See Also
fmdemod | fmmod | pmdemod

Topics
“Digital Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-952

poly2trellis
Convert convolutional code polynomials to trellis description

Syntax
trellis = poly2trellis(ConstraintLength,CodeGenerator)
trellis = poly2trellis(ConstraintLength,CodeGenerator,
FeedbackConnection)

Description
trellis = poly2trellis(ConstraintLength,CodeGenerator) returns the trellis
structure description corresponding to the conversion for a rate K / N feedforward
encoder. K is the number of input bit streams to the encoder, and N is the number of
output connections. ConstraintLength specifies the delay for the input bit streams to
the encoder. CodeGenerator specifies the output connections for the input bit streams
to the encoder.

The poly2trellis function accepts a polynomial description of a convolutional encoder and
returns the corresponding trellis structure description. This output can be used as an
input to the convenc and vitdec functions. It can also be used as a mask parameter
value for the Convolutional Encoder, Viterbi Decoder, and APP Decoder blocks.

Note When used with a feedback polynomial, poly2trellis makes a feedback connection
to the input of the trellis.

trellis = poly2trellis(ConstraintLength,CodeGenerator,
FeedbackConnection) returns the trellis structure description corresponding to the
conversion for a rate K / N feedback encoder. K is the number of input bit streams to the
encoder, and N is the number of output connections. ConstraintLength specifies the
delay for the input bit streams to the encoder. CodeGenerator specifies the output
connections for the input bit streams to the encoder. FeedbackConnection specifies the
feedback connection for each of the K input bit streams to the encoder.

 poly2trellis

2-953

Examples

Trellis Structure for 1/2 Feedback Convolutional Encoder

Create a trellis structure for the rate 1/2 systematic convolutional encoder with feedback
that is shown. Use the trellis to encode and decode a random bit stream.

This encoder has a constraint length of 5, a generator polynomial matrix of [37 33], and a
feedback connection polynomial of 37.

The first generator polynomial matches the feedback connection polynomial because the
first output corresponds to the systematic bits. The feedback polynomial is represented by
the binary vector [1 1 1 1 1], corresponding to the upper row of binary digits in the
diagram. These digits indicate connections from the outputs of the registers to the adder.
The initial 1 corresponds to the input bit. The octal representation of the binary number
11111 is 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1],
corresponding to the lower row of binary digits in the diagram. The octal number
corresponding to the binary number 11011 is 33.

Use poly2trellis to convert the polynomial to a trellis structure. When used with a
feedback polynomial, poly2trellis makes a feedback connection to the input of the
trellis.

trellis = poly2trellis(5, [37 33], 37)

2 Functions — Alphabetical List

2-954

trellis = struct with fields:
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 16
 nextStates: [16x2 double]
 outputs: [16x2 double]

Generate random binary data, convolutionally encode the data, and decode the data using
the Viterbi algorithm.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
decodedData = vitdec(codedData,trellis,34,'trunc','hard');

Verify the decoded data has no bit errors.

biterr(data,decodedData)

ans = 0

Trellis Structure for 2/3 Feedforward Convolutional Encoder

Create a trellis structure for a rate 2/3 feedforward convolutional code and display a
portion of the next states of the trellis. See convenc for an example using this encoder.

The diagram shows a rate 2/3 encoder with two input streams, three output streams, and
seven shift registers.

 poly2trellis

2-955

Create a trellis structure. Set the constraint length of the upper path to 5 and the
constraint length of the lower path to 4. The octal representation of the code generator
matrix corresponds to the taps from the upper and lower shift registers.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis = struct with fields:
 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 128
 nextStates: [128x4 double]
 outputs: [128x4 double]

The structure field numInputSymbols equals 4 because two bit streams can produce
four different input symbols. The structure field numOutputSymbols equals 8 because
three bit streams produce eight different output symbols. Because the encoder has seven
total shift registers, the number of possible states is 27 = 128, as shown by the
nextStates field.

Display the first five rows of the 128-by-4 trellis.nextStates matrix.

trellis.nextStates(1:5,:)

2 Functions — Alphabetical List

2-956

ans = 5×4

 0 64 8 72
 0 64 8 72
 1 65 9 73
 1 65 9 73
 2 66 10 74

Trellis Structure for 1/2 Feedforward Convolutional Encoder

Create a trellis structure for a rate 1/2 feedforward convolutional code. Use the trellis to
encode and decode a random bit stream.

Create a trellis structure. Set the constraint length to 7 and specify the code generator as
a cell array of polynomial character vectors.

trellis = poly2trellis(7,{'1 + x^3 + x^4 + x^5 + x^6', ...
 '1 + x + x^3 + x^4 + x^6'})

trellis = struct with fields:
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 64
 nextStates: [64x2 double]
 outputs: [64x2 double]

Generate random binary data, convolutionally encode the data, and decode the data using
the Viterbi algorithm.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
decodedData = vitdec(codedData,trellis,34,'trunc','hard');

Verify the decoded data has no bit errors.

biterr(data,decodedData)

ans = 0

 poly2trellis

2-957

Create User Defined Trellis Structure

This example demonstrates creation of an nonstandard trellis structure for a
convolutional encoder with uncoded bits and feedback. The encoder cannot be created
using poly2trellis because the peculiar specifications for the encoder do not match
the input requirements of poly2trellis.

Even though poly2trellis is not used to create the trellis structure, you can manually
create the structure,then use that trellis structure as the input trellis structure for an
encoder and decoder. The Convolutional Encoder and Viterbi Decoder blocks used in the
“Convolutional Encoder with Uncoded Bits and Feedback” model load the trellis structure
created here using a PreLoadFcn callback.

Convolutional Encoder

Create a rate 3/4 convolutional encoder with feedback connection whose MSB bit remains
uncoded.

Declare variables according to the specifications.

k = 3;
n = 4;
constraintLength = 4;

Create trellis structure

A trellis is represented by a structure with the following fields:

2 Functions — Alphabetical List

2-958

• numInputSymbols – Number of input symbols
• numOutputSymbols – Number of output symbols
• numStates – Number of states
• nextStates – Next state matrix
• outputs – Output matrix

For more information about these structure fields, see istrellis.

Reset any previous occurrence of myTrellis structure.

clear myTrellis;

Define the trellis structure fields.

myTrellis.numInputSymbols = 2^k;
myTrellis.numOutputSymbols = 2^n;
myTrellis.numStates = 2^(constraintLength-1);

Create nextStates Matrix

The nextStates matrix is a [numStates x numInputSymbols] matrix. The (i,j) element
of the next state matrix is the resulting final state index that corresponds to a transition
from the initial state i for an input equal to j.

myTrellis.nextStates = [0 1 2 3 0 1 2 3; ...
 6 7 4 5 6 7 4 5; ...
 1 0 3 2 1 0 3 2; ...
 7 6 5 4 7 6 5 4; ...
 2 3 0 1 2 3 0 1; ...
 4 5 6 7 4 5 6 7; ...
 3 2 1 0 3 2 1 0; ...
 5 4 7 6 5 4 7 6]

myTrellis = struct with fields:
 numInputSymbols: 8
 numOutputSymbols: 16
 numStates: 8
 nextStates: [8x8 double]

 poly2trellis

2-959

Plot nextStates Matrix

Use the commcnv_plotnextstates helper function to plot the nextStates matrix to
illustrate the branch transitions between different states for a given input.

commcnv_plotnextstates(myTrellis.nextStates);

Create outputs Matrix

The outputs matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of
the output matrix is the output symbol in octal format given a current state i for an input
equal to j.

outputs = [0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17; ...

2 Functions — Alphabetical List

2-960

 0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17; ...
 0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17; ...
 0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17]

outputs = 8×8

 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17
 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17
 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17
 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17

Use oct2dec to display these values in decimal format.

outputs_dec = oct2dec(outputs)

outputs_dec = 8×8

 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15
 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15
 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15
 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15

Copy outputs matrix into the myTrellis structure.

myTrellis.outputs = outputs

myTrellis = struct with fields:
 numInputSymbols: 8
 numOutputSymbols: 16
 numStates: 8
 nextStates: [8x8 double]
 outputs: [8x8 double]

 poly2trellis

2-961

Plot outputs Matrix

Use the commcnv_plotoutputs helper function to plot the outputs matrix to illustrate
the possible output symbols for a given state depending on the input symbol.

commcnv_plotoutputs(myTrellis.outputs, myTrellis.numOutputSymbols);

Check Resulting Trellis Structure

istrellis(myTrellis)

ans = logical
 1

2 Functions — Alphabetical List

2-962

A return value of 1 confirms the trellis structure is valid.

Implement Soft-Decision Decoding

Decode with 3-bit soft decisions partitioned so that values near 0 map to 0, and values
near 1 map to 7. If your application requires better decoding performance, refine the
partition to obtain finer quantization.

The example decodes the code and computes the bit error rate. When comparing the
decoded data with the original message, the example must take the decoding delay into
account. The continuous operation mode of the Viterbi decoder causes a delay equal to
the traceback length, so msg(1) corresponds to decoded(tblen+1) rather than to
decoded(1).

System Setup

Initialize runtime variables for the message data, trellis, bit error rate computations, and
traceback length.

stream = RandStream.create('mt19937ar', 'seed',94384);
prevStream = RandStream.setGlobalStream(stream);
msg = randi([0 1],4000,1); % Random data

trellis = poly2trellis(7,[171 133]); % Define trellis

ber = zeros(3,1); % Store BER values
tblen = 48; % Traceback length

Create an AWGN channel System object, a Viterbi decoder System object, and an error
rate calculator System object. Account for the receive delay caused by the traceback
length of the Viterbi decoder.

awgnChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)','SNR',6);
vitDec = comm.ViterbiDecoder(trellis,'InputFormat','Soft', ...
 'SoftInputWordLength',3,'TracebackDepth',tblen,'TerminationMethod','Continuous');
errorCalc = comm.ErrorRate('ReceiveDelay', tblen);

Run Coding and Decoding

Convolutionally code the message, pass in through an AWGN filter, quantize the noisy
message for soft-decision decoding. Perform Viterbi decoding using the trellis generated
using poly2trellis.

 poly2trellis

2-963

code = convenc(msg,trellis);
awgnChan.SignalPower = (code'*code)/length(code);
ncode = awgnChan(code);

Use quantiz to map the noisy data values to appropriate decision-value integers
between 0 and 7. The second argument in quantiz is a partition vector that determines
which data values map to 0, 1, 2, etc.

qcode = quantiz(ncode,[0.001,0.1,0.3,0.5,0.7,0.9,0.999]);
decoded = vitDec(qcode);

Compute bit error rate.

ber = errorCalc(msg,decoded);
ratio = ber(1)

ratio = 0.0013

number = ber(2)

number = 5

RandStream.setGlobalStream(prevStream);

Input Arguments
ConstraintLength — Constraint length
row vector

Constraint length, specified as a 1-by-K row vector defining the delay for each of the K
input bit streams to the encoder.
Data Types: double

CodeGenerator — Code generator
matrix | cell array of character vector | string array

Code generator, specified as a K-by-N matrix of octal numbers, a K-by-N cell array of
polynomial character vectors, or a K-by-N string array. CodeGenerator specifies the N
output connections for each of the K input bit streams to the encoder.

For more information, see “Character Representation of Polynomials”.
Data Types: double | char | string

2 Functions — Alphabetical List

2-964

FeedbackConnection — Feedback connection
row vector

Feedback connection, specified as a 1-by-K row vector of octal numbers defining the
feedback connection for each of the K input bit streams to the encoder.
Data Types: double

Output Arguments
trellis — Trellis description
structure

Trellis description, returned as a structure with these fields. For more about this
structure, see the istrellis function.

Trellis Structure Fields for Rate K/N Code

numInputSymbols — Number of input symbols
scalar

Number of input symbols, returned as a scalar with a value of 2K. This value represents
the number of input symbols to the encoder.

numOutputSymbols — Number of output symbols
scalar

Number of output symbols, returned as a scalar with a value of 2N. This value represents
the number of output symbols from the encoder.

numStates — Number of states
scalar

Number of states in the encoder, returned as a scalar.

nextStates — Next states
matrix

Next states for all combinations of current states and current inputs, returned as a
numStates-by-2K matrix.

 poly2trellis

2-965

outputs — Outputs
matrix

Outputs for all combinations of current states and current inputs, returned as a
numStates-by-2K matrix. The elements of this matrix are octal numbers.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Inputs must be constants, of which there can be at most 3 (ConstraintLength,
CodeGenerator, FeedbackConnection).

See Also
Functions
convenc | istrellis | vitdec

Topics
“Convolutional Codes”
“Character Representation of Polynomials”

Introduced before R2006a

2 Functions — Alphabetical List

2-966

primpoly
Find primitive polynomials for Galois field

Syntax
pr = primpoly(m)
pr = primpoly(m,opt)
pr = primpoly(m...,'nodisplay')

Description
pr = primpoly(m) returns the primitive polynomial for GF(2^m), where m is an integer
between 2 and 16. The Command Window displays the polynomial using "D" as an
indeterminate quantity. The output argument pr is an integer whose binary
representation indicates the coefficients of the polynomial.

pr = primpoly(m,opt) returns one or more primitive polynomials for GF(2^m). The
output pol depends on the argument opt as shown in the table below. Each element of
the output argument pr is an integer whose binary representation indicates the
coefficients of the corresponding polynomial. If no primitive polynomial satisfies the
constraints, pr is empty.

opt Meaning of pr
'min' One primitive polynomial for GF(2^m)

having the smallest possible number of
nonzero terms

'max' One primitive polynomial for GF(2^m)
having the greatest possible number of
nonzero terms

'all' All primitive polynomials for GF(2^m)
Positive integer k All primitive polynomials for GF(2^m) that

have k nonzero terms

 primpoly

2-967

pr = primpoly(m...,'nodisplay') prevents the function from displaying the result
as polynomials in "D" in the Command Window. The output argument pr is unaffected by
the 'nodisplay' option.

Examples
The first example below illustrates the formats that primpoly uses in the Command
Window and in the output argument pr. The subsequent examples illustrate the display
options and the use of the opt argument.

pr = primpoly(4)

pr1 = primpoly(5,'max','nodisplay')

pr2 = primpoly(5,'min')

pr3 = primpoly(5,2)

pr4 = primpoly(5,3);

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

pr =

 19

pr1 =

 61

Primitive polynomial(s) =

D^5+D^2+1

pr2 =

2 Functions — Alphabetical List

2-968

 37

No primitive polynomial satisfies the given constraints.

pr3 =

 []

Primitive polynomial(s) =

D^5+D^2+1
D^5+D^3+1

See Also
gf | isprimitive

Topics
“Galois Field Computations”

Introduced before R2006a

 primpoly

2-969

pskdemod
Phase shift keying demodulation

Syntax
z = pskdemod(y,M)
z = pskdemod(y,M,ini_phase)
z = pskdemod(y,M,ini_phase,symorder)

Description
z = pskdemod(y,M) demodulates the complex envelope, y, of a PSK-modulated signal
having modulation order M.

z = pskdemod(y,M,ini_phase) specifies the initial phase of the PSK-modulated
signal.

z = pskdemod(y,M,ini_phase,symorder) specifies the symbol order of the PSK-
modulated signal.

Examples

Compare Phase Noise Effects on PSK and PAM Signals

Compare PSK and PAM modulation schemes to demonstrate that PSK is more sensitive to
phase noise. This is the expected result because the PSK constellation is circular while
the PAM constellation is linear.

Specify the number of symbols and the modulation order parameters. Generate random
data symbols.

len = 10000;
M = 16;
msg = randi([0 M-1],len,1);

2 Functions — Alphabetical List

2-970

Modulate msg using both PSK and PAM to compare the two methods.

txpsk = pskmod(msg,M);
txpam = pammod(msg,M);

Perturb the phase of the modulated signals by applying a random phase rotation.

phasenoise = randn(len,1)*.015;
rxpsk = txpsk.*exp(2i*pi*phasenoise);
rxpam = txpam.*exp(2i*pi*phasenoise);

Create scatter plots of the received signals.

scatterplot(rxpsk);
title('Noisy PSK Scatter Plot')

 pskdemod

2-971

scatterplot(rxpam);
title('Noisy PAM Scatter Plot')

Demodulate the received signals.

recovpsk = pskdemod(rxpsk,M);
recovpam = pamdemod(rxpam,M);

Compute the number of symbol errors for each modulation scheme. The PSK signal
experiences a much greater number of symbol errors.

numerrs_psk = symerr(msg,recovpsk);
numerrs_pam = symerr(msg,recovpam);
[numerrs_psk numerrs_pam]

2 Functions — Alphabetical List

2-972

ans = 1×2

 343 1

Modulate and Demodulate QPSK Signal in AWGN

Generate random symbols.

dataIn = randi([0 3],1000,1);

QPSK modulate the data.

txSig = pskmod(dataIn,4,pi/4);

Pass the signal through an AWGN channel.

rxSig = awgn(txSig,10);

Demodulate the received signal and compute the number of symbol errors.

dataOut = pskdemod(rxSig,4,pi/4);
numErrs = symerr(dataIn,dataOut)

numErrs = 2

Input Arguments
y — PSK-modulated input signal
vector | matrix

PSK-modulated input signal, specified as a real or complex vector or matrix. If y is a
matrix, the function processes the columns independently.
Data Types: single | double
Complex Number Support: Yes

M — Modulation order
integer power of two

 pskdemod

2-973

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double | single

ini_phase — Initial phase
0 (default) | scalar | []

Initial phase of the PSK modulation, specified in radians as a real scalar.

If ini_phase is empty, then pskdemod uses an initial phase of 0.
Example: pi/4
Data Types: double | single

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function
assigns binary vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

Output Arguments
z — PSK-demodulated output signal
vector | matrix

PSK-demodulated output signal, returned as a vector or matrix having the same number
of columns as input signal y.
Data Types: double | single

See Also
comm.PSKDemodulator | modnorm | pskmod

2 Functions — Alphabetical List

2-974

Topics
“Phase Modulation”

Introduced before R2006a

 pskdemod

2-975

pskmod
Phase shift keying modulation

Syntax
y = pskmod(x,M)
y = pskmod(x,M,ini_phase)
y = pskmod(x,M,ini_phase,symorder)

Description
y = pskmod(x,M) modulates the input signal, x, using phase shift keying (PSK) with
modulation order M.

y = pskmod(x,M,ini_phase) specifies the initial phase of the PSK-modulated signal.

y = pskmod(x,M,ini_phase,symorder) specifies the symbol order of the PSK-
modulated signal.

Examples

Modulate PSK Signal

Modulate and plot the constellations of QPSK and 16-PSK signals.

QPSK

Set the modulation order to 4.

M = 4;

Generate random data symbols.

data = randi([0 M-1],1000,1);

2 Functions — Alphabetical List

2-976

Modulate the data symbols.

txSig = pskmod(data,M,pi/M);

Pass the signal through white noise and plot its constellation.

rxSig = awgn(txSig,20);
scatterplot(rxSig)

16-PSK

Change the modulation order from 4 to 16.

M = 16;

 pskmod

2-977

Generate random data symbols.

data = randi([0 M-1],1000,1);

Modulate the data symbols.

txSig = pskmod(data,M,pi/M);

Pass the signal through white noise and plot its constellation.

rxSig = awgn(txSig,20);
scatterplot(rxSig)

2 Functions — Alphabetical List

2-978

Modulate and Demodulate QPSK Signal in AWGN

Generate random symbols.

dataIn = randi([0 3],1000,1);

QPSK modulate the data.

txSig = pskmod(dataIn,4,pi/4);

Pass the signal through an AWGN channel.

rxSig = awgn(txSig,10);

Demodulate the received signal and compute the number of symbol errors.

dataOut = pskdemod(rxSig,4,pi/4);
numErrs = symerr(dataIn,dataOut)

numErrs = 2

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix of positive integers. The elements of x must
have values in the range of [0, M – 1].
Example: randi([0 3],100,1)
Data Types: double | single

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double | single

ini_phase — Initial phase
0 (default) | scalar | []

 pskmod

2-979

Initial phase of the PSK modulation, specified in radians as a real scalar.

If you specify ini_phase as empty, then pskmod uses an initial phase of 0.
Example: pi/4
Data Types: double | single

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function
assigns binary vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

Output Arguments
y — PSK-modulated output signal
vector | matrix

Complex baseband representation of a PSK-modulated signal, returned as vector or
matrix. The columns of y represent independent channels.
Data Types: double | single

See Also
comm.PSKModulator | modnorm | pskdemod

Topics
“Phase Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-980

qamdemod
Quadrature amplitude demodulation

Syntax
z = qamdemod(y,M)
z = qamdemod(y,M,symOrder)
z = qamdemod(___ ,Name,Value)

Description
z = qamdemod(y,M) returns a demodulated signal, z, given quadrature amplitude
modulated (QAM) signal y of modulation order M.

z = qamdemod(y,M,symOrder) returns a demodulated signal and specifies the symbol
order.

z = qamdemod(___ ,Name,Value) specifies demodulation behavior using Name,Value
pairs and any of the previous syntaxes.

Input Arguments
y — Input signal
scalar | vector | matrix | 3-D array

Input signal resulting from quadrature amplitude modulation, specified as a complex
scalar, vector, matrix, or 3-D array. Each column is treated as an independent channel.
Data Types: double | single | fi

M — Modulation order
scalar integer

Modulation order, specified as a power-of-two scalar integer. The modulation order
specifies the number of points in the signal constellation.

 qamdemod

2-981

Example: 16
Data Types: double

symOrder — Symbol order
'gray' (default) | 'bin' | vector

Symbol order, specified as 'gray', 'bin', or a vector.

• 'gray' — Use “Gray Code” on page 2-992 ordering
• 'bin' — Use natural binary-coded ordering
• Vector — Use custom symbol ordering

Vectors must use unique elements whose values range from 0 to M – 1. The first element
corresponds to the upper-left point of the constellation, with subsequent elements
running down column-wise from left to right.
Example: [0 3 1 2]
Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of
UnitAveragePower and a logical scalar. When this flag is true, the function scales the
constellation to an average power of 1 watt referenced to 1 ohm. When this flag is false,
the function scales the constellation so that the QAM constellation points are separated
by a minimum distance of 2.
Data Types: logical

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

2 Functions — Alphabetical List

2-982

Output type, specified as the comma-separated pair consisting of OutputType and one of
the following: 'integer', 'bit', 'llr', or 'approxllr'.
Data Types: char

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input
elements.

• When specified as a vector, the vector length must be equal to the number of elements
in the last dimension of the input signal. Each element of the vector specifies noise
variance for all the elements of the input along the corresponding last dimension.

Tip When OutputType = ‘llr’, if the demodulation computation outputs Inf or -Inf
values, it is likely because the specified noise variance values are significantly smaller
than the SNR. Since the LLR algorithm computes exponentials using finite precision
arithmetic, computation of exponentials with very large or very small numbers can yield
positive or negative infinity.

Try using OutputType = ‘approxllr’ instead, because the approximate LLR algorithm
does not compute exponentials.

Dependencies

This input argument applies only when 'OutputType' is set to 'llr' or 'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the QAM constellation, set
PlotConstellation to true.
Data Types: logical

 qamdemod

2-983

Output Arguments
z — Demodulated output signal
scalar | vector | matrix | 3-D array

Demodulated output signal, returned as a scalar, vector, matrix, or 3-D array. The data
type is the same as that of the input signal, y. The dimensions of the output vary
depending on the specified OutputType value.

'OutputTyp
e'

Return Value of qamdemod Dimensions of Output

'integer' Demodulated integer values
from 0 to M – 1

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(M) times the
number of rows in y. Each demodulated
symbol is mapped to a group of log2(M) bits,
where the first bit represents the MSB and
the last bit represents the LSB.

'llr' Log-likelihood ratio value
for each bit

'approxllr
'

Approximate log-likelihood
ratio value for each bit

Examples

Demodulate 8-QAM Signal

Demodulate an 8-QAM signal and plot the points corresponding to symbols 0 and 3.

Generate random 8-ary data symbols.

data = randi([0 7],1000,1);

Apply 8-QAM.

txSig = qammod(data,8);

Pass the modulated signal through an AWGN channel.

rxSig = awgn(txSig,18,'measured');

Demodulate the received signal using an initial phase of π/8.

2 Functions — Alphabetical List

2-984

rxData = qamdemod(rxSig.*exp(-1i*pi/8),8);

Generate the reference constellation points.

refpts = qammod((0:7)',8) .* exp(1i*pi/8);

Plot the received signal points corresponding to symbols 0 and 3 and overlay the
reference constellation. Only the received data corresponding to those symbols is
displayed.

plot(rxSig(rxData==0),'g.');
hold on
plot(rxSig(rxData==3),'c.');
plot(refpts,'r*')
text(real(refpts)+0.1,imag(refpts),num2str((0:7)'))
xlabel('In-Phase')
ylabel('Quadrature')
legend('Points corresponding to 0','Points corresponding to 3', ...
 'Reference constellation','location','nw');

 qamdemod

2-985

QAM Demodulation with WLAN Symbol Mapping

Modulate and demodulate random data by using 16-QAM with WLAN symbol mapping.
Verify that the input data symbols match the demodulated symbols.

Generate a 3-D array of random symbols.

x = randi([0,15],20,4,2);

Create a custom symbol mapping for the 16-QAM constellation based on WLAN
standards.

2 Functions — Alphabetical List

2-986

wlanSymMap = [2 3 1 0 6 7 5 4 14 15 13 12 10 11 9 8];

Modulate the data, and set the constellation to have unit average signal power. Plot the
constellation.

y = qammod(x,16,wlanSymMap,'UnitAveragePower', true,'PlotConstellation',true);

Demodulate the received signal.

z = qamdemod(y,16,wlanSymMap,'UnitAveragePower',true);

Verify that the demodulated signal is equal to the original data.

isequal(x,z)

 qamdemod

2-987

ans = logical
 1

Demodulate QAM Fixed-Point Signal

Demodulate a fixed-point QAM signal and verify that the data is recovered correctly.

Set the modulation order, and determine the number of bits per symbol.

M = 64;
bitsPerSym = log2(M);

Generate random bits. When operating in bit mode, the length of the input data must be
an integer multiple of the number of bits per symbol.

x = randi([0 1],10*bitsPerSym,1);

Modulate the input data using a binary symbol mapping. Set the modulator to output
fixed-point data. The numeric data type is signed with a 16-bit word length and a 10-bit
fraction length.

y = qammod(x,M,'bin','InputType','bit','OutputDataType', ...
 numerictype(1,16,10));

Demodulate the 64-QAM signal. Verify that the demodulated data matches the input data.

z = qamdemod(y,M,'bin','OutputType','bit');
s = isequal(x,double(z))

s = logical
 1

Estimate BER for Hard and Soft Decision Viterbi Decoding

Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi
decoders in AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

2 Functions — Alphabetical List

2-988

clear; close all
rng default
M = 64; % Modulation order
k = log2(M); % Bits per symbol
EbNoVec = (4:10)'; % Eb/No values (dB)
numSymPerFrame = 1000; % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec));
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback length for a rate 1/2, constraint length 7,
convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops performs these steps:

• Generate binary data.
• Convolutionally encode the data.
• Apply QAM modulation to the data symbols. Specify unit average power for the

transmitted signal.
• Pass the modulated signal through an AWGN channel.
• Demodulate the received signal using hard decision and approximate LLR methods.

Specify unit average power for the received signal.
• Viterbi decode the signals using hard and unquantized methods.
• Calculate the number of bit errors.

The while loop continues to process data until either 100 errors are encountered or 1e7
bits are transmitted.

for n = 1:length(EbNoVec)
 % Convert Eb/No to SNR
 snrdB = EbNoVec(n) + 10*log10(k*rate);
 % Noise variance calculation for unity average signal power.
 noiseVar = 10.^(-snrdB/10);
 % Reset the error and bit counters
 [numErrsSoft,numErrsHard,numBits] = deal(0);

 qamdemod

2-989

 while numErrsSoft < 100 && numBits < 1e7
 % Generate binary data and convert to symbols
 dataIn = randi([0 1],numSymPerFrame*k,1);

 % Convolutionally encode the data
 dataEnc = convenc(dataIn,trellis);

 % QAM modulate
 txSig = qammod(dataEnc,M,'InputType','bit','UnitAveragePower',true);

 % Pass through AWGN channel
 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal using hard decision (bit) and
 % soft decision (approximate LLR) approaches.
 rxDataHard = qamdemod(rxSig,M,'OutputType','bit','UnitAveragePower',true);
 rxDataSoft = qamdemod(rxSig,M,'OutputType','approxllr', ...
 'UnitAveragePower',true,'NoiseVariance',noiseVar);

 % Viterbi decode the demodulated data
 dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
 dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');

 % Calculate the number of bit errors in the frame. Adjust for the
 % decoding delay, which is equal to the traceback depth.
 numErrsInFrameHard = biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
 numErrsInFrameSoft = biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));

 % Increment the error and bit counters
 numErrsHard = numErrsHard + numErrsInFrameHard;
 numErrsSoft = numErrsSoft + numErrsInFrameSoft;
 numBits = numBits + numSymPerFrame*k;

 end

 % Estimate the BER for both methods
 berEstSoft(n) = numErrsSoft/numBits;
 berEstHard(n) = numErrsHard/numBits;
end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an
uncoded 64-QAM channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on

2 Functions — Alphabetical List

2-990

semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

As expected, the soft decision decoding produces the best results.

Soft-Decision OQPSK Modulation-Demodulation

Use the qamdemod function to simulate soft decision output for OQPSK-modulated
signals.

 qamdemod

2-991

Create an OQPSK modulated signal and add noise to the signal.

sps = 4;
msg = randi([0 1],1000,1);
oqpskMod = comm.OQPSKModulator('SamplesPerSymbol',sps,'BitInput',true);
oqpskSig = oqpskMod(msg);

impairedSig = awgn(oqpskSig,15);

Perform Soft-Decision Demodulation

Create QPSK equivalent signal to align I and Q. Apply matched filtering to the received
OQPSK signal.

impairedQPSK = complex(real(impairedSig(1+sps/2:end-sps/2)), imag(impairedSig(sps+1:end)));

halfSinePulse = sin(0:pi/sps:(sps)*pi/sps);
matchedFilter = dsp.FIRDecimator(sps,halfSinePulse,'DecimationOffset',sps/2);
filteredQPSK = matchedFilter(impairedQPSK);

To perform soft demodulation of the filtered OQPSK signal use the qamdemod function.
Align symbol mapping of qamdemod with the symbol mapping used by the
comm.OQPSKModulator, then demodulate the signal.

oqpskModSymbolMapping = [1 3 0 2];
demodulated = qamdemod(filteredQPSK,4,oqpskModSymbolMapping,'OutputType','llr');

More About

Gray Code
A Gray code, also known as a reflected binary code, is a system where the bit patterns in
adjacent constellation points differ by only one bit.

Compatibility Considerations

Initial Phase Input Removed
Errors starting in R2018b

2 Functions — Alphabetical List

2-992

Starting in R2018b, you can no longer offset the initial phase for the QAM constellation
using the qamdemod function.

Instead use genqamdemod to offset the initial phase of the QAM data being demodulated
or you can multiply the modulated input to qamdemod by the desired initial phase:

z = qamdemod(y .* exp(-1i*initPhase,M))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
genqamdemod | genqammod | modnorm | pamdemod | qammod

Topics
“Digital Modulation”
“Compute Symbol Error Rate”
“Exact LLR Algorithm”

Introduced before R2006a

 qamdemod

2-993

qammod
Quadrature amplitude modulation

Syntax
y = qammod(x,M)
y = qammod(x,M,symOrder)
y = qammod(___ ,Name,Value)

Description
y = qammod(x,M) returns a baseband quadrature amplitude modulated (QAM) signal
given input signal x and modulation order M.

y = qammod(x,M,symOrder) returns a modulated signal and specifies the symbol
order.

y = qammod(___ ,Name,Value) specifies modulation behavior using Name,Value
pairs and any of the previous syntaxes.

Input Arguments
x — Input signal
scalar | vector | matrix | 3-D array

Input signal, specified as a scalar, vector, matrix, or 3-D array. The elements of x must be
binary values or integers that range from 0 to (M – 1), where M is the modulation order.

Note To process input signal as binary elements, set the 'InputType' name-value pair to
'bit'. For binary inputs, the number of rows must be an integer multiple of log2(M).
Groups of log2(M) bits are mapped onto a symbol, with the first bit representing the MSB
and the last bit representing the LSB.

2 Functions — Alphabetical List

2-994

Data Types: double | single | fi | int8 | int16 | uint8 | uint16

M — Modulation order
scalar integer

Modulation order, specified as a power-of-two scalar integer. The modulation order
specifies the number of points in the signal constellation.
Example: 16
Data Types: double

symOrder — Symbol order
'gray' (default) | 'bin' | vector

Symbol order, specified as 'gray', 'bin', or a vector.

• 'gray' — Use “Gray Code” on page 2-1006 ordering
• 'bin' — Use natural binary-coded ordering
• Vector — Use custom symbol ordering

Vectors must use unique elements whose values range from 0 to M – 1. The first element
corresponds to the upper-left point of the constellation, with subsequent elements
running down column-wise from left to right.
Example: [0 3 1 2]
Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either
'integer' or 'bit'. If you specify 'integer', the input signal must consist of integers
from 0 to M – 1. If you specify 'bit', the input signal must contain binary values, and the
number of rows must be an integer multiple of log2(M).

 qammod

2-995

Data Types: char

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of
UnitAveragePower and a logical scalar. When this flag is true, the function scales the
constellation to an average power of 1 watt referenced to 1 ohm. When this flag is false,
the function scales the constellation so that the QAM constellation points are separated
by a minimum distance of 2.
Data Types: logical

OutputDataType — Output data type
numerictype object

Output data type, specified as the comma-separated pair consisting of
'OutputDataType' and a numeric type object. See numerictype for more information
on constructing these objects. If OutputDataType is omitted, the output data type is
double for double or built-in integer inputs, and single for single inputs.

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the QAM constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
y — Modulated signal
scalar | vector | matrix | 3-D array

Modulated signal, returned as a complex scalar, vector, matrix, or 3-D array. For integer
inputs, output y has the same dimensions as input signal x. For bit inputs, the number of
rows in y is the number of rows in x divided by log2(M).
Data Types: double | single

2 Functions — Alphabetical List

2-996

Examples

Modulate Data Using QAM

Modulate data using QAM and display the result in a scatter plot.

Set the modulation order to 16 and create a data vector containing each of the possible
symbols.

M = 16;
x = (0:M-1)';

Modulate the data using the qammod function.

y = qammod(x,M);

Display the modulated signal constellation using the scatterplot function.

scatterplot(y)

 qammod

2-997

Set the modulation order to 256, and display the scatter plot of the modulated signal.

M = 256;
x = (0:M-1)';
y = qammod(x,M);
scatterplot(y)

2 Functions — Alphabetical List

2-998

Normalize QAM Signal by Average Power

Modulate random data symbols using QAM. Normalize the modulator output so that it has
an average signal power of 1 W.

Set the modulation order and generate random data.

M = 64;
x = randi([0 M-1],1000,1);

Modulate the data. Use the 'UnitAveragePower' name-value pair to set the output
signal to have an average power of 1 W.

 qammod

2-999

y = qammod(x,M,'UnitAveragePower',true);

Confirm that the signal has unit average power.

avgPower = mean(abs(y).^2)

avgPower = 1.0070

Plot the resulting constellation.

scatterplot(y)
title('64-QAM, Average Power = 1 W')

2 Functions — Alphabetical List

2-1000

QAM Symbol Ordering

Plot QAM constellations for Gray, binary, and custom symbol mappings.

Set the modulation order, and create a random data sequence.

M = 16;
d = randi([0 M-1],1000,1);

Modulate the data, and plot its constellation.

y = qammod(d,M,'PlotConstellation',true);

The default symbol mapping uses Gray ordering. The ordering of the points is not
sequential.

 qammod

2-1001

Repeat the modulation process with binary symbol mapping.

z = qammod(d,M,'bin','PlotConstellation',true);

The symbol mapping follows a natural binary order and is sequential.

Create a custom symbol mapping.

smap = randperm(16)-1;

Modulate and plot the constellation.

w = qammod(d,M,smap,'PlotConstellation',true);

2 Functions — Alphabetical List

2-1002

Quadrature Amplitude Modulation with Bit Inputs

Modulate a sequence of bits using 64-QAM. Pass the signal through a noisy channel.
Display the resultant constellation diagram.

Set the modulation order, and determine the number of bits per symbol.

M = 64;
k = log2(M);

Create a binary data sequence. When using binary inputs, the number of rows in the input
must be an integer multiple of the number of bits per symbol.

 qammod

2-1003

data = randi([0 1],1000*k,1);

Modulate the signal using bit inputs, and set it to have unit average power.

txSig = qammod(data,M,'InputType','bit','UnitAveragePower',true);

Pass the signal through a noisy channel.

rxSig = awgn(txSig,25);

Plot the constellation diagram.

cd = comm.ConstellationDiagram('ShowReferenceConstellation',false);
step(cd,rxSig)

2 Functions — Alphabetical List

2-1004

Demodulate QAM Fixed-Point Signal

Demodulate a fixed-point QAM signal and verify that the data is recovered correctly.

 qammod

2-1005

Set the modulation order, and determine the number of bits per symbol.

M = 64;
bitsPerSym = log2(M);

Generate random bits. When operating in bit mode, the length of the input data must be
an integer multiple of the number of bits per symbol.

x = randi([0 1],10*bitsPerSym,1);

Modulate the input data using a binary symbol mapping. Set the modulator to output
fixed-point data. The numeric data type is signed with a 16-bit word length and a 10-bit
fraction length.

y = qammod(x,M,'bin','InputType','bit','OutputDataType', ...
 numerictype(1,16,10));

Demodulate the 64-QAM signal. Verify that the demodulated data matches the input data.

z = qamdemod(y,M,'bin','OutputType','bit');
s = isequal(x,double(z))

s = logical
 1

More About

Gray Code
A Gray code, also known as a reflected binary code, is a system where the bit patterns in
adjacent constellation points differ by only one bit.

Compatibility Considerations

Initial Phase Input Removed
Errors starting in R2018b

2 Functions — Alphabetical List

2-1006

Starting in R2018b, you can no longer offset the initial phase for the QAM constellation
using the qammod function.

Instead use genqammod to offset the initial phase of the data being modulated, or you can
multiply the qammod output by the desired initial phase:

y = qammod(x,M) .* exp(1i*initPhase)

to adjust the initial phase of the QAM data.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
genqamdemod | genqammod | modnorm | pamdemod | pammod | qamdemod

Topics
“Digital Modulation”

Introduced before R2006a

 qammod

2-1007

qfunc
Q function

Syntax
y = qfunc(x)

Description
y = qfunc(x) returns the output of the Q function for each element of the real array x.
The Q function is one minus the cumulative distribution function of the standardized
normal random variable.

Input Arguments
x — Input
scalar | vector | matrix | N-D array

Input, specified as a real scalar or array.

Output Arguments
y — Q function output
scalar | vector | matrix | N-D array

Q function output, returned as a real scalar or array having the same dimensions as input
x.

Examples

2 Functions — Alphabetical List

2-1008

Q Function Results and Plot

Determine the values of the Q function for an input vector.

x = -4:0.1:4;
y = qfunc(x);

Plot the results.

plot(x,y)
grid

 qfunc

2-1009

Calculate QPSK Error Probability Using Q Function

Convert an input Eb/No in dB to its linear equivalent.

ebnodB = 7;
ebno = 10^(ebnodB/10);

Determine the QPSK error probability, Pb, given that:

Pb = Q 2 Eb
No .

Pb = qfunc(sqrt(2*ebno))

Pb = 7.7267e-04

Algorithms
For a scalar x, the formula is

Q(x) = 1
2π∫x

∞
exp(− t2/2)dt

The Q function is related to the complementary error function, erfc, according to

Q(x) = 1
2erfc x

2

See Also
erf | erfc | erfcinv | erfcx | erfinv | qfuncinv

Introduced before R2006a

2 Functions — Alphabetical List

2-1010

qfuncinv
Inverse Q function

Syntax
y = qfuncinv(x)

Description
y = qfuncinv(x) returns the argument of the Q function at which the Q function's
value is x. The input x must be a real array with elements between 0 and 1, inclusive.

For a scalar x, the Q function is one minus the cumulative distribution function of the
standardized normal random variable, evaluated at x. The Q function is defined as

Q(x) = 1
2π∫x

∞
exp(− t2/2)dt

The Q function is related to the complementary error function, erfc, according to

Q(x) = 1
2erfc x

2

Examples
The example below illustrates the inverse relationship between qfunc and qfuncinv.

x1 = [0 1 2; 3 4 5];
y1 = qfuncinv(qfunc(x1)) % Invert qfunc to recover x1.
x2 = 0:.2:1;
y2 = qfunc(qfuncinv(x2)) % Invert qfuncinv to recover x2.

The output is below.

 qfuncinv

2-1011

y1 =

 0 1 2
 3 4 5

y2 =

 0 0.2000 0.4000 0.6000 0.8000 1.0000

See Also
erf | erfc | erfcinv | erfcx | erfinv | qfunc

Introduced before R2006a

2 Functions — Alphabetical List

2-1012

quantiz
Produce quantization index and quantized output value

Syntax
index = quantiz(sig,partition)
[index,quants] = quantiz(sig,partition,codebook)
[index,quants,distor] = quantiz(sig,partition,codebook)

Description
index = quantiz(sig,partition) returns the quantization levels in the real vector
signal sig using the parameter partition. partition is a real vector whose entries
are in strictly ascending order. If partition has length n, index is a vector whose kth
entry is

• 0 if sig(k) ≤ partition(1)
• m if partition(m) < sig(k) ≤ partition(m+1)
• n if partition(n) < sig(k)

[index,quants] = quantiz(sig,partition,codebook) is the same as the syntax
above, except that codebook prescribes a value for each partition in the quantization and
quants contains the quantization of sig based on the quantization levels and prescribed
values. codebook is a vector whose length exceeds the length of partition by one.
quants is a row vector whose length is the same as the length of sig. quants is related
to codebook and index by

quants(ii) = codebook(index(ii)+1);

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is the same as
the syntax above, except that distor estimates the mean square distortion of this
quantization data set.

 quantiz

2-1013

Examples
The command below rounds several numbers between 1 and 100 up to the nearest
multiple of 10. quants contains the rounded numbers, and index tells which
quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)

The output is below.

index =

 0 3 8 3 2

quants =

 10 40 90 40 30

See Also
dpcmdeco | dpcmenco | lloyds

Topics
“Quantize a Signal”

Introduced before R2006a

2 Functions — Alphabetical List

2-1014

randdeintrlv
Restore ordering of symbols using random permutation

Syntax
deintrlvd = randdeintrlv(data,state)

Description
deintrlvd = randdeintrlv(data,state) restores the original ordering of the
elements in data by inverting a random permutation. The state parameter initializes
the random number generator that the function uses to determine the permutation.
state is either a scalar or a 35x1 vector, and is described in the rand function, which is
used in randintrlv. The function is predictable for a given state, but different states
produce different permutations. If data is a matrix with multiple rows and columns, the
function processes the columns independently.

To use this function as an inverse of the randintrlv function, use the same state input
in both functions. In that case, the two functions are inverses in the sense that applying
randintrlv followed by randdeintrlv leaves data unchanged.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples
For an example using random interleaving and deinterleaving, see “Improve Error Rate
Using Block Interleaving in MATLAB”.

 randdeintrlv

2-1015

See Also
rand | randintrlv

Topics
“Interleaving”

Introduced before R2006a

2 Functions — Alphabetical List

2-1016

randerr
Generate bit error patterns

Syntax
out = randerr(m)
out = randerr(m,n)
out = randerr(m,n,errors)
out = randerr(m,n,errors,seed)
out = randerr(m,n,errors,streamhandle)

Description
For all syntaxes, randerr treats each row of out independently.

out = randerr(m) generates an m-by-m binary matrix, where each row has exactly one
nonzero entry in a random position. Each allowable configuration has an equal
probability.

out = randerr(m,n) generates an m-by-n binary matrix, where each row has exactly
one nonzero entry in a random position. Each allowable configuration has an equal
probability.

out = randerr(m,n,errors) uses the errors input to determine the number of
nonzero entries in each row of the output m-by-n binary matrix.

• If errors is a scalar, it is the number of nonzero entries in each row.
• If errors is a row vector, it lists the possible number of nonzero entries in each row.
• If errors is a matrix having two rows, the first row lists the possible number of

nonzero entries in each row and the second row lists the probabilities that correspond
to the possible error counts. The elements in the second row of errors must sum to
one.

Once randerr determines the number of nonzero entries in a given row, each
configuration of that number of nonzero entries has equal probability.

 randerr

2-1017

out = randerr(m,n,errors,seed) accepts a seed value for initializing the uniform
random number generator rand.

out = randerr(m,n,errors,streamhandle) accepts a random stream handle to
generate uniform random noise samples by using rand. Providing a random stream
handle or using the reset function on the default random stream object enables you to
generate repeatable noise samples. If you want to generate repeatable noise samples,
then either reset the random stream input before calling randerr or use the same seed
input. For more information, see RandStream.

Examples

Generate Random Error Matrix

Generate an 8-by-7 binary matrix in which each row is equally likely to have either zero or
two nonzero elements.

out = randerr(8,7,[0 2])

out = 8×7

 0 1 0 0 0 1 0
 0 1 0 0 0 1 0
 0 0 0 0 0 0 0
 0 0 0 0 0 1 1
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 1 0 0 0 1
 0 0 1 0 1 0 0

Now generate a matrix in which it is three times more likely that a row will have two
nonzero elements.

out = randerr(8,7,[0 2; 0.25 0.75])

out = 8×7

 0 0 0 0 1 0 1
 0 1 0 0 0 0 1
 0 0 1 0 0 1 0

2 Functions — Alphabetical List

2-1018

 0 1 0 0 1 0 0
 1 0 0 0 1 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

See Also
Functions
RandStream | rand | randi | randsrc

Topics
“Sources and Sinks”

Introduced before R2006a

 randerr

2-1019

randintrlv
Reorder symbols using random permutation

Syntax
intrlvd = randintrlv(data,state)

Description
intrlvd = randintrlv(data,state) rearranges the elements in data using a
random permutation. The state parameter initializes the random number generator that
the function uses to determine the permutation. state is either a scalar or a 35x1 vector,
and is described in the rand function, which is used in randintrlv. The function is
predictable and invertible for a given state, but different states produce different
permutations. If data is a matrix with multiple rows and columns, the function processes
the columns independently.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of therand function.

See rand for details on the generator algorithm.

Examples
For an example using random interleaving and deinterleaving, see “Improve Error Rate
Using Block Interleaving in MATLAB”.

See Also
rand | randdeintrlv

2 Functions — Alphabetical List

2-1020

Topics
“Interleaving”

Introduced before R2006a

 randintrlv

2-1021

randseed
(To be removed) Generate prime numbers for use as random number seeds

Compatibility
randseed will be removed in a future release. Use rng(N) or rng('shuffle') instead.
For more information, see “Compatibility Considerations” on page 2-1023.

Syntax
out = randseed
out = randseed(state)
out = randseed(state,m)
out = randseed(state,m,n)
out = randseed(state,m,n,rmin)
out = randseed(state,m,n,rmin,rmax)

Description
The randseed function produces random prime numbers that work well as seeds for
random source blocks or noisy channel blocks in Communications Toolbox software.

Note The randseed function uses a local stream of numbers that is independent from
the global stream of numbers in the MATLAB software. Use of this function does not
affect the state of the global random number stream.

out = randseed generates a random prime number between 31 and 217-1, using the
MATLAB function rand.

out = randseed(state) generates a random prime number after setting the state of
rand to the positive integer state. This syntax produces the same output for a particular
value of state.

2 Functions — Alphabetical List

2-1022

out = randseed(state,m) generates a column vector of m random primes.

out = randseed(state,m,n) generates an m-by-n matrix of random primes.

out = randseed(state,m,n,rmin) generates an m-by-n matrix of random primes
between rmin and 217-1.

out = randseed(state,m,n,rmin,rmax) generates an m-by-n matrix of random
primes between rmin and rmax.

Examples
To generate a two-element sample-based row vector of random bits using the Bernoulli
Random Binary Generator block, you can set Probability of a zero to [0.1 0.5] and
set Initial seed to randseed(391,1,2).

To generate three streams of random data from three different blocks in a single model,
you can define out = randseed(93,3) in the MATLAB workspace and then set the
three blocks' Initial seed parameters to out(1), out(2), and out(3), respectively.

Compatibility Considerations

randseed will be removed
Warns starting in R2019a

The functionality provided by randseed is no longer necessary for controlling random
number generation. Instead, use rng(seed), where seed specifies a nonnegative integer
seed for the random number generator, or use rng(‘shuffle’) to seed the random
number generator based on the current time.

See Also
primes | rand | rng

Introduced before R2006a

 randseed

2-1023

randsrc
Generate random matrix using prescribed alphabet

Syntax
out = randsrc
out = randsrc(m)
out = randsrc(m,n)
out = randsrc(m,n,alphabet)
out = randsrc(m,n,[alphabet; prob])
out = randsrc(m,n, ___ ,seed)
out = randsrc(m,n, ___ ,streamhandle)

Description
out = randsrc generates a random scalar that is either -1 or 1, with equal probability.

out = randsrc(m) generates an m-by-m random bipolar matrix. Each entry
independently takes the value -1 or 1 with equal probability.

out = randsrc(m,n) generates an m-by-n random bipolar matrix. Each entry
independently takes the value -1 or 1 with equal probability.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, with each entry
independently chosen from the entries in the row vector alphabet. Each entry in
alphabet occurs in out with equal probability. Duplicate values in alphabet are
ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix, with each
entry independently chosen from the entries in the row vector alphabet. Duplicate
values in alphabet are ignored. The row vector prob lists corresponding probabilities,
so that the symbol alphabet(k) occurs with probability prob(k), where k is any
integer between one and the number of columns of alphabet. The elements of prob
must add up to 1.

2 Functions — Alphabetical List

2-1024

out = randsrc(m,n, ___ ,seed) accepts input combinations from prior syntaxes and
a seed value, for initializing the uniform random number generator, rand.

out = randsrc(m,n, ___ ,streamhandle) accepts input combinations from prior
syntaxes and a random stream handle to generate uniform random noise samples by
using rand. Providing a random stream handle or using the reset function on the default
random stream object enables you to generate repeatable noise samples. If you want to
generate repeatable noise samples, then either reset the random stream input before
calling randsrc or use the same seed input. For more information, see RandStream.

Examples

Generate Random Matrix from Prescribed Alphabet

Generate a 10-by-10 matrix from the set of {-3,-1,1,3}.

out = randsrc(10,10,[-3 -1 1 3])

out = 10×10

 3 -3 1 1 -1 -1 3 3 -1 -3
 3 3 -3 -3 -1 1 -1 -1 3 -3
 -3 3 3 -1 3 1 1 3 1 1
 3 -1 3 -3 3 -3 1 -3 1 3
 1 3 1 -3 -3 -3 3 3 3 3
 -3 -3 3 3 -1 -1 3 -1 -1 -3
 -1 -1 1 1 -1 3 1 -3 3 1
 1 3 -1 -1 1 -1 -3 -1 3 -1
 3 3 1 3 1 1 -3 1 -1 -3
 3 3 -3 -3 3 -3 -1 -1 1 -1

Plot the histogram. Each of the four possible element values occur with equal probability.
Your values might differ.

histogram(out,[-4 -2 0 2 4])

 randsrc

2-1025

Generate a matrix in which the likelihood of a -1 or 1 is four times higher than the
likelihood of a -3 or 3.

out = randsrc(10,10,[-3 -1 1 3; 0.1 0.4 0.4 0.1])

out = 10×10

 -1 -1 -1 -1 1 -1 1 -1 1 3
 1 -3 3 3 1 -3 -1 -1 -1 1
 -1 -1 -3 -1 -1 3 -1 1 1 -1
 1 3 1 -1 1 3 -1 -3 -1 -1
 -1 -1 1 -1 -1 -1 -3 -3 1 -1
 1 1 1 -1 -3 -1 -1 -1 -1 -1
 -1 1 -3 1 -1 -1 3 1 -1 1

2 Functions — Alphabetical List

2-1026

 1 3 -1 1 -1 3 3 1 1 1
 1 -3 -1 1 -1 -1 1 1 1 1
 1 -1 1 -1 -1 -1 -3 -1 -3 1

Plot the histogram. Values of -1 and 1 are more likely.

histogram(out,[-4 -2 0 2 4])

 randsrc

2-1027

See Also
Functions
RandStream | rand | randerr | randi

Introduced before R2006a

2 Functions — Alphabetical List

2-1028

rayleighchan
(To be removed) Construct Rayleigh fading channel object

Syntax
chan = rayleighchan(ts,fd)
chan = rayleighchan(ts,fd,tau,pdb)
chan = rayleighchan

Note rayleighchan will be removed in a future release. Use comm.RayleighChannel
instead.

Description
chan = rayleighchan(ts,fd) constructs a frequency-flat ("single path") Rayleigh
fading channel object. ts is the sample time of the input signal, in seconds. fd is the
maximum Doppler shift, in hertz. You can model the effect of the channel on a signal x by
using the syntax y = filter(chan,x).

chan = rayleighchan(ts,fd,tau,pdb) constructs a frequency-selective ("multiple
path") fading channel object that models each discrete path as an independent Rayleigh
fading process. tau is a vector of path delays, each specified in seconds. pdb is a vector
of average path gains, each specified in dB.

With the above two syntaxes, a smaller fd (a few hertz to a fraction of a hertz) leads to
slower variations, and a larger fd (a couple hundred hertz) to faster variations.

chan = rayleighchan constructs a frequency-flat Rayleigh channel object with no
Doppler shift. This is a static channel. The sample time of the input signal is irrelevant for
frequency-flat static channels.

Properties
The tables below describe the properties of the channel object, chan, that you can set
and that MATLAB technical computing software sets automatically. To learn how to view

 rayleighchan

2-1029

or change the values of a channel object, see “Displaying and Changing Object
Properties”.

Writeable Properties

Property Description
InputSamplePeriod Sample period of the signal on which the

channel acts, measured in seconds.
DopplerSpectrum Doppler spectrum object(s). The default is a

Jakes Doppler object.
MaxDopplerShift Maximum Doppler shift of the channel, in

hertz (applies to all paths of a channel).
PathDelays Vector listing the delays of the discrete

paths, in seconds.
AvgPathGaindB Vector listing the average gain of the

discrete paths, in decibels.
NormalizePathGains If 1, the Rayleigh fading process is

normalized such that the expected value of
the path gains' total power is 1.

StoreHistory If this value is 1, channel state information
needed by the channel visualization tool is
stored as the channel filter function
processes the signal. The default value is 0.

StorePathGains If set to 1, the complex path gain vector is
stored as the channel filter function
processes the signal. The default value is 0.

ResetBeforeFiltering If 1, each call to filter resets the state of
chan before filtering. If 0, the fading
process maintains continuity from one call
to the next.

2 Functions — Alphabetical List

2-1030

Read-Only Properties

Property Description When MATLAB Sets or
Updates Value

ChannelType Fixed value, 'Rayleigh' When you create object
PathGains Complex vector listing the

current gains of the discrete
paths. When you create or reset
chan, PathGains is a random
vector influenced by
AvgPathGaindB and
NormalizePathGains.

When you create object,
reset object, or use it to
filter a signal

ChannelFilterDelay Delay of the channel filter,
measured in samples.

The ChannelFilterDelay
property returns a delay value
that is valid only if the first
value of the PathGain is the
biggest path gain. In other
words, main channel energy is
in the first path.

When you create object
or change ratio of
InputSamplePeriod to
PathDelays

NumSamplesProcessed Number of samples the channel
processed since the last reset.
When you create or reset chan,
this property value is 0.

When you create object,
reset object, or use it to
filter a signal

Relationships Among Properties
The PathDelays and AvgPathGaindB properties of the channel object must always have
the same vector length, because this length equals the number of discrete paths of the
channel. The DopplerSpectrum property must either be a single Doppler object or a
vector of Doppler objects with the same length as PathDelays.

If you change the length of PathDelays, MATLAB truncates or zero-pads the value of
AvgPathGaindB if necessary to adjust its vector length (MATLAB may also change the
values of read-only properties such as PathGains and ChannelFilterDelay). If
DopplerSpectrum is a vector of Doppler objects, and you increase or decrease the

 rayleighchan

2-1031

length of PathDelays, MATLAB will add Jakes Doppler objects or remove elements from
DopplerSpectrum, respectively, to make it the same length as PathDelays.

If StoreHistory is set to 1 (the default is 0), the object stores channel state information
as the channel filter function processes the signal. You can then visualize this state
information through a GUI using the plot (channel) method.

Note Setting StoreHistory to 1 will result in a slower simulation. If you do not want to
visualize channel state information using plot (channel), but want to access the
complex path gains, then set StorePathGains to 1, while keeping StoreHistory as 0.

Visualization of Channel
The characteristics of a channel can be plotted using the channel visualization tool, plot
(channel). You can use the channel visualization tool in Normal mode and Accelerator
mode.

Examples
The example below illustrates that when you change the value of PathDelays, MATLAB
automatically changes the values of other properties to make their vector lengths
consistent with that of the new value of PathDelays.

c1 = rayleighchan(1e-5,130) % Create object.
c1.PathDelays = [0 1e-6] % Change the number of delays.

MATLAB automatically changes the size of c1.AvgPathGaindB, c1.PathGains, and
c1.ChannelFilterDelay. The output below displays all the properties of the channel
object before and after the change in the value of the PathDelays property. In the
second listing of properties, the AvgPathGaindB, PathGains, and
ChannelFilterDelay properties all have different values compared to the first listing of
properties.

c1 =

 ChannelType: 'Rayleigh'
 InputSamplePeriod: 1.0000e-005
 DopplerSpectrum: [1x1 doppler.jakes]
 MaxDopplerShift: 130

2 Functions — Alphabetical List

2-1032

 PathDelays: 0
 AvgPathGaindB: 0
 NormalizePathGains: 1
 StoreHistory: 0
 PathGains: 0.2035 + 0.1014i
 ChannelFilterDelay: 0
 ResetBeforeFiltering: 1
 NumSamplesProcessed: 0

c1 =

 ChannelType: 'Rayleigh'
 InputSamplePeriod: 1.0000e-005
 DopplerSpectrum: [1x1 doppler.jakes]
 MaxDopplerShift: 130
 PathDelays: [0 1.0000e-006]
 AvgPathGaindB: [0 0]
 NormalizePathGains: 1
 StoreHistory: 0
 PathGains: [0.6108 - 0.4688i 0.1639 - 0.0027i]
 ChannelFilterDelay: 4
 ResetBeforeFiltering: 1
 NumSamplesProcessed: 0

Algorithms
The methodology used to simulate fading channels is described in “Methodology for
Simulating Multipath Fading Channels”. The properties of the channel object are related
to the quantities of the latter section as follows:

• The InputSamplePeriod property contains the value of Ts.
• The PathDelays vector property contains the values of τk , where 1 ≤ k ≤ K.
• The PathGains read-only property contains the values of ak , where 1 ≤ k ≤ K.
• The AvgPathGaindB vector property contains the values of 10log10 E ak

2 , where
1 ≤ k ≤ K, and E ⋅ denotes statistical expectation.

• The ChannelFilterDelay read-only property contains the value of N1.

 rayleighchan

2-1033

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of

Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

See Also
comm.RayleighChannel

Topics
“Fading Channels”

Introduced before R2006a

2 Functions — Alphabetical List

2-1034

rectpulse
Rectangular pulse shaping

Syntax
y = rectpulse(x,nsamp)

Description
y = rectpulse(x,nsamp) applies rectangular pulse shaping to x to produce an output
signal having nsamp samples per symbol. Rectangular pulse shaping means that each
symbol from x is repeated nsamp times to form the output y. If x is a matrix with multiple
rows, the function treats each column as a channel and processes the columns
independently.

Note To insert zeros between successive samples of x instead of repeating the samples of
x, use the upsample function instead.

Examples
An example in “Combine Pulse Shaping and Filtering with Modulation” uses this function
in conjunction with modulation.

The code below processes two independent channels, each containing three symbols of
data. In the pulse-shaped matrix y, each symbol contains four samples.

nsamp = 4; % Number of samples per symbol
nsymb = 3; % Number of symbols
s = RandStream('mt19937ar', 'Seed', 0);
ch1 = randi(s, [0 1], nsymb, 1); % Random binary channel
ch2 = [1:nsymb]';
x = [ch1 ch2] % Two-channel signal
y = rectpulse(x,nsamp)

 rectpulse

2-1035

The output is below. In y, each column corresponds to one channel and each row
corresponds to one sample. Also, the first four rows of y correspond to the first symbol,
the next four rows of y correspond to the second symbol, and the last four rows of y
correspond to the last symbol.

x =

 1 1
 1 2
 0 3

y =

 1 1
 1 1
 1 1
 1 1
 1 2
 1 2
 1 2
 1 2
 0 3
 0 3
 0 3
 0 3

See Also
intdump | upsample

Introduced before R2006a

2 Functions — Alphabetical List

2-1036

reset (channel)
(To be removed) Reset channel object

Syntax
reset(chan)
reset(chan,randstate)

Note This function will be removed in a future release. Use function associated with
comm.RicianChannel or comm.RayleighChannel instead.

Description
reset(chan) resets the channel object chan, initializing the PathGains and
NumSamplesProcessed properties as well as internal filter states. This syntax is useful
when you want the effect of creating a new channel.

reset(chan,randstate) resets the channel object chan and initializes the state of the
random number generator that the channel uses. randstate is a two-element column
vector. This syntax is useful when you want to repeat previous numerical results that
started from a particular state.

Note reset(chan,randstate) will not support randstate in a future release. See
the legacychannelsim function for more information.

Examples
The example below shows how to obtain repeatable results. The example chooses a state
for the random number generator immediately after defining the channel object and later
resets the random number generator to that state.

%% Set up channel.

 reset (channel)

2-1037

% Assume you want to maintain continuity
% from one filtering operation to the next, except
% when you explicitly reset the channel.
c = rayleighchan(1e-4,100);
c.ResetBeforeFiltering = 0;

% Filter all ones.
sig = ones(100,1);
y1 = [filter(c,sig(1:50)); filter(c,sig(51:end))];

% Reset the channel and filter all ones.
reset(c);
% Generate an independent channel
y2 = [filter(c,sig(1:50)); filter(c,sig(51:end))];

% Plot the magnitude of the channel output
plot(abs([y1; y2]),'*')
grid on

This example generates a plot similar to this figure.

2 Functions — Alphabetical List

2-1038

See Also
comm.RayleighChannel | comm.RicianChannel

Topics
“Fading Channels”

Introduced in R2007a

 reset (channel)

2-1039

reset (equalizer)
Reset equalizer object

Syntax
reset(eqobj)

Description
reset(eqobj) resets the equalizer object eqobj, initializing the Weights,
WeightInputs, and NumSamplesProcessed properties and the adaptive algorithm
states. If eqobj is a CMA equalizer, reset does not change the Weights property.

See Also
dfe | equalize | lineareq

Topics
“Equalization”

Introduced before R2006a

2 Functions — Alphabetical List

2-1040

ricianchan
(To be removed) Construct Rician fading channel object

Syntax
chan = ricianchan(ts,fd,k)
chan = ricianchan(ts,fd,k,tau,pdb)
chan = ricianchan(ts,fd,k,tau,pdb,fdlos)
chan = ricianchan

Note ricianchan will be removed in a future release. Use comm.RicianChannel
instead.

Description
chan = ricianchan(ts,fd,k) constructs a frequency-flat (single path) Rician fading-
channel object. ts is the sample time of the input signal, in seconds. fd is the maximum
Doppler shift, in hertz. k is the Rician K-factor in linear scale. You can model the effect of
the channel chan on a signal x by using the syntax y = filter(chan,x).

chan = ricianchan(ts,fd,k,tau,pdb) constructs a frequency-selective (multiple
paths) fading-channel object. If k is a scalar, then the first discrete path is a Rician fading
process (it contains a line-of-sight component) with a K-factor of k, while the remaining
discrete paths are independent Rayleigh fading processes (no line-of-sight component). If
k is a vector of the same size as tau, then each discrete path is a Rician fading process
with a K-factor given by the corresponding element of the vector k. tau is a vector of path
delays, each specified in seconds. pdb is a vector of average path gains, each specified in
dB.

chan = ricianchan(ts,fd,k,tau,pdb,fdlos) specifies fdlos as the Doppler
shift(s) of the line-of-sight component(s) of the discrete path(s), in hertz. fdlos must be
the same size as k. If k and fdlos are scalars, the line-of-sight component of the first
discrete path has a Doppler shift of fdlos, while the remaining discrete paths are
independent Rayleigh fading processes. If fdlos is a vector of the same size as k, the
line-of-sight component of each discrete path has a Doppler shift given by the

 ricianchan

2-1041

corresponding element of the vector fdlos. By default, fdlos is 0. The initial phase(s) of
the line-of-sight component(s) can be set through the property DirectPathInitPhase.

chan = ricianchan sets the maximum Doppler shift to 0, the Rician K-factor to 1, and
the Doppler shift and initial phase of the line-of-sight component to 0. This syntax models
a static frequency-flat channel, and, in this trivial case, the sample time of the signal is
unimportant.

Properties
The following tables describe the properties of the channel object, chan, that you can set
and that MATLAB technical computing software sets automatically. To learn how to view
or change the values of a channel object, see “Displaying and Changing Object
Properties”.

2 Functions — Alphabetical List

2-1042

Writeable Properties

Property Description
InputSamplePeriod Sample period of the signal on which the

channel acts, measured in seconds.
DopplerSpectrum Doppler spectrum object(s). The default is a

Jakes doppler object.
MaxDopplerShift Maximum Doppler shift of the channel, in

hertz (applies to all paths of a channel).
KFactor Rician K-factor (scalar or vector). The

default value is 1 (line-of-sight component
on the first path only).

PathDelays Vector listing the delays of the discrete
paths, in seconds.

AvgPathGaindB Vector listing the average gain of the
discrete paths, in decibels.

DirectPathDopplerShift Doppler shift(s) of the line-of-sight
component(s) in hertz. The default value is
0.

DirectPathInitPhase Initial phase(s) of line-of-sight component(s)
in radians. The default value is 0.

NormalizePathGains If this value is 1, the Rayleigh fading
process is normalized such that the
expected value of the path gains' total
power is 1.

StoreHistory If this value is 1, channel state information
needed by the channel visualization tool is
stored as the channel filter function
processes the signal. The default value is 0.

StorePathGains If this value is 1, the complex path gain
vector is stored as the channel filter
function processes the signal. The default
value is 0.

 ricianchan

2-1043

Property Description
ResetBeforeFiltering If this value is 1, each call to filter resets

the state of chan before filtering. If it is 0,
the fading process maintains continuity
from one call to the next.

Read-Only Properties

Property Description When MATLAB Sets or
Updates Value

ChannelType Fixed value, 'Rician'. When you create object.
PathGains Complex vector listing the

current gains of the discrete
paths. When you create or reset
chan, PathGains is a random
vector influenced by
AvgPathGaindB and
NormalizePathGains.

When you create object,
reset object, or use it to
filter a signal.

ChannelFilterDelay Delay of the channel filter,
measured in samples.

The ChannelFilterDelay
property returns a delay value
that is valid only if the first
value of the PathGain is the
biggest path gain. In other
words, main channel energy is
in the first path.

When you create object
or change ratio of
InputSamplePeriod to
PathDelays.

NumSamplesProcessed Number of samples the channel
processed since the last reset.
When you create or reset chan,
this property value is 0.

When you create object,
reset object, or use it to
filter a signal.

Relationships Among Properties
Changing the length of PathDelays also changes the length of AvgPathGaindB, the
length of KFactor if KFactor is a vector (no change if it is a scalar), and the length of
DopplerSpectrum if DopplerSpectrum is a vector (no change if it is a single object).

2 Functions — Alphabetical List

2-1044

DirectPathDopplerShift and DirectPathInitPhase both follow changes in
KFactor.

The PathDelays and AvgPathGaindB properties of the channel object must always have
the same vector length, because this length equals the number of discrete paths of the
channel. The DopplerSpectrum property must either be a single Doppler object or a
vector of Doppler objects with the same length as PathDelays.

If you change the length of PathDelays, MATLAB truncates or zero-pads the value of
AvgPathGaindB if necessary to adjust its vector length (MATLAB may also change the
values of read-only properties such as PathGains and ChannelFilterDelay). If
DopplerSpectrum is a vector of Doppler objects, and you increase or decrease the
length of PathDelays, MATLAB will add Jakes Doppler objects or remove elements from
DopplerSpectrum, respectively, to make it the same length as PathDelays.

If StoreHistory is set to 1 (the default is 0), the object stores channel state information
as the channel filter function processes the signal. You can then visualize this state
information through a GUI using the plot (channel) method.

Note Setting StoreHistory to 1 will result in a slower simulation. If you do not want to
visualize channel state information using plot (channel), but want to access the
complex path gains, then set StorePathGains to 1, while keeping StoreHistory as 0.

Reset Method
If MaxDopplerShift is set to 0 (the default), the channel object, chan, models a static
channel.

Use the syntax reset(chan) to generate a new channel realization.

Algorithm
The methodology used to simulate fading channels is described in “Methodology for
Simulating Multipath Fading Channels”, where the properties specific to the Rician
channel object are related to the quantities of this section as follows:

• The Kfactor property contains the value of Kr (if it’s a scalar) or Kr, k , 1 ≤ k ≤ K (if
it’s a vector).

 ricianchan

2-1045

• The DirectPathDopplerShift property contains the value of fd, LOS (if it’s a scalar)
or fd, LOS, k , 1 ≤ k ≤ K (if it’s a vector).

• The DirectPathInitPhase property contains the value of θLOS (if it’s a scalar) or
θLOS, k , 1 ≤ k ≤ K (if it’s a vector).

The rayleighchan reference page includes descriptions for properties common to both
Rayleigh and Rician channel objects.

Channel Visualization
The characteristics of a channel can be plotted using the channel visualization tool, plot
(channel). You can use the channel visualization tool in Normal mode and Accelerator
mode.

References
[1] Jeruchim, M., Balaban, P., and Shanmugan, K., Simulation of Communication Systems,

Second Edition, New York, Kluwer Academic/Plenum, 2000.

See Also
comm.RicianChannel

Topics
“Fading Channels”

Introduced before R2006a

2 Functions — Alphabetical List

2-1046

rls
(To be removed) Construct recursive least squares (RLS) adaptive algorithm object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

Syntax
alg = rls(forgetfactor)
alg = rls(forgetfactor,invcorr0)

Description
The rls function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about the
process for equalizing a signal, see .

alg = rls(forgetfactor) constructs an adaptive algorithm object based on the
recursive least squares (RLS) algorithm. The forgetting factor is forgetfactor, a real
number between 0 and 1. The inverse correlation matrix is initialized to a scalar value.

alg = rls(forgetfactor,invcorr0) sets the initialization parameter for the inverse
correlation matrix. This scalar value is used to initialize or reset the diagonal elements of
the inverse correlation matrix.

Properties
The table below describes the properties of the RLS adaptive algorithm object. To learn
how to view or change the values of an adaptive algorithm object, see “Equalization”.

Property Description
AlgType Fixed value, 'RLS'

 rls

2-1047

Property Description
ForgetFactor Forgetting factor
InvCorrInit Scalar value used to initialize or reset the

diagonal elements of the inverse correlation
matrix

Also, when you use this adaptive algorithm object to create an equalizer object (via the
lineareq function or dfe function), the equalizer object has an InvCorrMatrix
property that represents the inverse correlation matrix for the RLS algorithm. The initial
value of InvCorrMatrix is InvCorrInit*eye(N), where N is the total number of
equalizer weights.

Examples

Defining an Equalizer Object

The code creates equalizer objects for these configurations:

• A symbol-spaced linear RLS equalizer with 10 weights.
• A fractionally spaced linear RLS equalizer with 10 weights, a BPSK constellation, and

two samples per symbol.
• A decision-feedback RLS equalizer with three weights in the feedforward filter and

two weights in the feedback filter.

All three equalizer objects specify the RLS adaptive algorithm with a forgetting factor of
0.3.

Create equalizer objects of different types. The default settings are used for properties
not set using 'Name,Value' pairs.

eqlin = comm.LinearEqualizer('Algorithm','RLS','NumTaps',10,'ForgettingFactor',0.3)

eqlin =
 comm.LinearEqualizer with properties:

 Algorithm: 'RLS'
 NumTaps: 10
 ForgettingFactor: 0.3000

2 Functions — Alphabetical List

2-1048

 InitialInverseCorrelationMatrix: 0.1000
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

eqfrac = comm.LinearEqualizer('Algorithm','RLS','NumTaps',10,'ForgettingFactor',0.3, ...
 'Constellation',[-1 1],'InputSamplesPerSymbol',2)

eqfrac =
 comm.LinearEqualizer with properties:

 Algorithm: 'RLS'
 NumTaps: 10
 ForgettingFactor: 0.3000
 InitialInverseCorrelationMatrix: 0.1000
 Constellation: [-1 1]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 2
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

eqdfe = comm.DecisionFeedbackEqualizer('Algorithm','RLS','NumForwardTaps',3, ...
 'NumFeedbackTaps',2,'ForgettingFactor',0.3)

eqdfe =
 comm.DecisionFeedbackEqualizer with properties:

 Algorithm: 'RLS'
 NumForwardTaps: 3
 NumFeedbackTaps: 2
 ForgettingFactor: 0.3000
 InitialInverseCorrelationMatrix: 0.1000
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputDelay: 0

 rls

2-1049

 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

Algorithms
Referring to the schematics presented in “Equalization”, define w as the vector of all
weights wi and define u as the vector of all inputs ui. Based on the current set of inputs, u,
and the current inverse correlation matrix, P, this adaptive algorithm first computes the
Kalman gain vector, K

where H denotes the Hermitian transpose.

Then the new inverse correlation matrix is given by

(ForgetFactor)-1(P – KuHP)

and the new set of weights is given by

w + K*e

where the * operator denotes the complex conjugate.

Compatibility Considerations

rls will be removed
Not recommended starting in R2019a

rls will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

2 Functions — Alphabetical List

2-1050

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

John Wiley & Sons, 1998.

[2] Haykin, S., Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall,
1996.

[3] Kurzweil, J., An Introduction to Digital Communications, New York, John Wiley & Sons,
2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

 rls

2-1051

rsdec
Reed-Solomon decoder

Syntax
decoded = rsdec(code,n,k)
decoded = rsdec(code,n,k,genpoly)
decoded = rsdec(...,paritypos)
[decoded,cnumerr] = rsdec(...)
[decoded,cnumerr,ccode] = rsdec(...)

Description
decoded = rsdec(code,n,k) attempts to decode the received signal in code using an
[n,k] Reed-Solomon decoding process with the narrow-sense generator polynomial. code
is a Galois array of symbols having m bits each. Each n-element row of code represents a
corrupted systematic codeword, where the parity symbols are at the end and the leftmost
symbol is the most significant symbol. n is at most 2m-1. If n is not exactly 2m-1, rsdec
assumes that code is a corrupted version of a shortened code.

In the Galois array decoded, each row represents the attempt at decoding the
corresponding row in code. A decoding failure occurs if rsdec detects more than (n-
k)/2 errors in a row of code. In this case, rsdec forms the corresponding row of
decoded by merely removing n-k symbols from the end of the row of code.

decoded = rsdec(code,n,k,genpoly) is the same as the syntax above, except that a
nonempty value of genpoly specifies the generator polynomial for the code. In this case,
genpoly is a Galois row vector that lists the coefficients, in order of descending powers,
of the generator polynomial. The generator polynomial must have degree n-k. To use the
default narrow-sense generator polynomial, set genpoly to [].

decoded = rsdec(...,paritypos) specifies whether the parity symbols in code
were appended or prepended to the message in the coding operation. paritypos can be
either 'end' or 'beginning'. The default is 'end'. If paritypos is 'beginning', a
decoding failure causes rsdec to remove n-k symbols from the beginning rather than the
end of the row.

2 Functions — Alphabetical List

2-1052

[decoded,cnumerr] = rsdec(...) returns a column vector cnumerr, each element
of which is the number of corrected errors in the corresponding row of code. A value of
-1 in cnumerr indicates a decoding failure in that row in code.

[decoded,cnumerr,ccode] = rsdec(...) returns ccode, the corrected version of
code. The Galois array ccode has the same format as code. If a decoding failure occurs
in a certain row of code, the corresponding row in ccode contains that row unchanged.

Examples

Reed-Solomon Decoding

Set the RS code parameters.

m = 3; % Number of bits per symbol
n = 2^m-1; % Codeword length
k = 3; % Message length

Generate three codewords composed of 3-bit symbols. Encode the message with a (7,3)
RS code.

msg = gf([2 7 3; 4 0 6; 5 1 1],m);
code = rsenc(msg,n,k);

Introduce one error on the first codeword, two errors on the second codeword, and three
errors on the third codeword.

errors = gf([2 0 0 0 0 0 0; 3 4 0 0 0 0 0; 5 6 7 0 0 0 0],m);
noisycode = code + errors;

Decode the corrupted codeword.

[rxcode,cnumerr] = rsdec(noisycode,n,k);

Observe that the number of corrected errors matches the introduced errors for the first
two rows. In row three, the number of corrected errors is -1 because a (7,3) RS code
cannot correct more than two errors.

cnumerr

cnumerr = 3×1

 rsdec

2-1053

 1
 2
 -1

Limitations
n and k must differ by an even integer. n must be between 3 and 65535.

Algorithms
rsdec uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see the works listed in “References” on page 2-1054 below.

References
[1] Wicker, S. B., Error Control Systems for Digital Communication and Storage, Upper

Saddle River, NJ, Prentice Hall, 1995.

[2] Berlekamp, E. R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

See Also
gf | rsenc | rsgenpoly

Topics
“Block Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-1054

rsenc
Reed-Solomon encoder

Syntax
code = rsenc(msg,n,k)
code = rsenc(msg,n,k,genpoly)
code = rsenc(...,paritypos)

Description
code = rsenc(msg,n,k) encodes the message in msg using an [n,k] Reed-Solomon
code with the narrow-sense generator polynomial. msg is a Galois array of symbols having
m bits each. Each k-element row of msg represents a message word, where the leftmost
symbol is the most significant symbol. n is at most 2m-1. If n is not exactly 2m-1, rsenc
uses a shortened Reed-Solomon code. Parity symbols are at the end of each word in the
output Galois array code.

code = rsenc(msg,n,k,genpoly) is the same as the syntax above, except that a
nonempty value of genpoly specifies the generator polynomial for the code. In this case,
genpoly is a Galois row vector that lists the coefficients, in order of descending powers,
of the generator polynomial. The generator polynomial must have degree n-k. To use the
default narrow-sense generator polynomial, set genpoly to [].

code = rsenc(...,paritypos) specifies whether rsenc appends or prepends the
parity symbols to the input message to form code. paritypos can be either 'end' or
'beginning'. The default is 'end'.

Examples

Reed-Solomon Code Generation

Set the code parameters.

 rsenc

2-1055

m = 3; % Number of bits per symbol
n = 2^m - 1; % Codeword length
k = 3; % Message length

Create two messages based on GF(8).

msg = gf([2 7 3; 4 0 6],m)

msg = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 2 7 3
 4 0 6

Generate RS (7,3) codewords.

code = rsenc(msg,n,k)

code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 2 7 3 3 6 7 6
 4 0 6 4 2 2 0

The codes are systematic so the first three symbols of each row match the rows of msg.

Limitations
n and k must differ by an integer. n between 7 and 65535.

See Also
gf | rsdec | rsgenpoly

Topics
“Block Codes”

2 Functions — Alphabetical List

2-1056

“Represent Words for Reed-Solomon Codes”
“Create and Decode Reed-Solomon Codes”

Introduced before R2006a

 rsenc

2-1057

rsgenpoly
Generator polynomial of Reed-Solomon code

Syntax
genpoly = rsgenpoly(N,K)
genpoly = rsgenpoly(N,K,prim_poly)
genpoly = rsgenpoly(N,K,prim_poly,B)
genpoly = rsgenpoly(N,K,prim_poly,B,outputFormat)
[genpoly,T] = rsgenpoly(___)

Description
genpoly = rsgenpoly(N,K) returns the narrow-sense generator polynomial of an
[N,K] Reed-Solomon code. The output genpoly is a Galois field array that represents the
coefficients of the generator polynomial in order of descending powers. The narrow-sense
generator polynomial is (X – α1)(X – α2)...(X – αN–K), where α is a root of the default
primitive polynomial for the field GF(N+1). For additional information, see Narrow-Sense
BCH Codes and “Reed-Solomon Codes”.

genpoly = rsgenpoly(N,K,prim_poly) also specifies the primitive polynomial,
prim_poly, for GF(N+1) that has α as a root.

genpoly = rsgenpoly(N,K,prim_poly,B) returns the generator polynomial, (X – αB)
(X – αB+1)...(X – αB+N–K – 1), where B is an integer.

genpoly = rsgenpoly(N,K,prim_poly,B,outputFormat) specifies the output
format of genpoly as a Galois field array or double-precision array.

[genpoly,T] = rsgenpoly(___) also returns the error-correction capability of the
[N,K] Reed-Solomon code,T, using any of the preceding input argument syntaxes.

Examples

2 Functions — Alphabetical List

2-1058

Create Narrow-Sense Generator Polynomial

Specify the codeword length, n, and message length, k.

n = 7;
k = 3;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly
is a Galois field array, by default, that represents the coefficients of this generator
polynomial in order of descending powers.

genpoly = rsgenpoly(n,k)

genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 1 3 1 2 3

Create Narrow-Sense Generator Polynomial Specifying Primitive Polynomial

Create the narrow-sense generator polynomial of a Reed-Solomon code with respect to
the primitive polynomial D3 + D2 + 1.

Specify the codeword length, n, message length, k, and primitive polynomial D3 + D2 + 1
represented in decimal form.

n = 7;
k = 3;
prim_poly = 13;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code with
respect to primitive polynomial D3 + D2 + 1 for GF(8). genpoly is a Galois field array, by
default, that represent the coefficients of this generator polynomial in order of
descending powers.

genpoly = rsgenpoly(n,k,prim_poly)

genpoly = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

 rsgenpoly

2-1059

Array elements =

 1 4 5 1 5

Create Narrow-Sense Generator Polynomial for Specified B

Create the narrow-sense generator polynomial of a Reed-Solomon code with respect to
the default primitive polynomial.

Specify the codeword length, n, message length, k, and exponent of α, b.

n = 7;
k = 3;
b = 4;

Create the narrow-sense generator polynomial X − α4 X − α5 X − α6 X − α7 , with
respect to the default primitive polynomial. genpoly is a Galois field array, by default,
that represents the coefficients of this generator polynomial in order of descending
powers. Display the error-correcting capability of the code.

[genpoly,t] = rsgenpoly(n,k,[],b)

genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 1 5 5 3 2

t = 2

Create Narrow-Sense Generator Polynomial for DVB-S and WiMAX

Create the narrow-sense generator polynomial of a Reed-Solomon code with respect to
the primitive polynomial D8 + D4 + D3 + D2 + 1.

Specify the codeword length, n, message length, k, the primitive polynomial represented
in decimal form, and the exponent of α, b.

2 Functions — Alphabetical List

2-1060

n = 255;
k = 239;
prim_poly = 285;
b = 0;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly
is a Galois field array, by default, that represents a generator polynomial and is compliant
with DVB-S and WiMAX.

genpoly = rsgenpoly(n,k,prim_poly,b)

genpoly = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)

Array elements =

 Columns 1 through 13

 1 59 13 104 189 68 209 30 8 163 65 41 229

 Columns 14 through 17

 98 50 36 59

Create Narrow-Sense Generator Polynomial with Output Format Double

Create the narrow-sense generator polynomial of a Reed-Solomon code. Specify the
output data type as a double-precision array.

Specify the codeword length, n, and message length, k.

n = 7;
k = 3;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly
is a double-precision array, that represents the coefficients of this generator polynomial in
order of descending powers. Specify defaults values for the primitive polynomial and
exponent of α inputs by assigning [] for them.

genpoly = rsgenpoly(n,k,[],[],'double')

genpoly = 1×5

 rsgenpoly

2-1061

 1 3 1 2 3

Input Arguments
N — Codeword length
positive odd integer

Codeword length, specified as an integer of the form N = 2M – 1, where M is in the range
[3,16]. For more information, see “Limitations” on page 2-1063.
Example: Set N to 15 for M=4.

K — Message length
positive integer

Message length, specified as a positive integer. For more information, see “Limitations”
on page 2-1063.

prim_poly — Primitive polynomial
GF(N+1) (default) | positive integer

Primitive polynomial, specified as a positive integer. prim_poly is an integer whose
binary representation indicates the coefficients of the primitive polynomial. To use the
default primitive polynomial GF(N+1), set prim_poly to []. For more information, see
“Default Primitive Polynomials” on page 2-1063.
Example: 19 specifies the primitive polynomial D4+D+1 because its binary representation
is 10011.

B — Exponent of α
positive integer

Exponent of α, specified as a positive integer. α is a root of prim_poly.

outputFormat — Output format
'gf' (default) | 'double'

Output format of genpoly, specified as:

• 'gf' — to output a Galois field array.

2 Functions — Alphabetical List

2-1062

• 'double' — to output a double-precision array of the Galois field values.

For more information, see “Working with Galois Fields”.

Output Arguments
genpoly — Generator polynomial coefficients
Galois field array | double-precision array

Generator polynomial coefficients in descending order, returned as a Galois field array or
double-precision array. genpoly is a row vector that represents the coefficients of the
narrow-sense generator polynomial of an [N,K] Reed-Solomon code in order of descending
powers.

T — Error-correction capability
positive integer

Error-correction capability of the code, returned as a positive integer equal to ⌊(N – K)/2⌋.

Limitations
• Valid values for N = 2M – 1, where M is an integer in the range [3,16]. The maximum

allowable value of N = 216 – 1 = 65,535.
• Valid values for K = [1,N – 1].

More About

Default Primitive Polynomials
This table lists the default primitive polynomial used for each Galois field array GF(2M). To
use a different primitive polynomial, specify prim_poly as an input argument.
prim_poly must be in the range [(2M+1), (2(M+1)-1)] and must indicate an irreducible
polynomial. For more information, see “Specifying the Primitive Polynomial”.

 rsgenpoly

2-1063

M Default Primitive
Polynomial

Integer Representation

1 D + 1 3
2 D^2 + D + 1 7
3 D^3 + D + 1 11
4 D^4 + D + 1 19
5 D^5 + D^2 + 1 37
6 D^6 + D + 1 67
7 D^7 + D^3 + 1 137
8 D^8 + D^4 + D^3 + D^2 +

1
285

9 D^9 + D^4 + 1 529
10 D^10 + D^3 + 1 1033
11 D^11 + D^2 + 1 2053
12 D^12 + D^6 + D^4 + D +

1
4179

13 D^13 + D^4 + D^3 + D +
1

8219

14 D^14 + D^10 + D^6 + D +
1

17475

15 D^15 + D + 1 32771
16 D^16 + D^12 + D^3 + D +

1
69643

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

2 Functions — Alphabetical List

2-1064

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
Functions
gf | gfprimfd | rsdec | rsenc

Topics
“Block Codes”
“Parameters for Reed-Solomon Codes”
“Representing Elements of Galois Fields”
“Working with Galois Fields”

Introduced before R2006a

 rsgenpoly

2-1065

rsgenpolycoeffs
Generator polynomial coefficients of Reed-Solomon code

Syntax
x = rsgenpolycoeffs(...)
[x,t] = rsgenpolycoeffs(...)

Description
x = rsgenpolycoeffs(...) returns the coefficients for the generator polynomial of
the Reed-Solomon code. The output is identical to genpoly = rsgenpoly(...); x = genpoly.x.

[x,t] = rsgenpolycoeffs(...) returns t, the error-correction capability of the code.

Examples

Generate Polynomial Coefficients for a Reed-Solomon Code

This example shows how to generate polynomial coefficients for a (15,11) Reed-Solomon
code.

Generate the coefficients using rsgenpolycoeffs.

genpoly = rsgenpolycoeffs(15,11)

genpoly = 1x5 uint32 row vector

 1 13 12 8 7

2 Functions — Alphabetical List

2-1066

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation, these usage notes and limitations apply:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
gf | rsdec | rsenc | rsgenpoly

Introduced in R2010b

 rsgenpolycoeffs

2-1067

scatterplot
Generate scatter plot

Syntax
scatterplot(x)
scatterplot(x,n)
scatterplot(x,n,offset)
scatterplot(x,n,offset,plotstring)
scatterplot(x,n,offset,plotstring,h)
h = scatterplot(...)

Description
scatterplot(x) produces a scatter plot for the signal x. The interpretation of x
depends on its shape and complexity:

• If x is a real two-column matrix, scatterplot interprets the first column as in-phase
components and the second column as quadrature components.

• If x is a complex vector, scatterplot interprets the real part as in-phase components
and the imaginary part as quadrature components.

• If x is a real vector, scatterplot interprets it as a real signal.

scatterplot(x,n) is the same as the first syntax, except that the function plots every
nth value of the signal, starting from the first value. That is, the function decimates x by a
factor of n before plotting.

scatterplot(x,n,offset) is the same as the first syntax, except that the function
plots every nth value of the signal, starting from the (offset+1)st value in x.

scatterplot(x,n,offset,plotstring) is the same as the syntax above, except that
plotstring determines the plotting symbol, line type, and color for the plot.
plotstring is a character vector whose format and meaning are the same as in the
plot function.

2 Functions — Alphabetical List

2-1068

scatterplot(x,n,offset,plotstring,h) is the same as the syntax above, except
that the scatter plot is in the figure whose handle is h, rather than a new figure. h must
be a handle to a figure that scatterplot previously generated. To plot multiple signals
in the same figure, use hold on.

h = scatterplot(...) is the same as the earlier syntaxes, except that h is the handle
to the figure that contains the scatter plot.

Examples

Generate Scatter Plot of 64-QAM Signal

Create a 64-QAM signal in which each constellation point is used.

d = (0:63)';
s = qammod(d,64);

Display the scatter plot of the constellation.

scatterplot(s)

 scatterplot

2-1069

Tips
Use comm.ConstellationDiagram when these are required:

• Measurements
• Basic reference constellations
• Signal trajectory plots
• Maintaining state between calls

Use scatterplot when:

2 Functions — Alphabetical List

2-1070

• A simple snapshot of the signal constellation is needed.

See Also
comm.ConstellationDiagram | comm.EyeDiagram | plot | scatter

Topics
“Scatter Plots and Constellation Diagrams”

Introduced before R2006a

 scatterplot

2-1071

semianalytic
Calculate bit error rate (BER) using semianalytic technique

Syntax
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo)
[ber,avgampl,avgpower] = semianalytic(...)

Description
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp) returns the bit error rate
(BER) of a system that transmits the complex baseband vector signal txsig and receives
the noiseless complex baseband vector signal rxsig. Each of these signals has Nsamp
samples per symbol. Nsamp is also the sampling rate of txsig and rxsig, in Hz. The
function assumes that rxsig is the input to the receiver filter, and the function filters
rxsig with an ideal integrator. modtype is the modulation type of the signal and M is the
alphabet size. The table below lists the valid values for modtype and M.

Modulation Scheme Value of modtype Valid Values of M
Differential phase shift
keying (DPSK)

'dpsk' 2, 4

Minimum shift keying (MSK)
with differential encoding

'msk/diff' 2

Minimum shift keying (MSK)
with nondifferential
encoding

'msk/nondiff' 2

Phase shift keying (PSK)
with differential encoding,
where the phase offset of
the constellation is 0

'psk/diff' 2, 4

2 Functions — Alphabetical List

2-1072

Modulation Scheme Value of modtype Valid Values of M
Phase shift keying (PSK)
with nondifferential
encoding, where the phase
offset of the constellation is
0

'psk/nondiff' 2, 4, 8, 16, 32, or 64

Offset quadrature phase
shift keying (OQPSK)

'oqpsk' 4

Quadrature amplitude
modulation (QAM)

'qam' 4, 8, 16, 32, 64, 128, 256,
512, 1024

'msk/diff' is equivalent to conventional MSK (setting the 'Precoding' property of
the MSK object to 'off'), while 'msk/nondiff' is equivalent to precoded MSK (setting
the 'Precoding' property of the MSK object to 'on').

Note The output ber is an upper bound on the BER in these cases:

• DQPSK (modtype = 'dpsk', M = 4)
• Cross QAM (modtype = 'qam', M not a perfect square). In this case, note that the

upper bound used here is slightly tighter than the upper bound used for cross QAM in
the berawgn function.

When the function computes the BER, it assumes that symbols are Gray-coded. The
function calculates the BER for values of Eb/N0 in the range of [0:20] dB and returns a
vector of length 21 whose elements correspond to the different Eb/N0 levels.

Note You must use a sufficiently long vector txsig, or else the calculated BER will be
inaccurate. If the system's impulse response is L symbols long, the length of txsig
should be at least ML. A common approach is to start with an augmented binary
pseudonoise (PN) sequence of total length (log2M)ML. An augmented PN sequence is a
PN sequence with an extra zero appended, which makes the distribution of ones and
zeros equal.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den) is the same as
the previous syntax, except that the function filters rxsig with a receiver filter instead of

 semianalytic

2-1073

an ideal integrator. The transfer function of the receiver filter is given in descending
powers of z by the vectors num and den.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo) is the same as the
first syntax, except that EbNo represents Eb/N0, the ratio of bit energy to noise power
spectral density, in dB. If EbNo is a vector, then the output ber is a vector of the same
size, whose elements correspond to the different Eb/N0 levels.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo) combines
the functionality of the previous two syntaxes.

[ber,avgampl,avgpower] = semianalytic(...) returns the mean complex signal
amplitude and the mean power of rxsig after filtering it by the receiver filter and
sampling it at the symbol rate.

Examples
A typical procedure for implementing the semianalytic technique is in “Procedure for the
Semianalytic Technique”. Sample code is in “Using Semianalytic Technique”.

Limitations
The function makes several important assumptions about the communication system. See
“When to Use the Semianalytic Technique” to find out whether your communication
system is suitable for the semianalytic technique and the semianalytic function.

Alternatives
As an alternative to the semianalytic function, invoke the BERTool GUI (bertool) and
use the Semianalytic tab.

References
[1] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication

Systems, New York, Plenum Press, 1992.

2 Functions — Alphabetical List

2-1074

[2] Pasupathy, S., “Minimum Shift Keying: A Spectrally Efficient Modulation,” IEEE
Communications Magazine, July, 1979, pp. 14–22.

See Also
noisebw | qfunc

Topics
“Performance Results via the Semianalytic Technique”

Introduced before R2006a

 semianalytic

2-1075

shift2mask
Convert shift to mask vector for shift register configuration

Syntax
mask = shift2mask(prpoly,shift)

Description
mask = shift2mask(prpoly,shift) returns the mask that is equivalent to the shift
(or offset) specified by shift, for a linear feedback shift register whose connections are
specified by the primitive polynomial prpoly. The prpoly input can have one of these
formats:

• A polynomial character vector
• A binary vector that lists the coefficients of the primitive polynomial in order of

descending powers
• An integer scalar whose binary representation gives the coefficients of the primitive

polynomial, where the least significant bit is the constant term

The shift input is an integer scalar.

Note To save time, shift2mask does not check that prpoly is primitive. If it is not
primitive, the output is not meaningful. To find primitive polynomials, use primpoly or
see [2].

Definition of Equivalent Mask
The equivalent mask for the shift s is the remainder after dividing the polynomial xs by
the primitive polynomial. The vector mask represents the remainder polynomial by listing
the coefficients in order of descending powers.

2 Functions — Alphabetical List

2-1076

Shifts, Masks, and Pseudonoise Sequence Generators
Linear feedback shift registers are part of an implementation of a pseudonoise sequence
generator. Below is a schematic diagram of a pseudonoise sequence generator. All adders
perform addition modulo 2.

The primitive polynomial determines the state of each switch labeled gk, and the mask
determines the state of each switch labeled mk. The lower half of the diagram shows the
implementation of the shift, which delays the starting point of the output sequence. If the
shift is zero, the m0 switch is closed while all other mk switches are open. The table below
indicates how the shift affects the shift register's output.

T = 0 T = 1 T = 2 ... T = s T = s+1
Shift = 0 x0 x1 x2 ... xs xs+1

Shift = s >
0

xs xs+1 xs+2 ... x2s x2s+1

If you have Communications Toolbox software and want to generate a pseudonoise
sequence in a Simulink model, see the PN Sequence Generator block reference page.

Examples

 shift2mask

2-1077

Convert Shift to Mask

Convert a shift in a linear feedback shift register into an equivalent mask.

Convert a shift of 5 into the equivalent mask x3 + x + 1 for the linear feedback shift
register whose connections are specified by the primitive polynomial x4 + x3 + 1. The
length of the mask is equal to the degree of the primitive polynomial, 4.

mk = shift2mask([1 1 0 0 1],5)

mk = 1×4

 1 0 1 1

Convert a shift of 7 to a mask of x4 + x2 for the primitive polynomial x5 + x2 + 1.

mk2 = shift2mask('x5+x2+1',7)

mk2 = 1×5

 1 0 1 0 0

References

[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech
House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications Handbook,
New York, McGraw-Hill, 1994.

See Also
deconv | isprimitive | mask2shift | primpoly

Introduced before R2006a

2 Functions — Alphabetical List

2-1078

show
Package: comm

Show scope window

Syntax
show(scope)

Description
show(scope) shows the window of the System object scope.

Examples

Hide and Show Scope

Create a comm.ConstellationDiagram object.

scope = comm.ConstellationDiagram;

Hide the constellation diagram scope window.

if(isVisible(scope))
 hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
 show(scope)
end

Hide the constellation diagram scope window again.

 show

2-1079

if(isVisible(scope))
 hide(scope)
end

Hide and Show Constellation Diagram

Generate a 16-QAM reference constellation and a signal to display.

M = 16;
xRef = (0:M-1)';
refConst = qammod(xRef,M);
signal = randi([0 M-1],1000,1);

Create a constellation diagram System object™, specifying the constellation reference
points and axes limits using name-value pairs.

scope = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
 'XLimits',[-4 4],'YLimits',[-4 4]);

Modulate the random data signal using QAM. Add Gaussian white noise to the QAM
symbols. Display the QAM symbols and noisy symbols with the constellation diagram
object.

sym = qammod(signal,M);
rcv = awgn(sym,20,'measured');
scope([sym rcv]);

2 Functions — Alphabetical List

2-1080

Hide the constellation diagram scope window.

if(isVisible(scope))
 hide(scope)
end

 show

2-1081

Show the constellation diagram scope window.

if(~isVisible(scope))
 show(scope)
end

2 Functions — Alphabetical List

2-1082

Clear the workspace variables.

clear scope sym rcv M refConst signal xRef

Input Arguments
scope — Scope System object
scope System object

Scope System object, specified as a comm.ConstellationDiagram or
comm.EyeDiagram System object.
Example: scope = comm.ConstellationDiagram;

See Also
Functions
hide | isVisible

Objects
comm.ConstellationDiagram | comm.EyeDiagram

Introduced in R2013a

 show

2-1083

showcommblockdatatypetable
Communications Toolbox block characteristics

Syntax
showcommblockdatatypetable

Description
showcommblockdatatypetable shows a table of characteristics for the
Communications Toolbox blocks. The table lists capabilities and limitations about code
generation, variable size, and supported data types for each block. If a cell includes an
"X", the corresponding block supports the capability indicated by the column heading.
Descriptions for numbered footnotes, "(#)", follow the table.

Examples

Show Communications Toolbox Block Characteristics

Show a table of Communications Toolbox block characteristics. The table opens in a
separate window.

showcommblockdatatypetable

Loading Communications Toolbox Library.

See Also

Topics
“Block Characteristics”

2 Functions — Alphabetical List

2-1084

Introduced in R2008b

 showcommblockdatatypetable

2-1085

signlms
(To be removed) Construct signed least mean square (LMS) adaptive algorithm object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

Syntax
alg = signlms(stepsize)
alg = signlms(stepsize,algtype)

Description
The signlms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about the
process for equalizing a signal, see “Equalization”.

alg = signlms(stepsize) constructs an adaptive algorithm object based on the
signed least mean square (LMS) algorithm with a step size of stepsize.

alg = signlms(stepsize,algtype) constructs an adaptive algorithm object of type
algtype from the family of signed LMS algorithms. The table below lists the possible
values of algtype.

Value of algtype Type of Signed LMS Algorithm
'Sign LMS' Sign LMS (default)
'Signed Regressor LMS' Signed regressor LMS
'Sign Sign LMS' Sign-sign LMS

2 Functions — Alphabetical List

2-1086

Properties
The table below describes the properties of the signed LMS adaptive algorithm object. To
learn how to view or change the values of an adaptive algorithm object, see
“Equalization”.

Property Description
AlgType Type of signed LMS algorithm,

corresponding to the algtype input
argument. You cannot change the value of
this property after creating the object.

StepSize LMS step size parameter, a nonnegative
real number

LeakageFactor LMS leakage factor, a real number between
0 and 1. A value of 1 corresponds to a
conventional weight update algorithm,
while a value of 0 corresponds to a
memoryless update algorithm.

Examples

Create a Linear Equalizer using Signed LMS Algorithm

This example shows to use a signed least mean square (LMS) algorithm to create an
adaptive equalizer object.

Set the number of weights and the step size for the equalizer.

nWeights = 2;
stepSize = 0.05;

Create the adaptive algorithm object using the signed regressor LMS algorithm type.

alg = signlms(stepSize,'Signed Regressor LMS');

Construct a linear equalizer using the algorithm object.

eqObj = lineareq(nWeights,alg)

 signlms

2-1087

eqObj =

 EqType: 'Linear Equalizer'
 AlgType: 'Signed Regressor LMS'
 nWeights: 2
 nSampPerSym: 1
 RefTap: 1
 SigConst: [-1 1]
 StepSize: 0.0500
 LeakageFactor: 1
 Weights: [0 0]
 WeightInputs: [0 0]
 ResetBeforeFiltering: 1
 NumSamplesProcessed: 0

Algorithms
Referring to the schematics presented in “Equalization”, define w as the vector of all
weights wi and define u as the vector of all inputs ui. Based on the current set of weights,
w, this adaptive algorithm creates the new set of weights given by

• (LeakageFactor) w + (StepSize) u*sgn(Re(e)), for sign LMS
• (LeakageFactor) w + (StepSize) sgn(Re(u)) Re(e), for signed regressor

LMS
• (LeakageFactor) w + (StepSize) sgn(Re(u)) sgn(Re(e)), for sign-sign

LMS

where the * operator denotes the complex conjugate and sgn denotes the signum
function (sign in MATLAB technical computing software).

Compatibility Considerations

signlms will be removed
Not recommended starting in R2019a

signlms will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

2 Functions — Alphabetical List

2-1088

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

John Wiley & Sons, 1998.

[2] Kurzweil, J., An Introduction to Digital Communications, New York, John Wiley & Sons,
2000.

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

 signlms

2-1089

ssbdemod
Single sideband amplitude demodulation

Syntax
z = ssbdemod(y,Fc,Fs)
z = ssbdemod(y,Fc,Fs,ini_phase)
z = ssbdemod(y,Fc,Fs,ini_phase,num,den)

Description

For All Syntaxes
z = ssbdemod(y,Fc,Fs) demodulates the single sideband amplitude modulated signal
y from the carrier signal having frequency Fc (Hz). The carrier signal and y have
sampling rate Fs (Hz). The modulated signal has zero initial phase, and can be an upper-
or lower-sideband signal. The demodulation process uses the lowpass filter specified by
[num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW is the bandwidth
of the original signal that was modulated.

z = ssbdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated
signal in radians.

z = ssbdemod(y,Fc,Fs,ini_phase,num,den) specifies the numerator and
denominator of the lowpass filter used in the demodulation.

Examples

2 Functions — Alphabetical List

2-1090

Demodulate Sideband Signal

Define the sampling frequency and original signal.

fs = 270000;
t = (0:1/fs:0.01)';
signal = sin(2*pi*300.*t)+2*sin(2*pi*600.*t);

Convert the original signal to upper-sideband and lower-sideband modulated signals
using ssbmod. Use a cutoff frequency of 12000 and an initial phase of 0.

fc = 12000;
initialPhase = 0;
lowerSidebandSignal = ssbmod(signal,fc,fs,initialPhase);
upperSidebandSignal = ssbmod(signal,fc,fs,initialPhase,'upper');

Demodulate the lower and upper sideband signals.

s1 = ssbdemod(lowerSidebandSignal,fc,fs);
s2 = ssbdemod(upperSidebandSignal,fc,fs);

Compare processed signals with original and verify reconstruction.

plot(t,signal,'k',t,s1,'r:',t,s2,'g-.');
legend('Original Signal','Demodulation of Lower Sideband','Demodulation of Upper Sideband');

 ssbdemod

2-1091

See Also
amdemod | ssbmod

Topics
“Digital Modulation”

Introduced before R2006a

2 Functions — Alphabetical List

2-1092

ssbmod
Single sideband amplitude modulation

Syntax
y = ssbmod(x,Fc,Fs)
y = ssbmod(x,Fc,Fs,ini_phase)
y = ssbmod(x,fc,fs,ini_phase,'upper')

Description
y = ssbmod(x,Fc,Fs) uses the message signal x to modulate a carrier signal with
frequency Fc (Hz) using single sideband amplitude modulation in which the lower
sideband is the desired sideband. The generated output y is a single side band signal with
a suppressed carrier. The carrier signal and x have sample frequency Fs (Hz). The
modulated signal has zero initial phase.

y = ssbmod(x,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal
in radians.

y = ssbmod(x,fc,fs,ini_phase,'upper') uses the upper sideband as the desired
sideband.

Examples

Compare Double-Sideband and Single-Sideband Amplitude Modulation

Set the sample rate to 100 Hz. Create a time vector 100 seconds long.

fs = 100;
t = (0:1/fs:100)';

Set the carrier frequency to 10 Hz. Generate a sinusoidal signal.

 ssbmod

2-1093

fc = 10;
x = sin(2*pi*t);

Modulate x using single- and double-sideband AM.

ydouble = ammod(x,fc,fs);
ysingle = ssbmod(x,fc,fs);

Create a spectrum analyzer object to plot the spectra of the two signals. Plot the
spectrum of the double-sideband signal.

sa = dsp.SpectrumAnalyzer('SampleRate',fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'YLimits',[-60 40]);
step(sa,ydouble)

2 Functions — Alphabetical List

2-1094

Plot the single-sideband spectrum.

step(sa,ysingle)

See Also
ammod | ssbdemod

Topics
“Digital Modulation”

Introduced before R2006a

 ssbmod

2-1095

stdchan
Construct channel System object from set of standardized channel models

Syntax
chan = stdchan(chantype,rs,fd)

Description
chan = stdchan(chantype,rs,fd) constructs a fading channel object chan
according to the specified chantype. chantype is chosen from the channel models listed
in “Supported Standards” on page 2-1105. rs is the sampling rate of the input signal and
fd is the maximum Doppler shift.

Examples

Filter Signal Through CDMA Channel

Set the sample rate and the maximum Doppler shift.

rs = 20e6;
fd = 3;

Create a CDMA Typical Urban channel model (TUx) channel object and turn on frequency
response visualization.

chan = stdchan('cdmaTUx',rs,fd);
chan.Visualization = 'Frequency response';

Generate random data and apply QPSK modulation.

data = randi([0 3],10000,1);
txSig = pskmod(data,4,pi/4);

Filter the QPSK signal through the CDMA channel.

2 Functions — Alphabetical List

2-1096

y = chan(txSig);

GSM and EDGE Channel Model

Create a channel model useful for GSM and EDGE simulations. Experiment with low
speed and high speed conditions.

 stdchan

2-1097

Configure parameters and System objects

Frame configuration.

M = 8; % Modulation order, 8-PSK
Rbit = 9600; % Input bit rate
Rs = Rbit / log2(M); % Symbol rate
Nsamples = 5e2; % Number of samples per frame
Nframes = 10; % Number of frames

Speed and channel configuration.

v = 10 * 1e3/3600; % Mobile speed (m/s)
fc = 1800e6; % Carrier frequency
c = physconst('LightSpeed'); % Speed of light in free space
fd = v*fc/c; % Maximum Doppler shift of diffuse component

Create System objects for modulator and channel.

modulator = comm.PSKModulator(M,'PhaseOffset',0);

channel = stdchan('gsmeqx6',Rs,fd);
channel.RandomStream = 'mt19937ar with seed'; % set for reproducibility
channel.Visualization = 'Impulse and frequency responses';
channel.SamplesToDisplay = '100%';

refC = constellation(modulator);
constDiagram = comm.ConstellationDiagram(...
 'ReferenceConstellation',refC, ...
 'XLimits',[-3 3],'YLimits',[-3 3]);

Simulate at low speed

for iFrames = 1:Nframes
 msg = randi([0 M-1], Nsamples, 1);
 modSignal = modulator(msg);
 chanOut = channel(modSignal);
 constDiagram(chanOut);
end

2 Functions — Alphabetical List

2-1098

 stdchan

2-1099

2 Functions — Alphabetical List

2-1100

Simulate at high speed

Release and reconfigure objects.

release(constDiagram);
release(channel);

v = 120 * 1e3 / 3600; % Mobile speed (m/s)
fd = v*fc/c; % Maximum Doppler shift of diffuse component

 stdchan

2-1101

channel.MaximumDopplerShift = fd; % Adjust maximum doppler shift

for iFrames = 1:Nframes
 msg = randi([0 M-1], Nsamples, 1);
 modSignal = modulator(msg);
 chanOut = channel(modSignal);
 constDiagram(chanOut);
end

2 Functions — Alphabetical List

2-1102

 stdchan

2-1103

Input Arguments
chantype — Channel type
string | character vector

2 Functions — Alphabetical List

2-1104

Channel type, specified as a string or character vector. Valid options are listed in
“Supported Standards” on page 2-1105.
Example: stdchan('gsmRAx6c1',rs,fd), configures a channel model for the GSM
typical case for rural area (RAx), 6 taps, case 1, with a sample rate rs, and maximum
Doppler shift fd
Data Types: char | string

rs — Sample rate
scalar

Sample rate in Hertz, specified as a scalar.
Data Types: double

fd — Maximum Doppler shift
scalar

Maximum Doppler shift in Hertz, specified as a scalar.
Data Types: double

Output Arguments
chan — Channel object
System object

Channel object, returned as a comm.RayleighChannel or comm.RicianChannel
System object.

More About
Supported Standards
For GSM, CDMA, and ITU-R HF standards, call stdchan to return a
comm.RayleighChannel or comm.RicianChannel System object modeling one of
these profiles.

GSM/EDGE channel models (3GPP TS 45.005 V7.9.0 (2007-2), 3GPP TS 05.05 V8.20.0
(2005-11)):

 stdchan

2-1105

Channel model Profile
gsmRAx6c1 Typical case for rural area (RAx), 6 taps,

case 1
gsmRAx4c2 Typical case for rural area (RAx), 4 taps,

case 2
gsmHTx12c1 Typical case for hilly terrain (HTx), 12 taps,

case 1
gsmHTx12c2 Typical case for hilly terrain (HTx), 12 taps,

case 2
gsmHTx6c1 Typical case for hilly terrain (HTx), 6 taps,

case 1
gsmHTx6c2 Typical case for hilly terrain (HTx), 6 taps,

case 2
gsmTUx12c1 Typical case for urban area (TUx), 12 taps,

case 1
gsmTUx12c1 Typical case for urban area (TUx), 12 taps,

case 2
gsmTUx6c1 Typical case for urban area (TUx), 6 taps,

case 1
gsmTUx6c2 Typical case for urban area (TUx), 6 taps,

case 2
gsmEQx6 Profile for equalization test (EQx), 6 taps
gsmTIx2 Typical case for very small cells (TIx), 2

taps

CDMA channel models for deployment evaluation (3GPP TR 25.943 V6.0.0 (2004-12)):

Channel model Profile
cdmaTUx Typical Urban channel model (TUx)
cdmaRAx Rural Area channel model (RAx)
cdmaHTx Hilly Terrain channel model (HTx)

ITU-R HF channel models (ITU-R F.1487 (2000)) (FD must be 1 to obtain the correct
frequency spreads for these models.):

2 Functions — Alphabetical List

2-1106

Channel model Profile
iturHFLQ Low latitudes, Quiet conditions
iturHFLM Low latitudes, Moderate conditions
iturHFLD Low latitudes, Disturbed conditions
iturHFMQ Medium latitudes, Quiet conditions
iturHFMM Medium latitudes, Moderate conditions
iturHFMD Medium latitudes, Disturbed conditions
iturHFMDV Medium latitudes, Disturbed conditions

near vertical incidence
iturHFHQ High latitudes, Quiet conditions
iturHFHM High latitudes, Moderate conditions
iturHFHD High latitudes, Disturbed conditions

See Also
Functions
doppler

Objects
comm.RayleighChannel | comm.RicianChannel

Introduced in R2007b

 stdchan

2-1107

symerr
Compute number of symbol errors and symbol error rate

Syntax
[number,ratio] = symerr(x,y)
[number,ratio] = symerr(x,y,flg)
[number,ratio,loc] = symerr(...)

Description

For All Syntaxes
The symerr function compares binary representations of elements in x with those in y.
The schematics below illustrate how the shapes of x and y determine which elements
symerr compares.

(a) Compares x1 with y1,
 x2 with y2, and so on.

(b) Compares column vector y with
 each column of matrix x

(c) Compares row vector y with
 each row of matrix x

x1 x4

x2 x5

x3 x6

y1 y4

y2 y5 x y

y3 y6

x

y

The output number is a scalar or vector that indicates the number of elements that differ.
The size of number is determined by the optional input flg and by the dimensions of x
and y. The output ratio equals number divided by the total number of elements in the
smaller input.

2 Functions — Alphabetical List

2-1108

For Specific Syntaxes
[number,ratio] = symerr(x,y) compares the elements in x and y. The sizes of x
and y determine which elements are compared:

• If x and y are matrices of the same dimensions, then symerr compares x and y
element by element. number is a scalar. See schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a two-dimensional matrix,
then symerr compares the vector element by element with each row (resp., column)
of the matrix. The length of the vector must equal the number of columns (resp., rows)
in the matrix. number is a column (resp., row) vector whose mth entry indicates the
number of elements that differ when comparing the vector with the mth row (resp.,
column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = symerr(x,y,flg) is similar to the previous syntax, except that
flg can override the defaults that govern which elements symerr compares and how
symerr computes the outputs. The values of flg are 'overall', 'column-wise', and
'row-wise'. The table below describes the differences that result from various
combinations of inputs. In all cases, ratio is number divided by the total number of
elements in y.

 symerr

2-1109

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of
Comparison

number

Two-dim. matrix 'overall' (default) Element by element Total number of
symbol errors

'column-wise' mth column of x vs.
mth column of y

Row vector whose
entries count symbol
errors in each
column

'row-wise' mth row of x vs. mth
row of y

Column vector whose
entries count symbol
errors in each row

Column vector 'overall' y vs. each column of
x

Total number of
symbol errors

'column-wise'
(default)

y vs. each column of
x

Row vector whose
entries count symbol
errors in each
column of x

Row vector 'overall' y vs. each row of x Total number of
symbol errors

'row-wise'
(default)

y vs. each row of x Column vector whose
entries count symbol
errors in each row of
x

[number,ratio,loc] = symerr(...) returns a binary matrix loc that indicates
which elements of x and y differ. An element of loc is zero if the corresponding
comparison yields no discrepancy, and one otherwise.

Examples
On the reference page for biterr, the last example uses symerr.

2 Functions — Alphabetical List

2-1110

Compare Elements of Matrix
Compare Elements of Matrix with Another Matrix

x = [1,1,3,1;3,2,2,2;3,3,8,3]

x = 3×4

 1 1 3 1
 3 2 2 2
 3 3 8 3

aMatrix = [1,1,1,1;2,2,2,2;3,3,3,3]

aMatrix = 3×4

 1 1 1 1
 2 2 2 2
 3 3 3 3

[number1,ratio1] = symerr(x,aMatrix)

number1 = 3

ratio1 = 0.2500

Compare Elements of Matrix with Row Vector

x = [1,1,3,1;3,2,2,2;3,3,8,3]

x = 3×4

 1 1 3 1
 3 2 2 2
 3 3 8 3

aRowVector = [1,2,3,1]

aRowVector = 1×4

 1 2 3 1

 symerr

2-1111

[number2,ratio2] = symerr(x,aRowVector)

number2 = 3×1

 1
 3
 4

ratio2 = 3×1

 0.2500
 0.7500
 1.0000

Compare Elements of Matrix with Column Vector
x = [1,1,3,1;3,2,2,2;3,3,8,3]

x = 3×4

 1 1 3 1
 3 2 2 2
 3 3 8 3

aColumnVector = [1;2;3]

aColumnVector = 3×1

 1
 2
 3

[number3,ratio3] = symerr(x,aColumnVector)

number3 = 1×4

 1 0 2 0

ratio3 = 1×4

2 Functions — Alphabetical List

2-1112

 0.3333 0 0.6667 0

Use Alternative Type of Comparison
You can specify alternative comparison methods used by symerr. In this example, you use
a flag to override the default row-by-row comparison. Notice that number and ratio are
scalars.

format rat;
[number,ratio,loc] = symerr([1 2; 3 4],[1 3],'overall')

number =
 3

ratio =
 3/4

loc =
 0 1
 1 1

See Also
alignsignals | biterr | finddelay

Introduced before R2006a

 symerr

2-1113

syndtable
Produce syndrome decoding table

Syntax
t = syndtable(h)

Description
t = syndtable(h) returns a decoding table for an error-correcting binary code having
codeword length n and message length k. h is an (n-k)-by-n parity-check matrix for the
code. t is a 2n-k-by-n binary matrix. The rth row of t is an error pattern for a received
binary codeword whose syndrome has decimal integer value r-1. (The syndrome of a
received codeword is its product with the transpose of the parity-check matrix.) In other
words, the rows of t represent the coset leaders from the code's standard array.

When converting between binary and decimal values, the leftmost column is interpreted
as the most significant digit. This differs from the default convention in the bi2de and
de2bi commands.

Examples
An example is in “Decoding Table”.

References
[1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital

Communications, New York, Plenum, 1981.

See Also
decode | gfcosets | hammgen

2 Functions — Alphabetical List

2-1114

Topics
“Block Codes”

Introduced before R2006a

 syndtable

2-1115

testconsole.Results
(To be removed) Gets results from test console simulations

Compatibility
testconsole.Results will be removed in a future release. Use comm.ErrorRate or
bertool instead. For more information, see “Compatibility Considerations” on page 2-
1135.

Description
The getResults method of the Error Rate Test Console returns an instance of a
testconsole.Results object containing simulation results data. You use methods of the
results object to retrieve and plot simulations results data.

Properties
A testconsole.Results object has the properties shown in the following table. All
properties are writable except for the ones explicitly noted otherwise.

Property Description
TestConsoleName Error Rate Test Console. This property is

not writable.
System Under Test Name Name of the system under test for which

the Error Rate Test Console obtained
results. This property is not writable.

IterationMode Iteration mode the Error Rate Test Console
used for obtaining results. This property is
not writable.

2 Functions — Alphabetical List

2-1116

Property Description
TestPoint Specify the name of the registered test

point for which the results object parses
results. The getData, plot, and semilogy
methods of the Results object return data
or create a plot for the test point that the
TestPoint property specifies.

Metric Specify the name of the test metric for
which the results object parses results. The
getData, plot, and semilogy methods of the
Results object returns data or creates a plot
for the metric that the Metric property
specifies.

TestParameter1 Specifies the name of the first independent
variable for which the results object parses
results.

TestParameter2 Specifies the name of the second
independent variable for which the results
object parses results.

Methods
A testconsole.Results object has the following methods.

getData
d = getData(r) returns results data matrix, d, available in the results object r. The
returned results correspond to the test point currently specified in the TestPoint
property of r, and to the test metric currently specified in the Metric property of r.

If IterationMode is 'Combinatorial' then d is a matrix containing results for all the
sweep values available in the test parameters specified in the TestParameter1 and
TestParameter2 properties. The rows of the matrix correspond to results for all the
sweep values available in TestParameter1. The columns of the matrix correspond to
results for all sweep values available in TestParameter2. If more than two test
parameters are registered to the Error Rate Test Console, d contains results

 testconsole.Results

2-1117

corresponding to the first value in the sweep vector of all parameters that are not
TestParameter1 or TestParameter2.

If IterationMode is 'Indexed', then d is a vector of results corresponding to each
indexed combination of all the test parameter values registered to the Error Rate Test
Console.

plot
plot(r) creates a plot for the results available in the results object r. The plot
corresponds to the test point and test metric, specified by the TestPoint and Metric
properties of r

If IterationMode is 'Combinatorial' then the plot contains a set of curves. The sweep
values in TestParameter1 control the x-axis and the number of sweep values for
TestParameter2 specifies how many curves the plot contains. If more than two test
parameters are registered to the Error Rate Test Console, the curves correspond to
results obtained with the first value in the sweep vector of all parameters that are not
TestParameter1, or TestParameter2.

No plots are available when 'IterationMode' is 'Indexed'.

semilogy
semilogy(...) is the same as plot(...), except that the Y-Axis uses a logarithmic
(base 10) scale.

surf
surf(r) creates a 3-D, color, surface plot for the results available in the results object, r.
The surface plot corresponds to following items:

• The test point you specify using the TestPoint property of the results object
• The test metric currently you specify in the Metric property of the results object

You can specify parameter/value pairs for the results object, which establishes
additional properties of the surface plot.

When you select 'Combinatorial' for the IterationMode, the sweep values available in the
test parameter you specify for the TestParameter1 property control the x-axis of the

2 Functions — Alphabetical List

2-1118

surface plot. The sweep values available in the test parameter you specify for the
TestParameter2 property control the y-axis.

If more than two test parameters are registered to the test console, the surface plot
corresponds to the results obtained with the parameter sweep values previously specified
with the setParsingValues method of the results object.

You display the current parsing values by calling the getParsingValues method of the
results object. The parsing values default to the first value in the sweep vector of each
test parameter. By default, the surf method ignores the parsing values for any parameters
currently set as TestParameter1 or TestParameter2.

No surface plots are available if the IterationMode is 'Indexed', when less than two
registered test parameters exist, or TestParameter2 is set to 'None'.

setParsingValues
setParsingValues(R,'ParameterName1', 'Value1', ... 'ParameterName2',
'Value2', ...) sets the parsing values to the values you specify using the parameter-
value pairs. Parameter name inputs must correspond to names of registered test
parameters, and value inputs must correspond to a valid test parameter sweep value.

You use this method for specifying single sweep values for test parameters that differ
from the values for TestParameter1 and TestParameter2. When you define this method,
the results object returns the data values or plots corresponding to the sweep values
you set for the setParsingValues method. The parsing values default to the first value in
the sweep vector of each test parameter.

You display the current parsing values by calling the getParsingValues method of the
results object. You may set parsing values for parameters in TestParameter1 and
TestParameter2, but the results object ignores the values when getting data or returning
plots.

Parsing values are irrelevant when IterationMode is 'Indexed'.

getParsingValues
getParsingValues displays the current parsing values for the Error Rate Test Console.

 testconsole.Results

2-1119

s = getParsingValues(r) returns a structure, s, with field names equal to the
registered test parameter names and with values corresponding to the current parsing
values.

Parsing values are irrelevant when IterationMode is 'Indexed'.

Examples

Error Rate Simulation Sweeps

The commtest.ErrorRate and testconsole.Results object packages will be
removed in a future release. They can be used to perform parameter sweeps to analyze
communication system performance. This example demonstrates a workflow that uses
them and along with recommended alternate workflows.

Multiple Parameter Sweep and Parallel Run using commtest.ErrorRate

Obtain bit error rate and symbol error rate of an M-PSK system for different modulation
orders and EbNo values. System under test is commtest.MPSKSystem.

% Create an M-ary PSK system
systemUnderTest = commtest.MPSKSystem;

% Instantiate an Error Rate Test Console and attach the system
errorRateTester = commtest.ErrorRate(systemUnderTest);

Warning: commtest.ErrorRate will be removed in the future. Use comm.ErrorRate or bertool instead. See R2019b Communications Toolbox Release Notes for more information.

errorRateTester.SimulationLimitOption = 'Number of errors or transmissions';
errorRateTester.MaxNumTransmissions = 1e5;

% Set sweep values for simulation test parameters
setTestParameterSweepValues(errorRateTester,'M',2.^[1 2 3 4],'EbNo',(-5:10))

% Register a test point
registerTestPoint(errorRateTester,'MPSK_BER','TxInputBits','RxOutputBits')

% Get information about the simulation settings
info(errorRateTester)

Test console name: commtest.ErrorRate
System under test name: commtest.MPSKSystem

2 Functions — Alphabetical List

2-1120

Available test inputs: NumTransmissions, RandomIntegerSource
Registered test inputs: NumTransmissions
Registered test parameters: EbNo, M
Registered test probes: RxOutputBits, RxOutputSymbols, TxInputBits, TxInputSymbols
Registered test points: MPSK_BER
Metric calculator functions: @commtest.ErrorRate.defaultErrorCalculator
Test metrics: ErrorCount, TransmissionCount, ErrorRate

% Run the M-PSK simulations
run(errorRateTester)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).
12 workers available for parallel computing. Simulations will be distributed among these workers.
Running simulations...

% Get the results
mpskResults = getResults(errorRateTester);

Warning: testconsole.Results will be removed in the future. See R2019b Communications Toolbox Release Notes for more information.

% Get a semi-log scale plot of EbNo versus bit error rate for
% different values of modulation order M
mpskResults.TestParameter2 = 'M';
semilogy(mpskResults,'*-')

 testconsole.Results

2-1121

Multiple Parameter Sweep and Parallel Run using nested for loops and
comm.ErrorRate

Run an error rate simulation over M=2.^(1:4) and EbNo=-5:10. Use comm.ErrorRate to
collect both bit error rate (BER) and symbol error rate (SER) data. Run the simulations to
collect a minimum of 100 symbol errors or for a maximum of 1e5 symbols.

% Set the M sweep values same as the commtest.ErrorRate object
getTestParameterSweepValues(errorRateTester,'M')

ans = 1×4

 2 4 8 16

2 Functions — Alphabetical List

2-1122

MSweep = 2.^[1 2 3 4];

% Set EbNo sweep values same as the commtest.ErrorRate object
getTestParameterSweepValues(errorRateTester,'EbNo')

ans = 1×16

 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

EbNoSweep = -5:10;

% Set minumum number of errors same as the commtest.ErrorRate object
errorRateTester.MinNumErrors

ans = 100

minNumErrors = 100;

% Set maximum number of transmissions same as the commtest.ErrorRate
% object. In this example a transmission is a symbol.
errorRateTester.MaxNumTransmissions

ans = 100000

MaxNumTransmissions = 1e5;

% Set frame length same as the commtest.ErrorRate object
errorRateTester.FrameLength

ans = 500

frameLength = 500;

% Find out if there is a parallel pool and how many workers are available
[licensePCT,~] = license('checkout','distrib_computing_toolbox');
if (licensePCT && ~isempty(ver('parallel')))
 p = gcp;
 if isempty(p)
 numWorkers = 1;
 else
 numWorkers = p.NumWorkers
 end
else
 numWorkers = 1;
end

 testconsole.Results

2-1123

numWorkers = 12

minNumErrorsPerWorker = minNumErrors/numWorkers;
maxNumSymbolsPerWorker = MaxNumTransmissions/numWorkers;

% Store results in an array, where first dimension is M and second
% dimension is EbNo. Initialize the vector with NaN values.
ser = nan(length(MSweep),length(EbNoSweep));
ber = nan(length(MSweep),length(EbNoSweep));

% First sweep is over M (modulation order)
for MIdx = 1:length(MSweep)
 M = MSweep(MIdx);
 bitsPerSymbol = log2(M);

 % Second sweep is over EbNo
 for EbNoIdx = 1:length(EbNoSweep)
 EbNo = EbNoSweep(EbNoIdx);

 SNR = EbNo+10*log10(bitsPerSymbol);

 numSymbolErrors = zeros(numWorkers,1);
 numBitErrors = zeros(numWorkers,1);
 numSymbols = zeros(numWorkers,1);

 parfor worker = 1:numWorkers
 symErrRate = comm.ErrorRate;
 bitErrRate = comm.ErrorRate;

 while (numSymbolErrors(worker) < minNumErrorsPerWorker) ...
 || (numSymbols(worker) < maxNumSymbolsPerWorker)
 % Generate frameLength source outputs
 txMsg = randi([0 M-1],frameLength,1);

 % Modulate the data
 txOutput = pskmod(txMsg,M,0,'gray');
 % Pass data through an AWGN channel with current SNR value
 chnlOutput = awgn(txOutput,SNR,'measured',[],'dB');
 % Demodulate the data
 rxOutput = pskdemod(chnlOutput,M,0,'gray');

 % Calculate number of symbol errors
 symErrVal = symErrRate(txMsg,rxOutput);
 numSymbolErrors(worker) = symErrVal(2);
 numSymbols(worker) = symErrVal(3);

2 Functions — Alphabetical List

2-1124

 % Convert symbol streams to bit streams
 bTx = de2bi(txMsg,bitsPerSymbol,'left-msb')';
 bTx = bTx(:);
 bRx = de2bi(rxOutput,bitsPerSymbol,'left-msb')';
 bRx = bRx(:);

 % Calculate number of bit errors
 bitErrVal = bitErrRate(bTx,bRx);
 numBitErrors(worker) = bitErrVal(2);
 end
 end

 ber(MIdx,EbNoIdx) = sum(numBitErrors)/(sum(numSymbols)*bitsPerSymbol);
 ser(MIdx,EbNoIdx) = sum(numSymbolErrors)/sum(numSymbols);
 end
end

% Plot results
semilogy(EbNoSweep,ber,'*-')
grid on
title('MPSK BER')
xlabel('Eb/No')
ylabel('BER')
legendText = cell(length(MSweep),1);
for p=1:length(MSweep)
 legendText{p} = sprintf('M: %d',MSweep(p));
end
legend(legendText)

 testconsole.Results

2-1125

Multiple Variable Sweeps using BERTool

BERTool computes the BER as a function of signal-to-noise ratio. It analyzes performance
either with Monte-Carlo simulations of MATLAB® functions and Simulink® models or
with theoretical closed-form expressions for selected types of communication systems.
The bertool function opens the BERTool. Here BERTool is configured to call the
simulation defined in the function mpsksim included below.

function [ber,numBits] = mpsksim(EbNo,minNumErrs,maxNumBits)
% Import the Java class for BERTool, so that you will be able to stop the simulation using the "Stop" button on the BERTool.
import com.mathworks.toolbox.comm.BERTool;

frameLength = 500;

2 Functions — Alphabetical List

2-1126

M = 16; % Can be 2, 4, 8, 16
bitsPerSymbol = log2(M);

maxNumSymbols = maxNumBits/bitsPerSymbol;

SNR = EbNo + 10*log10(bitsPerSymbol);

% Initialize variables related to exit criteria.
numBitErrors = 0;
numSymbols = 0;

while (numBitErrors < minNumErrs) || (numSymbols < maxNumSymbols)

 % Check if the user clicked the Stop button of BERTool.
 if (BERTool.getSimulationStop)
 break;
 end

 % Generate frameLength source outputs
 txMsg = randi([0 M-1],frameLength,1);
 numSymbols = numSymbols+frameLength;

 % Modulate the data
 txOutput = pskmod(txMsg,M,0,'gray');
 % Pass data through an AWGN channel with current SNR value
 chnlOutput = awgn(txOutput,SNR,'measured',[],'dB');
 % Demodulate the data
 rxOutput = pskdemod(chnlOutput,M,0,'gray');

 % Convert symbol streams to bit streams
 bTx = de2bi(txMsg,bitsPerSymbol,'left-msb')';
 bTx = bTx(:);
 bRx = de2bi(rxOutput,bitsPerSymbol,'left-msb')';
 bRx = bRx(:);

 % Calculate number of bit errors
 numBitErrors = numBitErrors+sum(bTx~=bRx);
end

% Assign values to the output variables.
numBits = numSymbols*bitsPerSymbol;
ber = numBitErrors/numBits;

Configure BERTool as follows.

 testconsole.Results

2-1127

Set M=2 in the mpsksim function and click Run. Set the BER Data Set name to 'M=2'.

2 Functions — Alphabetical List

2-1128

Display the BER curve for M=2.

 testconsole.Results

2-1129

2 Functions — Alphabetical List

2-1130

Update the value for M in the mpsksim function, repeating this process for M = 4, 8, 16.
You will see results similar to those below in the Bit Error Rate Analysis Tool window
and the BER figure.

 testconsole.Results

2-1131

2 Functions — Alphabetical List

2-1132

 testconsole.Results

2-1133

Parallel SNR Sweep using BERTool

Using parfor, run each simulation point in parallel by configuring your simulation
function similar to the mpsksim_parfor function included below. Since parfor cannot
work with the Java class for BERTool, you will not be able to stop the simulation using
the Stop button.

function [ber,numBits] = mpsksim_parfor(EbNo,minNumErrs,maxNumBits)

% Find out if there is a parallel pool and how many workers are available
if license('test','Distrib_Computing_Toolbox')
 p = gcp;
 if isempty(p)
 numWorkers = 1;
 else
 numWorkers = p.NumWorkers;
 end
else
 numWorkers = 1;
end

M = 2;
bitsPerSymbol = log2(M);

maxNumSymbols = maxNumBits/bitsPerSymbol;

minNumErrorsPerWorker = minNumErrs/numWorkers;
maxNumSymbolsPerWorker = maxNumSymbols/numWorkers;
frameLength = 500;

SNR = EbNo + 10*log10(bitsPerSymbol);

% Initialize variables related to exit criteria.
numBitErrors = zeros(numWorkers,1);
numSymbols = zeros(numWorkers,1);

parfor worker = 1:numWorkers
 while (numBitErrors(worker) < minNumErrorsPerWorker) ...
 || (numSymbols(worker) < maxNumSymbolsPerWorker)

 % Generate frameLength source outputs
 txMsg = randi([0 M-1],frameLength,1);
 numSymbols(worker) = numSymbols(worker)+frameLength;

2 Functions — Alphabetical List

2-1134

 % Modulate the data
 txOutput = pskmod(txMsg, M, 0, 'gray');
 % Pass data through an AWGN channel with current SNR value
 chnlOutput = awgn(txOutput,SNR,'measured',[],'dB');
 % Demodulate the data
 rxOutput = pskdemod(chnlOutput,M,0,'gray');

 % Convert symbol streams to bit streams
 bTx = de2bi(txMsg,bitsPerSymbol,'left-msb')';
 bTx = bTx(:);
 bRx = de2bi(rxOutput,bitsPerSymbol,'left-msb')';
 bRx = bRx(:);

 % Calculate number of bit errors
 numBitErrors(worker) = numBitErrors(worker)+sum(bTx~=bRx);
 end
end

% Assign values to the output variables.
ber = sum(numBitErrors)/sum(numSymbols);
numBits = sum(numSymbols)*bitsPerSymbol;

Compatibility Considerations

testconsole.Results will be removed
Warns starting in R2019b

testconsole.Results will be removed in a future release. Use comm.ErrorRate or
bertool instead. The “Error Rate Simulation Sweeps” on page 2-1120 example
demonstrates alternate workflows using comm.ErrorRate and bertool.

See Also
Objects
comm.ErrorRate

Functions
bertool

 testconsole.Results

2-1135

Topics
“Bit Error Rate (BER)”

Introduced in R2009b

2 Functions — Alphabetical List

2-1136

tpcdec
Turbo product code (TPC) decoder

Syntax
decoded = tpcdec(llr,N,K)
decoded = tpcdec(llr,N,K,S)
decoded = tpcdec(llr,N,K,S,maxnumiter)
decoded = tpcdec(llr,N,K,S,maxnumiter,earlyterm)
[decoded,actualnumiter] = tpcdec(___)

Description
decoded = tpcdec(llr,N,K) performs 2-D TPC decoding on input log likelihood
ratios, llr, using two linear block codes specified by codeword length N and message
length K. For a description of 2-D TPC decoding, see “Algorithms” on page 2-1144.

decoded = tpcdec(llr,N,K,S) performs 2-D TPC decoding on the shortened llr
using a 2-D TPC decoder specified by codeword length (N–K+S) and message length S.

decoded = tpcdec(llr,N,K,S,maxnumiter) performs 2-D TPC decoding for
maxnumiter iterations. To use maxnumiter with full-length messages, specify S as
empty, [].

decoded = tpcdec(llr,N,K,S,maxnumiter,earlyterm) performs 2-D TPC
decoding and terminates early if the calculated syndrome or parity-check of the
component code evaluates to zero before maxnumiter decoding iterations. To use
maxnumiter and earlyterm with full-length messages, specify S as empty, [].

[decoded,actualnumiter] = tpcdec(___)also returns the actual number of
decoding iterations after performing 2-D TPC decoding using any of the prior syntaxes.

Examples

 tpcdec

2-1137

Decode Using Full-Length TPC Codes

Decode an approximate log-likelihood ratio output signal from 16-QAM demodulation.

Begin by encoding a random bit vector using 2-D turbo product coding (TPC) with
extended Hamming codes and extended BCH codes.

Specify the (N,K) code pairs to use for TPC encoding.

N = [32;16];
K = [21;11];

Generate a column vector of random message bits and TPC-encode the message. Specify
the message bits as a vector with length equal to the product of the elements in K.

msg = randi([0 1],prod(K),1);
code = tpcenc(msg,N,K);

Apply 16-QAM modulation. Add AWGN to the signal. Demodulate the signal, outputting
approximate LLRs.

M = 16;
snr = 10;

txsig = qammod(code,M,'InputType','bit', ...
 'UnitAveragePower',true);

rxsig = awgn(txsig,snr,'measured');

llr = qamdemod(rxsig,M,'OutputType','approxllr', ...
 'UnitAveragePower',true,'NoiseVariance',10.^(-snr/10));

Perform TPC decoding using three iterations. Because the demodulator output is negative
bipolar mapped and TPC decoder expects positive bipolar mapped input, the demodulated
signal output must be negated at the decoder input. Check the number of bit errors in the
decoded signal.

iterations = 3;
decoded = tpcdec(-llr,N,K,[],iterations);

numerr = biterr(msg,decoded)

numerr = 0

2 Functions — Alphabetical List

2-1138

Decode Using Shortened TPC Codes

Decode a shortened TPC code. Apply QPSK modulation and output the approximate log-
likelihood ratio signal obtained from QPSK demodulation.

Begin by encoding a random bit vector using 2-D turbo product coding (TPC) with
extended Hamming codes and extended BCH codes.

Specify (N,K) code pairs and S for TPC encoding.

N = [32;32];
K = [21;26];
S = [19;24];

Generate a column vector of random message bits and TPC-encode the message. Specify
the shortened message bits as a vector with length equal to the product of the elements
in S.

msg = randi([0 1],prod(S),1);
code = tpcenc(msg,N,K,S);

Apply QPSK modulation. Add AWGN to the signal. Demodulate the signal and output
approximate LLRs.

M = 4;
snr = 3;

txsig = qammod(code,M,'InputType','bit', ...
 'UnitAveragePower',true);

rxsig = awgn(txsig,snr,'measured');

llr = qamdemod(rxsig,M,'OutputType','approxllr', ...
 'UnitAveragePower',true,'NoiseVariance',10.^(-snr/10));

Perform TPC decoding using two iterations. Because the demodulator output is negative
bipolar mapped and TPC decoder expects positive bipolar mapped input, the demodulated
signal output must be negated at the decoder input. Check the bit error rate of the
decoded signal.

iterations = 2;
decoded = tpcdec(-llr,N,K,S,iterations);

 tpcdec

2-1139

[~,ber] = biterr(msg,decoded)

ber = 0.0066

TPC Decoding with Shortening and Early Termination

Decode a shortened TPC code and specify early termination of decoding. Apply QPSK
modulation and output the approximate log-likelihood ratio signal obtained from QPSK
demodulation.

Begin by encoding a random bit vector using 2-D turbo product coding (TPC) with
extended Hamming codes and extended BCH codes. Specify (N,K) code pairs and S for
TPC encoding, and a maximum of 10 decoding iterations. Perform QPSK modulation on
the signal.

n = [64; 32];
k = [51; 26];
s = [49; 24];
maxnumiter = 10;
M = 4;

msg = randi([0 1],prod(s),1); % Random bits
code = tpcenc(msg,n,k,s);

txsig = qammod(code,M,'InputType','bit', ...
 'UnitAveragePower',true);

Add noise to the transmitted signal.

snr = 5;
rxsig = awgn(txsig,snr,'measured');

Demodulate the received signal using approximate LLR demapping.

llr = qamdemod(rxsig,M,'OutputType', ...
 'approxllr','UnitAveragePower',true, ...
 'NoiseVariance',10.^(-snr/10));

Specify the maximum number of TPC decoding iterations and return the actual number of
iterations performed. Early termination of the TPC decoding is on by default. Display the
number of errors and the number of iterations performed.

2 Functions — Alphabetical List

2-1140

[decoded,actualNumIter] = tpcdec(-llr,n,k,s,maxnumiter);
numErr = biterr(msg,decoded);
disp(['Terminated after ' num2str(actualNumIter) ' iterations.' ...
 ' Number of errors = ' num2str(numErr) '.']);

Terminated after 4 iterations. Number of errors = 0.

Input Arguments
llr — Log likelihood ratios
column vector

Log likelihood ratios, specified as a column vector.

• For full-length codes, the length of the input column vector is the product of the
elements in N.

• For shortened codes, the length of the input column vector is the product of the
elements in (N–K+S).

Data Types: double | single

N — Codeword length
two-element integer vector

Codeword length, specified as a two-element integer vector, [NR; NC]. NR represents the
number of rows in the product code matrix. NC represents the number of columns in the
product code matrix. For more information about NR and NC, see “Algorithms” on page 2-
1144. For a list of valid (N(i), K(i)) code pairs, see “More About” on page 2-1143.
Data Types: double

K — Message length
two-element integer vector

Message length, specified as a two-element integer vector, [KR; KC]. For a full-length
message, the input column vector containing the input LLRs is arranged into a KR-by-KC
matrix. KR represents the number of rows in the message matrix. KC represents the
number of columns in the message matrix. For more information about KR and KC, see
“Algorithms” on page 2-1144. For a list of valid (N(i), K(i)) code pairs, see “More About”
on page 2-1143.

 tpcdec

2-1141

Data Types: double

S — Shortened message length
two-element integer vector

Shortened message length, specified as a two-element integer vector, [SR; SC]. For a
shortened message, the input column vector containing the input LLRs is arranged into
an SR-by-SC matrix. SR represents the number of rows in the matrix. SC represents the
number of columns in the matrix. For more information about SR and SC, see “Algorithms”
on page 2-1144.

When you specify this parameter, specify N and K vectors for the full-length TPC codes
that are shortened to (N(i) – K(i) + S(i), S(i)) codes.
Data Types: double

maxnumiter — Maximum number of decoding iterations
4 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

earlyterm — Enable early termination
true (default) | false

Enable early termination of decoding, specified as a logical. When earlyterm is true
the decoding terminates early if the calculated syndrome or parity-check of the
component code evaluates to zero before maxnumiter decoding iterations.
Data Types: double

Output Arguments
decoded — TPC decoded message
column vector

TPC decoded message, returned as a column vector.

• For full-length codes, the length of the returned column vector is the product of the
elements in K.

2 Functions — Alphabetical List

2-1142

• For shortened codes, the length of the returned column vector is the product of the
elements in S.

Data Types: logical

actualnumiter — Actual number of decoding iterations
positive integer

Actual number of decoding iterations performed, returned as a positive integer.
Data Types: double

More About

Component Codes
This table lists the supported component code pairs for the row (NR,KR) and column
(NC,KC) parameters.

• NR and KR represent the number of rows in the product code matrix and message
matrix, respectively.

• NC and KC represent the number of columns in the product code matrix and message
matrix, respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table
also includes the error-correction capability for each code pair.

Code type Component Code
Pairs(NR,KR) and (NC,KC)

Error-Correction
Capability (T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1

Extended Hamming code (256,247) 1

 tpcdec

2-1143

(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Algorithms
Turbo product codes (TPC) are a form of concatenated codes used as forward error
correcting (FEC) codes. Two or more component block codes, such as systematic linear
block codes, are used to construct TPCs. The TPC decoder achieves near-optimum
decoding of product codes using Chase decoding and the Pyndiah algorithm to perform
iterative soft input, soft output decoding. For a detailed description, see [1] and [2]. This
decoder implements an iterative soft input, soft output 2-D product code decoding, as

2 Functions — Alphabetical List

2-1144

described in [2], using two “Linear Block Codes”. The decoder expects the soft bit log
likelihood ratios (LLRs) obtained from digital demodulation as the input signal.

Note The TPC decoder expects a positive bipolar mapped input, specifically –1 mapped
to 0 and +1 mapped to 1. The output from demodulators in the Communications Toolbox
is negative bipolar mapping, specifically +1 mapped to 0 and –1 mapped to +1. Therefore,
the LLR output from demodulators must be negated to provide the positive bipolar
mapped input expected by the TPC decoder.

TPC Decoding Full-Length Messages

TPC encoded full-length input messages are decoded using specified 2-D TPC code pairs.
Row-wise decoding uses the (NC,KC) code pair and column-wise decoding uses the (NR,KR)
code pair. The input vector length must be NR × NC. To perform the 2-D TPC decoding,
the column vector of the input LLRs, composed of the message and parity bits, is
arranged into an NR-by-NC matrix.

The TPC decoder achieves near-optimum decoding of product codes using Chase
decoding and the Pyndiah algorithm to perform iterative soft input, soft output decoding.
Chase decoding forms a set of possible codewords for each row or column. The Pyndiah
algorithm calculates soft information required for the next decoding step.

 tpcdec

2-1145

Iterative Soft Input, Soft Output Decoder

The iterative soft input, soft output decoding, as shown in the block diagram, carries out
two decoding steps for each iteration.

The soft inputs for decoding are R(m) = R + α(m)W(m).

• Iteration loop counter i increments from i = 1 to the specified number of iterations.
• m = 2i – 1 is the decoding step index.
• R is the received LLR matrix.
• R(m) is the soft input for the mth decoding step.
• W(m) is the input extrinsic information for the mth decoding step.
• α(m) = [0,0.2,0.3,0.5,0.7,0.9,1,1, ...], where α is a weighting factor applied based on

the decoding step index. For higher decoding steps, α = 1.
• β(m) = [0.2,0.4,0.6,0.8,1,1, ...], where β is a reliability factor applied based on the

decoding step index. For higher decoding steps, β = 1.
• D contains the decoded message bits. The output message bits are formed from D by

mapping –1 to 0 and +1 to 1, then reshaping the message block into a column vector.

The output message bits are formed after iterating through the specified number of
iterations, or, if early termination is enabled, after code convergence.

2 Functions — Alphabetical List

2-1146

Early Termination of TPC Decoding

If early termination is enabled, a code convergence check is performed on the hard
decision of the soft input in each row-wise and column-wise decoding step. Early
termination can be triggered after either the row-wise decoding or column-wise decoding
converges.

The code is converged if, for all rows or all columns,

• The syndrome evaluates to zero in the codes (Hamming codes, Extended Hamming
codes, BCH codes, or Extended BCH codes).

• The parity check is evaluated to zero in parity check codes.

The reported number of iterations evaluates to the iteration value that is currently in
progress. For example, if the code convergence check is satisfied after row-wise decoding
in the third iteration (after 2.5 decoding steps), then the number of iteration returned is
3.

TPC Decoding Shortened Messages

TPC encoded shortened input messages are decoded using specified 2-D TPC code pairs.
Row-wise decoding uses the (NC – KC + SC, SC) code pair and column-wise decoding uses
the (NR – KR + SR, SR) code pair. The input vector length must be (NR – KR + SR) × (NC– KC
+ SC). To perform the 2-D TPC decoding of shortened messages, the column vector of the
input LLRs, composed of the shortened message and parity bits, is arranged into an (NR –
KR + SR)-by-(NC – KC + SC) matrix.

 tpcdec

2-1147

The TPC decoder processes the received shortened message LLRs similar to full length
codes, with these exceptions:

• The shortened bit positions in the received codeword are set to –1.
• The Chase algorithm does not consider the shortened bit positions while choosing the

least reliable bits.

References
[1] Chase, D. "Class of Algorithms for Decoding Block Codes with Channel Measurement

Information." IEEE Transactions on Information Theory, Volume 18, Number 1,
January 1972, pp. 170–182.

[2] Pyndiah, R. M. "Near-Optimum Decoding of Product Codes: Block Turbo Codes." IEEE
Transactions on Communications. Volume 46, Number 8, August 1998, pp. 1003–
1010.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions — Alphabetical List

2-1148

Usage notes and limitations:

• TPC parameters N, K, and S must be constant values. If the value used for each of
these parameters does not change, then you can assign them by expression or
variable.

See Also
Functions
bchdec | tpcenc

Objects
comm.BCHDecoder

Blocks
TPC Decoder

Introduced in R2018a

 tpcdec

2-1149

tpcenc
Turbo product code (TPC) encoder

Syntax
code = tpcenc(msg,N,K)
code = tpcenc(msg,N,K,S)

Description
code = tpcenc(msg,N,K) performs 2-D TPC encoding of the input message, msg,
using two linear block codes specified by codeword length N and message length K. For a
description of 2-D TPC encoding, see “Algorithms” on page 2-1155.

code = tpcenc(msg,N,K,S) performs 2-D TPC encoding on the shortened input
message of length S, using a 2-D TPC encoder specified by codeword length (N–K+S) and
message length S.

Examples

Encode Using Full-Length TPC Codes

Encode a random bit vector using 2-D turbo product coding (TPC) with extended
Hamming codes and extended BCH codes.

Specify (N,K) code pairs for TPC encoding.

N = [32;64];
K = [21;57];

Generate a column vector of random message bits. The desired length for the message
bits is the product of elements in K.

msg = randi([0 1],prod(K),1);

2 Functions — Alphabetical List

2-1150

TPC-encode the message.

code = tpcenc(msg,N,K);

Verify that the length of the encoded codeword is the product of elements in N.

size(code)

ans = 1×2

 2048 1

prod(N)

ans = 2048

Encode Shortened Message Using Turbo Product Coding

Encode a random bit vector using 2-D turbo product coding (TPC), applying message
shortening.

Specify (N,K) code pairs and S for TPC encoding.

N = [32;64];
K = [21;57];
S = [19;24];

Generate a column vector of random message bits. The desired length for the shortened
message bits is the product of the elements in S.

msg = randi([0 1],prod(S),1);

TPC-encode the shortened message.

code = tpcenc(msg,N,K,S);

Verify that the length of the encoded codeword is the product of elements in (N-K+S).

size(code)

ans = 1×2

 tpcenc

2-1151

 930 1

prod(N-K+S)

ans = 930

Input Arguments
msg — Input message bits to encode
column vector

Input message bits to encode, specified as a column vector.

• For a full-length input messages, the length of the column vector must be the product
of the elements in K.

• For a shortened input messages, the length of the column vector must be the product
of the elements in S.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

N — Codeword length
two-element integer vector

Codeword length, specified as a two-element integer vector, [NR; NC]. NR represents the
number of rows in the product code matrix. NC represents the number of columns in the
product code matrix. For more information about NR and NC, see “Algorithms” on page 2-
1155. For a list of valid (N(i),K(i)) code pairs, see “Component Codes” on page 2-1153.
Data Types: double

K — Message length
two-element integer vector

Message length, specified as a two-element integer vector, [KR; KC]. For a full-length
message, the input column vector containing the message bits to encode is arranged into
a KR-by-KC matrix. KR represents the number of rows in the message matrix. KC
represents the number of columns in the message matrix. For more information about KR
and KC, see “Algorithms” on page 2-1155. For a list of valid (N(i),K(i)) code pairs, see
“Component Codes” on page 2-1153.

2 Functions — Alphabetical List

2-1152

Data Types: double

S — Shortened message length
two-element integer vector

Shortened message length, specified as a two-element integer vector, [SR; SC]. For a
shortened message, the input column vector containing the message bits to encode is
arranged into an SR-by-SC matrix. SR represents the number of rows in the matrix. SC
represents the number of columns in the matrix. For more information about SR and SC,
see “Algorithms” on page 2-1155.

When you specify this parameter, specify N and K vectors for the full-length TPC codes
that are shortened to (N(i)–K(i)+S(i), S(i)) codes.
Data Types: double

Output Arguments
code — TPC-encoded message
column vector

TPC-encoded message, returned as a column vector with the same data type as the input
message bits.

• For full-length input messages, the length of the returned column vector is the product
of the elements in N.

• For shortened input messages, the length of the returned column vector is the product
of the elements in (N–K+S).

More About

Component Codes
This table lists the supported component code pairs for the row (NR,KR) and column
(NC,KC) parameters.

• NR and KR represent the number of rows in the product code matrix and message
matrix, respectively.

 tpcenc

2-1153

• NC and KC represent the number of columns in the product code matrix and message
matrix, respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table
also includes the error-correction capability for each code pair.

Code type Component Code
Pairs(NR,KR) and (NC,KC)

Error-Correction
Capability (T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1

Extended Hamming code (256,247) 1
(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -

2 Functions — Alphabetical List

2-1154

(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Algorithms
Turbo product codes (TPC) are a form of concatenated codes used as forward error-
correcting (FEC) codes. Two or more component block codes, such as systematic linear
block codes, are used to construct TPCs. This encoder implements 2-D product code
encoding, as described in [1], using two “Linear Block Codes”.

Construction of Full-Length Message Product Codes

Full-length input messages are encoded using specified 2-D TPC code pairs. Row-wise
encoding uses the (NC,KC) code pair and column-wise encoding uses the (NR,KR) code pair.
The input vector length must be KR · KC. The input message bits vector is arranged into a
KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row.
The row-wise encoding results in a KR-by-NC matrix that includes parity bits added to
each row.

 tpcenc

2-1155

Next, column-wise encoding uses an (NR,KR) systematic linear block encoder on each of
the NC columns. Applying this 2-D TPC encoding to the initial KR-by-KC matrix results in
an NR-by-NC matrix that includes parity bits added to each row and column.

The 2-D TPC full-code matrix is reshaped into a column vector of length NR · NC and
returned as the TPC-encoded output.

2 Functions — Alphabetical List

2-1156

Construction of Shortened Message Product Codes

Shortened input messages are encoded using specified 2-D TPC code pairs. Row-wise
encoding uses the (NC,KC) code pair and column-wise encoding uses an (NR,KR) code pair.
The input vector length must be SR · SC. The input shortened message bits vector is
arranged into an SR-by-SC matrix. The shortened message matrix prepends two
dimensions by padding the beginning of the message matrix with zeros. The resulting
matrix is a KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row.
The row-wise encoding results in a KR-by-NC matrix that includes parity bits added to
each row.

 tpcenc

2-1157

Next, the column-wise encoding uses an (NR,KR) systematic linear block encoder on each
of the NC columns.

Applying this 2-D TPC encoding to the initial KR-by-KC matrix and excluding the zero-
padded bits from the output results in an (NR–KR+SR)-by-(NC–KC+SC) matrix. This matrix
includes parity bits added to each row and column.

2 Functions — Alphabetical List

2-1158

The 2-D TPC shortened-code matrix is reshaped into a column vector of length (NR–KR
+SR) · (NC–KC+SC) and returned as the TPC-encoded output.

References
[1] Pyndiah, R. M. "Near-Optimum Decoding of Product Codes: Block Turbo Codes." IEEE

Transactions on Communications. Volume 46, Number 8, August 1998, pp. 1003–
1010.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• TPC parameters N, K, and S must be constant values. If the value used for each of
these parameters does not change, then you can assign them by expression or
variable.

See Also
Functions
bchenc | tpcdec

Objects
comm.BCHEncoder

Blocks
TPC Encoder

Introduced in R2018a

 tpcenc

2-1159

varlms
(To be removed) Construct variable-step-size least mean square (LMS) adaptive algorithm
object

Note will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

Syntax
alg = varlms(initstep,incstep,minstep,maxstep)

Description
The varlms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about the
process for equalizing a signal, see “Equalization”.

alg = varlms(initstep,incstep,minstep,maxstep) constructs an adaptive
algorithm object based on the variable-step-size least mean square (LMS) algorithm.
initstep is the initial value of the step size parameter. incstep is the increment by
which the step size changes from iteration to iteration. minstep and maxstep are the
limits between which the step size can vary.

Properties
The table below describes the properties of the variable-step-size LMS adaptive algorithm
object. To learn how to view or change the values of an adaptive algorithm object, see
“Equalization”.

Property Description
AlgType Fixed value, 'Variable Step Size

LMS'

2 Functions — Alphabetical List

2-1160

Property Description
LeakageFactor LMS leakage factor, a real number between

0 and 1. A value of 1 corresponds to a
conventional weight update algorithm,
while a value of 0 corresponds to a
memoryless update algorithm.

InitStep Initial value of step size when the algorithm
starts

IncStep Increment by which the step size changes
from iteration to iteration

MinStep Minimum value of step size
MaxStep Maximum value of step size

Also, when you use this adaptive algorithm object to create an equalizer object (via the
lineareq or dfe function), the equalizer object has a StepSize property. The property
value is a vector that lists the current step size for each weight in the equalizer.

Algorithms
Referring to the schematics presented in “Equalization”, define w as the vector of all
current weights wi and define u as the vector of all inputs ui. Based on the current step
size, μ, this adaptive algorithm first computes the quantity

μ0 = μ + (IncStep) Re(ggprev)

where g = ue*, gprev is the analogous expression from the previous iteration, and the *
operator denotes the complex conjugate.

Then the new step size is given by

• μ0, if it is between MinStep and MaxStep
• MinStep, if μ0 < MinStep
• MaxStep, if μ0 > MaxStep

The new set of weights is given by

(LeakageFactor) w + 2 μ g*

 varlms

2-1161

Compatibility Considerations

varlms will be removed
Not recommended starting in R2019a

varlms will be removed in a future release. Use comm.LinearEqualizer or
comm.DecisionFeedback instead.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

See Also
Objects
comm.DecisionFeedback | comm.LinearEqualizer | comm.MLSEEqualizer

Topics
“Equalization”

Introduced before R2006a

2 Functions — Alphabetical List

2-1162

vec2mat
Convert vector to matrix

Syntax
mat = vec2mat(vec,matcol)
mat = vec2mat(vec,matcol,padding)
[mat,padded] = vec2mat(___)

Description
mat = vec2mat(vec,matcol) converts vector vec to matrix mat with matcol
columns. The function creates the matrix one row at a time, filling the rows with elements
from vec in order. If the length of vec is not a multiple of matcol, then the function pads
the last row of mat with zeros until the row contains matcol elements.

mat = vec2mat(vec,matcol,padding) specifies values for the function to use to pad
the last row of mat. The function uses the value from padding in order.

[mat,padded] = vec2mat(___) also returns padded, the number of padded
elements in the last row of mat. You can specify any of the input argument combinations
from previous syntaxes.

Note vec2mat is similar to the MATLAB function reshape. However, given a vector
input, reshape creates its corresponding matrix one column at a time (instead of one row
at a time). Also, reshape requires its input and output arrays to have the same number of
elements, whereas vec2mat pads its output matrix if necessary.

Examples

Convert Vector to Matrix

Create a five-element numeric vector.

 vec2mat

2-1163

vec = [1,2,3,4,5];

Convert the vector to two-column matrix. Repeat the conversion for a three-column and a
four-column matrix respectively. Display each resulting matrix.

twoColumnMatrix = vec2mat(vec,2)

twoColumnMatrix = 3×2

 1 2
 3 4
 5 0

threeColumnMatrix = vec2mat(vec,3)

threeColumnMatrix = 2×3

 1 2 3
 4 5 0

fourColumnMatrix = vec2mat(vec,4)

fourColumnMatrix = 2×4

 1 2 3 4
 5 0 0 0

Convert Vector to Matrix with Nonzero Padding

Create a five-element numeric vector.

vec = 1:5;

Specify a nonzero padding value. Convert the vector to a four-column matrix, specifying
the nonzero padding value.

paddingValue = NaN;
mat = vec2mat(vec,4,paddingValue)

mat = 2×4

2 Functions — Alphabetical List

2-1164

 1 2 3 4
 5 NaN NaN NaN

Specify another nonzero padding value.

paddingValue = [10,8,6;9,7,5]

paddingValue = 2×3

 10 8 6
 9 7 5

Convert the vector to a three-column and a four-column matrix respectively, specifying
the nonzero padding values.

mat2 = vec2mat(vec,3,paddingValue)

mat2 = 2×3

 1 2 3
 4 5 10

mat3 = vec2mat(vec,4,paddingValue)

mat3 = 2×4

 1 2 3 4
 5 10 9 8

Return Number of Padded Elements from Output Matrix

Create a five-element numeric vector and a matrix of padding values.

vec = [1;2;3;4;5];
padding = [2,4;6,4];

Convert the vector to a two-column matrix, specifying the padding values and returning
the number of padded elements. Repeat the conversion for a three-column and a four-
column matrix, respectively. Display each resulting matrix.

 vec2mat

2-1165

[mat2,numPadded2] = vec2mat(vec,2,padding)

mat2 = 3×2

 1 2
 3 4
 5 2

numPadded2 = 1

[mat3,numPadded3] = vec2mat(vec,3,padding)

mat3 = 2×3

 1 2 3
 4 5 2

numPadded3 = 1

[mat4,numPadded4] = vec2mat(vec,4,padding)

mat4 = 2×4

 1 2 3 4
 5 2 6 4

numPadded4 = 3

Input Arguments
vec — Input array
vector

Input array, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

matcol — Number of columns
positive integer

2 Functions — Alphabetical List

2-1166

Number of columns for the output matrix mat, specified as a positive integer. If the length
of vec is not a multiple of matcol, then the function pads the last row of mat with zeros
until the row contains matcol elements.
Data Types: double

padding — Padding values
vector | matrix

Padding values for the last row of mat, specified as a vector or matrix. The padding input
inherits the data type of the vec input. The function uses the values from padding in
order. If padding has fewer elements than what the function needs to complete the last
row of mat, then the function repeats the last element of padding until mat is full.

Output Arguments
mat — Output array
matrix

Output array, returned as a matrix with elements from vec and having matcol columns.
The output inherits the data type of the input. The number of rows is equal to
ceil(length(vec)/matcol).

padded — Number of padded elements
positive integer

Number of padded elements in the last row of mat, returned as a positive integer.

See Also
reshape

Introduced before R2006a

 vec2mat

2-1167

vitdec
Convolutionally decode binary data using Viterbi algorithm

Syntax
decoded = vitdec(code,trellis,tblen,opmode,dectype)
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)
decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat)
decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat)
decoded = ...
vitdec(...,'cont',...,initmetric,initstates,initinputs)
[decoded,finalmetric,finalstates,finalinputs] = ...
vitdec(...,'cont',...)

Description
decoded = vitdec(code,trellis,tblen,opmode,dectype) decodes the vector
code using the Viterbi algorithm. The MATLAB structure trellis specifies the
convolutional encoder that produced code; the format of trellis is described in “Trellis
Description of a Convolutional Code” and the reference page for the istrellis function.
code contains one or more symbols, each of which consists of
log2(trellis.numOutputSymbols) bits. Each symbol in the vector decoded consists
of log2(trellis.numInputSymbols) bits. tblen is a positive integer scalar that
specifies the traceback depth. If the code rate is 1/2, a typical value for tblen is about
five times the constraint length of the code.

opmode indicates the decoder's operation mode and its assumptions about the
corresponding encoder's operation. Choices are in the table below.

2 Functions — Alphabetical List

2-1168

Values of opmode Input

Value Meaning
'cont' The encoder is assumed to have started at the all-zeros state. The

decoder traces back from the state with the best metric. A delay
equal to tblen symbols elapses before the first decoded symbol
appears in the output. This mode is appropriate when you invoke
this function repeatedly and want to preserve continuity between
successive invocations. See the continuous operation mode syntaxes
on page 2-1170 below.

'term' The encoder is assumed to have both started and ended at the all-
zeros state, which is true for the default syntax of the convenc
function. The decoder traces back from the all-zeros state. This
mode incurs no delay. This mode is appropriate when the uncoded
message (that is, the input to convenc) has enough zeros at the end
to fill all memory registers of the encoder. If the encoder has k input
streams and constraint length vector constr (using the polynomial
description of the encoder), “enough” means k*max(constr-1).

'trunc' The encoder is assumed to have started at the all-zeros state. The
decoder traces back from the state with the best metric. This mode
incurs no delay. This mode is appropriate when you cannot assume
the encoder ended at the all-zeros state and when you do not want
to preserve continuity between successive invocations of this
function.

For the 'term' and 'trunc' mode, the traceback depth (tblen) must be a positive
integer scalar value, not greater than the number of input symbols in code.

dectype indicates the type of decision that the decoder makes, and influences the type of
data the decoder expects in code. Choices are in the table below.

 vitdec

2-1169

Values of dectype Input

Value Meaning
'unquant' code contains real input values, where 1

represents a logical zero and -1 represents
a logical one.

'hard' code contains binary input values.
'soft' For soft-decision decoding, use the syntax

below. nsdec is required for soft-decision
decoding.

Syntax for Soft Decision Decoding
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec) decodes the
vector code using soft-decision decoding. code consists of integers between 0 and
2^nsdec-1, where 0 represents the most confident 0 and 2^nsdec-1 represents the
most confident 1. The existing implementation of the functionality supports up to 13 bits
of quantization, meaning nsdec can be set up to 13. For reference, 3 bits of quantization
is about 2 db better than hard decision decoding.

Syntax for Punctures and Erasures
decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat) denotes the input
punctured code, where puncpat is the puncture pattern vector, and where 0s indicate
punctured bits in the input code.

decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat) allows an
erasure pattern vector, eraspat, to be specified for the input code, where the 1s
indicate the corresponding erasures. eraspat and code must be of the same length. If
puncturing is not used, specify puncpat to be []. In the eraspat vector, 1s indicate
erasures in the input code.

Additional Syntaxes for Continuous Operation Mode
Continuous operation mode enables you to save the decoder's internal state information
for use in a subsequent invocation of this function. Repeated calls to this function are

2 Functions — Alphabetical List

2-1170

useful if your data is partitioned into a series of smaller vectors that you process within a
loop, for example.

decoded = ...
vitdec(...,'cont',...,initmetric,initstates,initinputs) is the same as
the earlier syntaxes, except that the decoder starts with its state metrics, traceback
states, and traceback inputs specified by initmetric, initstates, and initinputs,
respectively. Each real number in initmetric represents the starting state metric of the
corresponding state. initstates and initinputs jointly specify the initial traceback
memory of the decoder; both are trellis.numStates-by-tblen matrices. initstates
consists of integers between 0 and trellis.numStates-1. If the encoder schematic has
more than one input stream, the shift register that receives the first input stream
provides the least significant bits in initstates, while the shift register that receives
the last input stream provides the most significant bits in initstates. The vector
initinputs consists of integers between 0 and trellis.numInputSymbols-1. To use
default values for all of the last three arguments, specify them as [],[],[].

[decoded,finalmetric,finalstates,finalinputs] = ...
vitdec(...,'cont',...) is the same as the earlier syntaxes, except that the final
three output arguments return the state metrics, traceback states, and traceback inputs,
respectively, at the end of the decoding process. finalmetric is a vector with
trellis.numStates elements that correspond to the final state metrics. finalstates
and finalinputs are both matrices of size trellis.numStates-by-tblen. The
elements of finalstates have the same format as those of initstates.

Traceback Matrices
The tth column of P1 shows the t-1th time step states given the inputs listed in the input
matrix. For example, the value in the ith row shows the state at time t-1 that transitions to
the i-1 state at time t. The input required for this state transition is given in the ith row of
the tth column of the input matrix.

The P1 output is the states of the traceback matrix. It is a [number of states x traceback
length] matrix. The following example uses a (7,5), rate 1/2 code. This code is easy to
follow:

t = poly2trellis(3,[7 5]);
k = log2(t.numInputSymbols);
msg = [1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0];
code = convenc(msg,t); tblen = 15; [d1 m1 p1 in1]=vitdec(code(1:end/
2),t,tblen,'cont','hard')

 vitdec

2-1171

m1 =

 0 3 2 3

p1 =

 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3
 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3

in1 =

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In this example, the message makes the encoder states follow the following sequence:

0 2 3 1 / 0 2 3 1 / ...

Since the best state is 0 (column index of smallest metric in m1 –1), the traceback matrix
starts from state 0, looking at the first row (0th state) of the last column of P1, ([1; 3; 1;
3]), which is 1. This indicates 1 for the previous state.

Next, the traceback matrix checks in1 ([0; 0; 1; 1]), which indicates 0 for the input. The
second row (1st state) of the 14th column of P1 ([1; 3; 1; 3]) is 3. This indicates 3 for the
previous state.

The traceback matrix checks in1 ([0; 0; 1; 1]), which indicates that the input was 0. The
fourth row (3rd state) of the 13th column of P1 ([0; 2; 0; 2]), is 2. This indicates 2 for the
previous state.

The traceback matrix checks in1 ([0; 0; 1; 1]), which indicates the input was 1. The third
row (2nd state) of the 12th column of P1 ([0; 2; 0; 2]), is 0. This indicates 0 for the
previous state.

The traceback matrix checks in1 ([0; 0; 1; 1]), which indicates the input was 1. The first
row (0th state) of the 11th column of P1 ([1; 3; 1; 3]), is 1. This indicates 1 for the
previous state. Then, the matrix checks in1 ([0; 0; 1; 1]), which indicates 0 for the input.

2 Functions — Alphabetical List

2-1172

To determine the best state for a given time, use m1. The smallest number in m1
represents the best state.

Examples

Create Convolutional Code

This example shows how to create a convolutional code using the convenc function and
how to decode it using vitdec.

Encoding

Define a trellis.

t = poly2trellis([4 3],[4 5 17;7 4 2]);

Encode a vector of ones.

x = ones(100,1);
code = convenc(x,t);

Decoding

Define a trellis.

t = poly2trellis([4 3],[4 5 17;7 4 2]);

Encode a vector of ones.

code = convenc(ones(100,1),t);

Set the traceback length for decoding and decode using vitdec.

tb = 2;
decoded = vitdec(code,t,tb,'trunc','hard');

Verify that the decoded data is a vector of 100 ones.

isequal(decoded,ones(100,1))

 vitdec

2-1173

ans = logical
 1

Estimate BER for Rate 2/3 Convolutional Code

This example performs a bit error rate simulation for a link that uses 16-QAM modulation
a rate 2/3 convolutional code.

Set the modulation order, and compute the number of bits per symbol.

M = 16;
k = log2(M);

Generate random binary data.

dataIn = randi([0 1],100000,1);

Define a convolutional coding trellis for a rate 2/3 code.

tPoly = poly2trellis([5 4],[23 35 0; 0 5 13]);
codeRate = 2/3;

Convolutionally encode the input data.

codeword = convenc(dataIn,tPoly);

Reshape the encoded column vector into a matrix having k columns. Then, convert the
binary matrix into an integer column vector.

codewordMat = reshape(codeword,length(codeword)/k,k);
txSym = bi2de(codewordMat);

Apply 16-QAM modulation to the encoded symbols.

txSig = qammod(txSym,M);

Convert a 10 dB Eb/No to an equivalent signal-to-noise ratio. Pass the signal through an
AWGN channel.

EbNo = 10;
snr = EbNo + 10*log10(k*codeRate);
rxSig = awgn(txSig,snr,'measured');

2 Functions — Alphabetical List

2-1174

Demodulate the received signal.

demodSig = qamdemod(rxSig,M);

Convert the output of the demodulator into a binary column vector.

demodSigMat = de2bi(demodSig,k);
demodSigBinary = demodSigMat(:);

Set the traceback depth of the Viterbi decoder.

traceBack = 16;

Decode the binary demodulated signal by using a Viterbi decoder operating in a
continuous termination mode.

dataOut = vitdec(demodSigBinary,tPoly,traceBack,'cont','hard');

Calculate the delay through the decoder, and compute the bit error statistics.

decDelay = 2*traceBack;
[numErrors,ber] = biterr(dataIn(1:end-decDelay),dataOut(decDelay+1:end))

numErrors = 26

ber = 2.6008e-04

Compare the BER with the uncoded BER.

berUncoded = berawgn(EbNo,'qam',M);
berUncoded/ber

ans = 6.7446

The convolutional code reduces the BER by approximately a factor of 4.

Estimate BER for Hard and Soft Decision Viterbi Decoding

Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi
decoders in AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

 vitdec

2-1175

clear; close all
rng default
M = 64; % Modulation order
k = log2(M); % Bits per symbol
EbNoVec = (4:10)'; % Eb/No values (dB)
numSymPerFrame = 1000; % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec));
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback length for a rate 1/2, constraint length 7,
convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops performs these steps:

• Generate binary data.
• Convolutionally encode the data.
• Apply QAM modulation to the data symbols. Specify unit average power for the

transmitted signal.
• Pass the modulated signal through an AWGN channel.
• Demodulate the received signal using hard decision and approximate LLR methods.

Specify unit average power for the received signal.
• Viterbi decode the signals using hard and unquantized methods.
• Calculate the number of bit errors.

The while loop continues to process data until either 100 errors are encountered or 1e7
bits are transmitted.

for n = 1:length(EbNoVec)
 % Convert Eb/No to SNR
 snrdB = EbNoVec(n) + 10*log10(k*rate);
 % Noise variance calculation for unity average signal power.
 noiseVar = 10.^(-snrdB/10);
 % Reset the error and bit counters
 [numErrsSoft,numErrsHard,numBits] = deal(0);

2 Functions — Alphabetical List

2-1176

 while numErrsSoft < 100 && numBits < 1e7
 % Generate binary data and convert to symbols
 dataIn = randi([0 1],numSymPerFrame*k,1);

 % Convolutionally encode the data
 dataEnc = convenc(dataIn,trellis);

 % QAM modulate
 txSig = qammod(dataEnc,M,'InputType','bit','UnitAveragePower',true);

 % Pass through AWGN channel
 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal using hard decision (bit) and
 % soft decision (approximate LLR) approaches.
 rxDataHard = qamdemod(rxSig,M,'OutputType','bit','UnitAveragePower',true);
 rxDataSoft = qamdemod(rxSig,M,'OutputType','approxllr', ...
 'UnitAveragePower',true,'NoiseVariance',noiseVar);

 % Viterbi decode the demodulated data
 dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
 dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');

 % Calculate the number of bit errors in the frame. Adjust for the
 % decoding delay, which is equal to the traceback depth.
 numErrsInFrameHard = biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
 numErrsInFrameSoft = biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));

 % Increment the error and bit counters
 numErrsHard = numErrsHard + numErrsInFrameHard;
 numErrsSoft = numErrsSoft + numErrsInFrameSoft;
 numBits = numBits + numSymPerFrame*k;

 end

 % Estimate the BER for both methods
 berEstSoft(n) = numErrsSoft/numBits;
 berEstHard(n) = numErrsHard/numBits;
end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an
uncoded 64-QAM channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on

 vitdec

2-1177

semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

As expected, the soft decision decoding produces the best results.

Limitations
In order to improve performance of C/C++ code generated by MATLAB, integrity and
responsiveness checks should be disabled before running the codegen function. See

2 Functions — Alphabetical List

2-1178

“MATLAB Code Design Considerations for Code Generation” (Simulink) for more
information.

For example, given the following function:

function y = vitdec_hard(x,t,tb)
%# codegen

y = vitdec(x,t,tb,'trunc','hard');

Execute these commands for optimal performance.

cf = coder.config;
cf.IntegrityChecks = false;
cf.ResponsivenessChecks = false;
codegen('vitdec_hard','-args',{x,coder.Constant(t),tb})

The coded data, x, the trellis structure, t, and the traceback length, tb, must be defined
in the base workspace.

References

[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications,
New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data Communications
Principles, New York, Plenum, 1992.

[3] Heller, J. A. and I. M. Jacobs, “Viterbi Decoding for Satellite and Space
Communication,” IEEE Transactions on Communication Technology, Vol. COM-19,
October 1971, pp 835–848.

[4] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, vol. COM-32, No. 3, pp 315–
319, Mar. 1984.

[5] Haccoun, D., and G. Begin, “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, vol. 37, No. 11, pp
1113–1125, Nov. 1989.

 vitdec

2-1179

[6] G. Begin, et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, vol. 38,
No. 11, pp 1922–1928, Nov. 1990.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
convenc | istrellis | poly2trellis

Topics
“Convolutional Codes”

Introduced before R2006a

2 Functions — Alphabetical List

2-1180

wgn
Generate white Gaussian noise samples

Syntax
noise = wgn(m,n,power)
noise = wgn(m,n,power,imp)
noise = wgn(m,n,power,imp,randobject)
noise = wgn(m,n,power,imp,seed)

noise = wgn(___ ,powertype)
noise = wgn(___ ,outputtype)

Description
noise = wgn(m,n,power) generates an m-by-n matrix of white Gaussian noise samples
in volts. power specifies the power of noise in dBW.

noise = wgn(m,n,power,imp) specifies the load impedance in ohms.

noise = wgn(m,n,power,imp,randobject) specifies a random number stream
object to use when generating the matrix of white Gaussian noise samples. For
information about producing repeatable noise samples, see “Tips” on page 2-1184.

noise = wgn(m,n,power,imp,seed) specifies a seed value for initializing the normal
random number generator that is used when generating the matrix of white Gaussian
noise samples. For information about producing repeatable noise samples, see “Tips” on
page 2-1184.

noise = wgn(___ ,powertype) specifies the units of power as 'dBW', 'dBm', or
'linear' in addition to the input arguments in any of the previous syntaxes.

noise = wgn(___ ,outputtype) specifies the output type as 'real' or 'complex'
in addition to the input arguments in any of the previous syntaxes.

 wgn

2-1181

Examples

Generate White Gaussian Noise

Generate real and complex white Gaussian noise (WGN) samples. Check the power of
output WGN matrices.

Generate a 1000-element column vector of real WGN samples and confirm that the power
is approximately 1 watt, which is 0 dBW.

y1 = wgn(1000,1,0);
var(y1)

ans = 0.9979

Generate a 1000-element column vector of complex WGN samples and confirm that the
power is approximately 0.25 watts, which is –6 dBW.

y2 = wgn(1000,1,-6,'complex');
var(y2)

ans = 0.2522

Input Arguments
m — Number of white Gaussian noise samples
positive integer

Number of white Gaussian noise samples desired per channel, specified as a positive
integer.
Data Types: double

n — Number of channels
positive integer

Number of channels of white Gaussian noise samples desired, specified as a positive
integer.
Data Types: double

2 Functions — Alphabetical List

2-1182

power — Power of noise samples
scalar

Power of noise samples, specified as a scalar. The default units for power is dBW. Use
powertype to change the units of power.
Data Types: double

imp — Load impedance
1 (default) | scalar

Load impedance in ohms, specified as a scalar.
Data Types: double

randobject — Random number stream object
RandStream object

Random number stream object, specified as a RandStream object. The state of the
random stream object determines the sequence of numbers produced by the randn
function. Configure the random stream object using the reset function and its
properties.

wgn generates normal random noise samples using randn. The randn function uses one
or more uniform values from the RandStream object to generate each normal value.

For information about producing repeatable noise samples, see “Tips” on page 2-1184.

seed — Random number generator seed
nonnegative integer

Random number generator seed, specified as a nonnegative integer. For more information
on the random number generator, see randn.

powertype — Signal power unit
'dBW' (default) | 'dBm' | 'linear'

Signal power unit, specified as 'dBW', 'dBm', or 'linear'. Linear power is in watts.

outputtype — Output type
'real' (default) | 'complex'

Output type, specified as 'real' or 'complex'. If outputtype is 'complex', then the
real and imaginary parts of noise each have a noise power of (power / 2).

 wgn

2-1183

Output Arguments
noise — Output white Gaussian noise samples
scalar | vector | array

Output white Gaussian noise samples in volts, returned as an m-by-n matrix.

Note Unless the default impedance for imp is changed, a load of 1 ohm is used for power
calculations.

Tips
• To generate repeatable white Gaussian noise samples, use one of these tips:

• Provide a static seed value as an input to wgn.
• Use the reset function on the randobject before passing it as an input to wgn.
• Provide randobject in a known state as an input to wgn. For more information,

see RandStream.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

Code generation supported, except for syntaxes that include a RandStream object.

See Also
Functions
RandStream | awgn | randn

2 Functions — Alphabetical List

2-1184

Topics
“Sources and Sinks”

Introduced before R2006a

 wgn

2-1185

winner2.AntennaArray
Create antenna array

Syntax
antArray = winner2.AntennaArray
antArray = winner2.AntennaArray(Name,Value)

Description
Download Required: To use this function, first download the WINNER II Channel Model
for Communications Toolbox from the Add-On Explorer. For more information on
downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

antArray = winner2.AntennaArray returns a structure representing an antenna
array with one isotropic antenna element. Both the antenna array and the single element
have no rotation and are located at the origin, [0;0;0].

antArray = winner2.AntennaArray(Name,Value) returns a structure representing
an antenna array defined using one or more Name,Value pair arguments.

For more information, see “Antenna Array Model” on page 2-1192.

Examples

Create WINNER2 Eight Element Uniform Circular Array
Use the winner2.AntennaArray function to create an eight element uniform circular
array (UCA-8) with a 1 cm radius.

UCA8 = winner2.AntennaArray('UCA',8,0.01);

Plot element positions

2 Functions — Alphabetical List

2-1186

pos = {UCA8.Element(:).Pos};
plot(cellfun(@(x) x(1),pos),cellfun(@(x) x(2),pos),'+');
xlim([-0.02 0.02]);
ylim([-0.02 0.02]);
title('UCA-8 Element Positions');

 winner2.AntennaArray

2-1187

Create WINNER2 Two Element Uniform Linear Array
Use the winner2.AntennaArray function to create a two element uniform linear array
(ULA-2) with 50 cm spacing and the dipole elements slanted at +45 and -45 degrees.

az = -180:179; % 1-degree spacing
pattern = cat(1,shiftdim(winner2.dipole(az,45),-1), ...
 shiftdim(winner2.dipole(az,-45),-1));
ULA2 = winner2.AntennaArray('ULA',2,0.5, ...
 'FP-ECS',pattern,'Azimuth',az);

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Pos',[1 0 0; 0 1 0],'Rot',[0 0 0; 0 pi() 0] indicates the
coordinates and rotation angles for two antenna elements.

Pos — Position of each antenna element
0 (default) | column vector | matrix

Position of each antenna element, specified as the comma-separated pair consisting of
'Pos' and a column vector or an NE-by-3 matrix. The three columns represent the x-, y-,
and z-coordinates in meters from the origin. NE indicates the number of elements in the
antenna array. The elements have no rotation. When there is more than one element, the
'Element' field of antArray is a row vector of structures representing all the elements.
Example: 'Pos',[63.1 10.2 11.5; 62 11 12] indicates the coordinates for two
antenna elements.
Data Types: double

Rot — Rotation angle of each antenna element
0 (default) | column vector | matrix | optional

Rotation angle of each antenna element, specified as the comma-separated pair consisting
of 'Rot' and a column vector or an NE-by-3 matrix. The three columns represent the

2 Functions — Alphabetical List

2-1188

RotX, RotY, and RotZ rotation angles of each antenna element in radians. NE indicates the
number of elements in the antenna array. Rot only applies when Pos is specified. If not
specified with Pos, the rotation angle is 0.
Example: 'Rot',[2 1.5 0; 0 pi() 0] indicates the rotation angles for two antenna
elements.
Data Types: double

UCA — Uniform circular antenna array
N,1 (default) | N,Rad

Uniform circular antenna array, specified as the comma-separated pair consisting of
'UCA' and N,Rad. In this argument, N indicates the number of elements (NE) and Rad
indicates the radius in meters. If Rad is not specified, the default radius is 1 meter.
Example: 'UCA',8,0.5 indicates an eight element uniform circular array with 0.5 meter
radius.
Data Types: double

ULA — Uniform linear antenna array
N,1/N (default) | N,Spacing

Uniform linear antenna array, specified as the comma-separated pair consisting of 'ULA'
and N,Spacing. In this argument, N indicates the number of elements (NE) and Spacing
indicates the separation between adjacent elements in meters. If Spacing is not
specified, the default separation is 1/N meters.

ULA elements are placed along x-axis with the center of the array at [0;0;0]. For an even
number of elements, there is no antenna element at [0;0;0].
Example: 'ULA',3,0.25 indicates a three element uniform linear array with 0.25 meter
spacing between adjacent elements.
Data Types: double

FP-ECS — Field pattern of element coordinate system
4-D array

Field pattern of element coordinate system, specified as the comma-separated pair
consisting of 'FP-ECS' and a P-by-2-by1-by-NAZ array.

 winner2.AntennaArray

2-1189

• The first dimension, P, can be either 1 or any number greater than or equal to the
number of elements in the antenna array (NE). When P = 1, the same pattern applies
to all elements. When P > NE, the first NE rows apply.

• The second dimension, 2, indicates that two polarizations characterize the field
pattern. The first dimension in the field pattern stores vertical polarization, and the
second one stores horizontal polarization.

• The third dimension, 1, indicates that one elevation angle characterizes the field
pattern.

• The fourth dimension, NAZ, is the number of field pattern samples taken between –180
and 180 degrees. NAZ equals the number of elements specified in Azimuth or when
Azimuth is not present it equals the number of equidistant field pattern samples
taken over azimuth angle.

Data Types: double

FP-ACS — Field pattern array coordinate system
4-D array

Field pattern array coordinate system, specified as the comma-separated pair consisting
of 'FP-ACS' and a P-by-2-by1-by-NAZ array. Array format is the same as the FP-ECS
syntax, except that the field pattern is specified in the array-coordinate-system (ACS).

• The first dimension, P, can be either 1 or any number greater than or equal to the
number of elements in the antenna array (NE). When P = 1, the same pattern applies
to all elements. When P > NE, the first NE rows apply.

• The second dimension, 2, indicates that two polarizations characterize the field
pattern. The first dimension in the field pattern stores vertical polarization, and the
second one stores horizontal polarization. Missing polarization dimensions of the field
pattern are substituted with zeros.

• The third dimension, 1, indicates that one elevation angle characterizes the field
pattern.

• The fourth dimension, NAZ, is the number of field pattern samples taken between –180
and 180 degrees. NAZ equals the number of elements specified in Azimuth or when
Azimuth is not present it equals the number of equidistant field pattern samples
taken over azimuth angle.

Data Types: double

Azimuth — Azimuth angles for 'FP-ACS' or 'FP-ECS' field patterns
row vector

2 Functions — Alphabetical List

2-1190

Azimuth angles for FP-ACS or FP-ECS field patterns in degrees , specified as the comma-
separated pair consisting of 'Azimuth' and an 1-by-NAZ row vector. The values in the
row vector indicate azimuth angles for elements in the field patterns.

Note Azimuth applies only when FP-ACS or FP-ECS are defined. If Azimuth is not
specified, uniform spacing is used for elements in the field pattern.

Example: 'Azimuth',[0 10 20 90 180 270 340 350]
Data Types: double

Output Arguments
antArray — Antenna array definition
structure

Antenna array definition, returned as a structure containing these fields.

Name — Antenna array name
character vector

Antenna array name, returned as a character vector.

Pos — Antenna array position
vector

Antenna array position, returned as a 3-by-1 vector, representing the x-, y-, and z-
coordinates in meters from the origin.

Rot — Antenna array rotation
vector

Antenna array rotation, returned as a 3-by-1 vector, representing the RotX, RotY, and RotZ
rotation angles of each antenna element in radians.

Element — Element definition
row vector of structures

Element definition, returned as a row vector of structures, with each structure
representing one element and containing these fields.

 winner2.AntennaArray

2-1191

Pos — Antenna array position
vector

Antenna array position, returned as a 3-by-1 vector, representing the x-, y-, and z-
coordinates in meters from the origin.

Rot — Antenna array rotation
vector

Antenna array rotation, returned as a 3-by-1 vector, representing the RotX, RotY, and RotZ
rotation angles of each antenna element in radians.

Aperture — Aperture definition
structure

Aperture definition, returned as a structure representing the antenna aperture.

More About

Antenna Array Model
To create an antenna array model, you must define the geometry of array elements
(positions and rotation) and the element field patterns. The arguments provided to
winner2.AntennaArray are always processed such that the array geometry is created
first, and then the field patterns are assigned.

2 Functions — Alphabetical List

2-1192

For a detailed description of the antenna array specification for the WINNER channel
model, see WINNER II Channel Models [1], Section 4.1.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2.

IST-4-027756 WINNER II, September 2007.

See Also
winner2.dipole | winner2.layoutparset

Introduced in R2017a

 winner2.AntennaArray

2-1193

winner2.dipole
Calculate field pattern of half-wavelength dipole

Syntax
pat = winner2.dipole(az)
pat = winner2.dipole(az,slant)

Description
Download Required: To use this function, first download the WINNER II Channel Model
for Communications Toolbox from the Add-On Explorer. For more information on
downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

pat = winner2.dipole(az) returns the azimuth field pattern of a 0-degree slanted
dipole at the azimuth angles specified in az.

pat = winner2.dipole(az,slant) returns the azimuth field pattern of a slanted
dipole at the azimuth angles specified in az.

Examples
Create 45 and 90 Degree Slanted Dipoles
az = -180:179; % 1 degree spacing
pattern45 = squeeze(winner2.dipole(az, 45));
pattern90 = squeeze(winner2.dipole(az, 90));

fh = figure;
set(fh, 'Position', [100 100 1000 500]);
fh.Name = 'Dipole Pattern Plots';

subplot(1,2,1);
polarplot(az/180*pi, pattern45(1,:), 'r');
hold on;

2 Functions — Alphabetical List

2-1194

polarplot(az/180*pi, pattern90(1,:), 'b');
rlim([0 1.5]);
legend('45 degree', '90 degree');
title('Vertical');

subplot(1,2,2);
polarplot(az/180*pi, pattern45(2,:), 'r');
hold on;
polarplot(az/180*pi, pattern90(2,:), 'b');
rlim([0 1.5]);
legend('45 degree','90 degree');
title('Horizontal');

Input Arguments
az — Azimuth angles
vector

 winner2.dipole

2-1195

Azimuth angles, specified as a vector indicating the azimuth angles to compute the field
pattern gain. Units are in degrees.
Data Types: double

slant — Slant angle
scalar

Slant angle, specified as a scalar representing the counterclockwise angle seen from the
front of the dipole. Units are in degrees.
Data Types: double

Output Arguments
pat — Field pattern
3-D array

Field pattern, returned as a 2-by-1-by-NAZ array representing the vertical and horizontal
field pattern, where NAZ is the number of elements in the az input vector.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2.

IST-4-027756 WINNER II, September 2007.

See Also
winner2.AntennaArray | winner2.layoutparset

Introduced in R2017a

2 Functions — Alphabetical List

2-1196

winner2.layoutparset
WINNER II layout parameter configuration

Syntax
cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays)
cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax)
cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax,seed)

Description
Download Required: To use this function, first download the WINNER II Channel Model
for Communications Toolbox from the Add-On Explorer. For more information on
downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays) returns a
structure of randomly generated WINNER II network layout parameters given mobile
station (MS) indices, base station (BS) indices, BS to MS links, and antenna array
configurations.

cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax) additionally
specifies the maximum layout range used when generating MS and BS positions.

cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax,seed)
additionally specifies a seed value for repeatability. To assign seed when not assigning
rmax, specify rmax as [].

Examples

Create Two MS to One BS WINNER 2 System Layout
Create a WINNER 2 system layout with two mobile stations (MS) connecting to the same
base station (BS).

 winner2.layoutparset

2-1197

Define antenna arrays for one BS and two MS.

BSAA = winner2.AntennaArray('UCA', 8, 0.02); % UCA-8 array for BS
MSAA1 = winner2.AntennaArray('ULA', 2, 0.01); % ULA-2 array for MS
MSAA2 = winner2.AntennaArray('ULA', 4, 0.005); % ULA-4 array for MS

Create system layout.

MSIdx = [2 3];
BSIdx = {1};
K = 2;
rndSeed = 5;
cfgLayout = winner2.layoutparset(MSIdx,BSIdx, ...
 K,[BSAA,MSAA1,MSAA2],[],rndSeed);

Visualize BS and MS positions.

BSPos = cfgLayout.Stations(cfgLayout.Pairing(1,1)).Pos;
MS1Pos = cfgLayout.Stations(cfgLayout.Pairing(2,1)).Pos;
MS2Pos = cfgLayout.Stations(cfgLayout.Pairing(2,2)).Pos;

plot3(BSPos(1),BSPos(2),BSPos(3),'bo', ...
 MS1Pos(1),MS1Pos(2),MS1Pos(3),'rs', ...
 MS2Pos(1),MS2Pos(2),MS2Pos(3),'rd');
grid on;
xlim([0 500]);
ylim([0 500]);
zlim([0 35]);
xlabel('X-position (m)');
ylabel('Y-position (m)');
zlabel('Elevation (m)');
legend('BS','MS1','MS2','Location','northeast');

2 Functions — Alphabetical List

2-1198

Input Arguments
msIdx — Mobile station index
row vector

 winner2.layoutparset

2-1199

Mobile station index, specified as a row vector indicating the indices in arrays to serve
as mobile stations.
Data Types: double

bsIdx — Base station index
column cell array

Base station index, specified as a column cell array, with each element representing one
base station. Each cell element is an integer-valued row vector to indicate the indices in
arrays to serve as different sectors of that base station.
Data Types: double

K — Number of links
scalar

Number of links, specified as a scalar representing the number of BS-MS links to be
formulated.
Data Types: double

arrays — Antenna array configurations
vector of structures

Antenna array configurations, specified as a vector of structures defining all available
arrays. All MS and BS sectors are chosen from this vector. The array of elements is
typically created using the winner2.AntennaArray function.
Data Types: double

rmax — Maximum layout range
500 (default) | scalar

Maximum layout range, specified as a scalar representing the maximum layout range in
meters used to randomly generate the MS and BS positions.
Data Types: double

seed — Seed value
integer

Seed value used to provide repeatability, specified as an integer. When seed is not
specified, the global random number generator is used. To assign seed when not
assigning rmax, specify rmax as [].

2 Functions — Alphabetical List

2-1200

Data Types: double

Output Arguments
cfgLayout — Configuration layout
structure

Configuration layout, returned as a structure containing these fields, which represent the
location and orientation parameters for all simulated stations.

Stations — Active stations
row vector of structures

Active stations, returned as a row vector of structures describing the antenna arrays for
active stations. Stations is created from the arrays input and adds an additional
Velocity field. The row ordering specifies base station (BS) sectors first, followed by the
mobile stations (MS). The BS sector and MS positions are randomly assigned. The BS
sectors have no velocity. Each MS has a velocity of about 1.42 m/s with a randomly
assigned direction.

NofSect — Number of sectors
vector

Number of sectors, returned as a vector indicating the number of sectors in each BS.

Pairing — BS to MS pairing
matrix

BS to MS pairing, returned as a 2-by-NL matrix, where NL specifies the number of links to
be modeled. See Stations for BS and MS row ordering.

ScenarioVector — Spatial scenario
1 (default) | vector

Spatial scenario, returned as a 1-by-NL vector of scenario numbers. The default is 1,
which specifies scenario A1.

The scenarios numbers map as {1=A1, 2=A2, 3=B1, 4=B2, 5=B3, 6=B4, 10=C1, 11=C2,
12=C3, 13=C4, 14=D1, 15=D2a}.

For more information, see WINNER II Channel Models [1], Section 2.3.

 winner2.layoutparset

2-1201

PropagConditionVector — Propagation condition
1 (default) | vector

Propagation condition, returned as a 1-by-NL vector of propagation conditions (LOS = 1
and NLOS = 0) for each link. The default is 1.

StreetWidth — Street width
20 (default) | vector

Street width, returned as a 1-by-NL vector of identical values that specify the average
width (in meters) of the streets. StreetWidth is used for the path loss model of the B1
and B2 scenarios. See ScenarioVector for the scenario number mapping. All elements
must have the same value. StreetWidth applies only when the PathLossModelUsed
field from winner2.wimparset is set to 'yes'.

Dist1 — Distances from BS to the last LOS point
NaN (default) | vector

Distances from BS to the last LOS point, returned as a 1-by-NL vector. Dist1 is used for
the path loss model of the B1 and B2 scenarios. The default value of NaN indicates that
the distance is randomly determined in path loss function. See ScenarioVector for the
scenario number mapping. Dist1 applies only when the PathLossModelUsed field from
winner2.wimparset is set to 'yes'.

For more information, see WINNER II Channel Models [1], Figure 4-3.

NumFloors — Floor numbers
1 (default) | vector

Floor numbers, returned as a 1-by-NL vector indicating the floor number where the indoor
BS or MS is located. The NumFloors property is used for the path loss model of the A2
and B4 scenarios only. See ScenarioVector for the scenario number mapping.
NumFloors applies only when the PathLossModelUsed field from
winner2.wimparset is set to 'yes'.

NumPenetratedFloors — Number of floors penetrated
0 (default) | vector

Number of floors penetrated, returned as a 1-by-NL vector indicating the number of
penetrated floors between BS and MS. The NumPenetratedFloors property is used for
the NLOS path loss model of the A1 scenario. See ScenarioVector for the scenario

2 Functions — Alphabetical List

2-1202

number mapping. NumPenetratedFloors applies only when the PathLossModelUsed
field from winner2.wimparset is set to 'yes'.

For more information, see WINNER II Channel Models [1], Table 4-4.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2.

IST-4-027756 WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.AntennaArray | winner2.wim | winner2.wimparset

Introduced in R2017a

 winner2.layoutparset

2-1203

winner2.wim
Generate channel coefficients using WINNER II channel model

Syntax
chanCoef = winner2.wim(cfgWim,cfgLayout)
[chanCoef,pathDelays] = winner2.wim(cfgWim,cfgLayout)
[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout)
[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout,
initCond)

Description
Download Required: To use this function, first download the WINNER II Channel Model
for Communications Toolbox from the Add-On Explorer. For more information on
downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

chanCoef = winner2.wim(cfgWim,cfgLayout) returns channel coefficients based
on the WINNER II model parameters for all links defined in the WINNER II network
layout.

[chanCoef,pathDelays] = winner2.wim(cfgWim,cfgLayout) also returns the
path delays for all links.

[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout) also
returns the final condition of the system after generating the channel coefficients.

[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout,
initCond) generates the channel coefficients by using the initial system conditions
rather than of performing random initialization. initCond is of the same form as
finalCond and is typically the finalCond output from the prior call of this function.
Use this syntax to repeatedly generate channel coefficients for continuous time samples.

Examples

2 Functions — Alphabetical List

2-1204

Continuously Generate WINNER 2 Channel Coefficients

Continuously generate channel coefficients for each link in a two-link system layout.

Configure model parameters.

cfgWim = winner2.wimparset;
cfgWim.SampleDensity = 20;
cfgWim.RandomSeed = 10; % For repeatability

Configure layout parameters.

BSAA = winner2.AntennaArray('UCA',8,0.02); % UCA-8 array for BS
MSAA1 = winner2.AntennaArray('ULA',2,0.01); % ULA-2 array for MS1
MSAA2 = winner2.AntennaArray('ULA',4,0.005); % ULA-4 array for MS2
MSIdx = [2,3];
BSIdx = {1};
NL = 2;
rndSeed = 5;
cfgLayout = winner2.layoutparset(MSIdx,BSIdx,NL,[BSAA,MSAA1,MSAA2],[],rndSeed);

Generate channel coefficients for the first time.

[H1,~,finalCond] = winner2.wim(cfgWim,cfgLayout);

Generate a second set of channel coefficients.

[H2,~,finalCond] = winner2.wim(cfgWim,cfgLayout,finalCond);

Concatenate H1 and H2 in time domain.

H = cellfun(@(x,y) cat(4,x,y), H1, H2, 'UniformOutput', false);

Plot H for the first link, 1st Tx, 1st Rx, and 1st path.

figure;
Ts = finalCond.delta_t(1); % Sample time for the 1st link
plot(Ts*(0:2*cfgWim.NumTimeSamples-1)', ...
 abs(squeeze(H{1}(1,1,1,:))));
xlabel('Time (s)');
ylabel('Amplitude');
title('First Path Coefficient of 1st Link, 1st Tx, and 1st Rx');

 winner2.wim

2-1205

The image shows the channel continuity over the two outputs from the winner2.wim
function.

Input Arguments
cfgWim — Configuration layout
structure

Configuration model, specified as a structure containing these fields. cfgWim is typically
created using the winner2.wimparset function.

2 Functions — Alphabetical List

2-1206

NumTimeSamples — Number of time samples
100 (default) | scalar

Number of time samples, specified as a scalar.

FixedPdpUsed — Use predefined path delays and powers for specific scenarios
'no' (default) | 'yes'

Use predefined path delays and powers for specific scenarios, specified as 'no' or
'yes'.

FixedAnglesUsed — Use predefined path angles of departure (AoDs) and angles
of arrival (AoAs) for specific scenarios
'no' (default) | 'yes'

Use predefined path angles of departure (AoDs) and angles of arrival (AoAs) for specific
scenarios, specified as 'yes' or 'no'.

IntraClusterDsUsed — Divide each of the two strongest clusters into three
subclusters per link
'yes' (default) | 'no'

Divide each of the two strongest clusters into three subclusters per link, specified as
'yes' or 'no'.

PolarisedArrays — Use dual-polarized arrays
'yes' (default) | 'no'

Use dual-polarized arrays, specified as 'yes' or 'no'.

UseManualPropCondition — Use manually defined propagation conditions
'yes' (default) | 'no'

Use manually defined propagation conditions, specified as 'yes' or 'no'. Set to 'yes'
to enforce the use of manually defined propagation conditions (LOS/NLOS) in the
PropagConditionVector structure field returned by winner2.layoutparset. Set to
'no' to draw propagation conditions from pre-defined LOS probabilities.

CenterFrequency — Carrier frequency
5.25e9 (default) | scalar

Carrier frequency in Hz, specified as a scalar.

 winner2.wim

2-1207

UniformTimeSampling — Enforce uniform time sampling
'no' (default) | 'yes'

Enforce all links to be sampled at the same time instants, specified as 'no' or 'yes'.

SampleDensity — Number of time samples per half wavelength
2e6 (default) | scalar

Number of time samples per half wavelength, specified as a scalar.

DelaySamplingInterval — Sampling interval
5e-9 (default) | scalar

Sampling interval, specified as an scalar indicating the input signal sample time in
seconds. DelaySamplingInterval defines the sampling grid to which the path delays
are rounded. A value of 0 seconds indicates no rounding on path delays.

ShadowingModelUsed — Use shadow fading
'no' (default) | 'yes'

Use shadow fading, specified as 'no' or 'yes'.

PathLossModelUsed — Use path loss model
'no' (default) | 'yes'

Use path loss model, specified as 'no' or 'yes'.

PathLossModel — Path loss model
'pathloss' (default) | character vector

Path loss model, specified as a character vector representing a valid function name.
PathLossModel applies only when PathLossModelUsed is set to 'yes'.

PathLossOption — Wall material
'CR_light' (default) | 'CR_heavy' | 'RR_light' | 'RR_heavy'

Wall material, specified as 'CR_light', 'CR_heavy', 'RR_light', or 'RR_heavy',
indicating the wall material for the A1 scenario NLOS path loss calculation.
PathLossOption applies only when PathLossModelUsed is set to 'yes'.

RandomSeed — Seed for random number generators
[] (default) | scalar

2 Functions — Alphabetical List

2-1208

Seed for random number generators, specified as a scalar or empty brackets. Empty
brackets, [], indicate that the global random stream is used.

cfgLayout — Configuration layout
structure

Configuration layout, specified as a structure containing these fields, which represent the
location and orientation parameters for all simulated stations. cfgLayout is typically
created using the winner2.layoutparset function.

Stations — Active stations
row vector of structures

Active stations, specified as a row vector of structures describing the antenna arrays for
active stations. Stations is created from the arrays input of winner2.layoutparset
and adds an additional Velocity field. The row ordering specifies base station (BS)
sectors first, followed by the mobile stations (MS). The BS sector and MS positions are
randomly assigned. The BS sectors have no velocity. Each MS has a velocity of about 1.42
m/s with a randomly assigned direction.

NofSect — Number of sectors
vector

Number of sectors, specified as a vector indicating the number of sectors in each BS.

Pairing — BS to MS pairing
matrix

BS to MS pairing, specified as a 2-by-NL matrix, where NL specifies the number of links to
be modeled. See Stations for BS and MS row ordering.

ScenarioVector — Spatial scenario
1 (default) | vector

Spatial scenario, specified as a 1-by-NL vector of scenario numbers. The default is 1,
which specifies scenario A1.

The scenarios numbers map as {1=A1, 2=A2, 3=B1, 4=B2, 5=B3, 6=B4, 10=C1, 11=C2,
12=C3, 13=C4, 14=D1, 15=D2a}.

For more information, see WINNER II Channel Models [1], Section 2.3.

 winner2.wim

2-1209

PropagConditionVector — Propagation condition
1 (default) | vector

Propagation condition, specified as a 1-by-NL vector of propagation conditions (LOS = 1
and NLOS = 0) for each link.

StreetWidth — Street width
20 (default) | vector

Street width, specified as a 1-by-NL vector of identical values that specify the average
width (in meters) of the streets. StreetWidth is used for the path loss model of the B1
and B2 scenarios. See ScenarioVector for the scenario number mapping. All elements
must have the same value. StreetWidth applies only when
cfgWim.PathLossModelUsed is set to 'yes'.

Dist1 — Distances from BS to the last LOS point
NaN (default) | vector

Distances from BS to the last LOS point, specified as a 1-by-NL vector. Dist1 is used for
the path loss model of the B1 and B2 scenarios. The default value of NaN indicates that
the distance is randomly determined in path loss function. See ScenarioVector for the
scenario number mapping. Dist1 applies only when cfgWim.PathLossModelUsed is set
to 'yes'.

For more information, see WINNER II Channel Models [1], Figure 4-3.

NumFloors — Floor numbers
1 (default) | vector

Floor numbers, specified as a 1-by-NL vector indicating the floor number where the indoor
BS or MS is located. The default value is 1. The NumFloors field is used for the path loss
model of the A2 and B4 scenarios only. See ScenarioVector for the scenario number
mapping. NumFloors applies only when cfgWim.PathLossModelUsed is set to 'yes'.

NumPenetratedFloors — Number of floors penetrated
0 (default) | vector

Number of floors penetrated, specified as a 1-by-NL vector indicating the number of
penetrated floors between BS and MS. The default value is 0. The
NumPenetratedFloors is used for the NLOS path loss model of the A1 scenario. See
ScenarioVector for the scenario number mapping. NumPenetratedFloors field
applies only when cfgWim.PathLossModelUsed is set to 'yes'.

2 Functions — Alphabetical List

2-1210

For more information, see WINNER II Channel Models [1], Table 4-4.

initCond — Initial system condition
structure | optional

Initial system condition, specified as a structure. initCond is of the same form as
finalCond and is typically the finalCond output from the prior call of winner2.wim.
Data Types: struct

Output Arguments
chanCoef — Channel coefficients
cell array containing 4-D arrays of complex values

Channel coefficients, returned as an NL-by-1 cell array. NL is the number of links in the
system. The ith element of chanCoef is an NR(i)-by-NT(i)-by-NP(i)-by-NS array. NR, NT, and
NP are link specific. NS is the same for all the links.

• NR(i) is the number of receive antenna elements at MS for the ith link.
• NT(i) is the number of transmit antenna elements at BS for the ith link.
• NP(i) is the number of paths for the ith link.
• NS is the number of time samples given by cfgWim.NumTimeSamples.

For more information , see “Channel Power” on page 2-1212.
Data Types: cell

pathDelays — Path delays
matrix

Path delays, returned as an NL-by-maxNP matrix. NL is the number of links in the system
and maxNP is the maximum number of paths among all links. Each row of the matrix
applies to each link. When a link has fewer than maxNP paths, the corresponding row in
pathDelays is NaN padded.
Data Types: double

finalCond — Final system condition
structure

 winner2.wim

2-1211

Final system condition, returned as a structure. When generating channel coefficients for
continuous time samples, use finalCond as the initCond input for the next call to
winner2.wim.

For more information, see WINNER II Channel Models [1], Section 5.2.
Data Types: struct

More About

Channel Power
When path loss and shadowing are off, path gains of the computed WINNER channel are
normalized. Specifically, path gains are normalized when the ShadowingModelUsed and
PathLossModelUsed parameters are set to 'no'.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2.

IST-4-027756 WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.AntennaArray | winner2.layoutparset | winner2.wimparset

Introduced in R2017a

2 Functions — Alphabetical List

2-1212

winner2.wimparset
WINNER II model parameter configuration

Syntax
cfgWim = winner2.wimparset

Description
Download Required: To use this function, first download the WINNER II Channel Model
for Communications Toolbox from the Add-On Explorer. For more information on
downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

cfgWim = winner2.wimparset returns a structure of WINNER II model parameters
with their default values.

Examples

Create a WINNER II model parameter set
cfgWim = winner2.wimparset;

Adjust default settings.

cfgWim.RandomSeed = 31; % set the rng seed for repeatability
cfgWim.NumTimeSamples = 250;
cfgWim.CenterFrequency = 4e9;

Output Arguments
cfgWim — Configuration layout
structure

 winner2.wimparset

2-1213

Configuration model, returned as a structure containing these fields.

NumTimeSamples — Number of time samples
100 (default) | scalar

Number of time samples, specified as a scalar.

FixedPdpUsed — Use predefined path delays and powers for specific scenarios
'no' (default) | 'yes'

Use predefined path delays and powers for specific scenarios, specified as 'no' or
'yes'.

FixedAnglesUsed — Use predefined path angles of departure (AoDs) and angles
of arrival (AoAs) for specific scenarios
'no' (default) | 'yes'

Use predefined path angles of departure (AoDs) and angles of arrival (AoAs) for specific
scenarios, specified as 'yes' or 'no'.

IntraClusterDsUsed — Divide each of the two strongest clusters into three
subclusters per link
'yes' (default) | 'no'

Divide each of the two strongest clusters into three subclusters per link, specified as
'yes' or 'no'.

PolarisedArrays — Use dual-polarized arrays
'yes' (default) | 'no'

Use dual-polarized arrays, specified as 'yes' or 'no'.

UseManualPropCondition — Use manually defined propagation conditions
'yes' (default) | 'no'

Use manually defined propagation conditions, specified as 'yes' or 'no'. Set to 'yes'
to enforce the use of manually defined propagation conditions (LOS/NLOS) in the
PropagConditionVector structure field returned by winner2.layoutparset. Set to
'no' to draw propagation conditions from pre-defined LOS probabilities.

CenterFrequency — Carrier frequency
5.25e9 (default) | scalar

2 Functions — Alphabetical List

2-1214

Carrier frequency in Hz, specified as a scalar.

UniformTimeSampling — Enforce uniform time sampling
'no' (default) | 'yes'

Enforce all links to be sampled at the same time instants, specified as 'no' or 'yes'.

SampleDensity — Number of time samples per half wavelength
2e6 (default) | scalar

Number of time samples per half wavelength, specified as a scalar.

DelaySamplingInterval — Sampling interval
5e-9 (default) | scalar

Sampling interval, specified as an scalar indicating the input signal sample time in
seconds. DelaySamplingInterval defines the sampling grid to which the path delays
are rounded. A value of 0 seconds indicates no rounding on path delays.

ShadowingModelUsed — Use shadow fading
'no' (default) | 'yes'

Use shadow fading, specified as 'no' or 'yes'.

PathLossModelUsed — Use path loss model
'no' (default) | 'yes'

Use path loss model, specified as 'no' or 'yes'.

PathLossModel — Path loss model
'pathloss' (default) | character vector

Path loss model, specified as a character vector representing a valid function name.
PathLossModel applies only when PathLossModelUsed is set to 'yes'.

PathLossOption — Wall material
'CR_light' (default) | 'CR_heavy' | 'RR_light' | 'RR_heavy'

Wall material, specified as 'CR_light', 'CR_heavy', 'RR_light', or 'RR_heavy',
indicating the wall material for the A1 scenario NLOS path loss calculation.
PathLossOption applies only when PathLossModelUsed is set to 'yes'.

 winner2.wimparset

2-1215

RandomSeed — Seed for random number generators
[] (default) | scalar

Seed for random number generators, specified as a scalar or empty brackets. Empty
brackets, [], indicate that the global random stream is used.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2.

IST-4-027756 WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.layoutparset | winner2.wim

Introduced in R2017a

2 Functions — Alphabetical List

2-1216

zadoffChuSeq
Generate root Zadoff-Chu sequence

Syntax
seq = zadoffChuSeq(R,N)

Description
seq = zadoffChuSeq(R,N) generates the Rth root Zadoff-Chu sequence with length N,
as defined in 3GPP TS 36.211.

The function generates the sequence using the algorithm given by

seq(m+1) = exp(-j·π·R·m·(m+1)/N), for m = 0, ..., N-1.

The function uses a negative polarity on the argument of the exponent, that is, a
clockwise sequence of phases.

Examples

Examine Correlation Properties of Root Zadoff-Chu Sequence

Generate the 25th root Zadoff-Chu sequence with a length of 139.

Plot the absolute values of the output sequence.

seq = zadoffChuSeq(25,139);
plot(abs(xcorr(seq)./length(seq)))

 zadoffChuSeq

2-1217

Input Arguments
R — Root of Zadoff-Chu sequence
positive integer

Root of the Zadoff-Chu sequence, specified as a positive integer.
Example: 25
Data Types: double

2 Functions — Alphabetical List

2-1218

N — Length of Zadoff-Chu sequence
odd positive integer

Length of the Zadoff-Chu sequence, specified as an odd positive integer.
Example: 139
Data Types: double

Output Arguments
seq — Rth root Zadoff-Chu sequence
column vector of complex values

Rth root Zadoff-Chu sequence, returned as an N-by-1 vector of complex values.

Compatibility Considerations

lteZadoffChuSeq was renamed to zadoffChuSeq
Behavior changed in R2019a

In release R2019a, the lteZadoffChuSeq function was renamed to zadoffChuSeq.

References
[1] 3GPP TS 36.211. "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

Channels and Modulation." 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network..

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 zadoffChuSeq

2-1219

See Also
comm.GoldSequence | comm.PNSequence

Introduced in R2012b

2 Functions — Alphabetical List

2-1220

addCustomBasemap
Add custom basemap

Syntax
addCustomBasemap(basemapName,URL)
addCustomBasemap(___ ,Name,Value)

Description
addCustomBasemap(basemapName,URL) adds the custom basemap specified by URL to
the list of basemaps available for use with mapping functions. basemapName is the name
you choose to call the custom basemap. Added basemaps remain available for use in
future MATLAB sessions.

addCustomBasemap(___ ,Name,Value) specifies name-value pairs that set additional
parameters of the basemap.

Examples

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, the nremove
the custom basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL

indicates which server to use to get the data. For load balancing, the provider has
three servers that you can use: a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map
data. Web map providers might define specific requirements for the attribution.

 addCustomBasemap

2-1221

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer
object that loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

2 Functions — Alphabetical List

2-1222

After a custom basemap is added to siteviewer, the custom map is available for future
calls to siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;

 addCustomBasemap

2-1223

Use removeCustomBasemap to remove the custom basemap from future calls to
siteviewer. Note the 'Open Topo Map' icon is no longer available in the Imagery
tab.

removeCustomBasemap(name)
siteviewer;

2 Functions — Alphabetical List

2-1224

Input Arguments
basemapName — Name used to identify basemap programmatically
string scalar | character vector

Name used to identify basemap programmatically, specified as a string scalar or
character vector.

 addCustomBasemap

2-1225

Example: 'openstreetmap'
Data Types: string | char

URL — Parameterized map URL
string scalar | character vector

Parameterized map URL, specified as a string scalar or character vector. A parameterized
URL is an index of the map tiles, formatted as ${z}/${x}/${y}.png or {z}/{x}/
{y}.png, where:

• ${z} or {z} is the tile zoom level.
• ${x} or {x} is the tile column index.
• ${y} or {y} is the tile row index.

Example: 'https://hostname/${z}/${x}/${y}.png'
Data Types: string | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: addCustomBasemap(basemapName,URL,'Attribution',attribution)

Attribution — Attribution of custom basemap
'Tiles courtesy of DOMAIN_NAME_OF_URL' (default) | string scalar | string array |
character vector | cell array of character vectors

Attribution of custom basemap, specified as the comma-separated pair consisting of
'Attribution' and a string scalar, string array, character vector, or cell array of
character vectors. If the host is 'localhost', or if URL contains only IP numbers,
specify an empty value (''). To create a multiline attribution, specify a string array or
nonscalar cell array of character vectors.

If you do not specify an attribution, the default attribution is 'Tiles courtesy of
DOMAIN_NAME_OF_URL', where the addCustomBasemap function obtains the domain
name from the URL input argument.
Example: 'Credit: U.S. Geological Survey'

2 Functions — Alphabetical List

2-1226

Data Types: string | char | cell

DisplayName — Display name of custom basemap
string scalar | character vector

Display name of the custom basemap, specified as the comma-separated pair consisting of
'DisplayName' and a string scalar or character vector.
Example: 'OpenStreetMap'
Data Types: string | char

MaxZoomLevel — Maximum zoom level of basemap
18 (default) | integer in the range [0, 25]

Maximum zoom level of the basemap, specified as the comma-separated pair consisting of
'MaxZoomLevel' and an integer in the range [0, 25].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

IsDeployable — Map is deployable using MATLAB Compiler™
false (default) | true

Map is deployable using MATLAB Compiler, specified as the comma-separated pair
consisting of 'IsDeployable' and false or true.
Data Types: logical

Tips
• You can find tiled web maps from various vendors, such as OpenStreetMap®, the

USGS National Map, Mapbox, DigitalGlobe, Esri® ArcGIS Online, the Geospatial
Information Authority of Japan (GSI), and HERE Technologies. Abide by the map
vendors terms-of-service agreement and include accurate attribution with the maps
you use.

• To access a list of available basemaps, press Tab before specifying the basemap in
your plotting function.

 addCustomBasemap

2-1227

See Also
geoaxes | geobasemap | geobubble | geodensityplot | geoplot | geoscatter |
removeCustomBasemap

2 Functions — Alphabetical List

2-1228

removeCustomBasemap
Remove custom basemap

Syntax
removeCustomBasemap(basemapName)

Description
removeCustomBasemap(basemapName) removes the custom basemap specified by
basemapName from the list of available basemaps.

Examples

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, the nremove
the custom basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL

indicates which server to use to get the data. For load balancing, the provider has
three servers that you can use: a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map
data. Web map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));

 removeCustomBasemap

2-1229

attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer
object that loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

2 Functions — Alphabetical List

2-1230

After a custom basemap is added to siteviewer, the custom map is available for future
calls to siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;

Use removeCustomBasemap to remove the custom basemap from future calls to
siteviewer. Note the 'Open Topo Map' icon is no longer available in the Imagery
tab.

 removeCustomBasemap

2-1231

removeCustomBasemap(name)
siteviewer;

Input Arguments
basemapName — Name of custom basemap
string scalar | character vector

2 Functions — Alphabetical List

2-1232

Name of the custom basemap to remove, specified as a string scalar or character vector.
You define the basemap name when you add the basemap using the addCustomBasemap
function.
Data Types: string | char

See Also
addCustomBasemap | geoaxes | geobasemap | geobubble | geodensityplot |
geoplot | geoscatter

 removeCustomBasemap

2-1233

fogpl
RF signal attenuation due to fog and clouds

Syntax
L = fogpl(R,freq,T,den)

Description
L = fogpl(R,freq,T,den) returns attenuation, L, when signals propagate in fog or
clouds. R represents the signal path length. freq represents the signal carrier frequency,
T is the ambient temperature, and den specifies the liquid water density in the fog or
cloud.

The fogpl function applies the International Telecommunication Union (ITU) cloud and
fog attenuation model to calculate path loss of signals propagating through clouds and
fog [1]. Fog and clouds are the same atmospheric phenomenon, differing only by height
above ground. Both environments are parameterized by their liquid water density. Other
model parameters include signal frequency and temperature. This function applies when
the signal path is contained entirely in a uniform fog or cloud environment. The liquid
water density does not vary along the signal path. The attenuation model applies only for
frequencies at 10–1000 GHz.

Examples

Attenuation in Cumulus Clouds

Compute the attenuation of signals propagating through a cloud that is 1 km long at 1000
meters altitude. Compute the attenuation for frequencies from 15 to 1000 GHz. A typical
value for the cloud liquid water density is 0.5 g/m3. Assume the atmospheric temperature
at 1000 meters is 20∘C.

R = 1000.0;
freq = [15:5:1000]*1e9;

2 Functions — Alphabetical List

2-1234

T = 20.0;
lwd = 0.5;
L = fogpl(R,freq,T,lwd);

Plot the specific attenuation as a function of frequency. Specific attenuation is the
attenuation or loss per kilometer.

loglog(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

 fogpl

2-1235

Input Arguments
R — Signal path length
positive real-valued scalar | M-by-1 nonnegative real-valued vector | 1-by-M nonnegative
real-valued vector

Signal path length, specified as a scalar or as an M-by-1 or 1-by-M vector of nonnegative
real-values. Total attenuation is the specific attenuation multiplied by the path length.
Units are meters.
Example: [1300.0,1400.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N
nonnegative real-valued row vector

Signal frequency, specified as a positive real-valued scalar or as an N-by-1 nonnegative
real-valued vector or 1-by-N nonnegative real-valued vector. Frequencies must lie in the
range 10–1000 GHz.
Example: [14.0e9,15.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature in fog or cloud, specified as a real-valued scalar. Units are in
degrees Celsius.
Example: -10.0

den — Liquid water density
nonnegative real-valued scalar

Liquid water density, specified as a nonnegative real-valued scalar. Units are g/m3. Typical
values for liquid water density in fog range from approximately 0.05 g/m3 for medium fog
to approximately 0.5 g/m3 for thick fog. For medium fog, visibility is about 300 meters.
For heavy fog, visibility is about 50 meters. Cumulus cloud liquid water density is typically
0.5 g/m3.
Example: 0.01

2 Functions — Alphabetical List

2-1236

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents
a different path where M is the number of paths. Each column represents a different
frequency where N is the number of frequencies. Units are in dB.

More About
Fog and Cloud Attenuation Model
This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model,
Recommendation ITU-R P.840-6: Attenuation due to clouds and fog is used. The model
computes the specific attenuation (attenuation per kilometer), of a signal as a function of
liquid water density, signal frequency, and temperature. The model applies to polarized
and nonpolarized fields. The formula for specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation
coefficient and depends on frequency. The cloud and fog attenuation model is valid for
frequencies 10–1000 GHz. Units for the specific attenuation coefficient are (dB/km)/(g/
m3).

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply narrowband attenuation to each subband.
Then, sum all attenuated subband signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union.

Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

 fogpl

2-1237

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
fspl | gaspl | rainpl

Introduced in R2016a

2 Functions — Alphabetical List

2-1238

fspl
Free space path loss

Syntax
L = fspl(R,lambda)

Description
L = fspl(R,lambda) returns the free space path loss in decibels for a waveform with
wavelength lambda propagated over a distance of R meters. The minimum value of L is
zero, indicating no path loss.

Input Arguments
R

real-valued 1-by-M or M-by-1 vector

Propagation distance of signal. Units are in meters.

lambda

real-valued 1-by-N or N-by-1 vector

The wavelength is the speed of propagation divided by the signal frequency. Wavelength
units are meters.

Output Arguments
L

Path loss in decibels. M-by-N nonnegative matrix. A value of zero signifies no path loss.
When lambda is a scalar, L has the same dimensions as R.

 fspl

2-1239

Examples

Calculate Free-Space Path Loss

Calculate the free-space path loss (in dB) of a 10 GHz radar signal over a distance of 10
km.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
R = 10e3;
L = fspl(R,lambda)

L = 132.4478

More About

Free Space Path Loss
The free-space path loss, L, in decibels is:

L = 20log10(4πR
λ)

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in a
loss smaller than 0 dB, equivalent to a signal gain. For this reason, the loss is set to 0 dB
for range values R ≤ λ/4π.

References
[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

2 Functions — Alphabetical List

2-1240

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
fogpl | gaspl | rainpl

Introduced in R2011a

 fspl

2-1241

gaspl
RF signal attenuation due to atmospheric gases

Syntax
L = gaspl(range,freq,T,P,den)

Description
L = gaspl(range,freq,T,P,den) returns the attenuation, L, when signals propagate
through the atmosphere. range represents the signal path length, and freq represents
the signal carrier frequency. T represents the ambient temperature, P represents the
atmospheric pressure, and den represents the atmospheric water vapor density.

The gaspl function applies the International Telecommunication Union (ITU)
atmospheric gas attenuation model [1] to calculate path loss for signals primarily due to
oxygen and water vapor. The model computes attenuation as a function of ambient
temperature, pressure, water vapor density, and signal frequency. The function requires
that the signal path is contained entirely in a uniform environment. Atmospheric
parameters do not vary along the signal path. The attenuation model applies only for
frequencies at 1–1000 GHz.

Examples

Atmospheric Gas Attenuation Spectrum

Compute the attenuation spectrum from 1 to 1000 GHz for an atmospheric pressure of
101.300 kPa and a temperature of 15∘C. Plot the spectrum for a water vapor density of
7.5 g/m3 and then plot the spectrum for dry air (zero water vapor density).

Set the attenuation frequencies.

freq = [1:1000]*1e9;

2 Functions — Alphabetical List

2-1242

Assume a 1 km path distance.

R = 1000.0;

Compute the attenuation for air containing water vapor.

T = 15;
P = 101300.0;
W = 7.5;
L = gaspl(R,freq,T,P,W);

Compute the attenuation for dry air.

L0 = gaspl(R,freq,T,P,0.0);

Plot the attenuations.

semilogy(freq/1e9,L)
hold on
semilogy(freq/1e9,L0)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB)')
hold off

 gaspl

2-1243

Plot Attenuation Due to Atmospheric Gases and Free Space

First, plot the specific attenuation of atmospheric gases for frequencies from 1 GHz to
1000 GHz. Assume a sea-level dry air pressure of 101.325e5 kPa and a water vapor
density of 7.5 g/m3. The air temperature is 20∘C. Specific attenuation is defined as dB loss
per kilometer. Then, plot the actual attenuation at 10 GHz for a span of ranges.

Plot Specific Atmospheric Gas Attenuation

Set the atmosphere temperature, pressure, water vapor density.

2 Functions — Alphabetical List

2-1244

T = 20.0;
Patm = 101.325e3;
rho_wv = 7.5;

Set the propagation distance, speed of light, and frequencies.

km = 1000.0;
c = physconst('LightSpeed');
freqs = [1:1000]*1e9;

Compute and plot the atmospheric gas loss.

loss = gaspl(km,freqs,T,Patm,rho_wv);
semilogy(freqs/1e9,loss)
grid on
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

 gaspl

2-1245

Plot Actual Atmospheric and Free Space Attenuation

Compute both free space loss and atmospheric gas loss at 10 GHz for ranges from 1 to
100 km. The frequency corresponds to an X-band radar. Then, plot the free space loss and
the total (atmospheric + free space) loss.

ranges = [1:100]*1000;
freq_xband = 10e9;
loss_gas = gaspl(ranges,freq_xband,T,Patm,rho_wv);
lambda = c/freq_xband;
loss_fsp = fspl(ranges,lambda);
semilogx(ranges/1000,loss_gas + loss_fsp.',ranges/1000,loss_fsp)
legend('Atmospheric + Free Space Loss','Free Space Loss','Location','SouthEast')

2 Functions — Alphabetical List

2-1246

xlabel('Range (km)')
ylabel('Loss (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | M-by-1 nonnegative real-valued column vector | 1-by-M
nonnegative real-valued row vector

Signal path length used to compute attenuation, specified as a nonnegative real-valued
scalar or vector. You can specify multiple path lengths simultaneously. Units are in
meters.

 gaspl

2-1247

Example: [13000.0,14000.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N
nonnegative real-valued row vector

Signal frequency, specified as a positive real-valued scalar, or as an N-by-1 nonnegative
real-valued vector or 1-by-N nonnegative real-valued vector. You can specify multiple
frequencies simultaneously. Frequencies must lie in the range 1–1000 GHz. Units are in
hertz.
Example: [1.4e9,2.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0

P — Dry air pressure
positive real-valued scalar

Dry air pressure, specified as a positive real-valued scalar. Units are in Pa. One standard
atmosphere at sea level is 101325 Pa.
Example: 101300.0

den — Water vapor density
nonnegative real-valued scalar

Water vapor density or absolute humidity, specified as a nonnegative real-valued scalar.
Units are g/m3. The maximum water vapor density of air at 30° C is approximately 30.0
g/m3. The maximum water vapor density of air at 0°C is approximately 5.0 g/m3.
Example: 4.0

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

2 Functions — Alphabetical List

2-1248

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents
a different path where M is the number of paths. Each column represents a different
frequency where N is the number of frequencies. Units are in dB.

More About
Atmospheric Gas Attenuation Model
This model calculates the attenuation of signals that propagate through atmospheric
gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This
effect is due primarily to the absorption resonance lines of oxygen and water vapor, with
smaller contributions coming from nitrogen gas. The model also includes a continuous
absorption spectrum below 10 GHz. The ITU model Recommendation ITU-R P.676-10:
Attenuation by atmospheric gases is used. The model computes the specific attenuation
(attenuation per kilometer) as a function of temperature, pressure, water vapor density,
and signal frequency. The atmospheric gas model is valid for frequencies from 1–1000
GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f) + γw(f) = 0.1820f N″(f) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and
consists of a spectral line component and a continuous component:

N″(f) = ∑
i

SiFi + N″D(f)

The spectral component consists of a sum of discrete spectrum terms composed of a
localized frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si.
For atmospheric oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

 gaspl

2-1249

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient
temperature. Pressure units are in hectoPascals (hPa) and temperature is in degrees
Kelvin. The water vapor partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water
vapor line depends on two parameters, b1 and b2. The ITU documentation cited at the end
of this section contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency
described in the ITU references cited below. The functions depend on empirical model
parameters that are also tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length, R. Then, the total attenuation is Lg=
R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union.

Recommendation ITU-R P.676-10: Attenuation by atmospheric gases 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

2 Functions — Alphabetical List

2-1250

See Also
fogpl | fspl | rainpl

Introduced in R2016a

 gaspl

2-1251

rainpl
RF signal attenuation due to rainfall

Syntax
L = rainpl(range,freq,rainrate)
L = rainpl(range,freq,rainrate,elev)
L = rainpl(range,freq,rainrate,elev,tau)

Description
L = rainpl(range,freq,rainrate) returns the signal attenuation, L, due to rainfall.
In this syntax, attenuation is a function of signal path length, range, signal frequency,
freq, and rain rate, rainrate. The path elevation angle and polarization tilt angles are
assumed to zero.

The rainpl function applies the International Telecommunication Union (ITU) rainfall
attenuation model to calculate path loss of signals propagating in a region of rainfall [1].
The function applies when the signal path is contained entirely in a uniform rainfall
environment. Rain rate does not vary along the signal path. The attenuation model applies
only for frequencies at 1–1000 GHz.

L = rainpl(range,freq,rainrate,elev) specifies the elevation angle, elev, of the
propagation path.

L = rainpl(range,freq,rainrate,elev,tau) specifies the polarization tilt angle,
tau, of the signal.

Examples

Signal Attenuation Due to Rainfall

Compute the signal attenuation due to rainfall for a 20 GHz signal over a distance of 10
km in light and heavy rain.

2 Functions — Alphabetical List

2-1252

Propagate the signal in a light rainfall of 1 mm/hr.

rr = 1.0;
L = rainpl(10000,20.0e9,rr)

L = 0.7104

L = 0.7104

L = 0.7104

Propagate the signal in a heavy rainfall of 10 mm/hr.

rr = 10.0;
L = rainpl(10000,20.0e9,rr)

L = 7.8413

L = 7.8413

L = 7.8413

Signal Attenuation Due to Rainfall as Function of Frequency

Plot the signal attenuation due to moderate rainfall for signals in the frequency range
from 1 to 1000 GHz. The path distance is 10 km.

Set the rain rate value for moderate rainfall to 3 mm/hr.

rr = 3.0;
freq = [1:1000]*1e9;
L = rainpl(10000,freq,rr);
loglog(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

 rainpl

2-1253

Signal Attenuation Due to Rainfall as Function of Elevation Angle

Compute the signal attenuation due to heavy rain as a function of elevation angle.
Elevation angles vary from 0 to 90 degrees. Assume a path distance of 100 km and a
signal frequency of 100 GHz.

Set the rain rate to 10 mm/hr.

rr = 10.0;

Set the elevation angles, frequency, range.

2 Functions — Alphabetical List

2-1254

elev = [0:1:90];
freq = 100.0e9;
rng = 100000.0*ones(size(elev));

Compute and plot the loss.

L = rainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

 rainpl

2-1255

Signal Attenuation Due to Rainfall as Function of Polarization

Compute the signal attenuation due to heavy rainfall as a function of the polarization tilt
angle. Assume a path distance of 100 km, a signal frequency of 100 GHz signal, and a
path elevation angle of 0 degrees. Set the rainfall rate to 10 mm/hour. Plot the signal
attenuation versus polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;

Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 100.0e9;
rng = 100e3*ones(size(tau));
rr = 10.0;

Compute and plot the attenuation.

L = rainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

2 Functions — Alphabetical List

2-1256

Input Arguments
range — Signal path length
nonnegative real-valued scalar | nonnegative real-valued M-by-1 column vector |
nonnegative real-valued 1-by-M row vector

Signal path length, specified as a nonnegative real-valued scalar, or as a M-by-1 or 1-by-M
vector. Units are in meters.
Example: [13000.0,14000.0]

 rainpl

2-1257

freq — Signal frequency
positive real-valued scalar | nonnegative real-valued N-by-1 column vector | nonnegative
real-valued 1-by-N row vector

Signal frequency, specified as a positive real-valued scalar, or as a nonnegative N-by-1 or
1-by-N vector. Frequencies must lie in the range 1–1000 GHz.
Example: [1400.0e6,2.0e9]

rainrate — Rain rate
nonnegative real-valued scalar

Rain rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.
Example: 1.5

elev — Signal path elevation angle
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M
row vector

Signal path elevation angle, specified as a real-valued scalar, or as an M-by-1 or 1-by- M
vector. Units are in degrees between –90° and 90°. If elev is a scalar, all propagation
paths have the same elevation angle. If elev is a vector, its length must match the
dimension of range and each element in elev corresponds to a propagation range in
range.
Example: [0,45]

tau — Tilt angle of polarization ellipse
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M
row vector

Tilt angle of the signal polarization ellipse, specified as a real-valued scalar, or as an M-
by-1 or 1-by- M vector. Units are in degrees between –90° and 90°. If tau is a scalar, all
signals have the same tilt angle. If tau is a vector, its length must match the dimension of
range. In that case, each element in tau corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semimajor axis of the polarization
ellipse and the x-axis. Because the ellipse is symmetrical, a tilt angle of 100° corresponds
to the same polarization state as a tilt angle of -80°. Thus, the tilt angle need only be
specified between ±90°.
Example: [45,30]

2 Functions — Alphabetical List

2-1258

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents
a different path where M is the number of paths. Each column represents a different
frequency where N is the number of frequencies. Units are in dB.

More About

Rainfall Attenuation Model
This model calculates the attenuation of signals that propagate through regions of
rainfall.

Electromagnetic signals are attenuate when propagating through a region of rainfall.
Rainfall attenuation is computed according to the ITU rainfall model Recommendation
ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods. The
model computes the specific attenuation (attenuation per kilometer) of a signal as a
function of rainfall rate, signal frequency, polarization, and path elevation angle. To
compute the attenuation, this model uses

γr = krα,

where r is the rain rate in mm/hr. The parameter k and exponent α depend on the
frequency, the polarization state, and the elevation angle of the signal path. The specific
attenuation model is valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by a propagation distance, R. Then, total attenuation is
Lr = Rγr. Instead of using geometric range as the propagation distance, the toolbox uses a
modified range. The modified range is the geometric range multiplied by a range factor

1
1 + R

R0

where

 rainpl

2-1259

R0 = 35e−0.015r

is the effective path length in kilometers (see Seybold, J. Introduction to RF Propagation.)
When there is no rain, the effective path length is 35 km. When the rain rate is, for
example, 10 mm/hr, the effective path length is 30.1 km. At short range, the propagation
distance is approximately the geometric range. For longer ranges, the propagation
distance asymptotically approaches the effective path length.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union.

Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in
prediction methods. 2005.

[2] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
fogpl | fspl | gaspl

Introduced in R2016a

2 Functions — Alphabetical List

2-1260

rangeangle
Range and angle calculation

Syntax
[rng,ang] = rangeangle(pos)
[rng,ang] = rangeangle(pos,refpos)
[rng,ang] = rangeangle(pos,refpos,refaxes)
[rng,ang] = rangeangle(___ ,model)

Description
The function rangeangle determines the propagation path length and path direction of a
signal from a source point or set of source points to a reference point. The function
supports two propagation models – the free space model and the two-ray model. The free
space model is a single line-of-sight path from a source point to a reference point. The
two-ray multipath model generates two paths. The first path follows the free-space path.
The second path is a reflected path off a boundary plane at z = 0. Path directions are
defined with respect to either the global coordinate system at the reference point or a
local coordinate system at the reference point. Distances and angles at the reference
point do not depend upon which direction the signal is travelling along the path.

[rng,ang] = rangeangle(pos) returns the propagation path length, rng, and
direction angles, ang, of a signal path from a source point or set of source points, pos, to
the origin of the global coordinate system. The direction angles are the azimuth and
elevation with respect to the global coordinate axes at the origin. Signals follow a line-of-
sight path from the source point to the origin. The line-of-sight path corresponds to the
geometric straight line between the points.

[rng,ang] = rangeangle(pos,refpos) also specifies a reference point or set of
reference points, refpos. rng now contains the propagation path length from the source
points to the reference points. The direction angles are the azimuth and elevation with
respect to the global coordinate axes at the reference points. You can specify multiple
points and multiple reference points.

 rangeangle

2-1261

[rng,ang] = rangeangle(pos,refpos,refaxes) also specifies local coordinate
system axes, refaxes, at the reference points. Direction angles are the azimuth and
elevation with respect to the local coordinate axes centered at refpos.

[rng,ang] = rangeangle(___ ,model), also specifies a propagation model. When
model is set to 'freespace', the signal propagates along a line-of-sight path from
source point to reception point. When model is set to 'two-ray', the signal propagates
along two paths from source point to reception point. The first path is the line-of-sight
path. The second path is the reflecting path. In this case, the function returns the
distances and angles for two paths for each source point and corresponding reference
point.

Input Arguments
pos

Source point position, specified as a real-valued 3-by-1 vector or a real-valued 3-by-N
matrix. A matrix represents multiple source points. The columns contain the Cartesian
coordinates of N points in the form [x;y;z].

When pos is a 3-by-N matrix, you must specify refpos as a 3-by-N matrix for N reference
positions. If all the reference points are identical, you can specify refpos by a single 3-
by-1 vector.

Position units are meters.

refpos

Reference point position, specified as a real-valued 3-by-1 vector or a real-valued 3-by-N
matrix. A matrix represents multiple reference points. The columns contain the Cartesian
coordinates of N points ins the form [x;y;z].

When refpos is a 3-by-N matrix, you must specify pos as a 3-by-N matrix for N source
positions. If all the source points are identical, you can specify pos by a single 3-by-1
vector.

Position units are meters.

Default: [0;0;0]

2 Functions — Alphabetical List

2-1262

refaxes

Local coordinate system axes, specified as a real-valued 3-by-3 matrix or a 3-by-3-by-N
array. For an array, each page corresponds to a local coordinate axes at each reference
point. The columns in refaxes specify the direction of the coordinate axes for the local
coordinate system in Cartesian coordinates. N must match the number of columns in pos
or refpos when these dimensions are greater than one.

Default: [1 0 0;0 1 0;0 0 1]

model

Propagation model, specified as 'freespace' or 'two-ray'. Choosing 'freespace'
invokes the free space propagation model. Choosing 'two-ray' invokes the two-ray
propagation model.

Default: 'freespace'

Output Arguments
rng

Propagation range, returned as a real-valued 1-by-N vector or real-valued 1-by-2N vector.

When model is set to 'freespace', the size of rng is 1-by-N. The propagation range is
the length of the direct path from the position defined in pos to the corresponding
reference position defined in refpos.

When model is set to 'two-ray', rng contains the ranges for the direct path and the
reflected path. Alternate columns of rng refer to the line-of-sight path and reflected path,
respectively for the same source-reference point pair. Position units are meters.

ang

Azimuth and elevation angles, returned as a 2-by-N matrix or 2-by-2N matrix. Each
column represents a direction angle in the form [azimuth;elevation].

When model is set to 'freespace', ang is a 2-by-N matrix and represents the angle of
the path from a source point to a reference point.

 rangeangle

2-1263

When model is set to 'two-ray', ang is a 2-by-2N matrix. Alternate columns of ang
refer to the line-of-sight path and reflected path, respectively.

Angle units are in degrees.

Examples

Range and Angle Computation

Compute the range and angle of a target located at (1000,2000,50) meters from the
origin.

TargetLoc = [1000;2000;50];
[tgtrng,tgtang] = rangeangle(TargetLoc)

tgtrng = 2.2366e+03

tgtang = 2×1

 63.4349
 1.2810

Range and Angle With Respect to Local Origin

Compute the range and angle of a target located at (1000,2000,50) meters with respect to
a local origin at (100,100,10) meters.

TargetLoc = [1000;2000;50];
Origin = [100;100;10];
[tgtrng,tgtang] = rangeangle(TargetLoc,Origin)

tgtrng = 2.1028e+03

tgtang = 2×1

 64.6538
 1.0900

2 Functions — Alphabetical List

2-1264

Range and Angle With Respect to Local Coordinates

Compute the range and angle of a target located at (1000,2000,50) meters but with
respect to a local coordinate system origin at (100,100,10) meters. Choose a local
coordinate reference frame that is rotated about the z-axis by 45° from the global
coordinate axes.

targetpos = [1000;2000;50];
origin = [100;100;10];
refaxes = [1/sqrt(2) -1/sqrt(2) 0; 1/sqrt(2) 1/sqrt(2) 0; 0 0 1];
[tgtrng,tgtang] = rangeangle(targetpos,origin,refaxes)

tgtrng = 2.1028e+03

tgtang = 2×1

 19.6538
 1.0900

More About

Angles in Local and Global Coordinate Systems
The rangeangle function returns the path distance and path angles in either the global
or local coordinate systems. By default, the rangeangle function determines the angle a
signal path makes with respect to global coordinates. If you add the refaxes argument,
you can compute the angles with respect to local coordinates. As an illustration, this
figure shows a 5-by-5 uniform rectangular array (URA) rotated from the global
coordinates (xyz) using refaxes. The x' axis of the local coordinate system (x'y'z') is
aligned with the main axis of the array and moves as the array moves. The path length is
independent of orientation. The global coordinate system defines the azimuth and
elevations angles (Φ,θ) and the local coordinate system defines the azimuth and
elevations angles (Φ',θ').

 rangeangle

2-1265

Local and Global Coordinate Axes

Free Space Propagation Model
The free-space signal propagation model states that a signal propagating from one point
to another in a homogeneous, isotropic medium travels in a straight line, called the line-
of-sight or direct path. The straight line is defined by the geometric vector from the
radiation source to the destination.

Two-Ray Propagation Model
A two-ray propagation channel is the next step up in complexity from a free-space channel
and is the simplest case of a multipath propagation environment. The free-space channel
models a straight-line line-of-sight path from point 1 to point 2. In a two-ray channel, the
medium is specified as a homogeneous, isotropic medium with a reflecting planar
boundary. The boundary is always set at z = 0. There are at most two rays propagating

2 Functions — Alphabetical List

2-1266

from point 1 to point 2. The first ray path propagates along the same line-of-sight path as
in the free-space channel. The line-of-sight path is often called the direct path. The second
ray reflects off the boundary before propagating to point 2. According to the Law of
Reflection , the angle of reflection equals the angle of incidence. In short-range
simulations such as cellular communications systems and automotive radars, you can
assume that the reflecting surface, the ground or ocean surface, is flat.

The figure illustrates two propagation paths. From the source position, ss, and the
receiver position, sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The
arrival angles are the elevation and azimuth angles of the arriving radiation with respect
to a local coordinate system. In this case, the local coordinate system coincides with the
global coordinate system. You can also compute the transmitting angles, θlos and θrp. In
the global coordinates, the angle of reflection at the boundary is the same as the angles
θrp and θ′rp. The reflection angle is important to know when you use angle-dependent
reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path
length for the line-of-sight path is shown in the figure by Rlos which is equal to the
geometric distance between source and receiver. The total path length for the reflected
path is Rrp= R1 + R2. The quantity L is the ground range between source and receiver.

 rangeangle

2-1267

You can easily derive exact formulas for path lengths and angles in terms of the ground
range and object heights in the global coordinate system.

2 Functions — Alphabetical List

2-1268

R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
Introduced in R2011a

 rangeangle

2-1269

addCustomTerrain
Add custom terrain data

Syntax
addCustomTerrain(name,files)
addCustomTerrain(___ ,Name,Value)

Description
addCustomTerrain(name,files) adds the terrain data specified with a user-defined
name and files. You can use this function to add custom terrain data in Site Viewer and
other RF propagation functions. You can access the custom terrain data in the current
and future sessions of MATLAB until you call removeCustomTerrain.

addCustomTerrain(___ ,Name,Value) adds custom terrain data with additional
options specified by one or more name-value pairs.

Examples

Site Viewer Maps Using Custom Terrain

Add a custom terrain using n44_w072_3arc_v1.dt1 DTED file.

addCustomTerrain('mydted5','n44_w072_3arc_v1.dt1')

Use the custom terrain name in Site Viewer.

viewer = siteviewer('Terrain','mydted5');

2 Functions — Alphabetical List

2-1270

Create a site with the terrain region.

mtwash = txsite('Name','Mt Washington', ...
'Latitude',44.2706, ...
'Longitude',-71.3033, ...
'AntennaHeight', 30);
show(mtwash)

 addCustomTerrain

2-1271

Create a coverage map.

coverage(mtwash)

2 Functions — Alphabetical List

2-1272

Remove the custom terrain.

close(viewer)
removeCustomTerrain("mydted5")

Input Arguments
name — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data, specified as a string scalar or a character vector.
Data Types: char | string

files — List of DTED files
string scalar | character vector | cell array of character vectors

List of DTED files, specified as a string scalar, a character vector or a cell array of
character vectors.

 addCustomTerrain

2-1273

Note If you specify multiple files, they must combine to define a complete rectangular
geographic region. If not, you must set the name-value pair 'FillMissing' to 'true'.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FillMissing',true

Attribution — Attribution of custom terrain data
character vector | string scalar

Attribution of custom terrain data, specified as a character vector or a string scalar. The
attribution is displayed on the Site Viewer map. By default, the value is empty.
Data Types: char | string

FillMissing — Fill data of missing files with value 0
false (default) | true

Fill data of missing files with value 0, specified as true or false. Missing file values are
required to complete a rectangular geographic region with the input files.
Data Types: logical

WriteLocation — Name of folder to write extracted terrain files to
character vector | string scalar

Name of folder to write extracted terrain files to, specified as a character vector or a
string scalar. The folder must exist and have write permissions. The default value is a
folder name generated using tempname.
Data Types: char | string

See Also
removeCustomTerrain | siteviewer

2 Functions — Alphabetical List

2-1274

Introduced in R2019a

 addCustomTerrain

2-1275

angle
Angle between sites

Syntax
[az,el] = angle(site1,site2)
[az,el] = angle(site1,site2,path)
[az,el] = angle(___ ,Name,Value)

Description
[az,el] = angle(site1,site2) returns the azimuth and elevation angles between
site 1 and site

[az,el] = angle(site1,site2,path) returns the angles using a specified path type,
either Euclidean or geodesic.

[az,el] = angle(___ ,Name,Value) returns the azimuth and elevation angles with
additional options specified by name-value pairs.

Examples

Angle Between Sites

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the azimuth and elevation angles between the sites.

[az,el] = angle(tx,rx)

az = 14.0142

2 Functions — Alphabetical List

2-1276

el = -0.2816

Get the azimuth angle between sites in degrees clockwise from north.

azFromEast = angle(tx,rx); % Unit: degrees counter-clockwise from east
azFromNorth = -azFromEast + 90 % Convert angle to clockwise from north

azFromNorth = 75.9858

Angle Between Sites When Path is Geodesic

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the azimuth and elevation angles between the sites.

[az,el] = angle(tx,rx,'geodesic')

az = 14.0142

el = 0

Input Arguments
site1,site2 — Transmitter or receiver site
txsite or rxsite object

Transmitter or receiver site, specified as a txsite or rxsite object. You can use array
inputs to specify multiple sites.

path — Measurement path type
'euclidean' or 'geodesic'

Measurement path type, specified as one of the following:

• 'euclidean': Uses the shortest path through space connecting the antenna center
positions of the site 1 and site 2.

 angle

2-1277

• 'geodesic': Uses the shortest path on the surface of the earth connecting the
latitude and longitude locations of site 1 and site 2. This path uses Earth ellipsoid
model WGS-84.

Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

Output Arguments
az — Azimuth angle between site 1 and site 2
M-by-N arrays

Azimuth angle between site 1 and site 2, returned as M-by-N arrays in degrees. M is the
number of sites in sites 2 and N is the number of sites in sites 1. The values range from
-180 to 180.

el — Elevation angle between site 1 and site 2
M-by-N arrays

Elevation angle between site 1 and site 2, returned as M-by-N arrays in degrees. M is the
number of sites in sites 2 and N is the number of sites in sites 1 The values range from
-90 to 90.

2 Functions — Alphabetical List

2-1278

When the path type specified is 'geodesic', elevation angle is always zero.

See Also
distance

Introduced in R2017b

 angle

2-1279

clearMap
Clear map visualizations

Syntax
clearMap(viewer)

Description
clearMap(viewer) removes all visualizations from the map.

Examples

View Transmitter Site On Site Viewer
Launch a Site Viewer with streets basemap.

viewer = siteviewer("Basemap","streets");

2 Functions — Alphabetical List

2-1280

View a transmitter site on this map.

tx = txsite;
show(tx)

 clearMap

2-1281

Clear the map.

t = timer('TimerFcn',@(~,~)disp('Fired.'),'StartDelay',3);
start(t)
wait(t)
clearMap(viewer)

2 Functions — Alphabetical List

2-1282

Input Arguments
viewer — Map viewer for visualizing transmitter or receiver sites
siteviewer object

Map viewer for visualizing transmitter or receiver sites, specified as a siteviewer
object.

See Also
close | siteviewer

Introduced in R2019a

 clearMap

2-1283

close
Close map viewer window

Syntax
close(viewer)

Description
close(viewer) closes the map viewer window and deletes the handle

Examples

Compare Coverage Maps

Launch two Site Viewer windows.

One Site Viewer window uses the terrain model.

viewer1 = siteviewer("Terrain","gmted2010","Name","Site Viewer (Using Terrain)");

2 Functions — Alphabetical List

2-1284

The second Site Viewer window does not use the terrain model.

viewer2 = siteviewer("Terrain","none","Name","Site Viewer (No Terrain)");

 close

2-1285

Create a transmitter site.

tx = txsite;

Generate a coverage map on each window. The map with terrain uses the Longley-Rice
propagation model by default.

coverage(tx,"Map",viewer1)

2 Functions — Alphabetical List

2-1286

The map without terrain uses the free-space model by default.

coverage(tx,"Map",viewer2)

 close

2-1287

Close the maps.

close(viewer1)
close(viewer2)

Input Arguments
viewer — Map viewer for visualizing transmitter or receiver sites
siteviewer object

Map viewer for visualizing transmitter or receiver sites, specified as a siteviewer
object.

See Also
clearMap | siteviewer

2 Functions — Alphabetical List

2-1288

Introduced in R2019a

 close

2-1289

coverage
Display coverage map

Syntax
coverage(tx)
coverage(tx,propmodel)
coverage(tx,rx)
coverage(tx,rx,propmodel)
coverage(___ ,Name,Value, ___)

Description
coverage(tx) displays the coverage map for the transmitter site. Each colored contour
of the map defines an area where the corresponding signal strength is transmitted to the
mobile receiver.

coverage(tx,propmodel) displays the coverage map based on the specified
propagation model.

coverage(tx,rx) displays the coverage map based on the receiver site properties.

coverage(tx,rx,propmodel) displays the coverage map based on the receiver site
properties and specified propagation model.

coverage(___ ,Name,Value, ___) displays the coverage map using additional options
specified by the Name,Value pairs.

Examples

Coverage Map of Transmitter

Create a transmitter site at MathWorks headquarters.

2 Functions — Alphabetical List

2-1290

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

Show the coverage map.

coverage(tx)

Coverage Map Using Transmitter and Receiver

Create a transmitter site at MathWorks headquarters.

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

Create a receiver site at Fenway Park with an antenna height of 1.2 m and system loss of
10 dB.

 coverage

2-1291

rx = rxsite('Name','Fenway Park', ...
 'Latitude',42.3467, ...
 'Longitude',-71.0972,'AntennaHeight',1.2,'SystemLoss',10);

Calculate the coverage area of the transmitter using a close-in propagation model.

coverage(tx,rx,'PropagationModel','closein')

Coverage Map for Strong and Weak Signals

Define strong and weak signal strengths with corresponding colors.

strongSignal = -75;
strongSignalColor = "green";
weakSignal = -90;
weakSignalColor = "cyan";

Create a transmitter site and display the coverage map.

2 Functions — Alphabetical List

2-1292

tx = txsite('Name','MathWorks','Latitude', 42.3001,'Longitude', -71.3503);
coverage(tx,'SignalStrengths',[strongSignal,weakSignal], ...
 'Colors', [strongSignalColor,weakSignalColor])

Combined Coverage Map of Multiple Transmitters

Define the names and the locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create the transmitter site array.

txs = txsite('Name', names,...
 'Latitude',lats,...
 'Longitude',lons, ...
 'TransmitterFrequency',2.5e9);

 coverage

2-1293

Display the combined coverage map for multiple signal strengths, using close-in
propagation model.

coverage(txs,'close-in','SignalStrengths',-100:5:-60)

Input Arguments
tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify
multiple sites.

rx — Receiver site
rxsite object

Receiver site, specified as an rxsite object. You can also use the name-value pairs
'ReceiverGain' and 'ReceiverAntennaHeight' to specify the receiver values.

2 Functions — Alphabetical List

2-1294

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the name-
value pair 'PropagationModel' to specify this parameter. You can also use the
propagationModel function to define this input. The default propagation model is
'longeley-rice' when terrain is enabled and 'freespace' when terrain is disabled.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

Type — Type of signal strength to compute
'power' (default) | 'efield'

Type of signal strength to compute, specified as 'power' or 'efield'.

Power is expressed in power units (dBm) of the signal at the receiver input. E-field is
expressed in electric field strength units (dBμV/m) of signal wave incident on the antenna.
Data Types: char

SignalStrengths — Signal strengths to display on coverage map
numeric vector

Signal strengths to display on coverage map, specified as a numeric vector.

Each strength uses different colored filled contour on the map. The default value is -100
dBm if the 'Type' name-value pair is 'power' and 40 dBμV/m if 'Type' is 'efield'.
Data Types: | bus | char

PropagationModel — Propagation model to use for path loss calculations
'longley-rice' (default) | 'freespace' | 'close-in' | 'rain' | 'gas' | 'fog' |
propagation model object

 coverage

2-1295

Propagation model to use for the path loss calculations, specified as 'freespace',
'close-in', 'rain', 'gas', 'fog', 'longley-rice', or as an object created using
the propagationModel function. The default propagation model is 'longeley-rice'
when terrain is enabled and 'freespace' when terrain is disabled.
Data Types: char

MaxRange — Maximum range of coverage map from each transmitter site
numeric scalar

Maximum range of the coverage map from each transmitter site, specified as a numeric
scalar in meters representing a great circular distance. This property defines the region
of interest on the map to plot. If the 'Map' is a siteviewer object with 'Buildings'
specified, the default value is the distance to the farthest building. If using a terrain
propagation model, the default value is 30000 m or 30 km. If using non-terrain
propagation model, the default value is computed to include all SignalStrengths in the
coverage map region.

Note When using terrain, the MaxRange limit is 300000 m.

Data Types: double

Resolution — Resolution of coverage map
'auto' (default) | numeric scalar

Resolution of coverage map, specified as a numeric scalar in meters.

The resolution of 'auto' computes the maximum value scaled to 'MaxRange'.
Decreasing the resolution increases the quality of the coverage map and the time
required to create it.
Data Types: char | double

ReceiverGain — Mobile receiver gain
2.1 (default) | numeric scalar

Mobile receiver gain, specified as a numeric scalar in dB. The receiver gain value includes
the mobile receiver antenna gain and system loss.

The receiver gain computes received signal strength when the 'Type' is 'power'.

2 Functions — Alphabetical List

2-1296

If receiver site argument rx is passed to coverage, the default value is the maximum gain
of the receiver antenna with the system loss subtracted. Otherwise the default value is
2.1.
Data Types: char | double

ReceiverAntennaHeight — Mobile receiver antenna height above ground
elevation
1 (default) | numeric scalar

Mobile receiver antenna height above ground elevation, specified as a numeric scalar in
meters.

If receiver site argument rx is passed to coverage, the default value is the
AntennaHeight of the receiver. Otherwise the default value is 1.
Data Types: double

Colors — Colors of filled contours on coverage map
M-by-3 array of RGB triplets | array of strings | cell array of character vectors

Filled contours color of coverage map, specified as an M-by-3 array of RGB triplets, an
array of strings, or a cell array of character vectors.

Colors are assigned element-wise to 'SignalStrengths' values for coloring the
corresponding filled contours.

'Colors' cannot be used with 'ColorLimits' or 'ColorMap'.

For more information, see ColorSpec (Color Specification).
Data Types: char | string | double

ColorLimits — Color limits for colormap
two-element vector

Color limits for colormap, specified as a two-element vector of type [min max].

The color limits indicate the signal level values that map to the first and last colors on the
colormap.

The default value is [-120 -5] if the 'Type' name-value pair is 'power' and [20
135] if 'Type' is 'efields'.

 coverage

2-1297

'ColorLimits' cannot be used with 'Color'.
Data Types: double

ColorMap — Colormap filled contours for coverage map
'jet' (default) | predefined color map | M-by-3 array of RGB triplets

Colormap filled contours on coverage map, specified as a predefined colormap or M-by-3
array of RGB triplets, where M defines individual colors.

'ColorMap' cannot be used with 'Colors'.
Data Types: char | double

Transparency — Transparency of coverage map
0.4 (default) | numeric scalar

Transparency of coverage map, specified as a numeric scalar in the range 0 to 1. 0 is
transparent and 1 is opaque.
Data Types: double

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

See Also
link | propagationModel | sigstrength | sinr

Topics
ColorSpec (Color Specification)

Introduced in R2017b

2 Functions — Alphabetical List

2-1298

distance
Distance between sites

Syntax
d = distance(site1,site2)
d = distance(site1,site2,path)
d = distance(___ ,Name,Value)

Description
d = distance(site1,site2) returns the distance in meters between site1 and site2.

d = distance(site1,site2,path) returns the distance using a specified path type,
either Euclidean or geodesic.

d = distance(___ ,Name,Value) returns the distance with additional options
specified by name-value pairs.

Examples

Distance Between Transmitter and Receiver Site

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the Euclidean distance in km between the sites.

dme = distance(tx,rx)

dme = 2.1504e+04

dkm = dme / 1000

 distance

2-1299

dkm = 21.5038

Get the geodesic distance between the two sites.

dmg = distance(tx,rx,'geodesic')

dmg = 2.1504e+04

Input Arguments
site1,site2 — Transmitter or receiver site
txsite or rxsite object

Transmitter or receiver site, specified as a txsite or rxsite. You can use array inputs
to specify multiple sites.

path — Measurement path type
'euclidean' | 'geodesic'

Measurement path type, specified as one of the following:

• 'euclidean': Uses the shortest path through space that connects the antenna center
positions of the site 1 and site 2.

• 'geodesic': Uses the shortest path on the surface of the earth that connects the
latitude and longitude locations of site 1 and site 2. This path uses Earth ellipsoid
model WGS-84.

Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for surface data
siteviewer object | terrain name

2 Functions — Alphabetical List

2-1300

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

Output Arguments
d — Distance between sites
M-by-N numeric array

Distance between sites, returned as M-by-N arrays in degrees. M is the number of sites in
site 2 and N is the number of sites in site 1.

See Also
angle

Introduced in R2017b

 distance

2-1301

elevation
Elevation of site

Syntax
z = elevation(site)
z = elevation(___ ,Name,Value)

Description
z = elevation(site) returns the ground or building surface elevation of antenna site
in meters. Elevation is measured relative to mean sea level using earth gravitational
model, EGM-96. If the site coincides with a building, elevation is measured at the top of
the building. Otherwise, elevation is measured at the ground.

Note Enable terrain data to use this function.

z = elevation(___ ,Name,Value) returns the ground elevation of the antenna in
meters with additional options specified by name-value pairs.

Examples

Elevation at Mount Washington

Compute and display the elevation at Mount Washington in meters.

mtwash = txsite('Name','Mt Washington','Latitude',44.2706, ...
 'Longitude',-71.3033);
z = elevation(mtwash)

z = 1.8675e+03

2 Functions — Alphabetical List

2-1302

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of
txsite or rxsite objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

Output Arguments
z — Ground or building surface elevation of antenna site
M-by-1 matrix

Ground or building surface elevation of the antenna site, returned as an M-by-1 matrix
with each element unit in meters. M is the number of sites in site.

See Also
angle | distance | rxsite | txsite

 elevation

2-1303

Introduced in R2018b

2 Functions — Alphabetical List

2-1304

hide
Hide site location on map

Syntax
hide(site)
hide(___ ,Name,Value)

Description
hide(site) hides the site location of the antenna site on a map.

hide(___ ,Name,Value) hides the site location with additional specified by one or
more name-value pairs.

Examples

Show and Hide Transmitter Site

Create a transmitter site.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504);

Show the transmitter site.

show(tx)

 hide

2-1305

Hide the transmitter site.

hide(tx)

2 Functions — Alphabetical List

2-1306

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of
txsite or rxsite objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 hide

2-1307

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

See Also
show

Introduced in R2017b

2 Functions — Alphabetical List

2-1308

link
Display communication link on map

Syntax
link(rx,tx)
link(rx,tx,propmodel)
link(___ ,Name,Value)
status = link(___)

Description
link(rx,tx) plots a one-way point-to-point communication link between a receiver site
and transmitter site. The plot is color coded to identify the link success status.

link(rx,tx,propmodel) plots the communication link based on the specified
propagation model.

link(___ ,Name,Value)plots a communication link using additional options specified
by Name,Value pairs.

status = link(___) returns the success status of the communication link as true or
false.

Examples

Communication Link Between Transmitter and Receiver

Create a transmitter site.

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

 link

2-1309

Create a receiver site with sensitivity defined in dBm.

 rx = rxsite('Name','Boston', ...
 'Latitude', 42.3601, ...
 'Longitude', -71.0589, ...
 'ReceiverSensitivity', -90);

Plot the communication link between the transmitter and the receiver.

link(rx,tx)

2 Functions — Alphabetical List

2-1310

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple
sites.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify
multiple sites.

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the name-
value pair 'PropagationModel' to specify this parameter.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

PropagationModel — Propagation model to use for path loss calculations
'freespace' (default) | 'close-in' | 'rain' | 'gas' | 'fog' | propagation model
object

Propagation model to use for path loss calculations, specified as 'freespace', 'close-
in', 'rain', 'gas', 'fog', or as an object created using the propagationModel
function.
Data Types: char

SuccessColor — Color of successful links
'green' (default) | RGB triplet | character vector

 link

2-1311

Color of successful links, specified as an RGB triplet or character vector. For more
information, see ColorSpec (Color Specification).
Data Types: char | double

FailColor — Color of unsuccessful links
'red' (default) | RGB triplet | character vector

Color of unsuccessful links, specified as RGB triplet or character vector. For more
information, see ColorSpec (Color Specification).
Data Types: char | double

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

Output Arguments
status — Success status of communication link
M-by-N array

Success status of communication links, returned as an M-by-N arrays. M is the number of
transmitter sites and N is the number of receiver sites.

See Also
coverage | los | propagationModel | sigstrength | sinr

Topics
ColorSpec (Color Specification)

Introduced in R2017b

2 Functions — Alphabetical List

2-1312

location
Location coordinates at a given distance and angle from site

Syntax
sitelocation = location(site)
[lat,lon] = location(site)
[___] = location(site,distance,azimuth)

Description
sitelocation = location(site) returns the site location of the antenna.

[lat,lon] = location(site) returns the latitude and longitude of the antenna site.

[___] = location(site,distance,azimuth) returns the new location achieved
by moving the antenna site by the distance specified in the direction of the azimuth angle.
The location is calculated by moving along the surface of the earth, using Earth ellipsoid
model WGS-84.

Examples

Location of Antenna Site

Create a site 1 km north of a given site.

Create the first transmitter site.

tx = txsite('Name','MathWorks',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504);

Calculate the location 1 km north of the first site.

[lat,lon] = location(tx,1000,90)

 location

2-1313

lat = 42.3091

lon = -71.3504

Create a second transmitter site at the location specified by lat and lon.

tx2 = txsite('Name','Second transmitter', ...
 'Latitude',lat, ...
 'Longitude',lon);

Show the two transmitter sites.

show([tx,tx2])

2 Functions — Alphabetical List

2-1314

Input Arguments
site — Antenna site
scalar | array

Antenna site, specified as a scalar or an array. It is either a txsite or a rxsite object. For
more information, see txsite, and rxsite

Note If distance or azimuth is a vector, then site must be a scalar.

distance — Distance to move antenna site
scalar | vector

Distance to move antenna site, specified as a scalar or vector in meters.

azimuth — Azimuth angle
scalar | vector

Azimuth angle, specified as a scalar or vector in degrees. Azimuth angle is measured
counterclockwise from due east.

Output Arguments
sitelocation — Location of antenna site
M-by-2 matrix

Location of antenna site, returned as an M-by-2 matrix with each element unit in degrees.
M is the number of sites in sites. The location value includes the latitude and longitude of
the antenna site.

lat — Latitude of one or more antenna sites
M-by-1 vector

Latitude of one or more antenna sites, returned as an M-by-1 vector with each element
unit in degrees. M is the number of sites in site.

lon — Longitude of one or more antenna sites
M-by-1 matrix

 location

2-1315

Longitude of one or more antenna sites, returned as an M-by-1 matrix with each element
unit in degrees. M is the number of sites in site. The output is wrapped so that the
values are in the range [-180 180].

See Also
angle | distance | rxsite | txsite

Introduced in R2018a

2 Functions — Alphabetical List

2-1316

los
Plot or compute the line-of-sight (LOS) visibility between sites on a map

Syntax
los(site1,site2)
los(site1,site2,Name,Value)
vis = los(site1,site2,Name,Value)

Description
los(site1,site2) plots the LOS from site 1 to site 2. The plot is color coded to identify
the visibility of the points along the LOS.

los(site1,site2,Name,Value) sets properties using one or more name-value pairs.
For example, los(site1,site2,'ObstructedColor','red') plots the LOS using
red to show blocked visibility.

vis = los(site1,site2,Name,Value) returns the status of the LOS visibility.

Examples

LOS from a Transmitter Site to a Receiver Site

Plot the LOS from the MathWorks Apple Hill campus to the MathWorks Lakeside campus.

Create a transmitter site with an antenna of height 30 m.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001,'Longitude',-71.3504,'AntennaHeight',30);

Create a receiver site with an antenna at ground level.

rx = rxsite('Name','MathWorks Lakeside', ...
 'Latitude',42.3021,'Longitude',-71.3764);

 los

2-1317

Plot the LOS between the two sites.

los(tx,rx);

LOS from a Transmitter Site to Two Receiver Sites

Create a transmitter site with an antenna of height 30 m.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001,'Longitude',-71.3504,'AntennaHeight',30);

Create two receiver sites with antennas at ground level.

2 Functions — Alphabetical List

2-1318

names = ["Fenway Park","Bunker Hill Monument"];
lats = [42.3467,42.3763];
lons = [-71.0972,-71.0611];

Create the receiver site array.

rxs = rxsite('Name', names,...
 'Latitude',lats,...
 'Longitude',lons);

Plot the lines of sight to the receiver sites. The red portion of the LOS represents
obstructed visibility.

los(tx,rxs);

 los

2-1319

Input Arguments
site1 — Source antenna site
txsite object | rxsite object

Source antenna site, specified as a txsite object or a rxsite object. Site 1 must be a
single site object.

site2 — Target antenna site
txsite object | rxsite object | vector of txsite or rxsite objects

Target antenna site, specified as a txsite object or a rxsite object. Site 2 can be a
single site object or a vector of multiple site objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ObstructedColor','blue'

VisibleColor — Plot color for successful visibility
'green' (default) | RGB triplet | character vector | color name string

Plot color for successful visibility, specified as an RGB triplet, a character vector, or a
color name specified as a string. For more information, see ColorSpec (Color
Specification).

ObstructedColor — Plot color for blocked visibility
'red' (default) | RGB triplet | character vector | color name string

Plot color for blocked visibility, specified as an RGB triplet, a character vector, or a color
name specified as a string. For more information, see ColorSpec (Color
Specification).

Resolution — Sampling distance between two sites
'auto' (default) | numeric scalar

Resolution of sample locations used to compute line-of-sight visibility, specified as 'auto'
or a numeric scalar expressed in meters. Resolution defines the distance between

2 Functions — Alphabetical List

2-1320

samples on the geodesic path between sites, using Earth ellipsoid model WGS-84. If
Resolution is 'auto', the function computes a value based on the distance between
the sites.

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

Output Arguments
vis — Status of LOS visibility
'true' | 'false' | n-by 1 logical array

Status of LOS visibility, returned as 'true' or 'false'. If there are multiple target
sites, the function returns a logical array of n-by-1.

See Also
angle | distance | link

Topics
ColorSpec (Color Specification)

Introduced in R2018a

 los

2-1321

pathloss
Path loss of radio wave propagation

Syntax
pl = pathloss(propmodel,rx,tx)

Description
pl = pathloss(propmodel,rx,tx)returns the path loss of radio wave propagation at
the receiver site from the transmitter site.

Examples

Path Loss of Receiver In Heavy Rain

Specify the transmitter and the receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504, ...
 'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park',...
 'Latitude',42.3467, ...
 'Longitude',-71.0972);

Create the propagation model for heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm =
 Rain with properties:

 RainRate: 50

2 Functions — Alphabetical List

2-1322

 Tilt: 0

Calculate the pathloss at the receiver using the rain propagation model.

pl = pathloss(pm,rx,tx)

pl = 127.1559

Input Arguments
propmodel — Propagation model
character vector or string

Propagation model, specified as a character vector or string.
Data Types: char

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple
sites.
Data Types: char

tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object. You can use array inputs to specify
multiple sites.
Data Types: char

Output Arguments
pl — Path loss
scalar | M-by-N arrays

Path loss, returned as a scalar or M-by-N arrays with each element in decibels. M is the
number of TX sites and N is the number of RX sites.

 pathloss

2-1323

Path loss is computed along the shortest path shortest path through space connecting the
transmitter and receiver antenna centers.

For terrain propagation models, path loss is computed using terrain elevation profile that
is computed at sample locations on the great circle path between the transmitter and the
receiver. If Map is a siteviewer object with buildings specified, the terrain elevation is
adjusted to include the height of the buildings.

See Also
propagationModel | range

Introduced in R2017b

2 Functions — Alphabetical List

2-1324

propagationModel
Create RF propagation model

Syntax
pm = propagationModel(modelname)
pm = propagationModel(___ ,Name,Value)

Description
pm = propagationModel(modelname)creates an RF propagation model for the
specified model.

pm = propagationModel(___ ,Name,Value) sets properties using one or more
name-value pairs. For example, pm = propagationModel('rain','RainRate',96)
creates a rain propagation model with a rain rate of 96 mm/h. Enclose each property
name in quotes.

Examples

Signal Strength of Receiver in Heavy Rain

Specify transmitter and receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504, ...
 'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park',...
 'Latitude',42.3467, ...
 'Longitude',-71.0972);

Create the propagation model for a heavy rainfall rate.

 propagationModel

2-1325

pm = propagationModel('rain','RainRate',50)

pm =
 Rain with properties:

 RainRate: 50
 Tilt: 0

Calculate the signal strength at the receiver using the rain propagation model.

ss = sigstrength(rx,tx,pm)

ss = -87.1559

Longley-Rice Propagation Model

Create a transmitter site.

tx = txsite

tx =
 txsite with properties:

 Name: 'Site 9'
 Latitude: 42.3001
 Longitude: -71.3504
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 10
 SystemLoss: 0
 TransmitterFrequency: 1.9000e+09
 TransmitterPower: 10

Create a Longley-Rice propagation model using the propagationModel function.

pm = propagationModel('longley-rice','TimeVariabilityTolerance',0.7)

pm =
 LongleyRice with properties:

 AntennaPolarization: 'horizontal'

2 Functions — Alphabetical List

2-1326

 GroundConductivity: 0.0050
 GroundPermittivity: 15
 AtmosphericRefractivity: 301
 ClimateZone: 'continental-temperate'
 TimeVariabilityTolerance: 0.7000
 SituationVariabilityTolerance: 0.5000

Find the coverage of the transmitter site using the defined propagation model.

coverage(tx,'PropagationModel',pm)

 propagationModel

2-1327

Input Arguments
modelname — Type of propagation model
'freespace' | 'rain' | 'gas' | 'fog' | 'close-in' | 'longley-rice'

Type of propagation model:

• 'freespace' – Free space propagation model
• 'rain' – Rain propagation model. For more information, see [3].
• 'gas' – Gas propagation model
• 'fog' – Fog propagation model. For more information, see [2] (Antenna Toolbox).
• 'close-in' – Close-in propagation model typically used in urban macro cell

scenarios. For more information, see [1].

Note The close-in model implements a statistical path loss model and can be
configured for different scenarios. The default values correspond to an urban macro-
cell scenario in a non-line-of-sight (NLOS) environment.

• 'longley-rice' – Longley-Rice propagation model. This model is also known as
Irregular Terrain Model (ITM). You can use this model to calculate point-to-point path
loss between sites over irregular terrain, including buildings. Path loss is calculated
from free-space loss, terrain diffraction, ground reflection, refraction through
atmosphere, tropospheric scatter, and atmospheric absorption. For more information
and list of limitations, see [4].

Note The Longley-Rice model implements the point-to-point mode of the model, which
uses terrain data to predict the loss between two points.

• 'tirem' –- Terrain Integrated Rough Earth Model™ (TIREM™). You can use this
model to calculate point-to-point path loss between sites over irregular terrain,
including buildings. Path loss is calculated from free-space loss, terrain diffraction,
ground reflection, refraction through atmosphere, tropospheric scatter, and
atmospheric absorption. The model needs access to an external TIREM library. The
actual model is valid from 1 MHZ to 1000 GHz. But with Antenna Toolbox™ elements
and arrays the frequency range is limited at 200 GHz.

You can use the following functions on RF propagation models:

2 Functions — Alphabetical List

2-1328

• range – Calculate the range of the radio wave under different propagation scenarios.
range function does not support Longley-Rice or TIREM propagation models. This
function does not support the TIREM propagation model.

• pathloss – Calculate the path loss of radio wave propagation between the
transmitter and receiver sites under different propagation scenarios.

Dependencies

To specify 'tirem', requires the Antenna Toolbox.
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RainRate',50

Rain

RainRate — Rain rate
16 (default) | positive scalar

Rain rate, specified as a positive scalar in millimeters per hour (mm/h).

Dependencies

To specify 'RainRate', you must specify 'rain' propagation model.
Data Types: double

Tilt — Polarization tilt angle of the signal
0 (default) | scalar

Polarization tilt angle of the signal, specified as scalar in degrees.

Dependencies

To specify 'Tilt', you must specify 'rain' propagation model.
Data Types: double

 propagationModel

2-1329

Gas

Temperature — Air temperature
15 (default) | scalar

Air temperature, specified as a scalar in Celsius (C).
Dependencies

To specify 'Temperature', you must specify 'gas' propagation model.
Data Types: double

AirPressure — Dry air pressure
101300 (default) | scalar

Dry air pressure, specified as a scalar in pascals (Pa).
Dependencies

To specify 'AirPressure', you must specify 'gas' propagation model.
Data Types: double

WaterDensity — Water vapor density
7.5 (default) | scalar

Water vapor density, specified as a scalar in grams per cubic meter (g/m3).
Dependencies

To specify 'WaterDensity', you must specify 'gas' propagation model.
Data Types: double

Fog

Temperature — Air temperature
15 (default) | scalar

Air temperature, specified as a scalar in Celsius (C).
Dependencies

To specify 'Temperature', you must specify 'fog' propagation model.
Data Types: double

2 Functions — Alphabetical List

2-1330

WaterDensity — Liquid water density
0.5 (default) | scalar

Liquid water density, specified as a scalar in grams per cubic meter (g/m3).
Dependencies

To specify 'WaterDensity', you must specify 'fog' propagation model.
Data Types: double

Close-In

ReferenceDistance — Free-space reference distance
1 (default) | scalar

Free-space reference distance, specified as a scalar in meters.
Dependencies

To specify 'ReferenceDistance', you must specify the 'close-in' propagation
model.
Data Types: double

PathLossExponent — Path loss exponent
2.9 (default) | scalar

Path loss exponent, specified as a scalar.
Dependencies

To specify 'PathLossExponent', you must specify 'close-in' propagation model.
Data Types: double

Sigma — Standard deviation
5.7 (default) | scalar

Standard deviation of the zero-mean Gaussian random variable, specified as a scalar in
decibels (dB).
Dependencies

To specify 'Sigma', you must specify 'close-in' propagation model.
Data Types: double

 propagationModel

2-1331

NumDataPoints — Number of data points
1869 (default) | integer

Number of data points of zero-mean Gaussian random variable, specified as an integer.

Dependencies

To specify 'NumPoints', you must specify 'close-in' propagation model.
Data Types: double

Note The close-in model is valid for distances greater than or equal to the
'ReferenceDistance' property. If a distance less than the 'ReferenceDistance' is
used, path loss is 0.

Longley-Rice

AntennaPolarization — Polarization of transmitter and receiver antennas
'horizontal' (default) | 'vertical'

Polarization of transmitter and receiver antennas, specified as 'horizontal' or
'vertical'. Both antennas are assumed to have the same polarization. This value is
used to calculate path loss due to ground reflection.

Dependencies

To specify 'AntennaPolarization', you must specify 'longley-rice' propagation
model.
Data Types: char | string

GroundConductivity — Conductivity of ground
0.005 (default) | scalar

Conductivity of the ground, specified as a scalar in Siemens per meter (S/m). This value is
used to calculate path loss due to ground reflection. The default value corresponds to
average ground.

Dependencies

To specify 'GroundConductivity', you must specify 'longley-rice' propagation
model.

2 Functions — Alphabetical List

2-1332

Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | scalar

Relative permittivity of the ground, specified as a scalar. Relative permittivity is expressed
as a ratio of absolute material permittivity to the permittivity of vacuum. This value is
used to calculate the path loss due to ground reflection. The default value corresponds to
average ground.
Dependencies

To specify 'GroundPermittivity', you must specify 'longley-rice' propagation
model.
Data Types: double

AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | scalar

Atmospheric refractivity near the ground, specified as a scalar in N-units. This value is
used to calculate the path loss due to refraction through the atmosphere and tropospheric
scatter. The default value corresponds to average atmospheric conditions.
Dependencies

To specify 'AtmosphericRefractivity', you must specify 'longley-rice'
propagation model.
Data Types: double

ClimateZone — Radio climate zone
'continental-temperate' (default) | 'equatorial' | 'continental-
subtropical' | 'maritime-subtropical' | 'desert' | maritime-over-land' |
'maritime-over-sea'

Radio climate zone. This value is used to calculate the variability due to changing
atmospheric conditions. The default value corresponds to average atmospheric conditions
in a particular climate zone.
Dependencies

To specify 'ClimateZone', you must specify 'longley-rice' propagation model.
Data Types: char | string

 propagationModel

2-1333

TimeVariabilityTolerance — Time variability tolerance level
0.5 (default) | scalar

Time variability tolerance level of the path loss, specified as a scalar between [0.001,
0.999]. Time variability occurs due to changing atmospheric conditions. This value gives
the required system reliability or the fraction of time during which the actual path loss is
expected to be less than or equal to model prediction. For more information, see [5].

Dependencies

To specify 'TimeVariabilityTolerance', you must specify 'longley-rice'
propagation model.
Data Types: double

SituationVariabilityTolerance — Situation variability tolerance level
0.5 (default) | scalar

Situation variability tolerance level of the path loss, specified as a scalar in between
[0.001, 0.999]. Situation variability occurs due to uncontrolled or hidden random
variables. This value gives the required system confidence or the fraction of similar
situations for which the actual path loss is expected to be less than or equal to the model
prediction. For more information, see [5].

Dependencies

To specify 'SituationVariabilityTolerance', you must specify 'longley-rice'
propagation model.
Data Types: double

TIREM

AntennaPolarization — Polarization of transmitter and receiver antennas
'horizontal' (default) | 'vertical'

Polarization of transmitter and receiver antennas, specified as 'horizontal' or
'vertical'. Both antennas are assumed to have the same polarization. This value is
used to calculate path loss due to ground reflection.

Dependencies

To specify 'AntennaPolarization', you must specify 'tirem' propagation model.
Data Types: char | string

2 Functions — Alphabetical List

2-1334

GroundConductivity — Conductivity of ground
0.005 (default) | numeric scalar

Conductivity of the ground, specified as a numeric scalar in Siemens per meter (S/m) in
the range of 0.0005 to 100. This value is used to calculate path loss due to ground
reflection. The default value corresponds to average ground.

Dependencies

To specify 'GroundConductivity', you must specify 'tirem' propagation model.
Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | numeric scalar

Relative permittivity of the ground, specified as a numeric scalar in the range of 1 to 100.
Relative permittivity is expressed as a ratio of absolute material permittivity to the
permittivity of vacuum. This value is used to calculate the path loss due to ground
reflection. The default value corresponds to average ground.

Dependencies

To specify 'GroundPermittivity', you must specify 'tirem' propagation model.
Data Types: double

AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | scalar

Atmospheric refractivity near the ground, specified as a numeric scalar in N-units in the
range of 250 to 400. This value is used to calculate the path loss due to refraction through
the atmosphere and tropospheric scatter. The default value corresponds to average
atmospheric conditions.

Dependencies

To specify 'AtmosphericRefractivity', you must specify 'tirem' propagation
model.
Data Types: double

Humidity — Absolute air humidity near ground
'9' (default) | numeric scalar

 propagationModel

2-1335

Absolute air humidity near ground,specified as a numeric scalar in g/m^3 units in the
range of 0 to 110. You can use this value to calculate path loss due to atmospheric
absorption. The default value corresponds to the absolute humidity of air at 15 degrees
Celsius and 70 percent relative humidity.

Dependencies

To specify 'Humidity', you must specify 'tirem' propagation model.
Data Types: double

More About

Propagation models
Basic propagation models predict path loss as a function of distance between sites and
assume line-of-sight (LOS) conditions, disregarding the curvature of the Earth, terrain, or
other obstacles. Urban propagation models also predict path loss as a function of distance
but use empirical models that are derived from measurements in non-line-of-sight (NLOS)
conditions. Terrain propagation models predict path loss as a function of the terrain
elevation profile between sites including buildings, which may be used to compute
whether LOS or NLOS conditions apply.

N-Units
The refractive index of air n is related to the dielectric constants of the gas constituents
of an air mixture. The numerical value of n is only slightly larger than one. To make the
calculation more convenient, you can use N units which are given by the formula:
N n= - ¥()1 10

6

References
[1] Sun, S.,Rapport, T.S., Thomas, T., Ghosh, A., Nguyen, H., Kovacs, I., Rodriguez, I.,

Koymen, O.,and Prartyka, A. "Investigation of prediction accuracy, sensitivity, and
parameter stability of large-scale propagation path loss models for 5G wireless
communications." IEEE Transactions on Vehicular Technology, Vol.65, No 5, pp
2843-2860, May 2016.

2 Functions — Alphabetical List

2-1336

[2] ITU-R P.840-6. "Attenuation due to cloud and fog." Radiocommunication Sector of ITU

[3] ITU-R P.838-3. "Specific attenuation model for rain for use in prediction methods."
Radiocommunication Sector of ITU

[4] Hufford, George A., Anita G. Longley, and William A.Kissick. "A Guide to the Use of the
ITS Irregular Terrain Model in the Area Prediction Mode." NTIA Report 82-100.
Pg-7.

[5] SoftWright Homepage https://www.softwright.com/faq/support/
longley_rice_variability.html

[6] Seybold, John. Introduction to RF Propagation. Wiley, 2005

[7] ITU-R P.676-11. "Attenuation by atmospheric gases." Radiocommunication Sector of
ITU

See Also
coverage | link | los | pathloss | range | rangeangle | sigstrength | sinr

Topics
“Access TIREM Software” (Antenna Toolbox)

Introduced in R2017b

 propagationModel

2-1337

range
Range of radio wave propagation

Syntax
r = range(propmodel,tx,pl)

Description
r = range(propmodel,tx,pl)returns the range of radio wave propagation from the
transmitter site.

Examples

Range of Transmitter In Heavy Rain

Specify transmitter and receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504, ...
 'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park',...
 'Latitude',42.3467, ...
 'Longitude',-71.0972);

Create the propagation model for heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm =
 Rain with properties:

 RainRate: 50

2 Functions — Alphabetical List

2-1338

 Tilt: 0

Calculate the range of transmitter using the rain propagation model and a path loss of
127 dB.

r = range(pm,tx,127)

r = 2.1123e+04

Input Arguments
propmodel — Propagation model
character vector or string

Propagation model, specified as a character vector or string.
Data Types: char

tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object. You can use array inputs to specify
multiple sites.
Data Types: char

pl — Path loss
scalar

Path loss, specified as a scalar in decibels.
Data Types: double

Output Arguments
r — range
scalar | M-by-1 arrays

Range, returned as a scalar or M-by-1 array with each element in meters. M is the
number of TX sites.

 range

2-1339

Range is the maximum distance for which the path loss does not exceed the value of
specified pl.

See Also
pathloss | propagationModel

Introduced in R2017b

2 Functions — Alphabetical List

2-1340

raytrace
Plot propagation paths between sites

Syntax
raytrace(tx,rx)
raytrace(___ ,Name,Value)

Description
raytrace(tx,rx) plots the propagation paths from the transmitter site (tx) to the
receiver site (rx). The propagation paths are found using ray tracing with the terrain and
buildings data defined in the Site Viewer map. Each propagation path is color-coded
according to the received power (dBm) or path loss (dB) along the path, assuming
unpolarized rays.

Note

• The ray tracing analysis includes surface reflections but does not include effects from
refraction, diffraction, or scattering.

• Path loss and received power values do not include reflection loss due to material or
antenna polarization properties.

raytrace(___ ,Name,Value) plots propagation paths with additional options specified
by one or more name-value pairs.

Examples

Reflected Propagation Paths

Launch Site Viewer with buildings in Chicago.

 raytrace

2-1341

viewer = siteviewer("Buildings","chicago.osm");

Create a transmitter site on a building.

tx = txsite('Latitude',41.8800, ...
 'Longitude',-87.6295, ...
 'TransmitterFrequency',2.5e9);

Create a receiver site on another building.

 rx = rxsite('Latitude',41.881352, ...
 'Longitude',-87.629771, ...
 'AntennaHeight',30);

Show the obstruction to line of sight.

los(tx,rx)

2 Functions — Alphabetical List

2-1342

Show a reflected propagation path using ray tracing.

 raytrace(tx,rx)

 raytrace

2-1343

Show multiple propagation paths, including first-order and second-order reflections.

 raytrace(tx,rx,'NumReflections',[1 2])

2 Functions — Alphabetical List

2-1344

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object or an array of rxsite objects. If the
transmitter sites are specified as arrays, then the propagation paths are plotted from each
transmitter to each receiver site.

tx — Transmitter site
txsite object | array of txsite objects

 raytrace

2-1345

Transmitter site, specified as a txsite object or an array of txsite objects. If the
receiver sites are specified as arrays, then the propagation paths are plotted from each
transmitter to each receiver site.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

Type — Type of quantity to plot
'power' (default) | 'pathloss'

Type of quantity to plot, specified as the comma-separated pair consisting of 'Type' and
'power' in dBm or 'pathloss' in dB.

When you specify 'power', each path is color-coded according to the received power
along the path. When you specify 'pathloss', each path is color-coded according to the
path loss along the path.
Data Types: char

NumReflections — Number of reflections to search for in propagation paths
[0 1] (default) | numeric row vector

Number of reflections to search for in propagation paths using ray tracing, specified as
the comma-separated pair consisting of 'NumReflections' and a numeric row vector
whose elements are 0, 1, or 2.

The default value results in the search for a line-of-sight propagation path along with
propagation paths that each contain a single reflection.
Data Types: double

Colormap — Color map for coloring propagation paths
'jet' (default) | predefined color map name | M-by-3 array of RGB

Color map for coloring propagation paths, specified as the comma-separated pair
consisting of 'Colormap' and a predefined color map name or an M-by-3 array of RGB
(red, blue, green) triplets that define M individual colors.

2 Functions — Alphabetical List

2-1346

Data Types: char | double

ColorLimits — Color limits for colormap
two-element numeric row vector

Color limits for colormap, specified as the comma-separated pair consisting of
'ColorLimits' and a two-element numeric row vector of the form [min max]. The units
and default values of the color limits depend on the value of the 'Type' parameter:

• 'power'– Units are in dBm, and the default value is [-120 -5].
• 'pathloss'– Units are in dB, and the default value is [45 160].

The color limits indicate the values that map to the first and last colors in the colormap.
Propagation paths with values below the minimum color limit are not plotted.
Data Types: double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of
'ShowLegend' and true or false.
Data Types: logical

Map — Map for visualization and surface data
siteviewer object

Map for visualization and surface data, specified as a siteviewer object. The default
value is the current Site Viewer.
Data Types: char | string

See Also
los | siteviewer

Introduced in R2019b

 raytrace

2-1347

removeCustomTerrain
Remove custom terrain data

Syntax
removeCustomTerrain(name)

Description
removeCustomTerrain(name) removes the custom terrain data specified by the user-
defined name. You can use this function to remove terrain data that is no longer needed.
The terrain data to be removed must have been previously added using
addCustomTerrain.

Examples

Site Viewer Maps Using Custom Terrain

Add a custom terrain using n44_w072_3arc_v1.dt1 DTED file.

addCustomTerrain('mydted5','n44_w072_3arc_v1.dt1')

Use the custom terrain name in Site Viewer.

viewer = siteviewer('Terrain','mydted5');

2 Functions — Alphabetical List

2-1348

Create a site with the terrain region.

mtwash = txsite('Name','Mt Washington', ...
'Latitude',44.2706, ...
'Longitude',-71.3033, ...
'AntennaHeight', 30);
show(mtwash)

 removeCustomTerrain

2-1349

Create a coverage map.

coverage(mtwash)

2 Functions — Alphabetical List

2-1350

Remove the custom terrain.

close(viewer)
removeCustomTerrain("mydted5")

Input Arguments
name — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data previously added using addCustomTerrain,
specified as a string scalar or a character vector.
Data Types: char | string

See Also
addCustomTerrain | siteviewer

 removeCustomTerrain

2-1351

Introduced in R2019a

2 Functions — Alphabetical List

2-1352

pattern
Plot antenna radiation pattern on map

Syntax
pattern(tx)
pattern(rx,frequency)
pattern(___ ,Name,Value)

Description
pattern(tx) plots the 3-D antenna radiation pattern for the transmitter site, txsite.
Signal gain value (dBi) in a particular direction determines the color of the pattern.

pattern(rx,frequency) plots the 3-D radiation pattern for the receiver site, rxsite
for the specified frequency.

pattern(___ ,Name,Value) plots the 3-D radiation pattern with additional options
specified by name-value pair arguments.

Examples

Single Transmitter Site Pattern

Define and visualize the radiation pattern of a single transmitter site.

tx = txsite;
pattern(tx)

 pattern

2-1353

Input Arguments
tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object.

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object.

2 Functions — Alphabetical List

2-1354

frequency — Frequency to calculate radiation pattern
positive scalar

Frequency to calculate radiation pattern, specified as a positive scalar.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Size',2

Size — Size of pattern plot
50 (default) | numerical scalar

Size of the pattern plot, specified as a numerical scalar in meters. This parameter
represents the distance between the antenna position and the point on the plot with the
highest gain.
Data Types: double

Transparency — Transparency of pattern plot
0.4 (default) | real number in the range of [0,1]

Transparency of the pattern plot, specified as a real number in the range of [0,1], where 0
is completely transparent and 1 is completely opaque.
Data Types: double

Colormap — Colormap for coloring of pattern plot
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

Colormap for coloring of the pattern plot, specified as a predefined colormap name or an
M-by-3 array of RGB (red, blue, green) triplets that define M individual colors.
Data Types: double

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using

 pattern

2-1355

addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

See Also
coverage

Introduced in R2018b

2 Functions — Alphabetical List

2-1356

show
Show site location on map

Syntax
show(site)
show(site,Name,Value)

Description
show(site) displays the location of transmitter or receiver site on a map using a
marker.

show(site,Name,Value) uses icon displays the site map using additional options
specified by the Name,Value pairs.

Examples

Default Receiver Site

Create and show the default receiver site.

rx = rxsite

rx =
 rxsite with properties:

 Name: 'Site 2'
 Latitude: 42.3021
 Longitude: -71.3764
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 1
 SystemLoss: 0

 show

2-1357

 ReceiverSensitivity: -100

show(rx)

Show and Hide Transmitter Site

Create a transmitter site.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504);

Show the transmitter site.

show(tx)

2 Functions — Alphabetical List

2-1358

Hide the transmitter site.

hide(tx)

 show

2-1359

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of
txsite or rxsite objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

2 Functions — Alphabetical List

2-1360

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ClusterMarkers',true

Icon — Image file
character vector

Image file, specified as a character vector.
Data Types: char

IconSize — Width and height of icon
36-by-36 (default) | 1-by-2 vector of positive numeric values

Width and height of the icon, specified as a 1-by-2 vector of positive numeric values in
pixels.

IconAlignment — Vertical position of icon relative to site
'top' (default) | 'center' | 'bottom'

Vertical position of icon relative to site, specified as:

• 'bottom - Aligns the icon below the site antenna position.
• 'center' - Aligns the center of the icon to the site antenna position.
• 'top' - Aligns the icon above the site antenna position.

ClusterMarkers — Combine nearby markers into groups or clusters
true | false

Combine nearby markers into groups or clusters, specified as true or false.
Data Types: char

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

 show

2-1361

See Also
hide

Introduced in R2017b

2 Functions — Alphabetical List

2-1362

sigstrength
Signal strength due to transmitter

Syntax
ss = sigstrength(rx,tx)
ss = sigstrength(rx,tx,propmodel)
ss = sigstrength(___ ,Name,Value)

Description
ss = sigstrength(rx,tx) returns the signal strength at the receiver site due to the
transmitter site.

ss = sigstrength(rx,tx,propmodel) returns the signal strength at the receiver site
using the specified propagation model. Specifying propagation model is same as
specifying the 'PropagationModel' name-value pair.

ss = sigstrength(___ ,Name,Value) returns the signal strength using additional
options specified by Name,Value pairs and either of the previous syntaxes.

Examples

Received Power and Link Margin at Receiver

Create a transmitter site.

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

Create a receiver site with sensitivity defined (in dBm).

rx = rxsite('Name','Boston', ...
 'Latitude', 42.3601, ...

 sigstrength

2-1363

 'Longitude', -71.0589, ...
 'ReceiverSensitivity', -90);

Calculate the received power and link margin. Link margin is the difference between the
receiver's sensitivity and the received power.

ss = sigstrength(rx,tx)

ss = -144.4685

margin = abs(rx.ReceiverSensitivity - ss)

margin = 54.4685

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple
sites.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify
multiple sites.

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the name-
value pair 'PropagationModel' to specify this parameter. You can also use the
propagationModel function to define this input.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

2 Functions — Alphabetical List

2-1364

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

Type — Type of signal strength to compute
'power' (default) | 'efield'

Type of signal strength to compute, specified as 'power' or 'efield'.

Power is expressed in power units (dBm).of signal at receiver input. E-Field is expressed
in electric field strength units (dBuV/m) of signal wave incident on antenna.
Data Types: char | string

PropagationModel — Propagation model to use for path loss calculations
'freespace' (default) | 'close-in' | 'rain' | 'gas' | 'fog' | propagation model
object

Propagation model to use for path loss calculations, specified as 'freespace', 'close-
in', 'rain', 'gas', 'fog', or as an object created using the propagationModel
function.
Data Types: char | string

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.
Data Types: char | string

Output Arguments
ss — Signal strength
M-by-N array

Signal strength, returned as M-by-N array in dBm. M is the number of TX sites and N is
the number of RX sites.

 sigstrength

2-1365

See Also
link | propagationModel | sinr

Introduced in R2017b

2 Functions — Alphabetical List

2-1366

sinr
Display signal-to-interference-plus-noise ratio (SINR) map

Syntax
sinr(txs)
sinr(txs,propmodel)
sinr(___ ,Name,Value)
r = sinr(rxs,txs, ___)

Description
sinr(txs) displays the signal-to-interference-plus-noise ratio (SINR) for transmitter
sites, txs. Each colored contour of the map defines the areas where the corresponding
SINR is available to a mobile receiver. For each location, the signal source is the
transmitter site in txs with the greatest signal strength. The remaining transmitter sites
in txs act as interference. If txs is scalar, or there are no sources of interference, the
resultant map displays signal-to-noise ratio (SNR).

sinr(txs,propmodel) displays the SINR map with the propagation model set to the
value in propmodel.

sinr(___ ,Name,Value) sets properties using one or more name-value pairs, in
addition to the input arguments in previous syntaxes. For example,
sinr(txs,'MaxRange',8000) sets the range from the site location at 8000 meters to
include in the SINR map region.

r = sinr(rxs,txs, ___) returns the sinr computed at the receiver sites due to the
transmitter sites.

Examples

 sinr

2-1367

SINR Map for Multiple Transmitters

Define names and location of sites in Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create a transmitter site array.

txs = txsite('Name', names,...
 'Latitude',lats,...
 'Longitude',lons, ...
 'TransmitterFrequency',2.5e9);

Display the SINR map, where signal source for each location is selected as the
transmitter site with the strongest signal.

sinr(txs)

2 Functions — Alphabetical List

2-1368

Input Arguments
txs — Transmitter sites
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. Use array inputs to specify multiple sites.

rxs — Receiver sites
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. Use array inputs to specify multiple sites.

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can use the
propagationModel function to define this input.

You can also use the name-value pair 'PropagationModel' to specify this parameter.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxRange',8000

General

SignalSource — Signal source of interest
'strongest' (default) | transmitter site object

Signal source of interest, specified as 'strongest' or as a transmitter site object. When
the signal source of interest is 'strongest', the transmitter with the greatest signal
strength is chosen as the signal source of interest for that location. When computing
sinr, SignalSource can be a txsite array with equal number of elements rxs where
each transmitter site element defines the signal source for the corresponding receiver
site.

 sinr

2-1369

PropagationModel — Propagation model to use for path loss calculations
'freespace' (default) | 'close-in' | 'rain' | 'gas' | 'fog' | 'longley-rice' |
propagation model object

Propagation model to use for path loss calculations, specified as 'freespace', 'close-
in', 'rain', 'gas', 'fog', 'longley-rice', or as an object created using the
propagationModel function.

ReceiverNoisePower — Total noise power at receiver
-107 (default) | scalar

Total noise power at receiver, specified as a scalar in dBm. The default value assumes that
the receiver bandwidth is 1 MHz and receiver noise figure is 7 dB.

N B F= - + +174 10* log()

where,

• N = Receiver noise in dBm
• B = Receiver bandwidth in Hz
• F = Noise figure in dB

ReceiverGain — Receiver gain
2.1 (default) | scalar

Mobile receiver gain, specified as a scalar in dB. The receiver gain values include the
antenna gain and the system loss. If you call the function using an output argument, the
default value is computed using rxs.

ReceiverAntennaHeight — Receiver antenna height
1 (default) | scalar

Receiver antenna height above the ground, specified as a scalar in meters. If you call the
function using an output argument, the default value is computed using rxs.

Map — Map for surface data
siteviewer object | terrain name

Map for surface data, specified as a siteviewer object or a terrain name. Valid terrain
names are 'none', 'gmted2010', or the name of the custom terrain data added using
addCustomTerrain. The default value is the current Site Viewer or 'gmted2010', if
none is open.

2 Functions — Alphabetical List

2-1370

Data Types: char | string

For Plotting SINR

Values — Values of SINR for display
[-5:20] (default) | numeric vector

Values of SINR for display, specified as numeric vector. Each value is displayed as a
different colored, filled on the contour map. The contour colors are derived using
Colormap and ColorLimits.

MaxRange — Maximum range of SINR map from each transmitter site
positive numeric scalar

Maximum range of the SINR map from each transmitter site, specified as a positive
numeric scalar in meters representing a great circle distance. This property defines the
region of interest on the map to plot. If the 'Map' is a siteviewer object with
'Buildings' specified, the default value is the distance to the farthest building.
Otherwise, the default value is 30000 m or 30 km.

Note When using terrain, the MaxRange limit is 300,000 m.

Data Types: double

Resolution — Resolution of receiver site locations used to compute SINR values
'auto' (default) | numeric scalar

Resolution of receiver site locations used to compute SINR values, specified as, 'auto'
or a numeric scalar in meters. The resolution defines the maximum distance between the
locations. If the resolution is 'auto', sinr computes a value scaled to MaxRange.
Decreasing the resolution increases the quality of the SINR map and the time required to
create it.

Colormap — Colormap for coloring filled contours
'jet' (default) | M-by-3 array of RGB triplets

Colormap for coloring filled contours, specified as an M-by-3 array of RGB triplets, where
M is the number of individual colors.

ColorLimits — Color limits for color maps
[-5 20] (default) | two-element vector

 sinr

2-1371

Color limits for color maps, specified as a two-element vector of the form [min max]. The
color limits indicate the SINR values that map to the first and last colors in the colormap.

ShowLegend — Show signal strength color legend on map
'true' (default) | 'false'

Show signal strength color legend on map, specified as 'true' or 'false'.

Transparency — Transparency of SINR map
0.4 (default) | numeric scalar

Transparency of SINR map, specified as a numeric scalar in the range 0–1. If the value is
zero, the map is completely transparent. If the value is one, the map is completely
opaque.

Output Arguments
r — Signal to interference plus noise ratio at the receiver
numeric vector (default)

Signal to interference plus noise ratio at the receiver due to the transmitter sites,
returned as a numeric vector. The vector length is equal to the number of receiver sites.
Data Types: double

See Also
coverage | propagationModel

Introduced in R2018a

2 Functions — Alphabetical List

2-1372

Blocks — Alphabetical List

3

A-Law Compressor
Implement A-law compressor for source coding

Library
Source Coding

Description
The A-Law Compressor block implements an A-law compressor for the input signal. The
formula for the A-law compressor is

y =

A x
1 + logAsgn(x) for 0 ≤ x ≤ V

A
V 1 + log(A x /V)

1 + logA sgn(x) for VA < x ≤ V

where A is the A-law parameter of the compressor, V is the peak signal magnitude for x,
log is the natural logarithm, and sgn is the sign function.

The most commonly used A value is 87.6.

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
A value

The A-law parameter of the compressor.

3 Blocks — Alphabetical List

3-2

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output signal.

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
A-Law Expander

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood

Cliffs, N.J., Prentice-Hall, 1988.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
A-Law Expander | Mu-Law Compressor

Introduced before R2006a

 A-Law Compressor

3-3

A-Law Expander
Implement A-law expander for source coding

Library
Source Coding

Description
The A-Law Expander block recovers data that the A-Law Compressor block compressed.
The formula for the A-law expander, shown below, is the inverse of the compressor
function.

x =

y(1 + logA)
A for 0 ≤ y ≤ V

1+logA

exp y (1 + logA)/V − 1 V
Asgn(y) for V

1+logA < y ≤ V

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
A value

The A-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output signal.

Match these parameters to the ones in the corresponding A-Law Compressor block.

3 Blocks — Alphabetical List

3-4

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
A-Law Compressor

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
A-Law Compressor | Mu-Law Expander

Introduced before R2006a

 A-Law Expander

3-5

Algebraic Deinterleaver
Restore ordering of input symbols using algebraically derived permutation

Library
Block sublibrary of Interleaving

Description
The Algebraic Deinterleaver block restores the original ordering of a sequence that was
interleaved using the Algebraic Interleaver block. In typical usage, the parameters in the
two blocks have the same values.

The Number of elements parameter, N, indicates how many numbers are in the input
vector. This block accepts a column vector input signal.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

The Type parameter indicates the algebraic method that the block uses to generate the
appropriate permutation table. Choices are Takeshita-Costello and Welch-Costas.
Each of these methods has parameters and restrictions that are specific to it; these are
described on the reference page for the Algebraic Interleaver block.

Parameters
Type

The type of permutation table that the block uses for deinterleaving. Choices are
Takeshita-Costello and Welch-Costas.

3 Blocks — Alphabetical List

3-6

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor the block uses to compute the corresponding interleaver's cycle vector.
This field appears only when you set Type to Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the corresponding
interleaver's permutation table. This field appears only when you set Type to
Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only if Type is set
to Welch-Costas.

Pair Block
Algebraic Interleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic
Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic Interleavers for Turbo-
Codes." Proc. 1998 IEEE International Symposium on Information Theory, Boston,
Aug. 16-21, 1998. 419.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Algebraic Deinterleaver

3-7

See Also
Blocks
Algebraic Interleaver | General Block Deinterleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-8

Algebraic Interleaver
Reorder input symbols using algebraically derived permutation table

Library
Block sublibrary of Interleaving

Description
The Algebraic Interleaver block rearranges the elements of its input vector using a
permutation that is algebraically derived. The Number of elements parameter, N,
indicates how many numbers are in the input vector. This block accepts a column vector
input signal.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

The Type parameter indicates the algebraic method that the block uses to generate the
appropriate permutation table. Choices are Takeshita-Costello and Welch-Costas.
Each of these methods has parameters and restrictions that are specific to it:

• If you set Type to Welch-Costas, then N + 1 must be prime. The Primitive element
parameter is an integer, A, between 1 and N that represents a primitive element of the
finite field GF(N + 1). This means that every nonzero element of GF(N + 1) can be
expressed as A raised to some integer power.

In a Welch-Costas interleaver, the permutation maps the integer k to mod(Ak,N + 1) -
 1.

• If you set Type to Takeshita-Costello, then N must be 2m for some integer m. The
Multiplicative factor parameter, k, must be an odd integer less than N. The Cyclic
shift parameter, h, must be a nonnegative integer less than N.

 Algebraic Interleaver

3-9

A Takeshita-Costello interleaver uses a length-N cycle vector whose nth element is

c(n) = mod k ⋅ n ⋅ (n− 1)
2 , N + 1, n

for integers n between 1 and N. The intermediate permutation function is obtained by
using the following relationship:

Π c n = c n + 1

where

n = 1:N

The interleaver's actual permutation vector is the result of cyclically shifting the
elements of the permutation vector, π, by the Cyclic shift parameter, h.

Parameters
Type

The type of permutation table that the block uses for interleaving.
Number of elements

The number of elements, N, in the input vector.
Multiplicative factor

The factor used to compute the interleaver's cycle vector. This field appears only if
Type is set to Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the permutation table.
This field appears only if Type is set to Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only if Type is set
to Welch-Costas.

Pair Block
Algebraic Deinterleaver

3 Blocks — Alphabetical List

3-10

References
[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic

Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic Interleavers for Turbo-
Codes." Proc. 1998 IEEE International Symposium on Information Theory, Boston,
Aug. 16-21, 1998. 419.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Algebraic Deinterleaver | General Block Interleaver

Introduced before R2006a

 Algebraic Interleaver

3-11

Align Signals
(To be removed) Align two signals by finding delay between them

Compatibility
Align Signals Block will be removed in a future release. Use the Find Delay block to find
delays and the Delay block to apply delays instead. For more information, see
“Compatibility Considerations” on page 3-14.

Library
Utility Blocks

Description
The Align Signals block aligns two signals by finding the delay between them. This is
useful when you want to compare a transmitted and received signal to determine the bit
error rate, but do not know the delay in the received signal. This block accepts a column
vector or matrix input signal. For a matrix input, the block aligns each channel
independently.

The s1 input port receives the original signal, while the s2 input port receives a delayed
version. The two input signals must have the same dimensions and sample times. The
block calculates the delay between the two signals, and then

• Delays the first signal, s1, by the calculated value, and outputs it through the port
labeled s1 del.

• Outputs the second signal s2 without change through the port labeled s2.
• Outputs the delay value through the port labeled delay.

3 Blocks — Alphabetical List

3-12

See “Delays” for more information about signal delays.

The block's Correlation window length parameter specifies how many samples of the
signals the block uses to calculate the cross-correlation. The delay output is a
nonnegative integer less than the Correlation window length.

As the Correlation window length is increased, the reliability of the computed delay
also increases. However, the processing time to compute the delay increases as well.

You can make the Align Signals block stop updating the delay after it computes the same
delay value for a specified number of samples. To do so, select Disable recurring
updates, and enter a positive integer in the Number of constant delay outputs to
disable updates field. For example, if you set Number of constant delay outputs to
disable updates to 20, the block will stop recalculating and updating the delay after it
calculates the same value 20 times in succession. Disabling recurring updates causes the
simulation to run faster after the target number of constant delays occurs.

Tips for Using the Block Effectively
• Set the Correlation window length parameter sufficiently large so that the

computed delay eventually stabilizes at a constant value. If the computed delay is not
constant, you should increase Correlation window length. If the increased value of
Correlation window length exceeds the duration of the simulation, then you should
also increase the duration of the simulation accordingly.

• If the cross-correlation between the two signals is broad, then Correlation window
length should be much larger than the expected delay, or else the algorithm might
stabilize at an incorrect value. For example, a CPM signal has a broad autocorrelation,
so it has a broad cross-correlation with a delayed version of itself. In this case, the
Correlation window length value should be much larger than the expected delay.

• If the block calculates a delay that is greater than 75 percent of Correlation window
length, the signal s1 is probably delayed relative to the signal s2. In this case, you
should switch the signal lines leading into the two input ports.

• If you use the Align Signals block with the Error Rate Calculation block, you should set
the Receive delay parameter of the Error Rate Calculation block to 0 because the
Align Signals block compensates for the delay. Also, you might want to set the Error
Rate Calculation block's Computation delay parameter to a nonzero value to account
for the possibility that the Align Signals block takes a nonzero amount of time to
stabilize on the correct amount by which to delay one of the signals.

 Align Signals

3-13

Parameters
Correlation window length

The number of samples the block uses to calculate the cross-correlations of the two
signals.

Disable recurring updates
Selecting this option causes the block to stop computing the delay after it computes
the same delay value for a specified number of samples.

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must compute the same delay
before ceasing to update. This field appears only if Disable recurring updates is
selected.

Algorithm
The Align Signals block finds the delay by calculating the cross-correlations of the first
signal with time-shifted versions of the second signal, and then finding the index at which
the cross-correlation is maximized.

Compatibility Considerations

Align Signals Block will be removed
Warns starting in R2019b

Align Signals Block will be removed in a future release. Use the Find Delay block to find
delays and the Delay block to apply delays instead.

See “Delays” for an example that uses the Find Delay block in conjunction with the Error
Rate Calculation block.

For an example that illustrates how to set the correlation window length properly, see the
section Setting the Correlation Window Length on the Find Delay block reference
page.

3 Blocks — Alphabetical List

3-14

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Delay | Error Rate Calculation | Find Delay

Topics
“Delays”
“Align Signals Replacement for Single Rate Signals in Simulink”
“Align Signals Replacement for Multirate Signals in Simulink”

Introduced in R2012a

 Align Signals

3-15

APP Decoder
Decode convolutional code using a posteriori probability (APP) method

Library
Convolutional sublibrary of Error Detection and Correction

Description
The APP Decoder block performs a posteriori probability (APP) decoding of a
convolutional code.

Input Signals and Output Signals
The input L(u) represents the sequence of log-likelihoods of encoder input bits, while the
input L(c) represents the sequence of log-likelihoods of code bits. The outputs L(u) and
L(c) are updated versions of these sequences, based on information about the encoder.

If the convolutional code uses an alphabet of 2n possible symbols, this block's L(c) vectors
have length Q*n for some positive integer Q. Similarly, if the decoded data uses an
alphabet of 2k possible output symbols, then this block's L(u) vectors have length Q*k.

This block accepts a column vector input signal with any positive integer for Q.

If you only need the input L(c) and output L(u), you can attach a Simulink Ground block to
the input L(u) and a Simulink Terminator block to the output L(c).

This block accepts single and double data types. Both inputs, however, must be of the
same type. The output data type is the same as the input data type.

3 Blocks — Alphabetical List

3-16

Specifying the Encoder
To define the convolutional encoder that produced the coded input, use the Trellis
structure parameter. This parameter is a MATLAB structure whose format is described
in “Trellis Description of a Convolutional Code”. You can use this parameter field in two
ways:

• If you have a variable in the MATLAB workspace that contains the trellis structure,
enter its name as the Trellis structure parameter. This way is preferable because it
causes Simulink to spend less time updating the diagram at the beginning of each
simulation, compared to the usage described next.

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, use a poly2trellis command within
the Trellis structure field. For example, to use an encoder with a constraint length of
7, code generator polynomials of 171 and 133 (in octal numbers), and a feedback
connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

To indicate how the encoder treats the trellis at the beginning and end of each frame, set
the Termination method parameter to either Truncated or Terminated. The
Truncated option indicates that the encoder resets to the all-zeros state at the beginning
of each frame. The Terminated option indicates that the encoder forces the trellis to end
each frame in the all-zeros state. If you use the Convolutional Encoder block with the
Operation mode parameter set to Truncated (reset every frame), use the
Truncated option in this block. If you use the Convolutional Encoder block with the
Operation mode parameter set to Terminate trellis by appending bits, use the
Terminated option in this block.

Specifying Details of the Algorithm
You can control part of the decoding algorithm using the Algorithm parameter. The True
APP option implements a posteriori probability decoding as per equations 20–23 in
section V of [1]. To gain speed, both the Max* and Max options approximate expressions
like

log∑
i

exp(ai)

by other quantities. The Max option uses max(ai) as the approximation, while the Max*
option uses max(ai) plus a correction term given by ln(1 + exp(− ai− 1− ai)) [3].

 APP Decoder

3-17

The Max* option enables the Scaling bits parameter in the dialog box. This parameter is
the number of bits by which the block scales the data it processes internally (multiplies
the input by (2^numScalingBits) and divides the pre-output by the same factor). Use
this parameter to avoid losing precision during the computations.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Termination method

Either Truncated or Terminated. This parameter indicates how the convolutional
encoder treats the trellis at the beginning and end of frames.

Algorithm
Either True APP, Max*, or Max.

Number of scaling bits
An integer between 0 and 8 that indicates by how many bits the decoder scales data
in order to avoid losing precision. This field is active only when Algorithm is set to
Max*.

Disable L(c) output port
Select this check box to disable the secondary block output, L(c).

Examples
For an example using this block, see the “Iterative Decoding of a Serially Concatenated
Convolutional Code” example.

References
[1] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input Soft-Output

Maximum A Posterior (MAP) Module to Decode Parallel and Serial Concatenated
Codes,” JPL TDA Progress Report, Vol. 42-127, November 1996.

[2] Benedetto, Sergio and Guido Montorsi, “Performance of Continuous and Blockwise
Decoded Turbo Codes.” IEEE Communications Letters, Vol. 1, May 1997, 77–79.

3 Blocks — Alphabetical List

3-18

[3] Viterbi, Andrew J., “An Intuitive Justification and a Simplified Implementation of the
MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications, Vol. 16, February 1998, 260–264.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Convolutional Encoder | Viterbi Decoder

Functions
poly2trellis

Introduced before R2006a

 APP Decoder

3-19

AGC Block
Adaptively adjust gain for constant signal-level output

Library
RF Impairments Correction

Description
The automatic gain controller (AGC) block adaptively adjusts its gain to achieve a
constant signal level at the output.

Parameters
Step size

Specify the step size for gain updates as a double-precision or single-precision real
positive scalar. The default is 0.01.

If you increase Step size, the AGC responds faster to changes in the input signal
level. However, gain pumping also increases.

Desired output power (W)
Specify the desired output power level as a real positive scalar. The power level is
specified in Watts referenced to 1 ohm. The default is 1.

Averaging length
Specify the length of the averaging window in samples as a positive integer scalar.
The default is 100.

3 Blocks — Alphabetical List

3-20

Note If you use the AGC with higher order QAM signals, you might need to reduce
the variation in the gain during steady-state operation. Inspect the constellation
diagram at the output of the AGC and increase the averaging length as needed. An
increase in Averaging length reduces execution speed.

Maximum power gain (dB)
Specify the maximum gain of the AGC in decibels as a positive scalar. The default is
60.

If the AGC input signal power is very small, the AGC gain will be very large. This can
cause problems when the input signal power suddenly increases. Use Maximum
power gain (dB) to avoid this by limiting the gain that the AGC applies to the input
signal.

Enable output of estimated input power
Select this check box to provide an input signal power estimate to an output port. By
default, the check box is not selected.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

Algorithms
This block implements the algorithm, inputs, and outputs described on the comm.AGC
reference page. The object properties correspond to the block parameters.

 AGC Block

3-21

Examples
To open these examples, enter the example names at the MATLAB command prompt:

• doc_agc_received_signal_amplitude — Adaptively adjusts the received signal power to
approximately 1 Watt.

• doc_agc_plot_step_size — Plots the effect of step size on AGC performance.
• doc_agc_plot_max_gain — Shows how the maximum gain affects the ability of the AGC

to reach its target output power.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.AGC

Introduced in R2013a

3 Blocks — Alphabetical List

3-22

matlab:doc_agc_received_signal_amplitude
matlab:doc_agc_plot_step_size
matlab:doc_agc_plot_max_gain

AWGN Channel
Add white Gaussian noise to input signal
Library: Communications Toolbox / Channels

Description
The AWGN Channel block adds white Gaussian noise to the input signal. It inherits the
sample time from the input signal.

Ports

Input
In — Input data signal
vector | matrix

Input data signal, specified as an NS-by-1 vector or an NS-by-NC matrix.

NS represents the number of samples in the input signal. NC represents the number of
channels, as determined by the number of columns in the input signal matrix. Both NS
and NC can be equal to 1.

The block adds frames of length-NS Gaussian noise to each of the NC channels, using a
distinct random distribution per channel.
Data Types: double | single
Complex Number Support: Yes

Var — Variance of additive white Gaussian noise
positive scalar | vector

 AWGN Channel

3-23

Variance of additive white Gaussian noise, specified as a positive scalar or a 1-by-NC
vector. NC represents the number of channels, as determined by the number of columns in
the input signal matrix. For more information, see “Specifying the Variance Directly or
Indirectly” on page 3-28.

Dependencies

To enable this port, set Mode to Variance from port.
Data Types: double

Output
Out — Output data signal
vector | matrix

Output data signal for the AWGN channel, returned as a vector or matrix. The datatype
and dimensions of Out match those of the input signal, In.

Parameters
Initial seed — Noise generator initial seed
67 (default) | positive scalar | vector

Noise generator initial seed, specified as a positive scalar or a 1-by-NC vector.

This block uses the Random Source block to generate noise. Random numbers are
generated using the Ziggurat method (V5 RANDN algorithm). The block reuses the same
initial seeds every time you rerun the simulation, so that this block outputs the same
signal each time you run a simulation.

When the input signal is complex, the block creates random data as:

randData = randn(2*NS,NC)
noise = randData(1:2:end) + 1i(randData(2:2:end))

NS is the number of samples and NC is the number of channels.

You can specify different seed values for each DLL build.

Tunable: Yes

3 Blocks — Alphabetical List

3-24

Mode — Variance mode
Signal to noise ratio (Eb/No) (default) | Signal to noise ratio (Es/No) |
Signal to noise ratio (SNR) | Variance from mask | Variance from port

Variance mode, specified as Signal to noise ratio (Eb/No), Signal to noise
ratio (Es/No), Signal to noise ratio (SNR), Variance from mask, or
Variance from port. For more information, see “Relationship Among Eb/No, Es/No,
and SNR Modes” on page 3-27 and “Specifying the Variance Directly or Indirectly” on
page 3-28.

Eb/No (dB) — Ratio of information bit energy per symbol to noise power
spectral density
10 (default) | scalar | vector

Ratio of information bit energy per symbol to noise power spectral density in decibels,
specified as a scalar or vector. The information bit energy is the magnitude without
channel coding.

Tunable: Yes
Dependencies

To enable this parameter, set Mode to Eb/No.

Es/No (dB) — Ratio of information symbol energy per symbol to noise power
spectral density
10 (default) | scalar | vector

Ratio of information symbol energy per symbol to noise power spectral density in
decibels, specified as a scalar or vector. The information bit energy is the magnitude
without channel coding.

Tunable: Yes
Dependencies

To enable this parameter, set Mode to Es/No.

SNR (dB) — Ratio of signal power to noise power
10 (default) | scalar | vector

Ratio of signal power to noise power in decibels, specified as a scalar or vector.

Tunable: Yes

 AWGN Channel

3-25

Dependencies

To enable this parameter, set Mode to SNR.

Number of bits per symbol — Number of bits in each input symbol
1 (default) | scalar | vector

Number of bits in each input symbol, specified as a scalar or vector.

Dependencies

To enable this parameter, set Mode to Eb/No.

Input signal power, referenced to 1 ohm (watts) — Mean square power of
input
1 (default) | scalar | vector

Mean square power of the input in watts, specified as a scalar or vector.

• When Mode is Eb/No or Es/No, the parameter is the mean square power of the input
symbols.

• When Mode is SNR, this parameter is the mean square power of the input samples.

Tunable: Yes

Dependencies

To enable this parameter, set Mode to Eb/No, Es/No, or SNR.

Symbol period (s) — Duration of an information channel
1 (default) | positive scalar | vector

Duration of an information channel symbol in seconds, specified as a positive scalar or
vector. The duration of the information channel is measured without channel coding.

Dependencies

To enable this parameter, set Mode to Eb/No or Es/No.

Variance — Variance of white Gaussian noise
1 (default) | scalar | vector

Variance of the white Gaussian noise, specified as a scalar or vector. For more
information, see “Specifying the Variance Directly or Indirectly” on page 3-28.

3 Blocks — Alphabetical List

3-26

Tunable: Yes

Dependencies

To enable this parameter, set Mode to Variance from mask.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Tips
• You can tune parameters in normal mode, accelerator mode, or rapid accelerator

mode.
• Unless otherwise indicated, parameters are nontunable.

• For nontunable parameters, when you use the Simulink Coder™ rapid simulation
(RSIM) target to build an RSIM executable, you cannot change their values without
recompiling the model.

• If a parameter is tunable, you can change its value at any time. This is useful for
Monte Carlo simulations in which you run the simulation multiple times (such as on
multiple computers) with different amounts of noise.

Algorithms

Relationship Among Eb/No, Es/No, and SNR Modes
For uncoded complex input signals, the AWGN Channel block relates Eb/N0, Es/N0, and
SNR according to these equations:

Es/N0 = (Tsym/Tsamp) · SNR

 AWGN Channel

3-27

Es/N0 = Eb/N0 + 10log10(k) in dB

• Es represents the signal energy in joules.
• Eb represents the bit energy in joules.
• N0 represents the noise power spectral density in watts/Hz.
• Tsym represents the Symbol period (s) parameter of the block in Es/No mode.
• k represents the number of information bits per input symbol, Number of bits per

symbol.
• Tsamp represents the inherited sample time of the block, in seconds.

For real signal inputs, the AWGN Channel block relates Es/N0 and SNR according to this
equation:

Es/N0 = 0.5 (Tsym/Tsamp) · SNR

Note

• All values of power assume a nominal impedance of 1 ohm.
• The equation for the real case differs from the corresponding equation for the complex

case by a factor of 2. Specifically, the object uses a noise power spectral density of
N0/2 watts/Hz for real input signals, versus N0 watts/Hz for complex signals.

For more information, see “AWGN Channel Noise Level”.

Specifying the Variance Directly or Indirectly
To directly specify the variance of the noise generated by AWGN Channel, specify the
Mode as:

• Variance from mask, where you specify the variance in the dialog box. The value
must be positive.

• Variance from port, where you provide the variance as an input to the block. The
variance input must be positive, and its sampling rate must equal that of the input
signal.

For Variance from mask and Variance from port mode:

3 Blocks — Alphabetical List

3-28

• If the variance is a scalar, then all signal channels are uncorrelated but share the same
variance.

• If the variance is a vector whose length is the number of channels in the input signal,
then each element represents the variance of the corresponding signal channel.

Note If you apply complex input signals to the AWGN Channel block, then it adds
complex zero-mean Gaussian noise with the calculated or specified variance. The
variance for each quadrature component of the complex noise is half of the calculated
or specified value.

To specify the variance indirectly, that is, to have the block calculate the variance, specify
the Mode as:

• Signal to noise ratio (Eb/No), where the block calculates the variance from
these quantities that you specify in the dialog box:

• Eb/No (dB), the ratio of bit energy to noise power spectral density
• Number of bits per symbol
• Input signal power, referenced to 1 ohm (watts), the actual power of the symbols at

the input of the block
• Symbol period (s)

• Signal to noise ratio (Es/No), where the block calculates the variance from
these quantities that you specify in the dialog box:

• Es/No (dB), the ratio of signal energy to noise power spectral density
• Input signal power, referenced to 1 ohm (watts), the actual power of the symbols at

the input of the block
• Symbol period (s)

• Signal to noise ratio (SNR), where the block calculates the variance from
these quantities that you specify in the dialog box:

• SNR (dB), the ratio of signal power to noise power
• Input signal power, referenced to 1 ohm (watts), the actual power of the samples at

the input of the block

Changing the symbol period in the AWGN Channel block affects the variance of the noise
added per sample, which also causes a change in the final error rate.

 AWGN Channel

3-29

NoiseVariance
SignalPower SymbolPeriod

SampleTime

Es No
=

¥

¥10 10

/

Tip Select the symbol period equal to the symbol period of the model. The value depends
on what constitutes a symbol and what the oversampling applied to it is. For example, a
symbol could have 3 bits and be oversampled by 4. For more information, see “AWGN
Channel Noise Level”.

References
[1] Proakis, John G. Digital Communications. 4th Ed. McGraw-Hill, 2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
MIMO Fading Channel | Random Source

Objects
comm.AWGNChannel

Topics
“Gray Coded 8-PSK”
“Filter Using Simulink Raised Cosine Filter Blocks”
“Reed Solomon Examples with Shortening, Puncturing, and Erasures”

Introduced before R2006a

3 Blocks — Alphabetical List

3-30

Barker Code Generator
Generate bipolar Barker Code
Library: Communications Toolbox

Communications Toolbox / Comm Sources / Sequence
Generators

Description
The Barker Code Generator block generates a bipolar Barker code. The short length and
low correlation sidelobes make Barker codes useful for frame synchronization in digital
communications systems. For more information, see “Barker Codes” on page 3-33.

Ports

Output
output — Barker code frame
column vector

Barker code frame, returned as a column vector. If the frame length exceeds the Barker
code length, the block fills the frame by repeating the Barker code.

Dependencies

Set the data type of the output with the Output data type parameter.

Parameters
Code length — Length of generated code
7 (default) | 1 | 2 | 3 | 4 | 5 | 11 | 13

Length of the generated code, specified as 1, 2, 3, 4, 5, 7, 11, or 13. For more
information, see “Barker Codes” on page 4-90.

 Barker Code Generator

3-31

Example: 2 outputs the Barker code [–1;1].
Data Types: double

Sample time — Output sample time
1 (default) | positive scalar

Output sample time, specified as a positive scalar that represents the time between each
sample of the output signal. For information on the relationship between Sample time
and Samples per frame, see “Sample Timing” on page 3-34.

Samples per frame — Samples per output frame
1 (default) | positive integer

Samples per output frame, specified as a positive integer. If Samples per frame is M, the
block outputs a frame containing M samples comprised of length N Barker code
sequences. N is the length of the generated code, which is set by the Code length
parameter. When M is not an integer multiple of N, consecutive frames maintain
continuity of the Barker code across frame boundaries.

For information on the relationship between Sample time and Samples per frame, see
“Sample Timing” on page 3-34.
Data Types: double

Output data type — Output data type
double (default) | int8

Output data type, specified as double or int8.
Data Types: char | string

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the

3 Blocks — Alphabetical List

3-32

speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | integer
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Barker Codes
Barker codes have a maximum autocorrelation sequence, which has off-peak
autocorrelations no larger than 1.

A correlation sidelobe is the correlation of a codeword with a time-shifted version of itself.
The correlation sidelobe, Ck, for a k-symbol shift of an N-bit code sequence, {Xj}, is

C X Xk j j k

j

N k

= +

=

-

Â
1

For j=1, 2, 3,..., N, Xj is an individual code symbol that is equal to +1 or –1. The adjacent
symbols are assumed to be 0.

The output code is in a bipolar format with 0 and 1 mapped to 1 and –1. The maximum
known Barker code length is 13. The short length and low correlation sidelobes make
Barker codes useful for frame synchronization in digital communications systems. The
Barker code generator outputs the Barker codes listed in this table.

 Barker Code Generator

3-33

Barker
Code
Length

Barker Code Sidelode Level

1 [–1] 0 dB
2 [–1; 1] –6 dB
3 [–1; –1; 1] –9.5 dB
4 [–1; –1; 1; –1] –12 dB
5 [–1; –1; –1; 1; –1] –14 dB
7 [–1; –1; –1; 1; 1; –1; 1] –16.9 dB
11 [–1; –1; –1; 1; 1; 1; –1; 1; 1; –1; 1] –20.8 dB
13 [–1; –1; –1; –1; –1; 1; 1; –1; –1; 1; –1; 1; –1] –22.3 dB

Sample Timing
The time between output updates is equal to the product of Samples per frame and
Sample time. For example, if Sample time and Samples per frame equal one, the
block outputs a sample every second. If Samples per frame is increased to 10, then a
10-by-1 vector is output every 10 seconds. This ensures that the equivalent output rate is
not dependent on the Samples per frame parameter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

See Also
Blocks
OVSF Code Generator | PN Sequence Generator | Walsh Code Generator

3 Blocks — Alphabetical List

3-34

Objects
comm.BarkerCode

Introduced before R2006a

 Barker Code Generator

3-35

Baseband File Reader
Read baseband signals from file
Library: Communications Toolbox / Comm Sources

Description
The Baseband File Reader block reads a signal from a baseband file. A baseband file is a
specific type of binary file written by the Baseband File Writer block. Baseband signals
are typically downconverted from a nonzero center frequency to 0 Hz. The block
automatically reads the sample rate, center frequency, number of channels, and any
descriptive data.

Input/Output Ports

Output
Data — Baseband signal
scalar | vector | matrix

Baseband signal, returned as a scalar, vector, or matrix. The signal is read from the file
specified by the Baseband file name parameter. The sample time is either inherited from
the file or can be set by the Sample Time (s) parameter.
Data Types: double

EOF — End-of-file indicator
logical scalar

End-of-file indicator, returned as a logical scalar. The output is true when the
Repeatedly read the file parameter is false and the entire file has been read. To
enable this port, select the Output end-of-file indicator parameter.

3 Blocks — Alphabetical List

3-36

Parameters
Baseband file name — Name of file from which data is read
example.bb (default) | character vector

Specify the name of the baseband file as a character vector.

Click Browse to locate the baseband file you want to read. Click File Info to display this
information:

• File name
• Sample rate
• Center frequency
• Number of samples
• Number of channels
• Data type
• Any metadata fields

Data Types: char

Inherit sample time from file — Select source of sample time
on (default) | off

Select this check box to inherit the sample time from the file specified by Baseband file
name.

Sample time (s) — Block sample time
1 (default) | positive scalar

Specify the block sample time in seconds as a real positive scalar. To enable this
parameter, clear the Inherit sample time from file check box.

Samples per frame — Number of samples in one frame
100 (default) | positive integer scalar

Specify the samples per frame as a positive integer scalar.

Repeatedly read the file — Continuously loop data from file
off (default) | on

 Baseband File Reader

3-37

Select this check box to repeatedly read the contents of the baseband file. If the end of
the file is reached, the block exhibits this behavior:

• Parameter is selected — The block outputs zeros.
• Parameter is not selected — The block outputs samples from the beginning of the file.

Simulate using — Select simulation mode
Code generation (default) | Interpreted execution

Code generation
On the first model run, simulate and generate code for the block using only MATLAB
functions supported for code generation. If the structure of the block does not
change, subsequent model runs do not regenerate the code.

Interpreted execution
Simulate model using all supported MATLAB functions. Choosing this option can slow
simulation performance.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-38

See Also
Blocks
Baseband File Writer

Topics
“Read Baseband Signal from File”

Introduced in R2016b

 Baseband File Reader

3-39

Baseband File Writer
Write baseband signals to file
Library: Communications Toolbox / Comm Sinks

Description
The Baseband File Writer block writes a baseband signal to a specific type of binary file.
Baseband signals are typically downconverted from a nonzero center frequency to 0 Hz.
Sample rate, which is determined by the input signal sample time and frame size, and
center frequency are saved when the signal is written to a file.

Input/Output Ports
Input
Port_1 — Baseband signal
scalar | vector | matrix

This port accepts a baseband signal to be saved under the filename specified by the
Baseband file name parameter. The saved signal is always complex.
Data Types: single | double

Parameters
Baseband file name — Name of file in which data is saved
untitled.bb (default) | character vector

Specify the name of the baseband file as a character vector.

To specify the location where the file is saved, click Browse.

3 Blocks — Alphabetical List

3-40

Center frequency (Hz) — Center frequency of the baseband signal
1e8 (default) | nonnegative scalar

Specify the center frequency in Hz as a nonnegative scalar.

Metadata in a structure — Data describing the baseband signal
struct() (default) | structure

Specify data describing the baseband signal as a structure. If the signal has no
descriptive data, this parameter is an empty structure. The structure can contain any
number of fields. Field names have no restrictions, but the field values must be numeric,
logical, or character data types having any dimension.

Number of latest samples to write — Number of samples to write
inf (default) | positive scalar

Specify the number to write. If this parameter is inf, all samples are saved. Otherwise,
only the last N samples are saved, where N is specified by this parameter.

Simulate using — Select simulation mode
Code generation (default) | Interpreted execution

Code generation
On the first model run, simulate and generate code for the block using only MATLAB
functions supported for code generation. If the structure of the block does not
change, subsequent model runs do not regenerate the code.

Interpreted execution
Simulate model using all supported MATLAB functions. Choosing this option can slow
simulation performance.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

 Baseband File Writer

3-41

Tips
• The Baseband File Writer block writes baseband signals to uncompressed binary files.

To share these files, you can compress them to a zip file using the zip function. For
more information, see “Create and Extract from Zip Archives” (MATLAB).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Baseband File Reader

Topics
“Write Baseband Signal to File”

Introduced in R2016b

3 Blocks — Alphabetical List

3-42

Baseband PLL
Implement baseband phase-locked loop

Library
Components sublibrary of Synchronization

Description
The Baseband PLL (phase-locked loop) block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match the phase of an
input signal. Unlike the Phase-Locked Loop block, this block uses a baseband method and
does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.
• A filter. You specify the filter's transfer function using the Lowpass filter numerator

and Lowpass filter denominator parameters. Each is a vector that gives the
respective polynomial's coefficients in order of descending powers of s.

To design a filter, you can use the Signal Processing Toolbox™ functions cheby1, and
cheby2. The default filter is a Chebyshev type II filter whose transfer function arises
from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO signal to

its input using the VCO input sensitivity parameter. This parameter, measured in
Hertz per volt, is a scale factor that determines how much the VCO shifts from its
quiescent frequency.

 Baseband PLL

3-43

This block accepts a sample-based scalar signal. The input signal represents the received
signal. The three output ports produce:

• The output of the filter
• The output of the phase detector
• The output of the VCO

This model is nonlinear; for a linearized version, use the Linearized Baseband PLL block.

Parameters
Lowpass filter numerator

The numerator of the lowpass filter's transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter's transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO's
quiescent frequency.

References
For more information about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” in Communications Toolbox User's Guide.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-44

See Also
Blocks
Linearized Baseband PLL | Phase-Locked Loop

Introduced before R2006a

 Baseband PLL

3-45

BCH Decoder
Decode BCH code to recover binary vector data
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The BCH Decoder block recovers a binary message vector from a binary BCH codeword
vector. For proper decoding, the Codeword length, N and Message length, K
parameter values in this block must match the parameters in the corresponding BCH
Encoder block. The full-length values of N and K must produce a valid narrow-sense BCH
code.

If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords. The input and output signal lengths are listed in “Input
and Output Signal Length in BCH Blocks” on page 3-51.

See “Tips” on page 3-53 for information about valid N values, valid (N,K) pairs, and
error-correcting capabilities for a given BCH code.

If decoding fails, the message portion of the decoder input is returned unchanged as the
decoder output.

The sample times of all input and output signals are equal.

This icon shows optional ports.

3 Blocks — Alphabetical List

3-46

Ports

Input
In — Encoded message
binary column vector

Encoded message, specified as a binary column vector. The encoded message is a BCH
code with message length K and codeword length (N – number of punctures).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Era — Erasure vector
binary column vector

Erasure vector, specified as a binary column vector that is the same length as In. Erasure
values of 1 correspond to erased bits in the same position in the codeword. Values of 0
correspond to bits that are not erased.
Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Output
Out — Decoded message
binary column vector

Decoded message, returned as a binary column vector input signal with an integer
multiple of Message length, K elements or Shortened message length, S elements if
the code is shortened. Each group of input elements represents one codeword to decode.
The input and output signal lengths are listed in the “Input and Output Signal Length in
BCH Blocks” on page 3-51 table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Err — Decoding errors
integer vector

 BCH Decoder

3-47

Decoding errors, returned as an integer vector that indicates the number of errors
detected during decoding of the codeword. A negative integer indicates that the block
detected more errors than it could correct by using the coding scheme.
Dependencies

To enable this port, select Output number of corrected errors.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

For more information, see “Supported Data Types” on page 3-53.

Parameters
Codeword length, N — Codeword length
15 (default) | integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer
from 3 through 16. For more information, see “Tips” on page 3-53.

Message length, K — Message length
5 (default) | integer

Message length, specified as an integer. The (N, K) pair must produce a narrow-sense
BCH code.

Shortened message length, S — Shortened message length
5 (default) | integer

Shortened message length, specified as an integer. When you specify this parameter,
provide full-length N and K values to specify the (N, K) code that is shortened to an (N–K
+S, S) code.
Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial
'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1' (default) | polynomial character vector |
binary row vector | binary Galois row vector

Generator polynomial, specified as one of the following:

3 Blocks — Alphabetical List

3-48

• A polynomial character vector — For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial in
order of descending power.

• A binary Galois row vector that represents the coefficients of the generator polynomial
in order of descending power.

Example: 'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1', which is equivalent to
bchgenpoly(15,5)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial
'X^4 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. It is a polynomial of order M that
defines the finite Galois field GF(2), specified as one of the following:

• A polynomial character vector — For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial in
order of descending power.

Example: 'X^4 + X + 1', which is the primitive polynomial used for a (15,5) code,
de2bi(primpoly(4,'nodisplay'),'left-msb')

Dependencies

To enable this parameter, select Specify primitive polynomial.

Disable generator polynomial checking — Option to disable generator
polynomial checking
on (default) | off

Select this parameter to disable generator polynomial check.

Each time a model initializes, the block performs a polynomial check. This check verifies
that X N + 1 is divisible by the specified generator polynomial, where N represents the full
codeword length. For larger codes, disabling the check speeds up the simulation process.

 BCH Decoder

3-49

Tip Always run the check at least once before disabling this feature.

Dependencies

To enable this parameter, select Specify generator polynomial.

Puncture vector — Puncture vector
[ones(8,1); zeros(2,1)] (default) | column vector

Puncture vector, specified as a binary column vector of length N–K. Element indices with
1s represent data symbol indices that pass through the block unaltered. Element indices
with 0s represent data symbol indices that get punctured, or removed, from the data
stream. For more information, see “Puncturing and Erasures” on page 3-52.

Dependencies

To enable this parameter, select Puncture code.

Enable erasures input port — Option to enable erasures input port
off (default) | on

Selecting this check box enables the erasures port, Era.

Through the port, you can input a binary column vector that is 1/M times as long as the
codeword input.

Erasure values of 1 correspond to erased symbols in the same position in the bit-packed
codeword. Values of 0 correspond to nonerased symbols. For more information, see
“Puncturing and Erasures” on page 3-52.

Output number of corrected errors — Option to enable port to output
number of corrected errors
off (default) | on

Selecting this check box enables an additional output port, Err, which indicates the
number of errors the block corrected in the input codeword.

3 Blocks — Alphabetical List

3-50

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Input and Output Signal Length in BCH Blocks
This table shows how to compute the input and output signal lengths for the BCH encoder
and decoder blocks.

The notation y = c * x denotes that y is an integer multiple of x.

Specify Shortened
Message Length, S

BCH Encoder BCH Decoder

off Input Length:

c * K

Output Length:

c * (N – P)

Input Length:

c * (N – P)

Output Length:

c * K

Erasures Length:

c * (N – P)

 BCH Decoder

3-51

Specify Shortened
Message Length, S

BCH Encoder BCH Decoder

on Input Length:

c * S

Output Length:

c * (N - K + S - P)

Input Length:

c * (N - K + S - P)

Output Length:

c * S

Erasures Length:

c * (N - K + S - P)

• N is the codeword length
• K is the message length
• S is the shortened message length
• P is the number of punctures value, and is equal to the number of zeros in the

puncture vector.

Puncturing and Erasures
1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see
“Shortening, Puncturing, and Erasures”.

3 Blocks — Alphabetical List

3-52

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
BCH Encoder — Encodes data using BCH algorithm.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the

error-correction capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum

allowable value of N is 65,535.

 BCH Decoder

3-53

Algorithms
This block implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.

Upper Saddle River, NJ: Prentice Hall, 1995.

[2] Berlekamp, Elwyn R. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BCH Encoder

Objects
comm.BCHDecoder

Functions
bchdec | bchgenpoly | primpoly

Topics
“Block Codes”

3 Blocks — Alphabetical List

3-54

Introduced before R2006a

 BCH Decoder

3-55

BCH Encoder
Create BCH code from binary vector data
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The BCH Encoder block creates a BCH code with message length K and codeword length
(N – number of punctures).

If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords. The input and output signal lengths are listed in “Input
and Output Signal Length in BCH Blocks” on page 3-60.

See “Tips” on page 3-61 for information about valid N values, valid (N,K) pairs, and
error-correcting capabilities for a given BCH code.

Ports

Input
In — Message to encode
binary column vector

Message to encode, specified as a binary column vector input signal with an integer
multiple of Message length, K elements or Shortened message length, S elements if
the code is shortened. Each group of input elements represents one message word to
encode. The input and output signal lengths are listed in “Input and Output Signal Length
in BCH Blocks” on page 3-60.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

3 Blocks — Alphabetical List

3-56

Output
Out — Encoded message
binary column vector

Encoded message, returned as a binary column vector. The encoded message is a BCH
code with message length K and codeword length (N – number of punctures).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

For more information, see “Supported Data Types” on page 3-61.

Parameters
Codeword length, N — Codeword length
15 (default) | integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer
from 3 through 16. For more information, see “Tips” on page 3-61.

Message length, K — Message length
5 (default) | integer

Message length, specified as an integer. The (N, K) pair must produce a narrow-sense
BCH code.

Shortened message length, S — Shortened message length
5 (default) | integer

Shortened message length, specified as an integer. When you specify this parameter,
provide full-length N and K values to specify the (N, K) code that is shortened to an (N–K
+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial
'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1' (default) | polynomial character vector |
binary row vector | binary Galois row vector

 BCH Encoder

3-57

Generator polynomial, specified as one of the following:

• A polynomial character vector — For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial in
order of descending power.

• A binary Galois row vector that represents the coefficients of the generator polynomial
in order of descending power.

Example: 'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1', which is equivalent to
bchgenpoly(15,5)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial
'X^4 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. It is a polynomial of order M that
defines the finite Galois field GF(2), specified as one of the following:

• A polynomial character vector — For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial in
order of descending power.

Example: 'X^4 + X + 1', which is the primitive polynomial used for a (15,5) code,
de2bi(primpoly(4,'nodisplay'),'left-msb')

Dependencies

To enable this parameter, select Specify primitive polynomial.

Disable generator polynomial checking — Option to disable generator
polynomial checking
on (default) | off

Select this parameter to disable generator polynomial check.

Each time a model initializes, the block performs a polynomial check. This check verifies
that X N + 1 is divisible by the specified generator polynomial, where N represents the full
codeword length. For larger codes, disabling the check speeds up the simulation process.

3 Blocks — Alphabetical List

3-58

Tip Always run the check at least once before disabling this feature.

Dependencies

To enable this parameter, select Specify generator polynomial.

Puncture vector — Puncture vector
[ones(8,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as a binary column vector of length N–K. Element indices with
1s represent data symbol indices that pass through the block unaltered. Element indices
with 0s represent data symbol indices that get punctured, or removed, from the data
stream. For more information, see “Shortening, Puncturing, and Erasures”.

Note 1s and 0s have precisely opposite meanings for the puncture and erasure vectors.
For an erasure vector, 1 means that the data symbol is to be replaced with an erasure
symbol, and 0 means that the data symbol is passed through the block unaltered. This
convention applies to both the encoder and the decoder.

Dependencies

To enable this parameter, select Puncture code.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

 BCH Encoder

3-59

More About

Input and Output Signal Length in BCH Blocks
This table shows how to compute the input and output signal lengths for the BCH encoder
and decoder blocks.

The notation y = c * x denotes that y is an integer multiple of x.

Specify Shortened
Message Length, S

BCH Encoder BCH Decoder

off Input Length:

c * K

Output Length:

c * (N – P)

Input Length:

c * (N – P)

Output Length:

c * K

Erasures Length:

c * (N – P)
on Input Length:

c * S

Output Length:

c * (N - K + S - P)

Input Length:

c * (N - K + S - P)

Output Length:

c * S

Erasures Length:

c * (N - K + S - P)

• N is the codeword length
• K is the message length
• S is the shortened message length
• P is the number of punctures value, and is equal to the number of zeros in the

puncture vector.

3 Blocks — Alphabetical List

3-60

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
BCH Decoder — Decodes BCH encoded data.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the

error-correction capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum

allowable value of N is 65,535.

Algorithms
This block implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

References
[1] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital

Communications. New York: Plenum Press, 1981.

 BCH Encoder

3-61

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BCH Decoder

Objects
comm.BCHEncoder

Functions
bchenc | bchgenpoly | primpoly

Topics
“Block Codes”

Introduced before R2006a

3 Blocks — Alphabetical List

3-62

Bernoulli Binary Generator
Generate Bernoulli-distributed random binary numbers

Library
Random Data Sources sublibrary of Comm Sources

Description
The Bernoulli Binary Generator block generates random binary numbers using a Bernoulli
distribution. The Bernoulli distribution with parameter p produces zero with probability p
and one with probability 1-p. The Bernoulli distribution has mean value 1-p and variance
p(1-p). The Probability of a zero parameter specifies p, and can be any real number
between zero and one.

Attributes of Output Signal
The output signal can be a column or row vector, a two-dimensional matrix, or a scalar.
The number of rows in the output signal corresponds to the number of samples in one
frame and is determined by the Samples per frame parameter. The number of columns
in the output signal corresponds to the number of channels and is determined by the
number of elements in the Probability of a zero parameter. See “Sources and Sinks” in
Communications Toolbox User's Guide for more details.

Parameters
Probability of a zero

The probability with which a zero output occurs. Specify the probability as a scalar or
row vector whose elements are real numbers between 0 and 1. The number of

 Bernoulli Binary Generator

3-63

elements in the Probability of a zero parameter correspond to the number of
independent channels output from the block.

Source of initial seed
The source of the initial seed for the random number generator. Specify the source as
either Auto or Parameter. When set to Auto, the block uses the global random
number stream.

Note When Source of initial seed is Auto in Code generation mode, the random
number generator uses an initial seed of zero. Therefore, the block generates the
same random numbers each time it is started. Use Interpreted execution to
ensure that the model uses different initial seeds. If Interpreted execution is run
in Rapid accelerator mode, then it behaves the same as Code generation
mode.

Initial seed
The initial seed value for the random number generator. Specify the seed as a
nonnegative integer scalar. Initial seed is available when the Source of initial seed
parameter is set to Parameter.

Sample time
The time between each sample of a column of the output signal.

Samples per frame
The number of samples per frame in one channel of the output signal. Specify
Samples per frame as a positive integer scalar.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame
equal one, the block outputs a binary sample every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

Output data type
The output type of the block can be specified as a boolean, uint8, uint16, uint32,
single, or double. The default is double.

3 Blocks — Alphabetical List

3-64

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

Examples

Generate Bernoulli Binary Numbers

Open the Bernoulli generator model. The model generates binary data, applies BPSK
modulation, and displays the output.

Run the model.

 Bernoulli Binary Generator

3-65

See Also
Random Integer Generator, Binary Symmetric Channel, randi, rand

3 Blocks — Alphabetical List

3-66

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Bernoulli Binary Generator

3-67

Binary Cyclic Decoder
Decode systematic cyclic code to recover binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Cyclic Decoder block recovers a message vector from a codeword vector of a
binary systematic cyclic code. For proper decoding, the parameter values in this block
should match those in the corresponding Binary Cyclic Encoder block.

This block accepts a column vector input signal containing N elements, where N is the
codeword length. The output signal is a column vector containing K elements, where K is
the message length of the cyclic code.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second dialog parameters,
respectively. The block computes an appropriate generator polynomial, namely,
cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K) binary
generator polynomial, enter N as the first parameter and a polynomial character
vector or a binary vector as the second parameter. The vector represents the
generator polynomial by listing its coefficients in order of ascending exponents. You
can create cyclic generator polynomials using the Communications Toolbox cyclpoly
function.

For information about the data types each block port supports, see the “Supported Data
Type” on page 3-69 table on this page.

3 Blocks — Alphabetical List

3-68

Parameters
Codeword length N

The codeword length N, which is also the input vector length.
Message length K, or generator polynomial

Either the message length, which is also the input vector length, a polynomial
character vector, or a binary vector that represents the generator polynomial for the
code.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Cyclic Encoder

 Binary Cyclic Decoder

3-69

See Also
cyclpoly

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

3 Blocks — Alphabetical List

3-70

Binary Cyclic Encoder
Create systematic cyclic code from binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Cyclic Encoder block creates a systematic cyclic code with message length K
and codeword length N.

This block accepts a column vector input signal containing K elements. The output signal
is a column vector containing N elements.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second dialog parameters,
respectively. The block computes an appropriate generator polynomial, namely,
cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K) binary
generator polynomial, enter N as the first parameter and a polynomial character
vector or a binary vector as the second parameter. The vector represents the
generator polynomial by listing its coefficients in order of ascending exponents. You
can create cyclic generator polynomials using the Communications Toolbox cyclpoly
function.

For information about the data types each block port supports, see the “Supported Data
Type” on page 3-72 table on this page.

 Binary Cyclic Encoder

3-71

Parameters
Codeword length N

The codeword length, which is also the output vector length.
Message length K, or generator polynomial

Either the message length, which is also the input vector length, a polynomial
character vector, or a binary vector that represents the generator polynomial for the
code.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Cyclic Decoder

3 Blocks — Alphabetical List

3-72

See Also
cyclpoly (in the Communications Toolbox documentation)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Binary Cyclic Encoder

3-73

Binary-Input RS Encoder
Create Reed-Solomon code from binary vector data
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The Binary-Input RS Encoder block creates a Reed-Solomon code.

The symbols for the code are binary sequences of length M, corresponding to elements of
the Galois field GF(2M). The first bit in each symbol is the most significant bit.

Suppose M = 3, N = 23-1 = 7, and K = 2. Then a message is a vector of length 2 whose
entries are integers between 0 and 7. A corresponding codeword is a vector of length 7
whose entries are integers between 0 and 7. The following figure illustrates possible input
and output signals to this block when codeword length N=7 and message word length
K=2. Since N=2M–1, when N=7, the symbol length, M=3.

3 Blocks — Alphabetical List

3-74

Each input message word is a binary vector of length 6, that represents 2 three-bit
integers. Each corresponding output codeword is a binary vector of length 21 that
represents 7 three-bit integers. For more information, see “Input and Output Signal
Length in RS Blocks” on page 3-79.

Ports

Input
In — Message
binary column vector

Message in bits, specified as one of the following:

• When there is no message shortening, a (NC×K×M)-by-1 binary column vector.
• When there is message shortening, a (NC×S×M)-by-1 binary column vector.

 Binary-Input RS Encoder

3-75

NC is the number of message words, K is the Message length K (symbols), M is the
number of bits per symbol, and S is the Shortened message length S (symbols).

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-79.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | ufix(1)

Output
Out — Reed-Solomon codeword
binary column vector

Reed-Solomon codeword in bits, returned as an (NC×(N – K + S – P)×M)-by-1 binary
column vector. NC is the number of codewords, N is the Codeword length N (symbols),
K is the Message length K (symbols), S is the Shortened message length S
(symbols), P is the number of punctures per codeword, and M is the number of bits per
symbol.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-79.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | ufix(1)

For more information, see “Supported Data Types” on page 3-82.

Parameters
Codeword length N (symbols) — Codeword length
7 (default) | integer

Codeword length in symbols, specified as an integer.

For more information, see “Restrictions on the M and the Codeword Length N” on page 3-
80 and “Input and Output Signal Length in RS Blocks” on page 3-79.

Message length K (symbols) — Message word length
3 (default) | integer

3 Blocks — Alphabetical List

3-76

Message word length in symbols, specified as an integer in the range [1, N–2], where N is
the codeword length.

Shortened message length S (symbols) — Shortened message word length
3 (default) | integer

Shortened message word length in symbols, specified as an integer, such that S ≤ K.
When Shortened message length S (symbols) < Message length K (symbols), the
Reed-Solomon code is shortened.

You still specify N and K values for the full-length (N, K) code but the decoding is
shortened to an (N–K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial
rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector |
binary row vector | binary Galois row vector

Generator polynomial with values from 0 to 2M–1, in order of descending power, specified
as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• An integer row vector that represents the coefficients of the generator polynomial in
order of descending power.

• An integer Galois row vector that represents the coefficients of the generator
polynomial in order of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For
more information, see “Specify the Generator Polynomial” on page 3-81.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial
'X^3 + X + 1' (default) | polynomial character vector | binary row vector

 Binary-Input RS Encoder

3-77

Primitive polynomial in order of descending power. This polynomial is of order M and
defines the finite Galois field GF(2M) corresponding to the integers that form message
words and codewords. Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Restrictions on the M and the Codeword Length N” on page 3-
80.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code,
de2bi(primpoly(3,'nodisplay'),'left-msb')

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector
[ones(2,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s
represent data symbol indices that pass through the block unaltered. Element indices
with 0s represent data symbol indices that get punctured, or removed, from the data
stream. For more information, see “Puncturing and Erasures” on page 3-81.

Dependencies

To enable this parameter, select Puncture code.

Output data type — Output type of the block
Same as input (default) | boolean | double

Output type of the block, specified as Same as input, boolean, or double.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

3 Blocks — Alphabetical List

3-78

Variable-Size
Signals

no

a. ufix(1) only.

More About

Input and Output Signal Length in RS Blocks
The Reed-Solomon code has a message word length, K, or shortened message word
length, S. The codeword length is N – K + S – P, where N is the full codeword length and
P is the number of punctures per codeword. When there is no message shortening, the
codeword length expression reduces to N – P, because K = S. If the decoder is processing
multiple codewords per frame, then the same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-
Solomon encoder and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening

Used
Message Shortening Used

Binary-Input RS Encoder Input Length (bits):

NC × K × M

Output Length (bits):

NC × (N–P) × M

Input Length (bits):

NC × S × M

Output Length (bits):

NC × (N–K+S–P) × M

 Binary-Input RS Encoder

3-79

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening

Used
Message Shortening Used

Binary-Output RS Decoder Input Length (bits):

NC × (N–P) × M

Erasures Length
(symbols):

NC × (N–P)

Output Length (bits):

NC × K × M

Input Length (bits):

NC × (N–K+S–P) × M

Erasures Length
(symbols):

NC × (N–K+S–P)

Output Length (bits):

NC × S × M

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures per codeword, and is equal to the number of zeros in the

puncture vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an

integer between 0 and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format
(Reed-Solomon Only)”.

Also, see “Restrictions on the M and the Codeword Length N” on page 3-80.

Restrictions on the M and the Codeword Length N
• If you do not select Specify primitive polynomial, valid values for the codeword

length, N, are from 7 to 65535. In this case, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default primitive
polynomial by running primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial
degree, M, are from 3 to 16. The valid values for N in this case are from 7 to 2M–1.

3 Blocks — Alphabetical List

3-80

Selecting Specify primitive polynomial enables you to specify the primitive
polynomial that defines the finite field GF(2M), which corresponds to the values that
form message words and codewords.

Specify the Generator Polynomial
Select Specify generator polynomial to enable the Generator polynomial parameter
for specifying the generator polynomial of the Reed-Solomon code. Enter an integer row
vector with element values from 0 to 2M-1. The vector represents a polynomial, in
descending order of powers, whose coefficients are elements of GF(2M) represented in
integer format. For more information about integer and binary format, see “Integer
Format (Reed-Solomon Only)”. The generator polynomial must be equal to a polynomial
with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and
b is an integer.

If you do not select Specify generator polynomial, the block uses the default generator
polynomial, corresponding to b=1, for Reed-Solomon encoding. You can display the
default generator polynomial by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is
not selected), the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial
is selected) and you specify the primitive polynomial as poly, the generator
polynomial is rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length
and K is the message word length.

Puncturing and Erasures
1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.

 Binary-Input RS Encoder

3-81

• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see
“Shortening, Puncturing, and Erasures”.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Pair Block
Binary-Output RS Decoder

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

3 Blocks — Alphabetical List

3-82

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Output RS Decoder | Integer-Input RS Encoder

Objects
comm.RSEncoder

Functions

Introduced before R2006a

 Binary-Input RS Encoder

3-83

Binary Linear Decoder
Decode linear block code to recover binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Linear Decoder block recovers a binary message vector from a binary
codeword vector of a linear block code.

The Generator matrix parameter is the generator matrix for the block code. For proper
decoding, this should match the Generator matrix parameter in the corresponding
Binary Linear Encoder block. If N is the codeword length of the code, then Generator
matrix must have N columns. If K is the message length of the code, then the Generator
matrix parameter must have K rows.

This block accepts a column vector input signal containing N elements. This block outputs
a column vector with a length of K elements.

The decoder tries to correct errors, using the Decoding table parameter. If Decoding
table is the scalar 0, then the block defaults to the table produced by the
Communications Toolbox function syndtable. Otherwise, Decoding table must be a 2N-
K-by-N binary matrix. The rth row of this matrix is the correction vector for a received
binary codeword whose syndrome has decimal integer value r-1. The syndrome of a
received codeword is its product with the transpose of the parity-check matrix.

For information about the data types each block port supports, see the “Supported Data
Type” on page 3-85 table on this page.

3 Blocks — Alphabetical List

3-84

Parameters
Generator matrix

Generator matrix for the code; same as in Binary Linear Encoder block.
Decoding table

Either a 2N-K-by-N matrix that lists correction vectors for each codeword's syndrome;
or the scalar 0, in which case the block defaults to the table corresponding to the
Generator matrix parameter.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Linear Encoder

 Binary Linear Decoder

3-85

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

3 Blocks — Alphabetical List

3-86

Binary Linear Encoder
Create linear block code from binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Linear Encoder block creates a binary linear block code using a generator
matrix that you specify. If K is the message length of the code, then the Generator
matrix parameter must have K rows. If N is the codeword length of the code, then
Generator matrix must have N columns.

This block accepts a column vector input signal containing K elements. This block outputs
a column vector with a length of N elements. For information about the data types each
block port supports, see “Supported Data Type” on page 3-88.

Parameters
Generator matrix

A K-by-N matrix, where K is the message length and N is the codeword length.

 Binary Linear Encoder

3-87

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Linear Decoder

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

3 Blocks — Alphabetical List

3-88

Binary-Output RS Decoder
Decode Reed-Solomon code to recover binary vector data
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The Binary-Output RS Decoder block recovers a binary message vector from a binary
Reed-Solomon codeword vector. For proper decoding, the parameter values in this block
must match parameter values in the corresponding Binary-Input RS Encoder block.

The symbols for the code are binary sequences of length M, corresponding to elements of
the Galois field GF(2M). The first bit in each symbol is the most significant bit.

This figure shows the decoder input-output word length for codeword length N=7 and
message word length K=2. Since N=2M–1, when N=7, the symbol length, M=3.

 Binary-Output RS Decoder

3-89

Each input codeword is a binary vector of length 21 that represents 7 three-bit integers.
Each corresponding output message word is a binary vector of length 6, that represents 2
three-bit integers. For more information, see “Input and Output Signal Length in RS
Blocks” on page 3-95.

This icon shows all ports, including optional ones:

Ports

Input
In — Reed-Solomon codeword
binary column vector

3 Blocks — Alphabetical List

3-90

Reed-Solomon codeword in bits, specified as an (NC×(N – K + S – P)×M)-by-1 binary
column vector. NC is the number of codewords, N is the Codeword length N (symbols),
K is the Message length K (symbols), S is the Shortened message length S
(symbols), P is the number of punctures per codeword, and M is the number of bits per
symbol.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-95.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | ufix(1)

Era — Erasure vector
binary column vector

Erasure vector in symbols, specified as an (NC×(N – K + S – P))-by-1 binary column
vector. NC is the number of codewords, N is the Codeword length N (symbols), K is the
Message length K (symbols), S is the Shortened message length S (symbols), P is
the number of punctures per codeword, and M is the number of bits per symbol.

Erasure values of 1 correspond to erased bits in the same position in the codeword.
Values of 0 correspond to bits that are not erased. For more information, see “Puncturing
and Erasures” on page 3-98.

Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Output
Out — Decoded message
binary column vector

Decoded message in bits, returned as one of the following:

• When there is no message shortening, a (NC×K×M)-by-1 binary column vector.
• When there is message shortening, a (NC×S×M)-by-1 binary column vector.

NC is the number of message words, K is the Message length K (symbols), M is the
number of bits per symbol, and S is the Shortened message length S (symbols).

 Binary-Output RS Decoder

3-91

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-95.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | ufix(1)

Err — Decoding errors
integer vector

Symbol decoding errors, returned as an integer vector with NC elements, where NC is the
number of codewords. This port indicates the number of symbol errors detected during
decoding of each codeword. A negative integer indicates that the block detected more
errors than it could correct by using the specified coding scheme.

Note An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword. When a received codeword contains more than (N-K)/2
symbol errors, a decoding failure occurs.

Dependencies

To enable this port, select Output number of corrected symbol errors.
Data Types: double

For more information, see “Supported Data Types” on page 3-98.

Parameters
Codeword length N (symbols) — Codeword length
7 (default) | integer

Codeword length in symbols, specified as an integer.

For more information, see “Restrictions on M and Codeword Length N” on page 3-97
and “Input and Output Signal Length in RS Blocks” on page 3-95.

Message length K (symbols) — Message word length
3 (default) | integer

3 Blocks — Alphabetical List

3-92

Message word length in symbols, specified as an integer in the range [1, N–2], where N is
the codeword length.

Shortened message length S (symbols) — Shortened message word length
3 (default) | integer

Shortened message word length in symbols, specified as an integer, such that S ≤ K.
When Shortened message length S (symbols) < Message length K (symbols), the
Reed-Solomon code is shortened.

You still specify N and K values for the full-length (N, K) code but the decoding is
shortened to an (N–K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial
rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector |
binary row vector | binary Galois row vector

Generator polynomial with values from 0 to 2M–1, in order of descending power, specified
as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• An integer row vector that represents the coefficients of the generator polynomial in
order of descending power.

• An integer Galois row vector that represents the coefficients of the generator
polynomial in order of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For
more information, see “Specify the Generator Polynomial” on page 3-97.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial
'X^3 + X + 1' (default) | polynomial character vector | binary row vector

 Binary-Output RS Decoder

3-93

Primitive polynomial in order of descending power. This polynomial is of order M and
defines the finite Galois field GF(2M) corresponding to the integers that form message
words and codewords. Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Restrictions on M and Codeword Length N” on page 3-97.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code,
de2bi(primpoly(3,'nodisplay'),'left-msb')

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector
[ones(2,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s
represent data symbol indices that pass through the block unaltered. Element indices
with 0s represent data symbol indices that get punctured, or removed, from the data
stream. For more information, see “Puncturing and Erasures” on page 3-98.
Dependencies

To enable this parameter, select Punctured code.

Enable erasures input port — Enable erasures input port
off (default) | on

Selecting this check box enables the erasures port, Era. For more information, see
“Puncturing and Erasures” on page 3-98.

Output number of corrected symbol errors — Enable port to output number
of corrected symbol errors
off (default) | on

Selecting this check box enables an additional output port, Err, which indicates the
number of symbol errors the block corrected in the input codeword.

Output data type — Output type of the block
Same as input (default) | boolean | double

3 Blocks — Alphabetical List

3-94

Output type of the block, specified as Same as input, boolean, or double.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

a. ufix(1) only.

More About

Input and Output Signal Length in RS Blocks
The Reed-Solomon code has a message word length, K, or shortened message word
length, S. The codeword length is N – K + S – P, where N is the full codeword length and
P is the number of punctures per codeword. When there is no message shortening, the
codeword length expression reduces to N – P, because K = S. If the decoder is processing
multiple codewords per frame, then the same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-
Solomon encoder and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.

 Binary-Output RS Decoder

3-95

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening

Used
Message Shortening Used

Binary-Input RS Encoder Input Length (bits):

NC × K × M

Output Length (bits):

NC × (N–P) × M

Input Length (bits):

NC × S × M

Output Length (bits):

NC × (N–K+S–P) × M
Binary-Output RS Decoder Input Length (bits):

NC × (N–P) × M

Erasures Length
(symbols):

NC × (N–P)

Output Length (bits):

NC × K × M

Input Length (bits):

NC × (N–K+S–P) × M

Erasures Length
(symbols):

NC × (N–K+S–P)

Output Length (bits):

NC × S × M

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures per codeword, and is equal to the number of zeros in the

puncture vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an

integer between 0 and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format
(Reed-Solomon Only)”.

Also, see “Restrictions on M and Codeword Length N” on page 3-97.

3 Blocks — Alphabetical List

3-96

Restrictions on M and Codeword Length N
• If you do not select Specify primitive polynomial, valid values for the codeword

length, N, are from 7 to 65535. In this case, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default primitive
polynomial by running primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial
degree, M, are from 3 to 16. The valid values for N in this case are from 7 to 2M–1.
Selecting Specify primitive polynomial enables you to specify the primitive
polynomial that defines the finite field GF(2M), which corresponds to the values that
form message words and codewords.

Specify the Generator Polynomial
Select Specify generator polynomial to enable the Generator polynomial parameter
for specifying the generator polynomial of the Reed-Solomon code. Enter an integer row
vector with element values from 0 to 2M-1. The vector represents a polynomial, in
descending order of powers, whose coefficients are elements of GF(2M) represented in
integer format. For more information about integer and binary format, see “Integer
Format (Reed-Solomon Only)”. The generator polynomial must be equal to a polynomial
with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and
b is an integer.

If you do not select Specify generator polynomial, the block uses the default generator
polynomial, corresponding to b=1, for Reed-Solomon encoding. You can display the
default generator polynomial by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is
not selected), the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial
is selected) and you specify the primitive polynomial as poly, the generator
polynomial is rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length
and K is the message word length.

 Binary-Output RS Decoder

3-97

Puncturing and Erasures
1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see
“Shortening, Puncturing, and Erasures”.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Era • Double-precision floating point
• Boolean

3 Blocks — Alphabetical List

3-98

Port Supported Data Types
Err • Double-precision floating point

Pair Block
Binary-Input RS Encoder

Algorithms
This block uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see “Algorithms for BCH and RS Errors-only Decoding”.

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.

Upper Saddle River, NJ: Prentice Hall, 1995.

[2] Berlekamp, Elwyn R. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Input RS Encoder | Integer-Output RS Decoder

 Binary-Output RS Decoder

3-99

Objects
comm.RSDecoder

Functions
primpoly | rsdec | rsgenpoly

Introduced before R2006a

3 Blocks — Alphabetical List

3-100

Binary Symmetric Channel
Introduce binary errors
Library: Communications Toolbox / Channels

Description
The Binary Symmetric Channel block introduces errors to the input signal transmitted
through a binary symmetric channel. The errors are introduced based on the specified
Error probability. For more information, see “Tips” on page 3-103.

Ports

Input
Input — Input signal
column vector | matrix

Input signal, specified as a column vector or an NS-by-NC matrix of Boolean values. NS is
the number of samples per channel. NC is the number of independent data channels. For
more information, see “Tips” on page 3-103.

Output
Output — Binary output signal
column vector | matrix

Binary output signal, returned as a column vector or matrix with the same dimensions as
Input. The output signal is a version of the input signal that has been modified by
introducing random errors based on the specified Error probability. To set the output data
type, use Output data type.

 Binary Symmetric Channel

3-101

Err — Error locations
column vector | matrix

Error locations, returned as a column vector or matrix with the same dimensions as
Input. Element values in Err are 1 or 0, where:

• 1 indicates that the corresponding element in Output has an error.
• 0 indicates that the corresponding element in Output does not have an error.

The data type of Err is the same as Output, as set by Output data type.

Dependencies

To enable this port, select Output error vector.

Parameters
Error probability — Probability of error occurrence
0.05 (default) | scalar

Probability of error occurrence for the input signal elements, specified as a scalar in the
range [0,1]. The probability of error applies independently for each element.

Output error vector — Option to output error locations
on (default) | off

To enable the Err output port to the block, select this parameter.

Output data type — Output data type
double (default) | single | boolean

Select the output data type as double, single, or boolean. This parameter sets the
output data type for both the Output and Err ports.

Initial seed — Initial seed
71 (default) | integer

Initial seed value for the random number generator used by the block, specified as an
integer. The block uses the mt19937ar algorithm to generate uniformly distributed
random numbers. For details about the mt19937ar algorithm, see “Choosing a Random
Number Generator” (MATLAB).

3 Blocks — Alphabetical List

3-102

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Tips
• When the input consists of not Boolean values, Binary Symmetric Channel converts

zero-valued elements to 0 and converts nonzero-valued elements to 1.
• The Binary Symmetric Channel block creates and uses an independent RandStream to

provide a random number stream for probability determination.
• To generate repeatable results, use the same Initial seed value.
• To generate independent probability statistics, set different Initial seed values for

multichannel signals, multiple processing chains, or simulation runs.

 Binary Symmetric Channel

3-103

Compatibility Considerations

Random Number Generation
Behavior changed in R2018b

To improve statistical properties, the Binary Symmetric Channel block uses the
mt19937ar algorithm with RandStream. The Binary Symmetric Channel block accepts a
single scalar value for the Initial seed parameter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bernoulli Binary Generator

Topics
“Design a Rate 2/3 Feedforward Encoder Using Simulink”

Introduced before R2006a

3 Blocks — Alphabetical List

3-104

Bipolar to Unipolar Converter
Map bipolar signal into unipolar signal in range [0, M-1]

Library
Utility Blocks

Description
The Bipolar to Unipolar Converter block maps the bipolar input signal to a unipolar
output signal. If the input consists of integers in the set {-M+1, -M+3, -M+5,..., M-1},
where M is the M-ary number parameter, then the output consists of integers between 0
and M-1. This block is only designed to work when the input value is within the set {-M
+1, -M+3, -M+5,..., M-1}, where M is the M-ary number parameter. If the input value is
outside of this set of integers the output may not be valid.

The table below shows how the block's mapping depends on the Polarity parameter.

Polarity Parameter Value Output Corresponding to Input Value of
k

Positive (M-1+k)/2
Negative (M-1-k)/2

Parameters
M-ary number

The number of symbols in the bipolar or unipolar alphabet.

 Bipolar to Unipolar Converter

3-105

Polarity
A value of Positive causes the block to maintain the relative ordering of symbols in
the alphabets. A value of Negative causes the block to reverse the relative ordering
of symbols in the alphabets.

Output Data Type
The type of bipolar signal produced at the block's output.

The block supports the following output data types:

• Inherit via internal rule
• Same as input
• double
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

When the parameter is set to its default setting, Inherit via internal rule, the
block determines the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data
type is the same as the input data type.

• If the input data type is not floating-point:

• Based on the M-ary number parameter, the output data type is the ideal
unsigned integer output word length required to contain the range [0 M-1] and
is computed as follows:

ideal word length = ceil(log2(M))
• The block sets the output data type to be an unsigned integer, based on the

smallest word length (in bits) that can fit best the computed ideal word length.

3 Blocks — Alphabetical List

3-106

Note The selections in the “Hardware Implementation Pane” (Simulink) pane
pertaining to word length constraints do not affect how this block determines output
data types.

Examples
If the input is [-3; -1; 1; 3], the M-ary number parameter is 4, and the Polarity
parameter is Positive, then the output is [0; 1; 2; 3]. Changing the Polarity parameter
to Negative changes the output to [3; 2; 1; 0].

If the value for the M-ary number is 28 the block gives an output of uint8.

If the value for the M-ary number is 28+1 the block gives an output of uint16.

Pair Block
Unipolar to Bipolar Converter

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Bipolar to Unipolar Converter

3-107

Bit to Integer Converter
Map vector of bits to corresponding vector of integers

Library
Utility Blocks

Description
The Bit to Integer Converter block maps groups of bits in the input vector to integers in
the output vector. M defines how many bits are mapped for each output integer.

For unsigned integers, if M is the Number of bits per integer, then the block maps each
group of M bits to an integer between 0 and 2M-1. As a result, the output vector length is
1/M times the input vector length. For signed integers, if M is the Number of bits per
integer , then the block maps each group of M bits to an integer between –2M-1 and
2M-1-1.

This block accepts a column vector input signal with an integer multiple equal to the
value you specify for Number of bits per integer parameter. The block accepts double,
single, boolean, int8, uint8, int16, uint16, int32, uint32 and ufix1 input data
types.

3 Blocks — Alphabetical List

3-108

Dialog Box

Number of bits per integer
The number of input bits that the block maps to each integer of the output. This
parameter must be an integer between 1 and 32.

Input bit order
Defines whether the first bit of the input signal is the most significant bit (MSB) or the
least significant bit (LSB). The default selection is MSB.

After bit packing, treat resulting integer value as
Indicates if the integer value input ranges should be treated as signed or unsigned.
The default setting is Unsigned.

Note This parameter setting determines which Output data type selections are
available.

 Bit to Integer Converter

3-109

Output data type
If the input values are unsigned integers, you can choose from the following Output
data type options:

• Inherit via internal rule
• Smallest integer
• Same as input
• double
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32

If the input values are signed integers, you can choose from the following Output
data type options:

• Inherit via internal rule
• Smallest integer
• double
• single
• int8
• int16
• int32

The default selection for this parameter is Inherit via internal rule.

When you set the parameter to Inherit via internal rule, the block
determines the output data type based on the input data type.

• If the input signal is floating-point (either double or single), the output data
type is the same as the input data type.

• If the input data type is not floating-point, the output data type is determined as if
the parameter is set to Smallest integer .

3 Blocks — Alphabetical List

3-110

When you set the parameter to Smallest integer, the software selects the output
data type based on the settings used in the “Hardware Implementation Pane”
(Simulink) of the Configuration Parameters dialog box.

• If ASIC/FPGA is selected, the output data type is the smallest ideal integer or
fixed-point data type, based on the setting for the Number of bits per integer
parameter.

• For all other selections, the output data type is the smallest available (signed or
unsigned) integer word length that is large enough to fit the ideal minimum bit
size.

Examples
Refer to the example on the Integer to Bit Converter reference page: Fixed-Point Integer
To Bit and Bit To Integer Conversion (Audio Scrambling and Descrambling Example) on
page 3-570

Pair Block
Integer to Bit Converter

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
bi2de | bin2dec

Introduced before R2006a

 Bit to Integer Converter

3-111

BPSK Demodulator Baseband
Demodulate BPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The BPSK Demodulator Baseband block demodulates a signal that was modulated using
the binary phase shift keying method. The input is a baseband representation of the
modulated signal. This block accepts a scalar or column vector input signal. The input
signal must be a discrete-time complex signal. The block maps the points exp(jθ) and -
exp(jθ) to 0 and 1, respectively, where θ is the Phase offset parameter.

For information about the data types each block port supports, see “Supported Data
Types” on page 3-120.

3 Blocks — Alphabetical List

3-112

Algorithm

{ , }0 1

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , }0 1

Hard-Decision BPSK Demodulator Signal Diagram for Trivial Phase Offset
(multiple of π/2)

 BPSK Demodulator Baseband

3-113

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

input DT

input DT

(constant derotate factors)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Floating-Point Signal Diagram for Nontrivial
Phase Offset

3 Blocks — Alphabetical List

3-114

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Fixed-Point Signal Diagram for Nontrivial
Phase Offset

The exact LLR and approximate LLR cases (soft-decision) are described in “Exact LLR
Algorithm” and “Approximate LLR Algorithm” in the Communications Toolbox User's
Guide.

 BPSK Demodulator Baseband

3-115

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Decision type
Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
The output values for Log-likelihood ratio and Approximate log-likelihood ratio are of
the same data type as the input values. See “Exact LLR Algorithm” and “Approximate
LLR Algorithm” in the Communications Toolbox User's Guide for algorithm details.

3 Blocks — Alphabetical List

3-116

Noise variance source
This field appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

 BPSK Demodulator Baseband

3-117

Data Types Pane for Hard-Decision

Output
When Decision type is set to Hard decision, the output data type can be set to
'Inherit via internal rule', 'Smallest unsigned integer', double,
single, int8, uint8, int16, uint16, int32, uint32, or boolean.

When this parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is a floating-point type (single or
double). If the input data type is fixed-point, the output data type will work as if this
parameter is set to 'Smallest unsigned integer'.

When this parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is the ideal minimum
one-bit size, i.e., ufix(1). For all other selections, it is an unsigned integer with the
smallest available word length large enough to fit one bit, usually corresponding to
the size of a char (e.g., uint8).

3 Blocks — Alphabetical List

3-118

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not a
multiple of π/2.

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input.

Data Types Pane for Soft-Decision

When Decision type is set to Log-likelihood ratio or Approximate log-
likelihood ratio, the output data type is inherited from the input (e.g., if the input is
of data type double, the output is also of data type double).

 BPSK Demodulator Baseband

3-119

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed point (only for Hard decision mode)

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA and when Decision type is Hard decision

modes

Pair Block
BPSK Modulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation
and synthesized logic.

3 Blocks — Alphabetical List

3-120

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
Blocks
BPSK Modulator Baseband | DBPSK Demodulator Baseband | M-PSK Demodulator
Baseband | QPSK Demodulator Baseband

Introduced before R2006a

 BPSK Demodulator Baseband

3-121

BPSK Modulator Baseband
Modulate using binary phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The BPSK Modulator Baseband block modulates using the binary phase shift keying
method. The output is a baseband representation of the modulated signal.

This block accepts a column vector input signal. The input must be a discrete-time binary-
valued signal. If the input bit is 0 or 1, respectively, then the modulated symbol is exp(jθ)
or -exp(jθ), respectively, where θ represents the Phase offset parameter.

For information about the data types each block port supports, see the “Supported Data
Types” on page 3-125 table on this page.

Constellation Visualization
The BPSK Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the “Constellation Visualization” section of the Communications Toolbox User's Guide.

3 Blocks — Alphabetical List

3-122

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

 BPSK Modulator Baseband

3-123

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data type
is a fixed-point data type.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point
data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer™. This parameter is only visible when you select User-defined for the
Output data type parameter.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

3 Blocks — Alphabetical List

3-124

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1)

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)

Pair Block
BPSK Demodulator Baseband

See Also
M-PSK Modulator Baseband, QPSK Modulator Baseband, DBPSK Modulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 BPSK Modulator Baseband

3-125

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Introduced before R2006a

3 Blocks — Alphabetical List

3-126

Carrier Synchronizer
Compensate for carrier frequency offset

Library
Synchronization

Description
The Carrier Synchronizer block compensates for carrier frequency and phase offsets
using a closed-loop approach for BPSK, QPSK, OQPSK, 8-PSK, QAM, and PAM modulation
schemes. The block accepts a single input port. To obtain an estimate of the phase error
in radians, select the Estimated phase error output port check box. The block accepts
a sample- or frame-based complex input signal and returns a complex output signal and a
an real phase estimate. The block outputs have the same dimensions as the input.

Note

• This block does not resolve phase ambiguities created by the synchronization
algorithm. As indicated in this table, the potential phase ambiguity introduced by the
synchronizer depends on the modulation type:

Modulation Phase Ambiguity (degrees)
'BPSK' or 'PAM' 0, 180
'OQPSK', 'QPSK', or 'QAM' 0, 90, 180, 270
'8PSK' 0, 45, 90, 135, 180, 225, 270, 315

• For best results, apply carrier synchronization to non-oversampled signals.

 Carrier Synchronizer

3-127

Parameters
Modulation

Specify the modulation type as BPSK, QPSK, OQPSK, 8PSK, QAM, or PAM.
Modulation phase offset

Specify the method used to calculate the modulation phase offset as either Auto or
Custom.

• Auto applies the traditional offset for the specified modulation type.

Modulation Phase Offset (radians)
BPSK, QAM, or PAM 0
QPSK or OQPSK π/4
8PSK π/8

• Custom enables the Custom phase offset (radians) parameter.

Custom phase offset (radians)
Specify the phase offset in radians as a real scalar. This parameter is available only
when Modulation phase offset is set to Custom.

Samples per symbol
Specify the number of samples per symbol as a positive integer scalar.

Damping factor
Specify the damping factor of the loop as a positive real finite scalar.

Normalized loop bandwidth
Specify the normalized loop bandwidth as a real scalar between 0 and 1. The
bandwidth is normalized by the sample rate of the carrier synchronizer block.

Estimated phase error output port
Select this check box to provide the estimated phase error to an output port.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code for the block using only
MATLAB functions supported for code generation. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

3 Blocks — Alphabetical List

3-128

Interpreted execution
Simulate model using all supported MATLAB functions. Choosing this option can
slow simulation performance.

Algorithms
This block implements the algorithm, inputs, and outputs described on the
comm.CarrierSynchronizer reference page. The object properties correspond to the
block parameters.

Examples
Correct for Frequency and Phase Offset
Correct for a phase and frequency offset imposed on a noisy 16-QAM channel using the
Carrier Synchronizer block.

Open the doc_qamcarriersync model.

 Carrier Synchronizer

3-129

matlab:doc_qamcarriersync

Run the model. The Constellation Diagram Without Sync block shows a spiral pattern that
indicates a phase and frequency offset. After the carrier synchronizer converges to a
solution, the data displayed on the Constellation Diagram With Sync block are grouped
around the reference constellation.

3 Blocks — Alphabetical List

3-130

Experiment with the parameters in the Phase/Frequency Offset and Carrier Synchronizer
blocks. By varying these parameters, you can change how quickly the output conforms to
an ideal 16-QAM constellation.

If the signal does not converge to the expected constellation, additional measures can be
taken to achieve successful recovery. For more information, see the “Correct Phase and
Frequency Offset for 16-QAM Using Coarse and Fine Synchronization” on page 4-318
example.

 Carrier Synchronizer

3-131

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point
Phase Error Estimate • Double-precision floating point

• Single-precision floating point

References
[1] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle

River, NJ: Prentice Hall, 2009, pp. 359–393.

[2] Huang, Zhijie, Zhiqiang Yi, Ming Zhang, and Kuang Wang. “8PSK Demodulation for
New Generation DVB-S2.” International Conference on Communications, Circuits
and Systems, 2004. ICCCAS 2004. Vol. 2, 2004, pp. 1447–1450.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Biquad Filter

Objects
comm.CarrierSynchronizer

3 Blocks — Alphabetical List

3-132

Functions

Topics
“MSK Signal Recovery”

Introduced in R2015a

 Carrier Synchronizer

3-133

Charge Pump PLL
Implement charge pump phase-locked loop using digital phase detector

Library
Components sublibrary of Synchronization

Description
The Charge Pump PLL (phase-locked loop) block automatically adjusts the phase of a
locally generated signal to match the phase of an input signal. It is suitable for use with
digital signals.

This PLL has these three components:

• A sequential logic phase detector, also called a digital phase detector or a phase/
frequency detector.

• A filter. You specify the filter transfer function using the Lowpass filter numerator
and Lowpass filter denominator parameters. Each is a vector that gives the
respective polynomial's coefficients in order of descending powers of s.

To design a filter, use functions such as butter, cheby1, and cheby2 in Signal
Processing Toolbox software. The default filter is a Chebyshev type II filter whose
transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO using the

VCO input sensitivity, VCO quiescent frequency, VCO initial phase, and VCO
output amplitude parameters.

This block accepts a sample-based scalar input signal. The input signal represents the
received signal. The three output ports produce:

3 Blocks — Alphabetical List

3-134

• The output of the filter
• The output of the phase detector
• The output of the VCO

A sequential logic phase detector operates on the zero crossings of the signal waveform.
The equilibrium point of the phase difference between the input signal and the VCO
signal equals π. The sequential logic detector can compensate for any frequency
difference that might exist between a VCO and an incoming signal frequency. Hence, the
sequential logic phase detector acts as a frequency detector.

Parameters
Lowpass filter numerator

The numerator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO
quiescent frequency value. The units of VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This should
match the frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

See Also
Phase-Locked Loop

 Charge Pump PLL

3-135

References
For more information about digital phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

3 Blocks — Alphabetical List

3-136

CMA Equalizer
(To be removed) Equalize using constant modulus algorithm

Library
Equalizers

Note will be removed in a future release. Use Linear Equalizer or Decision Feedback
Equalizer instead.

Description
The CMA Equalizer block uses a linear equalizer and the constant modulus algorithm
(CMA) to equalize a linearly modulated baseband signal through a dispersive channel.
During the simulation, the block uses the CMA to update the weights, once per symbol. If
the Number of samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally spaced equalizer.

When using this block, you should initialize the equalizer weights with a nonzero vector.
Typically, CMA is used with differential modulation; otherwise, the initial weights are very
important. A typical vector of initial weights has a 1 corresponding to the center tap and
zeros elsewhere.

Input and Output Signals
The Input port accepts a scalar-valued or column vector input signal. The Desired port
receives a training sequence with a length that is less than or equal to the number of
symbols in the Input signal.

 CMA Equalizer

3-137

You can configure the block to have one or more of the extra ports listed in the table
below.

Port Meaning How to Enable
Err output y(R -|y|2), where y is the

equalized signal and R is a
constant related to the
signal constellation

Select Output error.

Wts output A vector listing the weights
after the block has
processed either the current
input frame or sample.

Select Output weights.

Algorithms
Referring to the schematics in “Adaptive Equalizers”, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set of weights, w, this
adaptive algorithm creates the new set of weights given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

Equalizer Delay
The delay between the transmitter's modulator output and the CMA equalizer output is
typically unknown (unlike the delay for other adaptive equalizers in this product). If you
need to determine the delay, you can use the Find Delay block.

Parameters
Number of taps

The number of taps in the filter of the equalizer.
Number of samples per symbol

The number of input samples for each symbol.

When you set this parameter to 1, the filter weights are updated once for each
symbol, for a symbol spaced (i.e. T-spaced) equalizer. When you set this parameter to

3 Blocks — Alphabetical List

3-138

a value greater than one, the weights are updated once every Nth sample, for a
fractionally spaced (i.e. T/N-spaced) equalizer.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Step size
The step size of the CMA.

Leakage factor
The leakage factor of the CMA, a number between 0 and 1. A value of 1 corresponds
to a conventional weight update algorithm, and a value of 0 corresponds to a
memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Output error
If you check this box, the block outputs the error signal described in the table above.

Output weights
If you check this box, the block outputs the current weights.

References
[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-

Hall, 1996.

[2] Johnson, Richard C. Jr., Philip Schniter, Thomas. J. Endres, et al., "Blind Equalization
Using the Constant Modulus Criterion: A Review," Proceedings of the IEEE, vol.
86, pp. 1927-1950, October 1998.

Compatibility Considerations

CMA Equalizer will be removed
Not recommended starting in R2019a

CMA Equalizer will be removed in a future release. Use Linear Equalizer or Decision
Feedback Equalizer instead.

 CMA Equalizer

3-139

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Introduced before R2006a

3 Blocks — Alphabetical List

3-140

Coarse Frequency Compensator
Compensate for carrier frequency offset for PAM, PSK, or QAM

Library
Synchronization

Description
The Coarse Frequency Compensator block compensates for a carrier frequency offset for
BPSK, QPSK, OQPSK, 8-PSK, PAM, and QAM modulation schemes. The block accepts a
single input signal. To obtain an estimate of the frequency offset in Hz, select the
Estimated frequency offset output port check box. The block accepts a sample- or
frame-based complex input signal and returns a complex output signal and a real
frequency offset estimate. The output signal has the same dimensions as the input signal.
The frequency offset estimate is a scalar.

Parameters
Modulation type of input signal

Specify the modulation type as BPSK, QPSK, OQPSK, 8PSK, PAM, or QAM.

The default setting is QAM.
Estimation algorithm

Specify the frequency offset estimation algorithm as FFT-based or Correlation-
based. This parameter appears when Modulation type of input signal is BPSK,
QPSK, 8PSK, or PAM.

 Coarse Frequency Compensator

3-141

The table shows the allowable combinations of the modulation type and the
estimation algorithm.

Modulation FFT-Based Algorithm Correlation-Based
Algorithm

BPSK, QPSK, 8PSK, PAM ✓ ✓

OQPSK, QAM ✓

Frequency resolution (Hz)
Specify the frequency resolution in Hz as a positive real scalar. This option is available
when the FFT-based algorithm is used. The default setting is 0.001 Hz.

Samples per symbol
Specify the number of samples per symbol as a positive integer scalar greater than or
equal to 4. The default setting is 4.

Maximum frequency offset (Hz)
Specify the maximum frequency offset in Hz as a positive real scalar. This option is
appears when you set Estimation algorithm to Correlation-based. The default
setting is 0.05 Hz.

Estimated frequency offset output port
Select this check box to provide the estimated frequency offset to an output port. The
default for this parameter is selected.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code for the block using only
MATLAB functions supported for code generation. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects accept a maximum
of nine inputs.

Interpreted execution
Simulate your model using all supported MATLAB functions. Choosing this option
can slow simulation performance.

The default setting is Code generation.

3 Blocks — Alphabetical List

3-142

Algorithms
This block implements the algorithm, inputs, and outputs described on the
comm.CoarseFrequencyCompensator reference page. The object properties
correspond to the block parameters.

Examples

Correct for Frequency and Phase Offset
Correct for a frequency offset imposed on a noisy 8-PSK channel by using the Coarse
Frequency Compensator block.

Open the doc_coarsefreqcomp model.

Open the dialog boxes to verify these parameter values:

• Random Integer Generator — Sample time is 1e-4, which is equivalent to a 10
ksym/sec symbol rate.

• Raised Cosine Transmit Filter — Output samples per symbol is 4.
• AWGN Channel — Mode is Signal to noise ratio (SNR) and SNR (dB) is 20.
• Phase/Frequency Offset — Frequency offset (Hz) is 2000.
• Coarse Frequency Compensator — Estimation algorithm is FFT-based and

Frequency resolution (Hz) is 1.

 Coarse Frequency Compensator

3-143

matlab:doc_coarsefreqcomp

Run the model. The Spectrum Analyzer block shows both the frequency offset signal and
the compensated signal. In addition, the Display block shows the estimate of the
frequency offset. Observe that the spectrum plot shows that the Coarse Frequency
Compensator correctly centers the signal around 0 Hz. Additionally, the display shows
that the estimated frequency offset is 2000 Hz.

Adjust the parameters in the Phase/Frequency Offset and Coarse Frequency Compensator
blocks and see their effect on frequency compensation performance.

3 Blocks — Alphabetical List

3-144

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point
Frequency Estimate • Double-precision floating point

• Single-precision floating point

References

[1] Luise, M. and R. Regiannini. “Carrier recovery in all-digital modems for burst-mode
transmissions.” IEEE® Transactions on Communications.Vol. 43, No. 2, 3, 4,
Feb/Mar/April, 1995, pp. 1169–1178.

[2] Wang, Y., K. Shi, and E. Serpedi. “Non-Data-Aided Feedforward Carrier Frequency
Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach.”
EURASIP Journal on Applied Signal Processing. 2004:13, pp. 1993–2001.

[3] Nakagawa, T., M. Matsui, T. Kobayashi, K. Ishihara, R. Kudo, M. Mizoguchi, and Y.
Miyamoto. “Non-Data-Aided Wide-Range Frequency Offset Estimator for QAM
Optical Coherent Receivers.” Optical Fiber Communication Conference and
Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers
Conference. March 2011, pp. 1–3.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Coarse Frequency Compensator

3-145

See Also
Blocks
Carrier Synchronizer | Symbol Synchronizer

Objects
comm.CoarseFrequencyCompensator

Introduced in R2015b

3 Blocks — Alphabetical List

3-146

Complex Phase Difference
Output phase difference between two complex input signals

Library
Utility Blocks

Description
The Complex Phase Difference block accepts two complex input signals that have the
same size and frame status. The output is the phase difference from the second to the
first, measured in radians. The elements of the output are between -π and π.

The input signals can have any size or frame status. This block processes each pair of
elements independently.

Examples

Calculate Complex Phase Difference

Open the complex phase difference model. The model generates random integers and
applies QPSK modulation. The first QPSK modulator has a phase offset of 0, while the
second has a pi/4 phase offset. The Complex Phase Difference block determines the
phase difference. The data is passed to the workspace from the To Workspace block.

 Complex Phase Difference

3-147

Run the model.

Display the phase difference.

phDiff =

 -0.7854

The phase difference is equal to -pi/4 as expected.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Complex Phase Shift

Introduced before R2006a

3 Blocks — Alphabetical List

3-148

Complex Phase Shift
Shift phase of complex input signal by second input value

Library
Utility Blocks

Description
The Complex Phase Shift block accepts a complex signal at the port labeled In. The
output is the result of shifting this signal's phase by an amount specified by the real signal
at the input port labeled Ph. The Ph input is measured in radians, and must have the
same size and frame status as the In input.

The input signals can have any size or frame status. This block processes each pair of
corresponding elements independently.

See Also
Complex Phase Difference

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Complex Phase Shift

3-149

Introduced before R2006a

3 Blocks — Alphabetical List

3-150

Constellation Diagram
Display constellation diagram for input signals
Library: Communications Toolbox / Comm Sinks

Communications Toolbox HDL Support / Comm Sinks

Description
The Constellation Diagram block displays real and complex-valued floating and fixed-point
signals in the I/Q plane. Use this block to perform qualitative and quantitative analysis on
modulated single-carrier signals.

In the constellation diagram window you can:

• Input and plot multiple signals on a single constellation diagram. You can define one
reference constellation for each input signal. For more information, see Reference
constellation.

• Choose which channels are displayed by selecting signals in the legend. Use the Show
legend parameter to display the legend.

• Display the “EVM / MER Measurements” on page 3-164 panel, which displays
calculated error vector magnitude (EVM) and modulation error ratio (MER)
measurements. When a multichannel signal is input, use Trace Selection to choose the
signal being measured.

 Constellation Diagram

3-151

Ports

Input
Port_1 — Signal or signals to visualize
column vector | matrix

3 Blocks — Alphabetical List

3-152

Connect to the signal or signals you want to visualize as an Nsym-by-1 column vector or
Nsym-by-Nsig matrix. Nsym is the number of symbols and Nsig is the number of input signals.

You can specify up to 20 input signals. Specifically, the maximum number of channels
through all the ports is 20. For example, if you create a two-channel signal for every input
port, then you can define up 10 number of input ports.
Example: [-1 + 1i; -1 - 1i; 1 + 1i; 1 - 1i] specifies a 4-symbol input signal.

Parameters

File
From the Constellation Diagram window, select File to view the options available.

Open at Start of Simulation — Open constellation diagram at start of
simulation
on (default) | off

Select to open constellation diagram window at start of simulation. Deselect to prevent
constellation diagram window from opening at start of simulation.

Number of input ports — Number of input ports on scope block
1 (default) | positive integer in the range [1, 20]

Specify the number of input ports on the Scope block, specified as an integer in the range
[1, 20].

When multichannel input signals are specified, the maximum number of input ports is
limited by the total number of input signals defined. The total number of input signal
cannot exceed 20.

Tools > Axes Scaling Properties
From the Constellation Diagram window, select Tools > Axes Scaling Properties to
open the Axes Scaling Properties: Constellation Diagram dialog box. In this dialog box,
you can customize the graphical properties of the axes.

 Constellation Diagram

3-153

Properties

Axes scaling — Axes scaling options
Manual (default) | Auto | After N Updates

Axes scaling options, specified as:

• Manual — Applies the x and y axes limits specified in the Visuals – Constellation
Properties: Constellation Diagram dialog box.

• Auto — Scales the axes limits as needed during and after simulation.
• After N Updates — Scales the axes limits after the specified Number of updates.

Tunable: Yes

Number of updates — Number of updates after which to scale the axes
10 (default) | positive integer

Number of updates after which to scale the axes, specified as a positive integer.

Tunable: Yes

Dependencies

This parameter appears when Axes scaling is set to After N Updates.

Scale axes limits at stop — Option to scale axes at end of simulation
off (default) | on

Select to scale axes at end of the simulation to the data range percentage limits specified
by X-axis Data range (%) and Y-axis Data range (%).

X-axis Data range (%) — Percentage of x-axis used to display data
80 (default) | scalar from 1 to 100

Percentage of x-axis used to display data.
Example: 100 scales the x-axis range to the maximum value of the in-phase amplitude
component of the input signal.

Tunable: Yes

X-axis Align — Align data along x-axis
Center (default) | Left | Right

3 Blocks — Alphabetical List

3-154

Align data along x-axis, specified as Center, Left, or Right.
Example: Right aligns the maximum value of the in-phase amplitude component of the
input signal toward the upper x-axis limit.

Tunable: Yes

Y-axis Data range (%) — Percentage of y-axis used to display data
80 (default) | scalar from 1 to 100

Percentage of y-axis used to display data.
Example: 30 scales the y-axis range so that the maximum value of the quadrature
amplitude component of the signal occupies 30% of the y-axis range.

Tunable: Yes

Y-axis Align — Align data along y-axis
Center (default) | Top | Bottom

Align data along y-axis, specified as Center, Top, or Bottom.
Example: Bottom aligns the maximum value of the quadrature amplitude component of
the signal toward the lower y-axis limit.

Tunable: Yes

Tools > Measurements
From the Constellation Diagram window, select options under Tools > Measurements to
display the Trace Selection and Signal Quality panes. By default these panes are
docked in the Constellation Diagram window when displayed.

The Signal Quality pane contains the Settings and EVM / MER subpanes. Both
subpanes can be independently expanded or collapsed.

For more information about the signal quality measurements, see “EVM / MER
Measurements” on page 3-164.

Trace Selection — Signal trace used to compute measurements
list of signals

Select the signal trace used to compute measurements from the list of available signals.
This parameter lists the signals input to the block.

 Constellation Diagram

3-155

Tunable: Yes

Dependencies

To set this parameter, the Trace Selection pane must be visible. The Trace Selection
pane automatically appears when you plot multiple signals on the Constellation Diagram
window. To hide or display the Trace Selection pane, select Tools > Measurements >
Trace Selection from the Constellation Diagram window.

EVM / MER Settings Pane

Measurement interval — Duration of EVM or MER measurement
Current Display (default) | All displays | positive integer

Duration of the EVM or MER measurement in symbols, specified as Current Display,
All displays, or a positive integer. To specify a positive integer, select and then
replace <user-defined> with your desired value. The value must be positive and less
than or equal to Symbols to display. The measurement is computed after the number of
input data samples exceeds the measurement interval.

Tunable: Yes

EVM normalization — Normalization method used for EVM calculation
Average constellation power (default) | Peak constellation power

Normalization method used for EVM calculation, specified as Average constellation
power or Peak constellation power. The comm.EVM System object computes the
EVM.

Tunable: Yes

Reference constellation — Reference constellation
QPSK (default) | BPSK | 8-PSK | 16-QAM | 64-QAM | 256-QAM | vector

Reference constellation, specified as BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, 256-QAM, or
a <user-defined> vector. To specify a custom value, select <user-defined>, then in the
Custom value property replace the entry with your desired value.

3 Blocks — Alphabetical List

3-156

Each input port can have its own reference constellation. For a multichannel input signal,
a single reference constellation is applied for all signals in that input port.

To obtain the EVM/MER measurements, you must set Reference constellation to a valid
value corresponding to the modulation of the input signal.

Tunable: Yes

Custom value — Input reference constellation
vector

Input the reference constellation, specified as a vector.

Dependecies

To enable this parameter, set Reference constellation to <user-defined>.
Data Types: double
Complex Number Support: Yes

Average reference power — Average power of reference constellation
1 (default) | positive scalar

Average power of the reference constellation in watts, specified as a positive scalar and
referenced to a one-ohm load.

Tunable: Yes

Reference phase offset (rad) — Phase offset of reference constellation
pi/4 (default) | scalar

Phase offset of the reference constellation in radians, specified as a scalar.

Tunable: Yes

View > Configuration Properties
From the Constellation Diagram window, select View > Configuration Properties to
open the Visuals – Constellation Properties: Constellation Diagram dialog box. In this
dialog box, you can customize the graphical properties of the plotted signals.

 Constellation Diagram

3-157

Main

Number of input ports — Number of input ports on scope block
1 (default) | positive integer in the range [1, 20]

Specify the number of input ports on the Scope block, specified as an integer in the range
[1, 20].

Samples per symbol — Number of samples used to represent each symbol
1 (default) | positive integer

Number of samples used to represent each symbol, specified as a positive integer. When
Samples per symbol is greater than 1, the signal is downsampled before it is plotted.

Tunable: Yes

Offset (samples) — Number of samples to skip before plotting points
0 (default) | nonnegative integer

Number of samples to skip before plotting points, specified as a nonnegative integer less
than Samples per symbol. This parameter specifies the number of samples to skip when
downsampling the input signal.

Tunable: Yes

Symbols to display — Maximum number of symbols to display
Input frame length (default) | positive integer

Maximum number of symbols to display, specified as Input frame length or a positive
integer. To specify a positive integer, select and then replace <user-defined> with your
desired value.

Use Symbols to display to limit the maximum number of symbols displayed when long
signals are input. Symbols plotted are the most recent symbols received.

Tunable: Yes

Display

Show grid — Display plot grid lines
on (default) | off

Select to display plot grid lines.

3 Blocks — Alphabetical List

3-158

Tunable: Yes

Show legend — Display plot legend
off (default) | on

Select to display plot legend. The names listed in the legend are the signal names from
the model.

From the legend, you can control which signals are plotted. This control is equivalent to
changing the visibility in the View > Style dialog box. In the scope legend, click a signal
name to hide the signal in the scope. To show the signal, click the signal name again. To
show only one signal and hide all other signals, right-click the signal name. To show all
signals, press Esc.

Tunable: Yes

Show signal trajectory — Display signal trajectory
off (default) | on

Select to display the trajectory between constellation points for the plotted signals.

Tunable: Yes

Color fading — Option to add color fading effect
off (default) | on

When you select Color fading, the points in the display fade as the interval of time after
they are first plotted increases. Color fading is for animation that resembles an
oscilloscope.

Tunable: Yes

X-limits (Minimum) — Minimum x-axis value
-1.375 (default) | scalar

Minimum x-axis value, specified as a scalar.

Tunable: Yes

X-limits (Maximum) — Maximum x-axis value
1.375 (default) | scalar

Maximum x-axis value, specified as a scalar.

 Constellation Diagram

3-159

Tunable: Yes

Y-limits (Minimum) — Minimum y-axis value
-1.375 (default) | scalar

Minimum y-axis value, specified as a scalar.

Tunable: Yes

Y-limits (Maximum) — Maximum y-axis value
1.375 (default) | scalar

Maximum y-axis value, specified as a scalar.

Tunable: Yes

Title — Title on plot
blank (default) | character vector | string

Title on plot, specified as a character vector or string.

Tunable: Yes

X-axis label — x-axis label
'In-phase Amplitude' (default) | character vector | string

x-axis label, specified as a character vector or string.

Tunable: Yes

Y-axis label — y-axis label
'Quadrature Amplitude' (default) | character vector | string

y-axis label, specified as a character vector or string.

Tunable: Yes

Reference constellation

Show reference constellation — Select to display reference constellation
on (default) | off

Select to display the reference constellation.

3 Blocks — Alphabetical List

3-160

Tunable: Yes

Input — Input port number
1 (default) | integer

Select the input port number for which you want to view/change the reference
constellation and the associated attributes.
Dependencies

To enable this parameter, set the Number of input ports parameter to a value greater
than 1.

Reference constellation — Reference constellation
QPSK (default) | BPSK | 8-PSK | 16-QAM | 64-QAM | 256-QAM | vector

Reference constellation, specified as BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, 256-QAM, or
a <user-defined> vector. To specify the value, select and then replace <user-defined>
with your desired value. When defined by the user, the reference constellation values can
be specified as a vector.

Each input port can have its own reference constellation. For a multichannel input signal,
a single reference constellation is applied for all signals in that input port.

To obtain the EVM/MER measurements, you must set Reference constellation to a valid
value corresponding to the modulation of the input signal.

Tunable: Yes
Data Types: double
Complex Number Support: Yes

Average reference power — Average power of reference constellation
1 (default) | positive scalar

Average power of the reference constellation in watts, specified as a positive scalar and
referenced to a one-ohm load.

Tunable: Yes

Reference phase offset (rad) — Phase offset of reference constellation
pi/4 (default) | scalar

Phase offset of the reference constellation in radians, specified as a scalar.

 Constellation Diagram

3-161

Tunable: Yes

View > Style
From the Constellation Diagram window, select View > Style to open the Constellation
Diagram - Style dialog box. In this dialog box, you can customize the graphical properties
of the components in the Constellation Diagram window.

Figure color — Select background color
gray (default)

Select the background color within the Constellation Diagram window and outside the
scope axes.

Axes colors — Select colors of plot and measurement panes
black (default for background) | gray (default for axes)

Select colors of plot and measurement panes. The first color option specifies the
background color of the plot figure and the measurement panes. The second option
specifies the color of the plot figure axes (ticks, labels, and grid lines) and the text. For
more a description of the measurement panes, see in the “Tools > Measurements” on
page 3-155.

Tunable: Yes

Properties for channel — View or change graphical properties of each
channel
Channel 1 (default)

Select a channel to view or change its graphical properties.

Bring To Front — Bring channel to front
button

Bring the active channel, as indicated by Properties for channel, to the front.

Show signal and reference constellation — Option to hide channel
on (default) | off

Clear to hide the active channel and its associated reference constellation. Use
Properties for channel to select the active channel. The setting is synchronized with
actions in the interactive legend, see Show legend.

3 Blocks — Alphabetical List

3-162

Symbols — Set properties of symbols
symbol properties

Set graphical properties of the symbols for the active channel. Adjust style, size, line
width, and color of the marker. Use Properties for channel to select the active channel.

Dependencies

To set marker shape to none, Show signal trajectory must be selected.

Signal trajectory — Select properties of signal trajectory
no line (default) | trajectory properties

Set graphical properties for the signal trajectory of the active channel. Adjust style,
width, and color of the line. Use Properties for channel to select the active channel.

Dependencies

To adjust signal trajectory properties, Show signal trajectory must be selected. When
Show signal trajectory is selected, the Signal trajectory line style cannot be set to no
line.

Reference Constellation

Input — Input port number
1 (default) | integer

View or change the graphical properties for the symbol of the reference constellation for
each port individually.

If none of the input are multichannel signals, then the graphical properties of the
reference constellation can be adjusted by selecting the channel from the Properties for
channel parameter.

Dependencies

To enable this parameter, set the Number of input ports parameter to a value greater
than 1 and specify at least one multichannel input signal.

Properties — Select properties of reference constellation symbols
symbol properties

Select the graphical properties for the symbols of the reference constellation. Adjust the
style, size, line width, and color of the marker.

 Constellation Diagram

3-163

Dependencies

To adjust reference constellation graphical properties, Show reference constellation
must be selected.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer |

single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

More About

EVM / MER Measurements
The EVM / MER signal quality pane displays the measurement settings, and error vector
magnitude (EVM) and modulation error ratio (MER) measurement calculation results for
the specified trace selection.

3 Blocks — Alphabetical List

3-164

• EVM — An error vector is a vector in the IQ plane from the ideal constellation point to
the actual point at the receiver. The root mean square error vector magnitude,
EVMRMS, is measured for the average and peak constellation power.

On the constellation diagram, you can display the EVMRMS measurements normalized
by either the Average constellation power or Peak constellation power
method as computed using these algorithms.

EVM Normalization
Method

Algorithm

Average
constellation power

Average constellation power normalization:

EVMk = 100
ek

Pavg

EVMRMS, in percent, for average constellation power
normalization:

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

 Constellation Diagram

3-165

EVM Normalization
Method

Algorithm

Peak constellation
power

Peak constellation power normalization

EVMk = 100
ek

Pmax

EVMRMS, in percent, for peak constellation power
normalization

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

The EVM / MER pane shows the average and peak EVMRMS in both percent and
decibels for the selected trace. The EVM reported in decibels is computed as EVM
(dB) = 10‑log10(EVMMS) = 20‑log10(EVMRMS), where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) symbol values. I k and Qk represent measured

(received) symbol values.
• N is the input vector length.
• Pavg is the value for Average constellation power.
• Pmax is the value for Peak constellation power.
•

EVM EVM
RMS MS

=

The maximum EVM value in a vector is EVMmax = max
k ∈ [1, ..., N]

EVMk , where k is the

kth symbol in a vector of length N.

For more information, see comm.EVM.
• MER — MER is the ratio of the average power of the transmitted signal to the average

power of the error vector. The EVM / MER pane indicates average MER measurement
result in decibels for the selected trace.

3 Blocks — Alphabetical List

3-166

MER is a measure of the SNR in a modulated signal, calculated in dB. The MER over N
symbols is

MER = 10 · log10

∑
n = 1

N
Ik2 + Qk

2

∑
n = 1

N
ek

dB,

where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured

(received) symbols.

For more information, see comm.MER.

Programmatic Configuration
You can programmatically configure the scope properties with callbacks or within scripts
using a scope configuration object as, described in “Control Scope Blocks
Programmatically” (Simulink).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is excluded from the generated code when code generation is performed on a
system containing this block.

 Constellation Diagram

3-167

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but
is not included in the hardware implementation.

See Also
Blocks
Eye Diagram

Objects
comm.ConstellationDiagram | comm.EVM | comm.MER

Functions
scatterplot

Topics
“Constellation Visualization”
“Control Scope Blocks Programmatically” (Simulink)
“View Simulation Results” (Simulink)
Line Properties

Introduced in R2013b

3 Blocks — Alphabetical List

3-168

Continuous-Time VCO
Implement voltage-controlled oscillator

Library
Components sublibrary of Synchronization

Description
The Continuous-Time VCO (voltage-controlled oscillator) block generates a signal with a
frequency shift from the Quiescent frequency parameter that is proportional to the
input signal. The input signal is interpreted as a voltage. If the input signal is u(t), then
the output signal is

y(t) = Accos 2πfct + 2πkc∫0 t
u(τ)dτ + φ

where Ac is the Output amplitude parameter, fc is the Quiescent frequency parameter,
kc is the Input sensitivity parameter, and φ is the Initial phase parameter.

This block uses a continuous-time integrator to interpret the equation above.

The input and output are both sample-based scalar signals.

Parameters
Output amplitude

The amplitude of the output.

 Continuous-Time VCO

3-169

Quiescent frequency
The frequency of the oscillator output when the input signal is zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift from the Quiescent
frequency value. The units of Input sensitivity are Hertz per volt.

Initial phase
The initial phase of the oscillator in radians.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Blocks
Discrete-Time VCO

Introduced before R2006a

3 Blocks — Alphabetical List

3-170

Convolutional Deinterleaver
Restore ordering of symbols that were permuted using shift registers

Library
Convolutional sublibrary of Interleaving

Description
The Convolutional Deinterleaver block recovers a signal that was interleaved using the
Convolutional Interleaver block. Internally, this block uses a set of shift registers. The
delay value of the kth shift register is (N-k) times the Register length step parameter.
The number of shift registers, N, is the value of the Rows of shift registers parameter.
The parameters in the two blocks must have the same values.

This block accepts a scalar or column vector input signal, which can be real or complex.
The output signal has the same sample time as the input signal.

This block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point.

Parameters
Rows of shift registers

The number of shift registers that the block uses internally.
Register length step

The difference in symbol capacity of each successive shift register, where the last
register holds zero symbols.

 Convolutional Deinterleaver

3-171

Initial conditions
Indicates the values that fill each shift register at the beginning of the simulation
(except for the last shift register, which has zero delay).

• When you select a scalar value for Initial conditions, the value fills all shift
registers (except for the last one)

• When you select a column vector with a length equal to the Rows of shift
registers parameter, each entry fills the corresponding shift register.

The value of the first element of the Initial conditions parameter is unimportant,
since the last shift register has zero delay.

Examples
For an example that uses this block, see “Convolutional Interleaving”.

Pair Block
Convolutional Interleaver

See Also
General Multiplexed Deinterleaver, Helical Deinterleaver

References
[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital

Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE
Transactions on Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on Information
Theory, IT-16 (3), May 1970. 338-345.

3 Blocks — Alphabetical List

3-172

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

You can generate HDL code for the Convolutional Deinterleaver block using a shift-
register-based implementation, or a RAM-based implementation.

The default implementation for the Convolutional Deinterleaver block is shift register-
based. To suppress generation of reset logic, set the implementation parameter
ResetType to'none'. When you set ResetType to'none', reset is not applied to the
shift registers.

When registers are not fully loaded, mismatches between Simulink and the generated
code occur for some number of samples during the initial phase. To avoid spurious test
bench errors, determine the number of samples required to fill the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

When you select the RAM implementation for a Convolutional Deinterleaver block, HDL
Coder uses RAM resources instead of shift registers.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 Convolutional Deinterleaver

3-173

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

ResetType Suppress reset logic generation. The default is default, which
generates reset logic. See also “ResetType” (HDL Coder).

Restrictions

When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
• At least two rows of interleaving are required.

Introduced before R2006a

3 Blocks — Alphabetical List

3-174

Convolutional Encoder
Create convolutional code from binary data

Library
Convolutional sublibrary of Error Detection and Correction

Description
The Convolutional Encoder block encodes a sequence of binary input vectors to produce a
sequence of binary output vectors. This block can process multiple symbols at a time.

This block can accept inputs that vary in length during simulation. For more information
about variable-size signals, see “Variable-Size Signal Basics” (Simulink).

Input and Output Sizes
If the encoder takes k input bit streams (that is, it can receive 2k possible input symbols),
the block input vector length is L*k for some positive integer L. Similarly, if the encoder
produces n output bit streams (that is, it can produce 2n possible output symbols), the
block output vector length is L*n.

This block accepts a column vector input signal with any positive integer for L. For
variable-size inputs, the L can vary during simulation. The operation of the block is
governed by the Operation mode parameter.

For both its inputs and outputs for the data ports, the block supports double, single,
boolean, int8, uint8, int16, uint16, int32, uint32, and ufix1. The port data types
are inherited from the signals that drive the block. The input reset port supports double
and boolean typed signals.

 Convolutional Encoder

3-175

Specifying the Encoder
To define the convolutional encoder, use the Trellis structure parameter. This parameter
is a MATLAB structure whose format is described in “Trellis Description of a
Convolutional Code”. You can use this parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains the trellis structure,
enter its name in the Trellis structure parameter. This way is preferable because it
causes Simulink to spend less time updating the diagram at the beginning of each
simulation, compared to the usage described next.

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, use a poly2trellis command in the
Trellis structure parameter. For example, to use an encoder with a constraint length
of 7, code generator polynomials of 171 and 133 (in octal numbers), and a feedback
connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

The encoder registers begin in the all-zeros state. Set the Operation mode parameter to
Reset on nonzero input via port to reset all encoder registers to the all-zeros
state during the simulation. This selection opens a second input port, labeled Rst, which
accepts a scalar-valued input signal. When the input signal is nonzero, the block resets
before processing the data at the first input port. To reset the block after it processes the
data at the first input port, select Delay reset action to next time step.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode, the block retains the encoder states at the end of each input,
for use with the next frame.

In Truncated (reset every frame) mode, the block treats each input
independently. The encoder states are reset to all-zeros state at the start of each
input.

3 Blocks — Alphabetical List

3-176

Note When this block outputs sequences that vary in length during simulation and
you set the Operation mode to Truncated (reset every frame) or Terminate
trellis by appending bits, the block's state resets at every input time step.

In Terminate trellis by appending bits mode, the block treats each input
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k,
where x is the number of input bits, and s = constraint length− 1 (or, in the case of
multiple constraint lengths, s =sum(ConstraintLength(i)-1)).

Note This block works for cases k ≥ 1, where it has the same values for constraint
lengths in each input stream (e.g., constraint lengths of [2 2] or [7 7] will work, but [5
4] will not).

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

Delay reset action to next time step
When you select Delay reset action to next time step, the Convolutional Encoder
block resets after computing the encoded data. This check box only appears when you
set the Operation mode parameter to Reset on nonzero input via port.

The delay in the reset action allows the block to support HDL code generation. In
order to generate HDL code, you must have an HDL Coder license.

Output final state
When you select Output final state, the second output port signal specifies the
output state for the block. The output signal is a scalar, integer value. You can select
Output final state for all operation modes except Terminate trellis by
appending bits .

Specify initial state via input port
When you select Specify initial state via input port the second input port signal
specifies the starting state for every frame in the block. The input signal must be a
scalar, integer value. Specify initial state via input port appears only in
Truncated operation mode.

Puncture code
Selecting this option opens the field Puncture vector.

 Convolutional Encoder

3-177

Puncture vector
Vector used to puncture the encoded data. The puncture vector is a pattern of 1s and
0s where the 0s indicate the punctured bits. This field appears when you select
Punctured code.

Puncture Pattern Examples
For some commonly used puncture patterns for specific rates and polynomials, see the
last three references listed on this page.

See Also
Viterbi Decoder, APP Decoder

References

[1] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data Communications
Principles, New York, Plenum, 1992.

[3] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, Vol. COM-32, No. 3, pp 315–
319, March 1984.

[4] Haccoun, D., and Begin, G., “High-rate punctured convolutional codes for Viterbi and
Sequential decoding,” IEEE Transactions on Communications, Vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[5] Begin, G., et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, Vol. 38,
No. 11, pp 1922–1928, Nov. 1990.

3 Blocks — Alphabetical List

3-178

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

• Input data requirements:

• Must be sample-based,
• Must have a boolean or ufix1 data type.

 Convolutional Encoder

3-179

• HDL Coder supports only the following coding rates:

• ½ to 1/7
• 2/3

• The coder supports only constraint lengths for 3 to 9.
• Specify Trellis structure by the poly2trellis function.
• The coder supports the following Operation mode settings:

• Continuous
• Reset on nonzero input via port

If you select this mode, you must select the Delay reset action to next time step
option. When you select this option, the Convolutional Encoder block finishes its
current computation before executing a reset.

• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced before R2006a

3 Blocks — Alphabetical List

3-180

Convolutional Interleaver
Permute input symbols using set of shift registers

Library
Convolutional sublibrary of Interleaving

Description
The Convolutional Interleaver block permutes the symbols in the input signal. Internally,
it uses a set of shift registers. The delay value of the kth shift register is (k-1) times the
Register length step parameter. The number of shift registers is the value of the Rows
of shift registers parameter.

The Initial conditions parameter indicates the values that fill each shift register at the
beginning of the simulation (except for the first shift register, which has zero delay). If
Initial conditions is a scalar, then its value fills all shift registers except the first; if
Initial conditions is a column vector whose length is the Rows of shift registers
parameter, then each entry fills the corresponding shift register. The value of the first
element of the Initial conditions parameter is unimportant, since the first shift register
has zero delay.

This block accepts a scalar or column vector input signal, which can be real or complex.
The output signal has the same sample time as the input signal.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of this output will be the same
as that of the input signal.

 Convolutional Interleaver

3-181

Parameters
Rows of shift registers

The number of shift registers that the block uses internally.
Register length step

The number of additional symbols that fit in each successive shift register, where the
first register holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

Examples
For an example that uses this block, see “Convolutional Interleaving”.

Pair Block
Convolutional Deinterleaver

See Also
General Multiplexed Interleaver, Helical Interleaver

References
[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital

Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE
Transactions on Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on Information
Theory, IT-16 (3), May 1970. 338-345.

3 Blocks — Alphabetical List

3-182

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

You can generate HDL code for the Convolutional Interleaver block using a shift-register-
based implementation, or a RAM-based implementation.

The default implementation for the Convolutional Interleaver block is shift register-based.
To suppress generation of reset logic, set the implementation parameter ResetType
to'none'. When you set ResetType to'none', reset is not applied to the shift registers.

When registers are not fully loaded, mismatches between Simulink and the generated
code occur for some number of samples during the initial phase. To avoid spurious test
bench errors, determine the number of samples required to fill the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

When you select the RAM implementation for a Convolutional Interleaver block, HDL
Coder uses RAM resources instead of shift registers.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 Convolutional Interleaver

3-183

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

ResetType Suppress reset logic generation. The default is default, which
generates reset logic. See also “ResetType” (HDL Coder).

Restrictions

When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
• At least two rows of interleaving are required.

Introduced before R2006a

3 Blocks — Alphabetical List

3-184

CPFSK Demodulator Baseband
Demodulate CPFSK-modulated data

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The CPFSK Demodulator Baseband block demodulates a signal that was modulated using
the continuous phase frequency shift keying method. The input to this block is a baseband
representation of the modulated signal. The M-ary number parameter, M, is the size of
the input alphabet. M must have the form 2K for some positive integer K.

This block supports multi-h Modulation index. See CPM Modulator Baseband for details.

Integer-Valued Signals and Binary-Valued Signals
When you set the Output type parameter to Integer, then the block produces odd
integers between -(M-1) and M-1.

When you set the Output type parameter to Bit, then the block produces groupings of K
bits. Each grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an intermediate value as
in the integer output mode. The block then maps the odd integer k to the nonnegative
integer (k+M-1)/2. Finally, the block maps each nonnegative integer to a binary word,
using a mapping that depends on whether the Symbol set ordering parameter is set to
Binary or Gray.

This block accepts a scalar-valued or column vector input signal with a data type of
single or double.

 CPFSK Demodulator Baseband

3-185

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays
Internally, this block creates a trellis description of the modulation scheme and uses the
Viterbi algorithm. The Traceback depth parameter, D, in this block is the number of
trellis branches that the algorithm uses to construct each traceback path. D influences
the output delay, which is the number of zero symbols that precede the first meaningful
demodulated value in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
then the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the number
of states, can be chosen using the “five-times-the-constraint-length” rule, which
corresponds to 5·log2(numStates).

3 Blocks — Alphabetical List

3-186

For the definition of the number of states, see CPM Demodulator Baseband Help page.

Parameters
M-ary number

The size of the alphabet.
Output type

Determines whether the output consists of integers or groups of bits.
Symbol set ordering

Determines how the block maps each integer to a group of output bits. This field is
active only when Output type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must
be a real, nonnegative scalar or column vector.

This block supports multi-h Modulation index. See CPM Modulator Baseband for
details.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol, which must be a
positive integer. For more information, see “Upsample Signals and Rate Changes” in
Communications Toolbox User's Guide.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width is the number of symbols (which is given by dividing the input length
by the Samples per symbol parameter value when the Output type parameter is
set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as

 CPFSK Demodulator Baseband

3-187

the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth
The number of trellis branches that the CPFSK Demodulator Baseband block uses to
construct each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block
CPFSK Modulator Baseband

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New

York: Plenum Press, 1986.

3 Blocks — Alphabetical List

3-188

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPFSK Modulator Baseband | CPM Demodulator Baseband | M-FSK Demodulator
Baseband | Viterbi Decoder

Introduced before R2006a

 CPFSK Demodulator Baseband

3-189

CPFSK Modulator Baseband
Modulate using continuous phase frequency shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The CPFSK Modulator Baseband block modulates a signal using the continuous phase
frequency shift keying method. The output is a baseband representation of the modulated
signal. The M-ary number parameter, M, represents the size of the input alphabet. M
must have the form 2K for some positive integer K.

This block supports multi-h Modulation index. See CPM Modulator Baseband for details.

Integer-Valued Signals and Binary-Valued Signals
When you set the Input type parameter to Integer, the block accepts odd integers
between -(M-1) and M-1.

When you set the Input type parameter to Bit, the block accepts groupings of K bits.
Each grouping is called a binary word. The input vector length must be an integer
multiple of K.

In binary input mode, the block maps each binary word to an integer between 0 and M-1,
using a mapping scheme that depends on whether you set the Symbol set ordering
parameter to Binary or Gray. The block then maps the integer k to the intermediate
value 2k-(M-1) and proceeds as if it operates in the integer input mode. For more
information, see “Integer-Valued Signals and Binary-Valued Signals”.

3 Blocks — Alphabetical List

3-190

This block accepts a scalar-valued or column vector input signal. If you set Input type to
Bit, then the input signal can also be a vector of length K.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input must be a column vector with a width that
is an integer multiple of K, the number of bits per symbol.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

Parameters
M-ary number

The size of the alphabet.
Input type

Indicates whether the input consists of integers or groups of bits.

 CPFSK Modulator Baseband

3-191

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding integer.
This field is active only when Input type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must
be a real, nonnegative scalar or column vector.

This block supports multi-h Modulation index. See CPM Modulator Baseband for
details.

Phase offset (rad)
The initial phase of the output waveform, measured in radians.

Samples per symbol
The number of output samples that the block produces for each integer or binary
word in the input, which must be a positive integer. For all non-binary schemes, as
defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes”.
Rate options

Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width equals the product of the number of symbols and the Samples per
symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals the
symbol period divided by the Samples per symbol parameter value.

Output data type
Select the data type of the output signal. The output data type can be single or
double.

3 Blocks — Alphabetical List

3-192

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (When Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
CPFSK Demodulator Baseband

See Also
CPM Modulator Baseband, M-FSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New
York: Plenum Press, 1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 CPFSK Modulator Baseband

3-193

CPM Demodulator Baseband
Demodulate CPM-modulated data
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / CPM

Description
The CPM Demodulator Baseband block demodulates a signal that was modulated using
continuous phase modulation (CPM).

CPM is a modulation method with memory. The block processing includes a correlator
followed by a maximum-likelihood sequence detector (MLSD) that searches the paths
through the state trellis for the minimum Euclidean distance path. The block uses the
Viterbi algorithm to perform MLSD.

For more information about this demodulation and the filtering applied, see “CPM
Demodulation” on page 3-198 and “Pulse Shape Filtering” on page 3-200.

Ports

Input
In — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector. The length of the input signal must be
an integer multiple of the number of samples per symbol specified in the Samples per
symbol parameter. For more information, see “Integer-Valued and Binary-Valued Output
Signals” on page 3-201.
Data Types: double | single

3 Blocks — Alphabetical List

3-194

Output
Out — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. For more information, see “Integer-
Valued and Binary-Valued Output Signals” on page 3-201.
Supported Data Types

• Double-precision floating point
• Boolean (when Output type is set to Bit)
• 8-, 16-, and 32-bit signed integers (when Output type is set to Integer)

Data Types: double | Boolean | int8 | int16 | int32

For more information on the processing rates, see “Single-Rate Processing” on page 3-
202, and “Multirate Processing” on page 3-202.

Parameters
M-ary number — Modulation order
4 (default) | positive integer

Modulation order indicating the alphabet size, specified as a positive integer that is a
nonzero power of two. M must have the form 2K for some positive integer K, where K is
the number of bits per symbol.

Output type — Determines whether output consists of integers or groups of bits
Integer (default) | Bit

Determines whether the output consists of integers or groups of bits, specified as
Integer or Bit.

Symbol set ordering — Bit mapping
Binary (default) | Gray

Bit mapping, specified as Binary or Gray.

This parameter determines how the block maps each integer to a group of output bits. For
more information, see “Integer-Valued and Binary-Valued Output Signals” on page 3-201.

 CPM Demodulator Baseband

3-195

Dependencies

To enable this parameter, set Output type to Bit.

Modulation index — Modulation index {hi}
0.5 (default) | nonnegative scalar | column vector

Modulation index {hi}, specified as a nonnegative scalar or column vector.

{h} represents a sequence of modulation indices. For more information, see “CPM
Demodulation” on page 3-198.

Frequency pulse shape — Type of pulse shaping
Rectangular (default) | Raised Cosine | Spectral Raised Cosine | Gaussian |
Tamed FM

Type of pulse shaping used to smooth the phase transitions of the modulated signal,
specified as Rectangular, Raised Cosine, Spectral Raised Cosine, Gaussian,
or Tamed FM. For more information on the filtering options, see “Pulse Shape Filtering”
on page 3-200.

Main lobe pulse duration (symbol intervals) — Number of symbol
intervals of largest lobe of the spectral raised cosine pulse
1 (default) | positive scalar

Number of symbol intervals of the largest lobe of the spectral raised cosine pulse,
specified as a positive scalar.

Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

Rolloff — Rolloff factor of spectral raised cosine pulse shape
0.2 (default) | nonnegative scalar

Rolloff factor of the spectral raised cosine pulse shape, specified as a scalar from 0 to 1.

Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

BT product — Product of bandwidth and time
0.3 (default) | nonnegative scalar

3 Blocks — Alphabetical List

3-196

Product of bandwidth and time, specified as a nonnegative scalar. Use BT product to
reduce the bandwidth, at the expense of increased intersymbol interference.

Dependencies

To enable this parameter, set Frequency pulse shape to Gaussian.

Pulse length (symbol intervals) — Frequency pulse length
1 (default) | positive scalar

Frequency pulse shape length, specified as a positive scalar. Refer to LT in “Pulse Shape
Filtering” on page 3-200 for more information on the frequency pulse length.

Symbol prehistory — Data symbols used before the start of simulation
1 (default) | scalar | vector

Data symbols used before the start of simulation in reverse chronological order. If
Symbol prehistory is a vector, then its length must be one less than the Pulse length
parameter value.

Phase offset (rad) — Initial phase offset
0 (default) | scalar

Initial phase offset of output in radians, specified as a scalar.

Samples per symbol — Symbol sampling rate
8 (default) | positive scalar

Symbol sampling rate, specified as a positive scalar. This parameter represents the
number of samples output for each integer or binary word input. For all nonbinary
schemes, as defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes”.

Rate options — Block processing rate
Enforce single-rate processing (default) | Allow multirate processing

Block processing rate, specified as one of these options:

• Enforce single-rate processing — The input and output signals have the same
port sample time. The block implements the rate change by making a size change at
the output when compared to the input. The output width is the number of symbols

 CPM Demodulator Baseband

3-197

(which is given by dividing the input length by the Samples per symbol parameter
value when the Output type parameter is set to Integer).

• Allow multirate processing — The input and output signals have different port
sample times. The output period is the same as the symbol period and equals the
product of the input period and the Samples per symbol parameter value.

Traceback depth — Number of trellis branches
16 (default) | positive integer

Number of trellis branches used to construct each traceback path, specified as a positive
integer. For more information, see “Traceback Depth and Output Delays” on page 3-202.

Output data type — Output data type
double (default) | boolean | int8 | int16 | int32

Output data type, specified as double, boolean, int8, int16, or int32. For more
information, see Supported Data Types in Out.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

CPM Demodulation
The CPM demodulation processing consists of a correlator followed by a maximum-
likelihood sequence detector (MLSD) that searches the paths through the state trellis for
the minimum Euclidean distance path. When the modulation index is rational (h = m/p),
there are a finite number of phase states in the symbol. The block uses the Viterbi
algorithm to perform MLSD.

3 Blocks — Alphabetical List

3-198

{hi} represents a sequence of modulation indices that moves cyclically through a set of
indices {h0, h1, h2, …,hH-1}.

• hi = mi/pi represents the modulation index in proper rational form.
• mi represents the numerator of the modulation index.
• pi represents the denominator of the modulation index.
• mi and pi are relatively prime positive numbers.
• The least common multiple (LCM) of {p0, p1, p2, …,pH-1} is denoted as p.
• hi = m'i / p

{hi} determines the number of phase states:

numPhaseStates
p for all even m

p for any odd m

i

i

=
Ï
Ì
Ó

¸
˝
˛

, ’

, ’2

and affects the number of trellis states:

numStates = numPhaseStates*M(L-1)

• L represents the Pulse length.
• M represents the M-ary number.

CPM Modulation
The input to the demodulator is a baseband representation of the modulated signal:

s t j h q t iT

nT t n T

i i

i

n

() exp () ,

()

= -
È

Î

Í
Í

˘

˚

˙
˙

< < +

=
Â2

1

0

p a

where:

• {αi} represents a sequence of M-ary data symbols selected from the alphabet ±1, ±3,
±(M–1).

• M must have the form 2K for some positive integer K, where M is the modulation order
and specifies the size of the symbol alphabet.

 CPM Demodulator Baseband

3-199

• {hi} represents a sequence of modulation indices and hi moves cyclically through a set
of indices {h0, h1, h2, ..., hH-1}. When H=1, there is only one modulation index, h0,
which is denoted as h.

Pulse Shape Filtering
Continuous phase modulation uses pulse shaping to smooth the phase transitions of the
modulated signal. The function q(t) is the phase response obtained from the frequency

pulse, g(t), through this relation:
q t g t dt

t
() ()=

-•Ú

The specified frequency pulse shape corresponds to these pulse shape expressions, g(t).

Pulse Shape Expression
Rectangular

g t LT
t LT

()
,

=
£ £

Ï

Ì
Ô

ÓÔ

1

2
0

0 otherwise

Raised Cosine

g t LT

t

LT
t LT

()
cos ,

=
- Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙ £ £

Ï

Ì
Ô

Ó
Ô

1

2
1

2
0

0

p

otherwise

Spectral Raised Cosine

g t
L T

t

L T

t

L T

t

L T

main

main

main

main
()

sin cos

=

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
Á

ˆ

¯
˜

1

2

2

2p

p

b
p

11
4

0 1
2

-
Ê

Ë
Á

ˆ

¯
˜

£ £
b

b

L T
t

main

,

Gaussian
g t

T
Q B

t
Q B

t

Q

b

T

b

T

()
ln ln

,=
-È

Î
Í

˘

˚
˙ -

+È

Î
Í

˘

˚
˙

Ï
Ì
Ó

¸
˝
˛

1

2
2

2
2

2

2 2p p where

(()
/t e d

t
= -

•

Ú
1

2

2
2

p
tt

3 Blocks — Alphabetical List

3-200

Pulse Shape Expression
Tamed FM (tamed frequency modulation)

g t g t T g t g t T

t
T

t
T

t
T

() () () () ,

()
sin()

= - + + +[]

ª -

1
8 0 0 0

0

2

1

where

g
p

p

p 22 2

3

2

24

2sin cos sinp p p p p

p

t t t t t

t

T T T T T

T

() - () - () ()
()

È

Î
Í
Í

˘

˚
˙
˙

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the rolloff factor of the spectral raised cosine.
• Bbis the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the Spectral Raised Cosine, Gaussian, and Tamed FM pulse shapes
have infinite length. For all practical purposes, LT specifies the truncated finite length.

For more information on pulse shape filtering, see [1]

Integer-Valued and Binary-Valued Output Signals
When the Output type parameter is set to Integer:

• The block produces odd integers between –(M–1) and M–1. The modulation order, M,
is specified by the M-ary number parameter.

• The Output datatype parameter cannot be set to boolean.

When the Output type parameter is set to Bit:

• The block produces groupings of K bits. Each grouping is called a binary word.
• The Output datatype can only be double or boolean.
• In binary output mode, the block processing follows this procedure:

1 Maps each input symbol to an intermediate value, as in the integer output mode.
2 Maps the odd integer k to the nonnegative integer (k+M–1)/2.
3 Maps each nonnegative integer to a binary word, using Binary or Gray mapping,

as specified by the Symbol set ordering parameter.

 CPM Demodulator Baseband

3-201

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays
The Traceback depth parameter, D, is the number of trellis branches used to construct
each traceback path. D influences the output delay, which is the number of zero symbols
that precede the first meaningful demodulated value in the output.

• When the Rate options parameter is set to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay vector consists of D+1 zero-value
symbols.

• When the Rate options parameter is set to Enforce single-rate processing,
the delay vector consists of D zero-value symbols.

The optimal Traceback depth parameter value depends on minimum squared Euclidean
distance calculations. Alternatively, a typical value, dependent on the number of states,
can be chosen using the five-times-the-constraint-length rule, which corresponds to
5 2◊ log ()numStates .

3 Blocks — Alphabetical List

3-202

For a binary raised cosine pulse shape with a pulse length of 3 and h=2/3, applying this

rule (* log (*))5 2 3 2 182
= gives a result that is close to the optimum value of 20.

Pair Block
CPM Modulator Baseband — Modulates data using continuous phase modulation.

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New

York: Plenum Press, 1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPFSK Demodulator Baseband | CPM Modulator Baseband | GMSK Demodulator
Baseband | MSK Demodulator Baseband | Viterbi Decoder

Topics
“CPM Phase Tree”

Introduced before R2006a

 CPM Demodulator Baseband

3-203

CPM Modulator Baseband
Modulate using continuous phase modulation
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / CPM

Description
The CPM Modulator Baseband block modulates an input signal using continuous phase
modulation (CPM). The output of the modulator is a baseband representation of the
modulated signal:

s t j h q t iT

nT t n T

i i

i

n

() exp () ,

()

= -
È

Î

Í
Í

˘

˚

˙
˙

< < +

=
Â2

1

0

p a

where:

• {αi} represents a sequence of M-ary data symbols selected from the alphabet ±1, ±3,
±(M–1).

• M must have the form 2K for some positive integer K, where M is the modulation order
and specifies the size of the symbol alphabet.

• {hi} represents a sequence of modulation indices and hi moves cyclically through a set
of indices {h0, h1, h2, ..., hH-1}. When H=1, there is only one modulation index, h0,
which is denoted as h.

For more information about this modulation and the filtering applied, see “CPM
Modulation” on page 3-209 and “Pulse Shape Filtering” on page 3-210.

3 Blocks — Alphabetical List

3-204

Ports

Input
In — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector.

When the Input type parameter is set to Integer, the block accepts odd integers
between –(M–1) and M–1. M represents the M-ary number parameter.

When the Input type parameter is set to Bit, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of K = log2(M)
bits. K is the number of bits per symbol and M is the modulation order. The input vector
length must be an integer multiple of K. The block maps each group of K bits onto a
symbol, as specified by the Symbol set ordering parameter. For each group of K bits, the
block outputs one modulated symbol, oversampled by the Samples per symbol
parameter value.

Supported Data Types

• Double-precision floating point
• Boolean (when Input type is set to Bit)
• 8-, 16-, and 32-bit signed integers (when Input type is set to Integer)

Data Types: double | Boolean | int8 | int16 | int32

Output
Out — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector.

• When the Input type parameter is set to Integer, the block outputs one modulated
symbol for each input symbol.

• When the Input type parameter is set to Bit, the block outputs one modulated
symbol for each group of K bits.

 CPM Modulator Baseband

3-205

In both cases, the modulated symbols are oversampled by the Samples per symbol
parameter value.
Data Types: double | single

For more information on the processing rates, see “Single-Rate Processing” on page 3-
211, and “Multirate Processing” on page 3-212.

Parameters
M-ary number — Modulation order
4 (default) | positive integer

Modulation order indicating the alphabet size, specified as a positive integer that is a
nonzero power of two. M must have the form 2K for some positive integer K, where K is
the number of bits per symbol.

Input type — Integer or group of bits input indicator
Integer (default) | Bit

Indicates whether the input consists of integers or groups of bits, specified as Integer or
Bit.

Symbol set ordering — Bit mapping
Binary (default) | Gray

Bit mapping, specified as Binary or Gray. For more information, see “Symbol Sets” on
page 3-211.

Dependencies

To enable this parameter, set Input type to Bit.

Modulation index — Modulation index {hi}
0.5 (default) | nonnegative scalar | column vector

Modulation index {hi}, specified as a nonnegative scalar or column vector.

{h} represents a sequence of modulation indices. For more information, see “CPM
Modulation” on page 3-209.

3 Blocks — Alphabetical List

3-206

Frequency pulse shape — Type of pulse shaping
Rectangular (default) | Raised Cosine | Spectral Raised Cosine | Gaussian |
Tamed FM

Type of pulse shaping used to smooth the phase transitions of the modulated signal,
specified as Rectangular, Raised Cosine, Spectral Raised Cosine, Gaussian,
or Tamed FM. For more information on the filtering options, see “Pulse Shape Filtering”
on page 3-210.

Main lobe pulse duration (symbol intervals) — Number of symbol
intervals of largest lobe of spectral raised cosine pulse
1 (default) | positive scalar

Number of symbol intervals of the largest lobe of the spectral raised cosine pulse,
specified as a positive scalar.
Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

Rolloff — Rolloff factor of spectral raised cosine pulse shape
0.2 (default) | nonnegative scalar

Rolloff factor of the spectral raised cosine pulse, specified as a scalar from 0 to 1.
Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

BT product — Product of bandwidth and time
0.3 (default) | nonnegative scalar

Product of bandwidth and time, specified as a nonnegative scalar. Use BT product to
reduce the bandwidth, at the expense of increased intersymbol interference.
Dependencies

To enable this parameter, set Frequency pulse shape to Gaussian.

Pulse length (symbol intervals) — Frequency pulse length
1 (default) | positive scalar

Frequency pulse length, specified as a positive scalar. Refer to LT in “Pulse Shape
Filtering” on page 3-210 for more information on the frequency pulse length.

 CPM Modulator Baseband

3-207

Symbol prehistory — Data symbols used before the start of simulation
1 (default) | scalar | vector

Data symbols used before the start of simulation, specified as a scalar or vector in reverse
chronological order. If Symbol prehistory is a vector, then its length must be one less
than the Pulse length (symbol intervals) parameter value.

Phase offset (rad) — Initial phase offset
0 (default) | scalar

Initial phase offset of output in radians, specified as a scalar.

Samples per symbol — Symbol sampling rate
8 (default) | positive scalar

Symbol sampling rate, specified as a positive scalar. This parameter represents the
number of samples output for each integer or binary word input. For all nonbinary
schemes, as defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes”.

Rate options — Block processing rate
Enforce single-rate processing (default) | Allow multirate processing

Block processing rate, specified as one of these options:

• Enforce single-rate processing — The input and output signals have the same
sample time. The block implements the rate change by making a size change at the
output when compared to the input. The output width equals the product of the
number of symbols and the Samples per symbol parameter value.

• Allow multirate processing — The input and output signals have different
sample times. The output sample time equals the symbol period divided by the
Samples per symbol parameter value.

Output data type — Output data type
double (default) | single

Output data type, specified as double or single.

3 Blocks — Alphabetical List

3-208

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

CPM Modulation
The output of the modulator is a baseband representation of the modulated signal:

s t j h q t iT

nT t n T

i i

i

n

() exp () ,

()

= -
È

Î

Í
Í

˘

˚

˙
˙

< < +

=
Â2

1

0

p a

where:

• {αi} represents a sequence of M-ary data symbols selected from the alphabet ±1, ±3,
±(M–1).

• M must have the form 2K for some positive integer K, where M is the modulation order
and specifies the size of the symbol alphabet.

• {hi} represents a sequence of modulation indices and hi moves cyclically through a set
of indices {h0, h1, h2, ..., hH-1}. When H=1, there is only one modulation index, h0,
which is denoted as h.

hi specifies the modulation index. When hi varies from interval to interval, the block
operates in multi-h. To ensure a finite number of phase states, hi must be a rational
number.

 CPM Modulator Baseband

3-209

Pulse Shape Filtering
Continuous phase modulation uses pulse shaping to smooth the phase transitions of the
modulated signal. The function q(t) is the phase response obtained from the frequency

pulse, g(t), through this relation:
q t g t dt

t
() ()=

-•Ú

The specified frequency pulse shape corresponds to these pulse shape expressions, g(t).

Pulse Shape Expression
Rectangular

g t LT
t LT

()
,

=
£ £

Ï

Ì
Ô

ÓÔ

1

2
0

0 otherwise

Raised Cosine

g t LT

t

LT
t LT

()
cos ,

=
- Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙ £ £

Ï

Ì
Ô

Ó
Ô

1

2
1

2
0

0

p

otherwise

Spectral Raised Cosine

g t
L T

t

L T

t

L T

t

L T

main

main

main

main
()

sin cos

=

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
Á

ˆ

¯
˜

1

2

2

2p

p

b
p

11
4

0 1
2

-
Ê

Ë
Á

ˆ

¯
˜

£ £
b

b

L T
t

main

,

Gaussian
g t

T
Q B

t
Q B

t

Q

b

T

b

T

()
ln ln

,=
-È

Î
Í

˘

˚
˙ -

+È

Î
Í

˘

˚
˙

Ï
Ì
Ó

¸
˝
˛

1

2
2

2
2

2

2 2p p where

(()
/t e d

t
= -

•

Ú
1

2

2
2

p
tt

3 Blocks — Alphabetical List

3-210

Pulse Shape Expression
Tamed FM (tamed frequency modulation)

g t g t T g t g t T

t
T

t
T

t
T

() () () () ,

()
sin()

= - + + +[]

ª -

1
8 0 0 0

0

2

1

where

g
p

p

p 22 2

3

2

24

2sin cos sinp p p p p

p

t t t t t

t

T T T T T

T

() - () - () ()
()

È

Î
Í
Í

˘

˚
˙
˙

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the rolloff factor of the spectral raised cosine.
• Bbis the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the Spectral Raised Cosine, Gaussian, and Tamed FM pulse shapes
have infinite length. For all practical purposes, LT specifies the truncated finite length.

For more information on pulse shape filtering, see [1].

Symbol Sets
In binary input mode, the block processing follows this procedure:

1 Maps each binary word to k, an integer from 0 to M–1. The binary word mapping
options are Binary or Gray, as specified by the Symbol set ordering parameter.

2 Maps k to the intermediate value 2k–(M–1)
3 Proceeds with block processing as in the integer input mode.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. In this mode, the input to the block can be multiple symbols. The block implicitly
implements the rate change by making a size change at the output when compared to the
input.

• When you set Input type to Integer, the input can be a scalar or a column vector
with the length equal to the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of the
number of bits per symbol.

 CPM Modulator Baseband

3-211

The output width equals NSym × NSPS, where NSym is the number of symbols in the frame
and NSPS is the number of samples per symbol.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals TSym / NSPS, where TSym is the symbol period and NSPS is the
number of samples per symbol.

Pair Block
CPM Demodulator Baseband — Demodulates continuous phase modulated data.

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New

York: Plenum Press, 1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPFSK Modulator Baseband | CPM Demodulator Baseband | GMSK Modulator Baseband |
MSK Modulator Baseband

3 Blocks — Alphabetical List

3-212

Topics
“CPM Phase Tree”
“CPM Modulation”

Introduced before R2006a

 CPM Modulator Baseband

3-213

CPM Phase Recovery
(To be removed) Recover carrier phase using 2P-Power method

Note CPM Phase Recovery will be removed in a future release. Use the Carrier
Synchronizer block instead.

Library
Carrier Phase Recovery sublibrary of Synchronization

Description
The CPM Phase Recovery block recovers the carrier phase of the input signal using the
2P-Power method. This feedforward, non-data-aided, clock-aided method is suitable for
systems that use these types of baseband modulation: continuous phase modulation
(CPM), minimum shift keying (MSK), continuous phase frequency shift keying (CPFSK),
and Gaussian minimum shift keying (GMSK). This block is suitable for use with blocks in
the Baseband Continuous Phase Modulation library.

If you express the modulation index for CPM as a proper fraction, h = K / P, then P is the
number to which the name "2P-Power" refers. The observation interval parameter must
be an integer multiple of the input signal vector length.

The 2P-Power method assumes that the carrier phase is constant over a series of
consecutive symbols, and returns an estimate of the carrier phase for the series. The
Observation interval parameter is the number of symbols for which the carrier phase is
assumed constant. This number must be an integer multiple of the input signal's vector
length.

Input and Output Signals
This block accepts a scalar or column vector input signal of type double or single. The
input signal represents a baseband signal at the symbol rate, so it must be complex-
valued and must contain one sample per symbol.

3 Blocks — Alphabetical List

3-214

The outputs are as follows:

• The output port labeled Sig gives the result of rotating the input signal
counterclockwise, where the amount of rotation equals the carrier phase estimate. The
Sig output is thus a corrected version of the input signal, and has the same sample
time and vector size as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in degrees, for all
symbols in the observation interval. The Ph output is a scalar signal.

Note Because the block internally computes the argument of a complex number, the
carrier phase estimate has an inherent ambiguity. The carrier phase estimate is
between -90/P and 90/P degrees and might differ from the actual carrier phase by an
integer multiple of 180/P degrees.

Delays and Latency
The block's algorithm requires it to collect symbols during a period of length
Observation interval before computing a single estimate of the carrier phase.
Therefore, each estimate is delayed by Observation interval symbols and the corrected
signal has a latency of Observation interval symbols, relative to the input signal.

Parameters
P

The denominator of the modulation index for CPM (h = K / P) when expressed as a
proper fraction.

Observation interval
The number of symbols for which the carrier phase is assumed constant. The
observation interval parameter must be an integer multiple of the input signal vector
length.

When this parameter is exactly equal to the vector length of the input signal, then the
block always works. When the integer multiple is not equal to 1, select Simulation >
Configuration Parameters > Solver and clear the Treat each discrete rate as a
separate task checkbox.

 CPM Phase Recovery

3-215

Algorithm
If the symbols occurring during the observation interval are x(1), x(2), x(3),..., x(L), then
the resulting carrier phase estimate is

1
2Parg ∑

k = 1

L
(x(k))2P

where the arg function returns values between -180 degrees and 180 degrees.

References
[1] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital

Receivers, New York, Plenum Press, 1997.

See Also
M-PSK Phase Recovery, CPM Modulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-216

CRC-N Generator
(Removed) Generate CRC bits according to CRC method and append to input data frames

Library
CRC sublibrary of Error Detection and Correction

Note has been removed. Use General CRC Generator instead.

Description
The CRC-N Generator block generates cyclic redundancy code (CRC) bits for each input
data frame and appends them to the frame. The input must be a binary column vector.
The CRC-N Generator block is a simplified version of the General CRC Generator block.
With the CRC-N Generator block, you can select the generator polynomial for the CRC
algorithm from a list of commonly used polynomials, given in the CRC-N method field in
the block's dialog. N is degree of the generator polynomial. The table below lists the
options for the generator polynomial.

CRC Method Generator Polynomial Number of Bits
CRC-32 x32+x26+x23+x22+x16+x12+x11

+x10+x8+x7+x5+x4+x2+x+1
32

CRC-24 x24+x23+x14+x12+x8+1 24
CRC-16 x16+x15+x2+1 16
Reversed CRC-16 x16+x14+x+1 16
CRC-8 x8+x7+x6+x4+x2+1 8
CRC-4 x4+x3+x2+x+1 4

You specify the initial state of the internal shift register using the Initial states
parameter. You specify the number of checksums that the block calculates for each input

 CRC-N Generator

3-217

frame using the Checksums per frame parameter. For more detailed information, see
the reference page for the General CRC Generator block.

This block supports double and boolean data types. The output data type is inherited
from the input.

Signal Attributes
The General CRC Generator block has one input port and one output port. Both ports
accept binary column vector input signals.

Parameters
CRC-N method

The generator polynomial for the CRC algorithm.
Initial states

A binary scalar or a binary row vector of length equal to the degree of the generator
polynomial, specifying the initial state of the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates for each
input frame.

Algorithm
For a description of the CRC algorithm as implemented by this block, see “CRC Non-
Direct Algorithm” in Communications Toolbox User's Guide.

3 Blocks — Alphabetical List

3-218

Schematic of the CRC Implementation

gr-1

r-1 r-2 0

XOR addition

gr-2

dr-1 dr-2 d0

g1 g0

A(k)

- -1 2 1 0{ , , , , }k ka a a a

The above circuit divides the polynomial a(x) = ak− 1xk− 1 + ak− 2xk− 2 +⋯+ a1x + a0 by
g(x) = gr − 1xr − 1 + gr − 2xr − 2 +⋯+ g1x + g0, and returns the remainder
d(x) = dr − 1xr − 1 + dr − 2xr − 2 +⋯+ d1x + d0.

The input symbols ak− 1, ak− 2, …, a2, a1, a0 are fed into the shift register one at a time
in order of decreasing index. When the last symbol (a0) works its way out of the register
(achieved by augmenting the message with r zeros), the register contains the coefficients
of the remainder polynomial d(x).

This remainder polynomial is the checksum that is appended to the original message,
which is then transmitted.

References
[1] Sklar, Bernard, Digital Communications: Fundamentals and Applications. Englewood

Cliffs, N.J., Prentice-Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

Compatibility Considerations
CRC-N Generator has been removed

 CRC-N Generator

3-219

CRC-N Generator has been removed in a future release. Use General CRC Generator
instead.

The CRC-N Generator block has been removed. Use the General CRC Generator block
instead. Existing models automatically replace instances of CRC-N Generator with
General CRC Generator, retaining parameter settings for the legacy models.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.CRCDetector

Blocks
General CRC Generator | General CRC Syndrome Detector

Introduced before R2006a

3 Blocks — Alphabetical List

3-220

CRC-N Syndrome Detector
(Removed) Detect errors in input data frames according to selected CRC method

Library
CRC sublibrary of Error Detection and Correction

Note has been removed. Use General CRC Syndrome Detector instead.

Description
The CRC-N Syndrome Detector block computes checksums for its entire input frame. This
block has two output ports. The first output port contains the set of message words with
the CRC bits removed. The second output port contains the checksum result, which is a
vector of a size equal to the number of checksums. A value of 0 indicates no checksum
errors. A value of 1 indicates a checksum error occurred.

The CRC-N Syndrome Detector block is a simplified version of the General CRC Syndrome
Detector block. You can select the generator polynomial for the CRC algorithm from a list
of commonly used polynomials, given in the CRC-N method field in the block's dialog. N
is the degree of the generator polynomial. The reference page for the CRC-N Generator
block contains a list of the options for the generator polynomial.

The parameter settings for the CRC-N Syndrome Detector block should match those of
the CRC-N Generator block.

You specify the initial state of the internal shift register by the Initial states parameter.
You specify the number of checksums that the block calculates for each input frame by
the Checksums per frame parameter. For more detailed information, see the reference
page for the General CRC Syndrome Detector block.

 CRC-N Syndrome Detector

3-221

This block supports double and boolean data types. The output data type is inherited
from the input.

Signal Attributes
The CRC-N Syndrome Detector block has one input port and two output ports. All three
ports accept binary column vector signals.

Parameters
CRC-N method

The generator polynomial for the CRC algorithm.
Initial states

A binary scalar or a binary row vector of length equal to the degree of the generator
polynomial, specifying the initial state of the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates for each
input frame.

Algorithm
For a description of the CRC algorithm as implemented by this block, see “Cyclic
Redundancy Check Codes”.

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

3 Blocks — Alphabetical List

3-222

Compatibility Considerations

CRC-N Syndrome Detector has been removed

CRC-N Syndrome Detector has been removed in a future release. Use General CRC
Syndrome Detector instead.

The CRC-N Syndrome Detector block has been removed. Use the General CRC Syndrome
Detector block instead. Existing models automatically replace instances of CRC-N
Syndrome Detector with General CRC Syndrome Detector, retaining parameter settings
for the legacy models.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.CRCDetector | comm.CRCGenerator

Blocks
General CRC Generator | General CRC Syndrome Detector

Introduced before R2006a

 CRC-N Syndrome Detector

3-223

Data Mapper
Map integer symbols from one coding scheme to another
Library: Communications Toolbox / Utility Blocks

Description
The Data Mapper block accepts integer inputs and maps them to integer outputs. The
mapping types include: binary to Gray coded, Gray coded to binary, and user defined.
Additionally, a pass through option is available.

Gray coding is an ordering of binary numbers such that all adjacent numbers differ by
only one bit.

Input/Output Ports

Input
Port_1 — Input port
scalar | column vector | matrix

Input signal, specified as a scalar, vector, or matrix of integers. Elements of the input
signal must be nonnegative values. The block truncates noninteger values to integer
values. When the input is a matrix, the columns are treated as independent channels.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Output
Port_2 — Output signal
scalar | column vector | matrix

3 Blocks — Alphabetical List

3-224

Output signal, returned as a scalar, column vector, or matrix. The dimensions of the
output signal match those of the input signal.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Mapping mode — Mapping mode
Binary to Gray (default) | Gray to Binary | User Defined | Straight through

Mapping mode, specified as one of the four options. The mapping for the Binary to
Gray and the Gray to Binary modes are shown in the following table when the inputs
range from 0 to 7.

Binary to Gray Mode Gray to Binary Mode
Input Output Input Output
0 0 (000) 0 (000) 0
1 1 (001) 1 (001) 1
2 3 (011) 2 (010) 3
3 2 (010) 3 (011) 2
4 6 (110) 4 (100) 7
5 7 (111) 5 (101) 6
6 5 (101) 6 (110) 4
7 4 (100) 7 (111) 5

When you select the User Defined mode, you can use any arbitrary mapping by
providing a vector to specify the output ordering. When you select the Straight
Through mode, the output equals the input.

Symbol set size (M) — Symbol set size
8 (default) | positive integer

Symbol set size, specified as a positive integer. This parameter restricts the inputs and
outputs to integers in the range of 0 to M-1.

Mapping vector — Maps input elements to the output elements
[0 1 3 2 7 6 4 5] (default) | vector

 Data Mapper

3-225

Mapping vector, specified as vector of nonnegative integers whose length equals . This
parameter defines the relationship between the input and output integers. For example,
the vector [1 5 0 4 2 3] defines the following mapping:

0 1

1 5

2 0

3 4

4 2

5 3

Æ

Æ

Æ

Æ

Æ

Æ

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
bin2gray | gray2bin

Topics
“Phase Modulation”

3 Blocks — Alphabetical List

3-226

Introduced before R2006a

 Data Mapper

3-227

DBPSK Demodulator Baseband
Demodulate DBPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DBPSK Demodulator Baseband block demodulates a signal that was modulated using
the differential binary phase shift keying method. The input is a baseband representation
of the modulated signal.

The input must be a discrete-time complex signal. The block compares the current symbol
to the previous symbol. It maps phase differences of θ and π+θ, respectively, to outputs of
0 and 1, respectively, where θ is the Phase rotation parameter. The first element of the
block's output is the initial condition of zero because there is no previous symbol with
which to compare the first symbol.

This block accepts a scalar or column vector input signal. The input signal can be of data
types single and double. For information about the data types each block port
supports, see “Supported Data Types” on page 3-229.

3 Blocks — Alphabetical List

3-228

Dialog Box

Phase rotation (rad)
This phase difference between the current and previous modulated symbols results in
an output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting), the
block will inherit the output data type from the input port. The output data type will
be the same as the input data type if the input is of type single or double.

For additional information, see “Supported Data Types” on page 3-229.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point

 DBPSK Demodulator Baseband

3-229

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
DBPSK Modulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BPSK Demodulator Baseband | DQPSK Demodulator Baseband | M-DPSK Demodulator
Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-230

DBPSK Modulator Baseband
Modulate using differential binary phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DBPSK Modulator Baseband block modulates using the differential binary phase shift
keying method. The output is a baseband representation of the modulated signal.

This block accepts a scalar or column vector input signal. The input must be a discrete-
time binary-valued signal. For information about the data types each block port supports,
see “Supported Data Types” on page 3-232.

The following rules govern this modulation method when the Phase rotation parameter
is θ:

• If the first input bit is 0 or 1, respectively, then the first modulated symbol is exp(jθ) or
-exp(jθ), respectively.

• If a successive input bit is 0 or 1, respectively, then the modulated symbol is the
previous modulated symbol multiplied by exp(jθ) or -exp(jθ), respectively.

 DBPSK Modulator Baseband

3-231

Dialog Box

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the
input is zero.

Output Data type
The output data type can be either single or double. By default, the block sets this
to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

3 Blocks — Alphabetical List

3-232

Pair Block
DBPSK Demodulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BPSK Modulator Baseband | DQPSK Modulator Baseband

Introduced before R2006a

 DBPSK Modulator Baseband

3-233

Decision Feedback Equalizer
Equalize modulated signals using decision feedback filtering
Library: Communications Toolbox / Equalizers

Description
The Decision Feedback Equalizer block uses a decision feedback filter tap delay line with
a weighted sum to equalize modulated signals transmitted through a dispersive channel.
Using an estimate of the channel modeled as a finite input response (FIR) filter, the block
processes input frames and outputs the estimated signal.

This icon shows the block with all ports enabled for configurations that use the LMS or
RLS adaptive algorithm.

This icon shows the block with all ports enabled for configurations that use the CMA
adaptive algorithm.

3 Blocks — Alphabetical List

3-234

Ports
Input
in — Input signal
column vector

Input signal, specified as a column vector. The vector length of in must be equal to an
integer multiple of the Number of input samples per symbol parameter. For more
information, see “Symbol Tap Spacing” on page 3-628.
Data Types: double
Complex Number Support: Yes

Desired — Training symbols
column vector

Training symbols, specified as a column vector. The vector length of Desired must be less
than or equal to the length of input in. The Desired input port is ignored when the Train
input port is 0.
Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS.
Data Types: double
Complex Number Support: Yes

Train — Train equalizer flag
boolean scalar

Train equalizer flag, specified as 1 or 0. The block starts training when this value changes
from 0 to 1 (at the rising edge). The block trains until all symbols in the Desired input
port are processed.
Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS and select the
Enable training control input parameter.
Data Types: Boolean

Update — Update tap weights flag
1 | 0

 Decision Feedback Equalizer

3-235

Update tap weights flag, specified as 1 or 0. The tap weights are updated when this value
is 1.

Dependencies

To enable this port, set the Adaptive algorithm parameter to CMA and the Source of
adapt weights flag parameter to Input port.
Data Types: Boolean

Reset — Reset equalizer flag
1 | 0

Reset equalizer flag, specified as 1 or 0. If Reset is set to 1, the block resets the tap
weights before processing the incoming signal. The block performs initial training until all
symbols in the Desired input port are processed.

Dependencies

To enable this port, select the Enable reset input parameter.
Data Types: Boolean

Output
Out — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal
in.

This port is unnamed until you select the Output error signal or Output taps weights
parameter.

Err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal in.

w — Tap weights
column vector

3 Blocks — Alphabetical List

3-236

Tap weights, returned as an NTaps-by-1 vector, where NTaps is equal to the sum of the
Number of forward taps and Number of feedback taps parameter values. w contains
the tap weights from the last tap weight update.

Parameters
Structure parameters

Number of forward taps — Number of forward equalizer taps
5 (default) | positive integer

Number of forward equalizer taps, specified as a positive integer.

Number of feedback taps — Number of feedback equalizer taps
3 (default) | positive integer

Number of feedback equalizer taps, specified as a positive integer.

Signal constellation — Signal constellation
pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation
generated using this code: pskmod(0:3,4,pi/4).

Tunable: Yes

Number of input samples per symbol — Number of input samples per symbol
1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this
parameter to any number greater than 1 effectively creates a fractionally spaced
equalizer. For more information, see “Symbol Tap Spacing” on page 3-628.

Algorithm parameters

Adaptive algorithm — Adaptive algorithm
LMS (default) | RLS | CMA

Adaptive algorithm used for equalization, specified as one of these values:

• LMS — Update the equalizer tap weights using the “Least Mean Square (LMS)
Algorithm” on page 3-630.

 Decision Feedback Equalizer

3-237

• RLS — Update the equalizer tap weights using the “Recursive Least Square (RLS)
Algorithm” on page 3-631.

• CMA — Update the equalizer tap weights using the “Constant Modulus Algorithm
(CMA)” on page 3-631.

Step size — Step size
0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the
step size reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to LMS or CMA.

Forgetting factor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the
equalizer output estimates to be less stable.

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Initial inverse correlation matrix — Initial inverse correlation matrix
0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is
equal to the sum of the Number of forward taps and Number of feedback taps
parameter values. If you specify this value as a scalar, a, the equalizer sets the initial
inverse correlation matrix to a times the identity matrix: a(eye(NTaps)).

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

3 Blocks — Alphabetical List

3-238

Control parameters

Reference tap — Reference tap
3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the Number of
forward taps parameter value. The equalizer uses the reference tap location to track the
main energy of the channel.

Input signal delay (samples) — Input signal delay
0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a
nonnegative integer. If the input signal is a vector of length greater than 1, then the input
delay is relative to the start of the input vector. If the input signal is a scalar, then the
input delay is relative to the first call of the block and to the first call of the block after
the Reset input port toggles to 1.

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Source of adapt weights flag — Source of adapt tap weights request
Property (default) | Input port

Source of the adapt tap weights request, specified as one of these values:

• Property — Specify this value to use the Adaptive algorithm parameter to control
when the block adapts tap weights.

• Input port — Specify this value to use the Update input port to control when the
block adapts tap weights.

Dependencies

To enable this parameter, set Adaptive algorithm to CMA.

Adapt tap weights — Adapt tap weights
on (default) | off

Select this parameter to adaptively update the equalizer tap weights. If this parameter is
cleared, the block keeps the equalizer tap weights unchanged.

Tunable: Yes

 Decision Feedback Equalizer

3-239

Dependencies

To enable this parameter, set Adaptive algorithm to CMA and Source of adapt weights
flag to Property.

Initial tap weights source — Source for initial tap weights
Auto (default) | Property

Source for initial tap weights, specified as one of these values:

• Auto — Initialize the tap weights to the algorithm-specific default values, as described
in the Initial weights parameter.

• Property — Initialize the tap weights using the Initial weights parameter value.

Initial weights — Initial tap weights
0 or [0;0;1;0;0] (default) | scalar | column vector

Initial tap weights used by the adaptive algorithm, specified as a scalar or an NTaps-by-1
vector. NTaps is equal to the sum of the Number of forward taps and Number of
feedback taps parameter values. The default is 0 when the Adaptive algorithm
parameter is set to LMS or RLS. The default is [0;0;1;0;0] when the Adaptive
algorithm parameter is set to CMA.

If you specify Initial weights as a vector, the vector length must be NTaps. If you specify
Initial weights as a scalar, the equalizer uses scalar expansion to create a vector of
length NTaps with all values set to Initial weights.

Tunable: Yes

Dependencies

To enable this parameter, set Initial tap weights source to Property.

Tap weight update period (symbols) — Tap weight update period
1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer
updates the tap weights after processing this number of symbols.

Enable training control input — Enable training control input
off (default) | on

3 Blocks — Alphabetical List

3-240

Select this parameter to enable input port Train. If this parameter is cleared, the block
does not reenter training mode after the initial tap training.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Update tap weights when not training — Update tap weights when not
training
on (default) | off

Select this parameter to use decision directed mode to update equalizer tap weights. If
this parameter is cleared, the block keeps the equalizer tap weights unchanged after
training.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Enable reset input — Enable reset input
off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block
does not reenter training mode after the initial tap training.

Tunable: Yes

Diagnostic parameters

Output error signal — Enable error signal output
off (default) | on

Select this parameter to enable output port Err containing the equalizer error signal.

Tunable: Yes

Output taps weights — Enable tap weights output
off (default) | on

 Decision Feedback Equalizer

3-241

Select this parameter to enable output port w containing tap weights from the last tap
weight update.

Tunable: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Symbol Tap Spacing
You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional
symbol-spaced equalizer.

3 Blocks — Alphabetical List

3-242

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per
symbol as 1. Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-
rate equalizers are sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of
input samples per symbol as an integer greater than 1 and provide an input signal
oversampled at that sampling rate. Fractional symbol-spaced equalizers have taps
spaced at an integer fraction of the input symbol duration. Fractional symbol-spaced
equalizers are not sensitive to timing phase.

Algorithms

Decision Feedback Equalizers
A decision feedback equalizer (DFE) is a nonlinear equalizer that reduces intersymbol
interference (ISI) in frequency-selective channels. If a null exists in the frequency
response of a channel, DFEs do not enhance the noise. A DFE consists of a tapped delay
line that stores samples from the input signal and contains a forward filter and a feedback
filter. The forward filter is similar to a linear equalizer. The feedback filter contains a
tapped delay line whose inputs are the decisions made on the equalized signal. Once per
symbol period, the equalizer outputs a weighted sum of the values in the delay line and
updates the weights to prepare for the next symbol period.

DFEs can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output
sample rate equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an
integer greater than 1. Typically, K is 4 for fractional symbol-spaced equalizers. The
output sample rate is 1/T and the input sample rate is K/T. Tap weight updating occurs
at the output rate.

This schematic shows a fractional symbol-spaced DFE with a total of N weights, a symbol
period of T, and K samples per symbol. The filter has L forward weights and N-L feedback
weights. The forward filter is at the top, and the feedback filter is at the bottom. If K is 1,
the result is a symbol-spaced DFE instead of a fractional symbol-spaced DFE.

 Decision Feedback Equalizer

3-243

In each symbol period, the equalizer receives K input samples at the forward filter and
one decision or training sample at the feedback filter. The equalizer then outputs a
weighted sum of the values in the forward and feedback delay lines and updates the
weights to prepare for the next symbol period.

Note The algorithm for the Adaptive Algorithm block in the schematic jointly optimizes
the forward and feedback weights. Joint optimization is especially important for
convergence in the recursive least square (RLS) algorithm.

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm
For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is
a vector of all inputs ui. Based on the current set of weights, the LMS algorithm creates
the new set of weights as

3 Blocks — Alphabetical List

3-244

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed when using the LMS
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = d - y.

Recursive Least Square (RLS) Algorithm
For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u
is the vector of all inputs ui. Based on the current set of inputs, u, and the inverse
correlation matrix, P, the RLS algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range
(0, 1]. Decreasing the forgetting factor reduces the equalizer convergence time but
causes the equalized output signal to be less stable. H denotes the Hermitian transpose.
Based on the current inverse correlation matrix, the new inverse correlation matrix is

Pnew =
Pcurrent(1− KuH)
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)
For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights
wi, and u is the vector of all inputs ui. Based on the current set of weights, the CMA
adaptive algorithm creates the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed by the CMA

 Decision Feedback Equalizer

3-245

adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = y(R - |y|2), where R is a constant related to the
signal constellation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Linear Equalizer | MLSE Equalizer

Objects
comm.DecisionFeedback

Topics
“Equalization”
“Adaptive Equalizers”

Introduced in R2019a

3 Blocks — Alphabetical List

3-246

Deinterlacer
Distribute elements of input vector alternately between two output vectors

Library
Sequence Operations

Description
The Deinterlacer block accepts an even length column vector input signal. The block
alternately places the elements in each of two output vectors. As a result, each output
vector size is half the input vector size. The output vectors have the same complexity and
sample time of the input.

This block accepts a column vector input signal with an even integer length. The block
supports the following data types: int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The output signal inherits its data type from
the input signal.

The Deinterlacer block can be useful for separating in-phase and quadrature information
from a single vector into separate vectors.

Examples
If the input vector has the values [1; 5; 2; 6; 3; 7; 4; 8], then the two output vectors are
[1; 2; 3; 4] and [5; 6; 7; 8]. Notice that this example is the inverse of the example on the
reference page for the Interlacer block.

If the input vector has the values [1; 2; 3; 4; 5; 6], then the two output vectors are [1; 3; 5]
and [2; 4; 6].

 Deinterlacer

3-247

Pair Block
Interlacer

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Demux | Interlacer

Introduced before R2006a

3 Blocks — Alphabetical List

3-248

Derepeat
Reduce sampling rate by averaging consecutive samples
Library: Communications Toolbox / Sequence Operations

Description
The Derepeat block resamples the discrete input at a rate 1/N times the input sample rate
by averaging N consecutive samples. N represents the Derepeat factor, N parameter.

Ports
Input
In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: double
Complex Number Support: Yes

Output
Out — Output signal
scalar | vector | matrix

Output signal, returned as a scalar or column vector.
Data Types: double
Complex Number Support: Yes

For more information on the processing rates, see “Single-Rate Processing” on page 3-
251, and “Multirate Processing” on page 3-252.

 Derepeat

3-249

Parameters
Derepeat factor, N — Derepeat factor
5 (default) | integer

Derepeat factor, specified as an integer. The derepeat factor is the number of consecutive
input samples to average to produce each output sample.
Data Types: double

Input processing — Input processing control
Columns as channels (frame based) (default) | Elements as channels
(sample based)

Input processing control, specified as one of these options:

• Columns as channels (frame based) — The block treats each column of the
input as a separate channel.

• Elements as channels (sample based) — The block treats each element of the
input as a separate channel.

Rate options — Block processing rate
Allow multirate processing (default) | Enforce single-rate processing

Block processing rate, specified as one of these options:

• Allow multirate processing — The block downsamples the signal such that the
output sample rate is Derepeat factor, N times slower than the input sample rate.
For more information, see “Multirate Processing” on page 3-252.

• Enforce single-rate processing — The block maintains the input sample rate
by decreasing the output frame size by a factor equal to the Derepeat factor, N
parameter value. Also, in single-rate processing mode you can use this block in a
triggered subsystem. For more information, see “Single-Rate Processing” on page 3-
251

Initial condition — Initial condition
0 (default) | scalar | vector | matrix

Initial condition, specified as a scalar, vector, or matrix. This parameter specifies values
that are output when it is too early for the input data to show up in the output. If the
dimensions of the Initial condition parameter match the output dimensions, then the

3 Blocks — Alphabetical List

3-250

parameter represents the initial output value. If Initial condition is a scalar, then it
represents the initial value of each element in the output. The block does not support
empty matrices for initial conditions.
Data Types: double

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Single-Rate Processing
The block derepeats each frame, treating distinct channels independently. Each element
of the output is the average of N consecutive elements along a column of the input matrix.
N must be less than the frame size. N represents the Derepeat factor, N parameter.

When you set the Rate options parameter to Enforce single-rate processing,
the input and output of the block have the same sample rate. The block reduces the
sampling rate by using a proportionally smaller frame size than the input. To process all
input values, N must be an integer factor of the number of rows in the input vector or
matrix. For derepetition by a factor of N, the output frame size is 1/N times the input
frame size, but the input and output frame rates are equal. When you use this option, the
Initial condition parameter does not apply and the block incurs no delay, because
the input data immediately shows up in the output.

For example, for a single-channel input with 64 elements that is derepeated by a factor of
4, the block outputs 16 elements. The input and output frame periods are equal.

Also, in single-rate processing mode you can use this block in a triggered subsystem.

 Derepeat

3-251

Multirate Processing
When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size, but the sample rate of the output is N
times slower than the input. N represents the Derepeat factor, N parameter.

• When you set the Input processing parameter to Elements as channels
(sample based), the block assumes that the input is a vector or matrix whose
elements represent samples from independent channels. The block averages samples
from each channel independently over time. The output period is N times the input
period, and the input and output sizes are identical. The output is delayed by one
output period, and the first output value is the Initial condition value. If you set
Rate options to Enforce single-rate processing, the block generates an
error message.

• When you set the Input processing parameter to Columns as channels
(frame based), the block reduces the sampling rate by using a proportionally longer
frame period at the output port than at the input port. For derepetition by a factor of
N, the output frame period is N times the input frame period, but the input and output
frame sizes are equal. The output is delayed by one output frame, and the first output
frame is the Initial condition value. The block derepeats each frame, treating
distinct channels independently. Each element of the output is the average of N
consecutive elements along a column of the input matrix. The derepeat factor must be
less than the frame size.

For example, for a single-channel input with a frame period of 1 second that is
derepeated by a factor of 4, the output has a frame period of 4 seconds. The input and
output frame sizes are equal.

Pair Block
Repeat — This block is one possible inverse operation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-252

See Also
Blocks
Downsample | Repeat

Introduced before R2006a

 Derepeat

3-253

Descrambler
Descramble input signal
Library: Communications Toolbox / Sequence Operations

Description
The Descrambler block descrambles a scalar or column vector input signal. The
Descrambler block is the inverse of the Scrambler block. If you use the Scrambler block
in a transmitter, then you use the Descrambler block in the related receiver.

This schematic shows the descrambler operation. The adders and subtracter operate
modulo N, where N is the value specified by the Calculation base parameter.

Input data

Descrambled data

1 2 M-1 M

p11 p2 pm-1 pm

At each time step, the input causes the contents of the registers to shift sequentially.
Using the Scramble polynomial parameter, you specify the on or off state for each switch
in the descrambler. To make the Descrambler block reverse the operation of the
Scrambler block, use the same parameter settings in both blocks. If there is no signal
delay between the scrambler and the descrambler, then the Initial states in the two
blocks must be the same.

To achieve repeatable initial descrambler conditions, you can use one of these optional
input ports:

3 Blocks — Alphabetical List

3-254

• Select the Reset on nonzero input via port parameter and reset the scrambler with
Rst.

• Set the Initial states source parameter to Input port and provide the initial states
with ISt.

This block can accept input sequences that vary in length during simulation. For more
information about sequences that vary in length, see “Variable-Size Signal Basics”
(Simulink).

Ports

Input
in — Input data signal
vector

Input data signal, specified as an NS-by-1 vector. NS represents the number of samples in
the input signal. The input values must be integers from 0 to Calculation base – 1.
Data Types: double

Rst — Reset scrambler
scalar

Reset scrambler, specified as a scalar. The scrambler is reset if a nonzero input is applied
to the port.

Dependencies

To enable this port, set Initial states source to Dialog Parameter and select Reset on
nonzero input via port.

ISt — Initial states
scalar

Initial states of the descrambler registers when the simulation starts, specified as a
nonnegative integer vector. The length of ISt must equal the order of the Scramble
polynomial parameter. The vector element values must be integers from 0 to Calculation
base – 1.

 Descrambler

3-255

Dependencies

To enable this port, set Initial states source to Input port.

Output
Out1 — Output descrambled data
vector

Output descrambled data, returned as an NS-by-1 vector. NS equals the number of
samples in the input signal.
Data Types: double

Parameters
Calculation base — Calculation base
4 (default) | nonnegative integer

Calculation base used in the descrambler for modulo operations, specified as a
nonnegative integer. The input and output of this block are integers from 0 to
Calculation base – 1.

Scramble polynomial — Polynomial that defines connections in descrambler
'1 + z^-1 + z^-2 + z^-4' (default) | character vector | integer vector | binary vector

Polynomial that defines the connections in the descrambler, specified as a character
vector, integer vector, or binary vector. The Scramble polynomial parameter defines if
each switch in the descrambler is on or off. Specify the polynomial as:

• A character vector, such as '1 + z^-6 + z^-8'. For more details on specifying
polynomials in this way, see Character Representation of Polynomials.

• An integer vector, such as [0 -6 -8], listing the descrambler coefficients in order of
descending powers of z-1, where p(z-1) = 1 + p1z-1 + p2z-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of z that appear
in the polynomial that has a coefficient of 1. In this case, the order of the descramble
polynomial is one less than the binary vector length.

Example: '1 + z^-6 + z^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent
this polynomial:

3 Blocks — Alphabetical List

3-256

p(z-1) = 1 + z-6 + z-8

Initial states source — Set the source for descrambler initial states
Dialog Parameter (default) | Input port

• Dialog Parameter – Specify descrambler initial states by using the Initial states
parameter.

• Input port – Specify descrambler initial states by using the ISt port.

Initial states — Initial states of descrambler registers
[0 1 2 3] (default) | nonnegative integer vector

Initial states of descrambler registers when the simulation starts, specified as a
nonnegative integer vector. The length of Initial states must equal the order of the
Scramble polynomial parameter. The vector element values must be integers from 0 to
Calculation base – 1.

Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Reset on nonzero input via port — Reset descrambler via input port
off (default) | on

Select this parameter to reset the Descrambler block via input port Rst.

Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Block Characteristics
Data Types Boolean | double | integer
Multidimensional
Signals

no

Variable-Size
Signals

no

 Descrambler

3-257

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
PN Sequence Generator | Scrambler

Objects
comm.Descrambler

Introduced before R2006a

3 Blocks — Alphabetical List

3-258

Differential Decoder
Decode binary signal using differential coding

Library
Source Coding

Description
The Differential Decoder block decodes the binary input signal. The output is the logical
difference between the consecutive input element within a channel. More specifically, the
block's input and output are related by

m(i0) = d(i0) XOR Initial condition parameter value

m(ik) = d(ik) XOR d(ik-1)

where

• d is the differentially encoded input.
• m is the output message.
• ik is the kth element.
• XOR is the logical exclusive-or operator.

This block accepts a scalar, column vector, or matrix input signal and treats columns as
channels.

 Differential Decoder

3-259

Parameters
Initial conditions

The logical exclusive-or of this value with the initial input value forms the initial
output value.

Supported Data Type
Port Supported Data Types
In • double

• single
• boolean
• integer
• fixed-point

Out • double
• single
• boolean
• integer
• fixed-point

References
[1] Couch, Leon W., II, Digital and Analog Communication Systems, Sixth edition, Upper

Saddle River, N. J., Prentice Hall, 2001.

Pair Block
Differential Encoder

3 Blocks — Alphabetical List

3-260

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Differential Encoder

Introduced before R2006a

 Differential Decoder

3-261

Differential Encoder
Encode binary signal using differential coding

Library
Source Coding

Description
The Differential Encoder block encodes the binary input signal within a channel. The
output is the logical difference between the current input element and the previous
output element. More specifically, the input and output are related by

d(i0) = m(i0) XOR Initial condition parameter value

d(ik) = d(ik-1) XOR m(ik)

where

• m is the input message.
• d is the differentially encoded output.
• ik is the kth element.
• XOR is the logical exclusive-or operator.

This block accepts a scalar or column vector input signal and treats columns as channels.

3 Blocks — Alphabetical List

3-262

Parameters
Initial conditions

The logical exclusive-or of this value with the initial input value forms the initial
output value.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• Integer
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• Integer
• Fixed-Point

References
[1] Couch, Leon W., II, Digital and Analog Communication Systems, Sixth edition, Upper

Saddle River, N. J., Prentice Hall, 2001.

Pair Block
Differential Decoder

 Differential Encoder

3-263

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Differential Decoder

Introduced before R2006a

3 Blocks — Alphabetical List

3-264

Discrete-Time VCO
Implement voltage-controlled oscillator in discrete time

Library
Components sublibrary of Synchronization

Description
The Discrete-Time VCO (voltage-controlled oscillator) block generates a signal whose
frequency shift from the Quiescent frequency parameter is proportional to the input
signal. The input signal is interpreted as a voltage. If the input signal is u(t), then the
output signal is

y(t) = Accos 2πfct + 2πkc∫0 t
u(τ)dτ + φ

where Ac is the Output amplitude, fc is the Quiescent frequency, kc is the Input
sensitivity, and φ is the Initial phase

This block uses a discrete-time integrator to interpret the equation above.

This block accepts a scalar-valued input signal with a data type of single or double.
The output signal inherits its data type from the input signal. The block supports double
precision only for code generation.

Parameters
Output amplitude

The amplitude of the output.

 Discrete-Time VCO

3-265

Quiescent frequency (Hz)
The frequency of the oscillator output when the input signal is zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift from the Quiescent
frequency value. The units of Input sensitivity are Hertz per volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

Sample time
The calculation sample time.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Continuous-Time VCO

Introduced before R2006a

3 Blocks — Alphabetical List

3-266

DPD
Digital predistorter
Library: Communications Toolbox / RF Impairments

Correction

Description
Apply digital predistortion (DPD) to a complex baseband signal using a memory
polynomial to compensate for nonlinearities in a power amplifier. For more information,
see “Digital Predistortion” on page 3-270.

This icon shows the block with all ports enabled.

Ports
Input
In — Input baseband signal
column vector

Input baseband signal, specified as a column vector. This port is unnamed until the
Coefficient source parameter is set to Input port.
Data Types: double
Complex Number Support: Yes

Coef — Memory-polynomial coefficients
matrix

 DPD

3-267

Memory-polynomial coefficients, specified as a matrix. The number of rows in the matrix
must equal the memory depth of the memory polynomial.

• If the Polynomial type parameter is set to Memory polynomial, the number of
columns in the matrix is the degree of the memory polynomial.

• If Polynomial type is set to Cross-term memory polynomial, the number of
columns in the matrix must equal m(n-1)+1. m is the memory depth of the polynomial,
and n is the degree of the memory polynomial.

Example: complex([1 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0])

Dependencies

To enable this port, set the Coefficient source parameter to Input port.
Data Types: double
Complex Number Support: Yes

Output
Out — Predistorted baseband signal
column vector

Predistorted baseband signal, returned as a column vector of the same length as the input
signal.

Parameters
Polynomial type — Polynomial type
Memory polynomial (default) | Cross-term memory polynomial

Polynomial type used for predistortion, specified as one of these values:

• Memory polynomial — Computes predistortion coefficients by using a memory
polynomial without cross terms

• Cross-term memory polynomial — Computes predistortion coefficients by using a
memory polynomial with cross terms

For more information, see “Digital Predistortion” on page 3-270.

3 Blocks — Alphabetical List

3-268

Coefficient source — Source of memory-polynomial coefficients
Property (default) | Input port

Source of the memory polynomial coefficients, specified as one of these values:

• Property — Specify this value to use the Coefficients parameter to define the
memory-polynomial coefficients

• Input port — Specify this value to use the Coef input port to define the memory-
polynomial coefficients

Coefficients — Memory-polynomial coefficients
complex([1 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]) (default) | matrix

Memory-polynomial coefficients, specified as a matrix. The number of rows must equal
the memory depth of the memory polynomial.

• If the Polynomial type is set to Memory polynomial, the number of columns is the
degree of the memory polynomial.

• If the Polynomial type is set to Cross-term memory polynomial, the number of
columns must equal m(n-1)+1. m is the memory depth of the polynomial, and n is the
degree of the memory polynomial.

For more information, see “Digital Predistortion” on page 3-270.
Dependencies

To enable this parameter, set Coefficient source to Property.
Data Types: double
Complex Number Support: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the

 DPD

3-269

speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Digital Predistortion
Wireless communication transmissions commonly require wide bandwidth signal
transmission over a wide signal dynamic range. To transmit signals over a wide dynamic
range and achieve high efficiency, RF power amplifiers (PAs) commonly operate in their
nonlinear region. As this constellation diagram shows, the nonlinear behavior of a PA
causes signal constellation distortions that pinch the amplitude (AM-AM distortion) and
twist phase (AM-PM distortion) of constellation points proportional to the amplitude of
the constellation point.

3 Blocks — Alphabetical List

3-270

The goal of digital predistortion is to find a nonlinear function that linearizes the net
effect of the PA nonlinear behavior at the PA output across the PA operating range. When
the PA input is x(n), and the predistortion function is f(u(n)), where u(n) is the true signal
to be amplified, the PA output is approximately equal to G×u(n), where G is the desired
amplitude gain of the PA.

 DPD

3-271

The digital predistorter can be configured to use a memory polynomial with or without
cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and
amjk.

• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .

The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function
f(u(n)) to predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on
the work in reference papers by Morgan, et al [1], and by Schetzen [2], using the
theoretical foundation developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G},
to the PA input, {x(n)}, provides a good approximation to the function f(u(n)), needed to
predistort {u(n)} to produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the
memory-polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm
or a recursive least squares algorithm. The least squares fit algorithm or a recursive least
squares algorithms use the memory polynomial equations above for a memory polynomial
with or without cross terms, by replacing {u(n)} with {y(n)/G}. The function order and

3 Blocks — Alphabetical List

3-272

dimension of the coefficient matrix are defined by the degree and depth of the memory
polynomial.

For an example that details the process of accurately estimating memory-polynomial
coefficients and predistorting a PA input signal, see “Power Amplifier Characterization
with DPD for Reduced Signal Distortion”.

For background reference material, see the works listed in [1] and [2].

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John

Pastalan. "A Generalized Memory Polynomial Model for Digital Predistortion of
Power Amplifiers." IEEE Transactions on Signal Processing. Vol. 54, Number 10,
October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York:
Wiley, 1980.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DPD Coefficient Estimator

Objects
comm.DPD

Topics
“Power Amplifier Characterization with DPD for Reduced Signal Distortion”

 DPD

3-273

Introduced in R2019a

3 Blocks — Alphabetical List

3-274

DPD Coefficient Estimator
Estimate memory-polynomial coefficients for digital predistortion
Library: Communications Toolbox / RF Impairments

Correction

Description
Estimate memory-polynomial coefficients for digital predistortion (DPD) of a nonlinear
power amplifier.

This icon shows the block with all ports enabled.

Ports

Input
PA In — Power amplifier baseband-equivalent input
column vector

Power amplifier baseband-equivalent input, specified as a column vector.
Data Types: double
Complex Number Support: Yes

PA Out — Power amplifier baseband-equivalent output
column vector

 DPD Coefficient Estimator

3-275

Power amplifier baseband-equivalent output, specified as a column vector of the same
length as PA In.
Data Types: double
Complex Number Support: Yes

Forgetting Factor — Forgetting factor
scalar in the range (0, 1]

Forgetting factor used by the recursive least squares algorithm, specified as a scalar in
the range (0, 1]. Decreasing the forgetting factor reduces the convergence time but
causes the output estimates to be less stable.
Dependencies

To enable this port, set Algorithm to Recursive least squares and set Forgetting
factor source to Input port.
Data Types: double

Output
Out — Memory-polynomial coefficients
matrix

Memory-polynomial coefficients, returned as a matrix. For more information, see “Digital
Predistortion” on page 3-279.

Parameters
Desired amplitude gain (dB) — Desired amplitude gain
10 (default) | scalar

Desired amplitude gain in dB, specified as a scalar. This parameter value expresses the
desired signal gain at the compensated amplifier output.

Tunable: Yes
Data Types: double

Polynomial type — Polynomial type
Memory polynomial (default) | Cross-term memory polynomial

3 Blocks — Alphabetical List

3-276

Polynomial type used for predistortion, specified as one of these values:

• Memory polynomial — Computes predistortion coefficients by using a memory
polynomial without cross terms

• Cross-term memory polynomial — Computes predistortion coefficients by using a
memory polynomial with cross terms

For more information, see “Digital Predistortion” on page 3-279.

Degree — Memory-polynomial degree
5 (default) | positive integer

Memory-polynomial degree, specified as a positive integer.
Data Types: double

Memory depth — Memory-polynomial depth
3 (default) | positive integer

Memory-polynomial depth in samples, specified as a positive integer.
Data Types: double

Algorithm — Estimation algorithm
Least squares (default) | Recursive least squares

Adaptive algorithm used for equalization, specified as one of these values:

• Least squares — Estimate the memory-polynomial coefficients by using a least
squares algorithm

• Recursive least squares — Estimate the memory-polynomial coefficients by
using a recursive least squares algorithm

For algorithm reference material, see the works listed in [1] and [2].
Data Types: char | string

Forgetting factor source — Source of forgetting factor
Property (default) | Input port

Source of the forgetting factor, specified as one of these values:

• Property — Specify this value to use the Forgetting factor parameter to specify the
forgetting factor.

 DPD Coefficient Estimator

3-277

• Input port — Specify this value to use the Forgetting Factor input port to specify
the forgetting factor.

Dependencies

To enable this parameter, set Algorithm to Recursive least squares.
Data Types: double

Forgetting factor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the recursive least squares algorithm, specified as a scalar in
the range (0, 1]. Decreasing the forgetting factor reduces the convergence time but
causes the output estimates to be less stable.

Dependencies

To enable this parameter, set Algorithm to Recursive least squares and set
Forgetting factor source to Property.
Data Types: double

Initial coefficient estimate — Initial coefficient estimate
[] (default) | matrix

Initial coefficient estimate for the recursive least squares algorithm, specified as a matrix.

• If you specify this value as an empty matrix, the initial coefficient estimate for the
recursive least squares algorithm is chosen automatically to correspond to a memory
polynomial that is an identity function, so that the output is equal to input.

• If you specify this value as a nonempty matrix, the number of rows must be equal to
the Memory depth parameter value.

• If the Polynomial type parameter is set to Memory polynomial, the number of
columns is the degree of the memory polynomial.

• If the Polynomial type parameter is set to Cross-term memory polynomial,
the number of columns must equal m(n-1)+1. m is the memory depth of the
polynomial, and n is the degree of the memory polynomial.

For more information, see “Digital Predistortion” on page 3-279.

3 Blocks — Alphabetical List

3-278

Dependencies

To enable this parameter, set Algorithm to Recursive least squares.
Data Types: double
Complex Number Support: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Digital Predistortion
Wireless communication transmissions commonly require wide bandwidth signal
transmission over a wide signal dynamic range. To transmit signals over a wide dynamic

 DPD Coefficient Estimator

3-279

range and achieve high efficiency, RF power amplifiers (PAs) commonly operate in their
nonlinear region. As this constellation diagram shows, the nonlinear behavior of a PA
causes signal constellation distortions that pinch the amplitude (AM-AM distortion) and
twist phase (AM-PM distortion) of constellation points proportional to the amplitude of
the constellation point.

The goal of digital predistortion is to find a nonlinear function that linearizes the net
effect of the PA nonlinear behavior at the PA output across the PA operating range. When
the PA input is x(n), and the predistortion function is f(u(n)), where u(n) is the true signal
to be amplified, the PA output is approximately equal to G×u(n), where G is the desired
amplitude gain of the PA.

3 Blocks — Alphabetical List

3-280

The digital predistorter can be configured to use a memory polynomial with or without
cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and
amjk.

• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .

The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function
f(u(n)) to predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on
the work in reference papers by Morgan, et al [1], and by Schetzen [2], using the
theoretical foundation developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G},
to the PA input, {x(n)}, provides a good approximation to the function f(u(n)), needed to
predistort {u(n)} to produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the
memory-polynomial coefficients:

 DPD Coefficient Estimator

3-281

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm
or a recursive least squares algorithm. The least squares fit algorithm or a recursive least
squares algorithms use the memory polynomial equations above for a memory polynomial
with or without cross terms, by replacing {u(n)} with {y(n)/G}. The function order and
dimension of the coefficient matrix are defined by the degree and depth of the memory
polynomial.

For an example that details the process of accurately estimating memory-polynomial
coefficients and predistorting a PA input signal, see “Power Amplifier Characterization
with DPD for Reduced Signal Distortion”.

For background reference material, see the works listed in [1] and [2].

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John

Pastalan. "A Generalized Memory Polynomial Model for Digital Predistortion of
Power Amplifiers." IEEE Transactions on Signal Processing. Vol. 54, Number 10,
October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York:
Wiley, 1980.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DPD

3 Blocks — Alphabetical List

3-282

Objects
comm.DPDCoefficientEstimator

Topics
“Power Amplifier Characterization with DPD for Reduced Signal Distortion”

Introduced in R2019a

 DPD Coefficient Estimator

3-283

DQPSK Demodulator Baseband
Demodulate DQPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DQPSK Demodulator Baseband block demodulates a signal that was modulated using
the differential quadrature phase shift keying method. The input is a baseband
representation of the modulated signal.

The input must be a discrete-time complex signal. The output depends on the phase
difference between the current symbol and the previous symbol. The first integer (or
binary pair, if you set the Output type parameter to Bit) at the block output is the initial
condition of zero because there is no previous symbol.

This block accepts either a scalar or column vector input signal. For information about
the data types each block port supports, see “Supported Data Types” on page 3-286.

Outputs and Constellation Types
When you set Output type parameter to Integer, the block maps a phase difference of

θ + πm/2

to m, where θ represents the Phase rotation parameter and m is 0, 1, 2, or 3.

When you set the Output type parameter to Bit, then the output contains pairs of binary
values. The reference page for the DQPSK Modulator Baseband block shows which phase

3 Blocks — Alphabetical List

3-284

differences map to each binary pair, for the cases when the Constellation ordering
parameter is either Binary or Gray.

Dialog Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output bits.

Phase rotation (rad)
This phase difference between the current and previous modulated symbols results in
an output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting), the
block will inherit the output data type from the input port. The output data type will
be the same as the input data type if the input is of type single or double.

For integer outputs, this block can output the data types int8, uint8, int16,
uint16, int32, uint32, single, and double. For bit outputs, output can be int8,
uint8, int16, uint16, int32, uint32, boolean, single, or double.

 DQPSK Demodulator Baseband

3-285

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type isBit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
DQPSK Modulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DBPSK Demodulator Baseband | DQPSK Modulator Baseband | M-DPSK Demodulator
Baseband | QPSK Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-286

DQPSK Modulator Baseband
Modulate using differential quadrature phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DQPSK Modulator Baseband block modulates using the differential quadrature phase
shift keying method. The output is a baseband representation of the modulated signal.

The input must be a discrete-time signal. For information about the data types each block
port supports, see “Supported Data Types” on page 3-290.

Integer-Valued Signals and Binary-Valued Signals
When you set the Input type parameter to Integer, the valid input values are 0, 1, 2,
and 3. In this case, the block accepts a scalar or column vector input signal. If the first
input is m, then the modulated symbol is

exp(jθ + jπm/2)

where θ represents the Phase rotation parameter. If a successive input is m, then the
modulated symbol is the previous modulated symbol multiplied by exp(jθ + jπm/2).

When you set the Input type parameter to Bit, the input contains pairs of binary values.
In this case, the block accepts a column vector whose length is an even integer. The
following figure shows the complex numbers by which the block multiples the previous
symbol to compute the current symbol, depending on whether you set the Constellation
ordering parameter to Binary or Gray. The following figure assumes that you set the

 DQPSK Modulator Baseband

3-287

Phase rotation parameter to Π4 ; in other cases, the two schematics would be rotated
accordingly.

Binary

01 00

10 11

Gray

01 00

11 10

The following figure shows the signal constellation for the DQPSK modulation method
when you set the Phase rotation parameter to Π4 . The arrows indicate the four possible
transitions from each symbol to the next symbol. The Binary and Gray options
determine which transition is associated with each pair of input values.

Transition to next point

Constellation point

3 Blocks — Alphabetical List

3-288

More generally, if the Phase rotation parameter has the form Πk for some integer k, then
the signal constellation has 2k points.

Dialog Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a corresponding integer,
using either a Binary or Gray mapping scheme.

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the
input is zero.

Output Data type
The output data type can be either single or double. By default, the block sets this
to double.

 DQPSK Modulator Baseband

3-289

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block
DQPSK Demodulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DBPSK Modulator Baseband | DQPSK Demodulator Baseband | M-DPSK Modulator
Baseband | QPSK Modulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-290

DSB AM Demodulator Passband
Demodulate DSB-AM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The DSB AM Demodulator Passband block demodulates a signal that was modulated
using double-sideband amplitude modulation. The block uses the envelope detection
method. The input is a passband representation of the modulated signal. Both the input
and output signals are real scalar signals.

In the course of demodulating, this block uses a filter whose order, coefficients, passband
ripple and stopband ripple are described by their respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

Parameters
Input signal offset

The same as the Input signal offset parameter in the corresponding DSB AM
Modulator Passband block.

 DSB AM Demodulator Passband

3-291

Carrier frequency (Hz)
The frequency of the carrier in the corresponding DSB AM Modulator Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are Butterworth,
Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design method
field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter
design method field in Hertz.

Passband ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in the
passband in dB.

Stopband ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple in
the stopband in dB.

Pair Block
DSB AM Modulator Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-292

DSB AM Modulator Passband
Modulate using double-sideband amplitude modulation

Library
Analog Passband Modulation, in Modulation

Description
The DSB AM Modulator Passband block modulates using double-sideband amplitude
modulation. The output is a passband representation of the modulated signal. Both the
input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

(u(t) + k)cos(2πfct + θ)

where:

• k is the Input signal offset parameter.
• fc is the Carrier frequency parameter.
• θ is the Initial phase parameter.

It is common to set the value of k to the maximum absolute value of the negative part of
the input signal u(t).

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

 DSB AM Modulator Passband

3-293

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

Parameters
Input signal offset

The offset factor k. This value should be greater than or equal to the absolute value of
the minimum of the input signal.

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier.

Pair Block
DSB AM Demodulator Passband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DSB AM Demodulator Passband | DSBSC AM Modulator Passband | SSB AM Modulator
Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-294

DSBSC AM Demodulator Passband
Demodulate DSBSC-AM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The DSBSC AM Demodulator Passband block demodulates a signal that was modulated
using double-sideband suppressed-carrier amplitude modulation. The input is a passband
representation of the modulated signal. Both the input and output signals are real scalar
signals.

In the course of demodulating, this block uses a filter whose order, coefficients, passband
ripple and stopband ripple are described by the their respective lowpass filter
parameters.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

Parameters
Carrier frequency (Hz)

The carrier frequency in the corresponding DSBSC AM Modulator Passband block.

 DSBSC AM Demodulator Passband

3-295

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are Butterworth,
Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design method
field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter design
method field in Hertz.

Passband Ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in the
passband in dB.

Stopband Ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple in
the stopband in dB.

Pair Block
DSBSC AM Modulator Passband

See Also
DSB AM Demodulator Passband, SSB AM Demodulator Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-296

DSBSC AM Modulator Passband
Modulate using double-sideband suppressed-carrier amplitude modulation

Library
Analog Passband Modulation, in Modulation

Description
The DSBSC AM Modulator Passband block modulates using double-sideband suppressed-
carrier amplitude modulation. The output is a passband representation of the modulated
signal. Both the input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

u(t)cos(2πfct + θ)

where fc is the Carrier frequency parameter and θ is the Initial phase parameter.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.

 DSBSC AM Modulator Passband

3-297

Initial phase (rad)
The initial phase of the carrier in radians.

Pair Block
DSBSC AM Demodulator Passband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DSB AM Modulator Passband | DSBSC AM Demodulator Passband | SSB AM Modulator
Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-298

DVBS-APSK Demodulator Baseband
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) demodulation
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / APM
Communications Toolbox / Modulation / Digital
Baseband Modulation / Standard-Compliant

Description
The DVBS-APSK Demodulator Baseband block demodulates the input signal using Digital
Video Broadcasting (“DVB-S2/S2X/SH” on page 3-305) standard-specific amplitude phase
shift keying (APSK) demodulation. For a description of DVB-compliant APSK
demodulation, see “DVB Compliant APSK Hard Demodulation” on page 3-305 and “DVB
Compliant APSK Soft Demodulation” on page 3-306.

This icon shows the block with all ports enabled:

Ports

Input
In — DVB-S2/S2X/SH standard-specific APSK modulated signal
scalar | vector | matrix

DVB-S2/S2X/SH standard-specific APSK modulated signal, specified as a scalar, vector, or
matrix. When this input is a matrix, each column is treated as an independent channel.
This port is unnamed until the Var port is enabled.
Data Types: double | single

 DVBS-APSK Demodulator Baseband

3-299

Complex Number Support: Yes

Var — Noise variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise
variance or signal power result in computations involving extreme positive or negative
magnitudes, see “DVB Compliant APSK Soft Demodulation” on page 3-306 for
demodulation decision type considerations.

Dependencies

This parameter applies when Noise variance source is set to Input port.
Data Types: double | single

Output
Out — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of the
demodulated signal depend on the specified Output type and Decision type. This port is
unnamed on the block.

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated
Signal

Integer — Demodulated integer
values in the range [0,
(M – 1)]

The output signal has the same
dimensions as the input signal.

Bit Hard
decision

Demodulated bits The number of rows in the output
signal is log2(M) times the number of
rows in the input signal. Each
demodulated symbol is mapped to a
group of log2(M) elements in a
column, where the first element
represents the MSB and the last
element represents the LSB.

Log-
likeliho
od ratio

Log-likelihood ratio
value for each bit

Approxim
ate log-
likeliho
od ratio

Approximate log-
likelihood ratio value for
each bit

3 Blocks — Alphabetical List

3-300

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated
Signal

M is the value of Modulation order.

Use Output data type to specify the output data type.

Parameters
DVB standard suffix — Standard suffix
S2 | S2X | SH

Standard suffix for DVB modulation variant, specified as S2, S2X, or SH.

Frame length — Frame length
Normal (default) | Short

Frame length, specified as Normal or Short.

Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Modulation order — Modulation order
16 (default) | integer

Modulation order, specified as a power of two. The modulation order specifies the total
number of points in the constellation of the input signal. The list of valid modulation
orders varies depending on the setting for DVB standard suffix and Frame length.

DVB standard suffix Frame length Modulation order Options
S2 Normal or Short 16 or 32
S2X Normal 8, 16, 32, 64, or 256

Short 16 or 32
SH Not applicable 16

Code identifier — Code identifier
2/3 | character vector

 DVBS-APSK Demodulator Baseband

3-301

Code identifier, specified as a character vector. The list of valid code identifier values
varies depending on the setting for DVB standard suffix, Frame length, and Modulation
order. This table lists the available options for Code identifier values.

Modulation order DVB standard
suffix

Frame length Code identifier
Options

8 S2X Normal 100/180 or
104/180

16 S2 or S2X Normal 2/3, 3/4, 4/5, 5/6,
8/9, or 9/10

Short 2/3, 3/4, 4/5, 5/6,
or 8/9

16 S2X Normal 26/45, 3/5, 28/45,
23/36, 25/36,
13/18, 140/180,
154/180, 100/180,
96/180, 90/180,
18/30, or 20/30

Short 7/15, 8/16, 26/45,
3/5, or 32/45

32 S2 or S2X Normal 3/4, 4/5, 5/6, 8/9,
or 9/10

Short 3/4, 4/5, 5/6, or
8/9

32 S2X Normal 128/180, 132/180,
140/180, or 2/3

Short 2/3 or 32/45
64 S2X Normal 128/180 , 132/180,

7/9, 4/5, or 5/6
128 S2X Normal 135/180 or

140/180
256 S2X Normal 116/180, 124/180,

128/180, 20/30, or
135/180

3 Blocks — Alphabetical List

3-302

For more information, refer to Tables 9 and 10 in the DVB-S2 standard [1] and Table 17a
in the DVB-S2X standard [2].
Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Constellation scaling — Constellation scaling
Outer radius as 1 (default) | Unit average power

Constellation scaling, specified as Outer radius as 1 or Unit average power.
Dependencies

This input argument applies only when DVB standard suffix is set to S2 or S2X.

Output type — Output type
Integer (default) | Bit

Output type, specified as Integer or Bit.
Data Types: char | string

Decision type — Demodulation decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-
likelihood ratio

Demodulation decision type, specified as Hard decision, Log-likelihood ratio, or
Approximate log-likelihood ratio. See “DVB Compliant APSK Soft Demodulation”
on page 3-306 for algorithm selection considerations.
Dependencies

This parameter applies when Output type is set to Bit.

Noise variance source — Noise variance source
Property (default) | Input port

Noise variance source, specified as:

• Property — The noise variance is set using the Noise variance parameter.
• Input port — The noise variance is set using the Var input port.

Noise variance — Noise variance
1 (default) | positive scalar | vector of positive values

 DVBS-APSK Demodulator Baseband

3-303

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.
• When specified as a vector, the vector length must be equal to the number of columns

in the input signal. Each noise variance vector element is applied to its corresponding
column in the input signal.

When the noise variance or signal power result in computations involving extreme
positive or negative magnitudes, see “DVB Compliant APSK Soft Demodulation” on page
3-306 for demodulation decision type considerations.

Dependencies

This parameter applies when Noise variance source is set to Property and Decision type
is set to either Log-likelihood ratio or Approximate log-likelihood ratio.
Data Types: double

Output data type — Output data type
double (default) | ...

Output data type, specified as one of the acceptable values from this table. Acceptable
Output data type values depend on the Output type and Decision type parameter values.

Output type Decision type Output data type Options
Integer Not applicable double, single, int8, uint8, int16, uint16,

int32, or uint32
Bit Hard decision double, single, int8, uint8, int16, uint16,

int32, uint32, or logical
Log-
likelihood
ratio or
Approximate
log-
likelihood
ratio

The output signal is the same data type as the input
signal.

Dependencies

This parameter applies only when Output type is set to Integer or when Output type is
set to Bit and Decision type is set to Hard decision.

3 Blocks — Alphabetical List

3-304

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

For information on execution speed, see “Tips” on page 3-307.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size
Signals

no

More About

DVB-S2/S2X/SH
Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific
amplitude phase shift keying (APSK) modulation. For further information on the DVB-
S2/S2X/SH standards, see [1], [2], and [3], respectively.

DVB Compliant APSK Hard Demodulation
The hard demodulation algorithm applies amplitude phase decoding as described in [4].

 DVBS-APSK Demodulator Baseband

3-305

DVB Compliant APSK Soft Demodulation
For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are
available: exact LLR and approximate LLR. This table compares these algorithms.

Algorithm Accuracy Execution Speed
Exact LLR more accurate slower execution
Approximate LLR less accurate faster execution

3 Blocks — Alphabetical List

3-306

For further description of these algorithms, see “Exact LLR Algorithm” and “Approximate
LLR Algorithm”.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

Tips
• For faster execution of the DVBS-APSK Demodulator Baseband block, set the Simulate

using parameter to:

• Code generation when using hard decision demodulation.
• Interpreted execution when using soft decision demodulation.

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second

generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2), European Telecommunications Standards Institute,
Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second
generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2X), European Telecommunications Standards Institute,
Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing
structure, channel coding and modulation for Satellite Services to Handheld
devices (SH), European Telecommunications Standards Institute, Valbonne,
France, 2008-03.

 DVBS-APSK Demodulator Baseband

3-307

[4] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied
Mathematics, Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V.
Mladenov, and Z. Bojkovic, eds.). Vouliagmeni, Athens, Greece: WSEAS Press,
2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DVBS-APSK Modulator Baseband | M-APSK Demodulator Baseband | MIL188-QAM
Demodulator Baseband

Functions
dvbsapskdemod

Introduced in R2018b

3 Blocks — Alphabetical List

3-308

DVBS-APSK Modulator Baseband
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) modulation
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / APM
Communications Toolbox / Modulation / Digital
Baseband Modulation / Standard-Compliant

Description
The DVBS-APSK Modulator Baseband block modulates the input signal using Digital
Video Broadcasting (“DVB-S2/S2X/SH” on page 3-313) standard-specific amplitude phase
shift keying (APSK) modulation.

Ports

Input
In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The input signal must be binary
values or integers in the range [0, (M – 1)], where M is the Modulation order. This port is
unnamed on the block.

Note To process the input signal as binary elements, set the Input type parameter value
to Bit. For binary inputs, the number of rows must be an integer multiple of log2(M).
Groups of log2(M) bits in a column are mapped onto a symbol, with the first bit
representing the MSB and the last bit representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

 DVBS-APSK Modulator Baseband

3-309

Output
Out — DVB-S2/S2X/SH standard-specific APSK modulated signal
scalar | vector | matrix

DVB-S2/S2X/SH standard-specific APSK modulated signal, returned as a complex scalar,
vector, or matrix. The output signal dimensions depend on the specified Input type value.
This port is unnamed on the block.

Input type Dimensions of Output Signal
Integer The output signal has the same dimensions as the input signal.
Bit The number of rows in the output signal equals the number of

rows in the input signal divided by log2(M), where M is the
Modulation order.

Use Output data type to specify the output data type.

Parameters
DVB standard suffix — Standard suffix
S2 (default) | S2X | SH

Standard suffix for DVB modulation variant, specified as S2, S2X, or SH.

Frame length — Frame length
Normal (default) | Short

Frame length, specified as Normal or Short.

Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Modulation order — Modulation order
16 (default) | 8 | 32 | 64 | 256

Modulation order, M, specified as a power of two. The modulation order specifies the total
number of points in the constellation of the output signal. The list of valid modulation
orders varies depending on the values of DVB standard suffix and Frame length.

3 Blocks — Alphabetical List

3-310

DVB standard suffix Frame length Modulation order Options
S2 Normal or Short 16 or 32
S2X Normal 8, 16, 32, 64, or 256

Short 16 or 32
SH Not applicable 16

Code identifier — Code identifier
2/3 | character vector

Code identifier, specified as a character vector. The list of valid code identifier values
varies depending on the specified values of DVB standard suffix, Frame length, and
Modulation order. This table lists the options for Code identifier values.

Modulation order DVB standard
suffix

Frame length Code identifier
Options

8 S2X Normal 100/180 or
104/180

16 S2 or S2X Normal 2/3, 3/4, 4/5, 5/6,
8/9, or 9/10

Short 2/3, 3/4, 4/5, 5/6,
or 8/9

16 S2X Normal 26/45, 3/5, 28/45,
23/36, 25/36,
13/18, 140/180,
154/180, 100/180,
96/180, 90/180,
18/30, or 20/30

Short 7/15, 8/16, 26/45,
3/5, or 32/45

32 S2 or S2X Normal 3/4, 4/5, 5/6, 8/9,
or 9/10

Short 3/4, 4/5, 5/6, or
8/9

32 S2X Normal 128/180, 132/180,
140/180, or 2/3

 DVBS-APSK Modulator Baseband

3-311

Modulation order DVB standard
suffix

Frame length Code identifier
Options

Short 2/3 or 32/45
64 S2X Normal 128/180 , 132/180,

7/9, 4/5, or 5/6
128 S2X Normal 135/180 or

140/180
256 S2X Normal 116/180, 124/180,

128/180, 20/30, or
135/180

For more information, refer to Tables 9 and 10 in the DVB-S2 standard [1] and Table 17a
in the DVB-S2X standard [2].
Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Constellation scaling — Constellation scaling
Outer radius as 1 (default) | Unit average power

Constellation scaling, specified as Outer radius as 1 or Unit average power.
Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Input type — Input type
Integer (default) | Bit

Input type, specified as Integer or Bit. To use Integer, the input signal must consist of
integers in the range [0, (M – 1)]. To use Bit, the input data must contain binary values,
and the number of rows must be an integer multiple of log2(M), where M is the
Modulation order.

Output data type — Output data type
double (default) | single

Output data type, specified as double or single.

View Constellation — Plot reference constellation
button

3 Blocks — Alphabetical List

3-312

To plot the reference constellation, click the View Constellation button.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size
Signals

no

More About

DVB-S2/S2X/SH
Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific
amplitude phase shift keying (APSK) modulation. For further information on the DVB-
S2/S2X/SH standards, see [1], [2], and [3], respectively.

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second

generation framing structure, channel coding and modulation systems for

 DVBS-APSK Modulator Baseband

3-313

Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2), European Telecommunications Standards Institute,
Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second
generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband satellite
applications (DVB-S2X), European Telecommunications Standards Institute,
Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing
structure, channel coding and modulation for Satellite Services to Handheld
devices (SH), European Telecommunications Standards Institute, Valbonne,
France, 2008-03.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DVBS-APSK Demodulator Baseband | M-APSK Modulator Baseband | MIL188-QAM
Modulator Baseband

Functions
dvbsapskmod

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”

Introduced in R2018b

3 Blocks — Alphabetical List

3-314

Error Rate Calculation
Compute bit error rate or symbol error rate of input data

Library
Comm Sinks

Description
The Error Rate Calculation block compares input data from a transmitter with input data
from a receiver. It calculates the error rate as a running statistic, by dividing the total
number of unequal pairs of data elements by the total number of input data elements
from one source.

Use this block to compute either symbol or bit error rate, because it does not consider the
magnitude of the difference between input data elements. If the inputs are bits, then the
block computes the bit error rate. If the inputs are symbols, then it computes the symbol
error rate.

Note When you set the Output data parameter to Workspace, the block generates no
code. Similarly, no data is saved to the workspace if the Simulation mode is set to
Accelerator or Rapid Accelerator. If you need error rate information in these
cases, set Output data to Port.

Input Data
This block has between two and four input ports, depending on how you set the dialog
parameters. The input ports marked Tx and Rx accept transmitted and received signals,
respectively. The Tx and Rx signals must share the same sampling rate.

 Error Rate Calculation

3-315

The Tx and Rx input ports accept scalar or column vector signals. For information about
the data types each block port supports, see the “Supported Data Types” on page 3-321
table on this page.

If Tx is a scalar and Rx is a vector, or vice-versa, then the block compares the scalar with
each element of the vector. In this case, the block behaves as if you had preprocessed the
scalar signal by using the Repeat block with the Rate options parameter set to Enforce
single rate.

If you select Reset port, then an additional input port appears, labeled Rst. The Rst
input accepts only a scalar signal (of type double or boolean) and must have the same
port sample time as the Tx and Rx ports. When the Rst input is nonzero, the block clears
and then recomputes the error statistics.

If you set the Computation mode parameter to Select samples from port, then an
additional input port appears, labeled Sel. The Sel input indicates which elements of a
frame are relevant for the computation. The Sel input can be a column vector of type
double.

The guidelines below indicate how you should configure the inputs and the dialog
parameters depending on how you want this block to interpret your Tx and Rx data.

• If both data signals are scalar, then this block compares the Tx scalar signal with the
Rx scalar signal. For this configuration, use the Computation mode parameter
default value, Entire frame.

• If both data signals are vectors, then this block compares some or all of the Tx and Rx
data:

• If you set the Computation mode parameter to Entire frame, then the block
compares all of the Tx frame with all of the Rx frame.

• If you set the Computation mode parameter to Select samples from mask,
then the Selected samples from frame field appears in the dialog. This
parameter field accepts a vector that lists the indices of those elements of the Rx
frame that you want the block to consider. For example, to consider only the first
and last elements of a length-six receiver frame, set the Selected samples from
frame parameter to [1 6]. If the Selected samples from frame vector includes
zeros, then the block ignores them.

• If you set the Computation mode parameter to Select samples from port,
then an additional input port, labeled Sel, appears on the block icon. The data at
this input port must have the same format as that of the Selected samples from
frame parameter described above.

3 Blocks — Alphabetical List

3-316

• If one data signal is a scalar and the other is a vector, then the scalar is with each
entry of the vector. In this case, if Rx is a scalar, then the phrase “Rx frame” above
refers to the vector expansion of Rx.

Note This block does not support variable-size signals. If you choose the Select
samples from port option and want the number of elements in the subframe to
vary during the simulation, then you should pad the Sel signal with zeros. The Error
Rate Calculation block ignores zeros in the Sel signal.

Output Data
This block produces a vector of length three, whose entries correspond to:

• The error rate
• The total number of errors, that is, the number of instances that an Rx element does

not match the corresponding Tx element
• The total number of comparisons that the block made

The block sends this output data to the base MATLAB workspace or to an output port,
depending on how you set the Output data parameter:

• If you set the Output data parameter to Workspace and fill in the Variable name
parameter, then that variable in the base MATLAB workspace contains the current
value when the simulation ends. Pausing the simulation does not cause the block to
write interim data to the variable.

If you plan to use this block along with the Simulink Coder software, then you should
not use the Workspace option. Instead, use the Port option and connect the output
port to a Simulink To Workspace block.

• If you set the Output data parameter to Port, then an output port appears. This
output port contains the running error statistics.

Delays
The Receive delay and Computation delay parameters implement two different types of
delays for this block. One delay is useful if you want this block to compensate for the
delay in the received signal. The other is useful if you want to ignore the initial transient
behavior of both input signals.

 Error Rate Calculation

3-317

• The Receive delay parameter represents the number of samples by which the
received data lags behind the transmitted data. The transmit signal is implicitly
delayed by that same amount before the block compares it to the received data. This
value is helpful when you delay the transmit signal so that it aligns with the received
signal. The receive delay persists throughout the simulation.

• The Computation delay parameter represents the number of samples the block
ignores at the beginning of the comparison.

Use the Find Delay block to determine the delay, and then set the Receive delay to the
delay reported by the Find Delay block.

If you use the Select samples from mask or Select samples from port option,
then each delay parameter refers to the number of samples that the block receives,
whether the block ultimately ignores some of them or not.

If using the Sel port to calculate errors on a delayed signal, the delay must be added to
the Sel indices. For more information, see “Calculate Errors for Delayed Selected
Samples”.

Stopping the Simulation Based on Error Statistics
You can configure this block so that its error statistics control the duration of simulation.
This is useful for computing reliable steady-state error statistics without knowing in
advance how long transient effects might last. To use this mode, check Stop simulation.
The block attempts to run the simulation until it detects the number of errors the Target
number of errors parameter specifies. However, the simulation stops before detecting
enough errors if the time reaches the model's Stop time setting (in the Configuration
Parameters dialog box), if the Error Rate Calculation block makes Maximum number
of symbols comparisons, or if another block in the model directs the simulation to stop.

To ignore either of the two stopping criteria in this block, set the corresponding
parameter (Target number of errors or Maximum number of symbols) to Inf. For
example, to reach a target number of errors without stopping the simulation early, set
Maximum number of symbols to Inf and set the model's Stop time to Inf.

Tuning Parameters in an RSim Executable (Simulink Coder
Software)
If you use the Simulink Coder rapid simulation (RSim) target to build an RSim executable,
then you can tune the Target number of errors and Maximum number of symbols

3 Blocks — Alphabetical List

3-318

parameters without recompiling the model. This is useful for Monte Carlo simulations in
which you run the simulation multiple times (perhaps on multiple computers) with
different amounts of noise.

Examples
Full Frame Error Calculation

The figure below shows how the block compares pairs of elements and counts the number
of error events. The Tx and Rx inputs are column vectors.

This example assumes that the sample time of each input signal is 1 second and that the
block's parameters are as follows:

• Receive delay = 2
• Computation delay = 0
• Computation mode = Entire frame

Both input signals are column vectors of length three. However, the schematic arranges
each column vector horizontally and aligns pairs of vectors so as to reflect a receive delay
of two samples. At each time step, the block compares elements of the Rx signal with
those of the Tx signal that appear directly above them in the schematic. For instance, at
time 1, the block compares 2, 4, and 1 from the Rx signal with 2, 3, and 1 from the Tx
signal.

The values of the first two elements of Rx appear as asterisks because they do not
influence the output. Similarly, the 6 and 5 in the Tx signal do not influence the output up
to time 3, though they would influence the output at time 4.

 Error Rate Calculation

3-319

In the error rates on the right side of the figure, each numerator at time t reflects the
number of errors when considering the elements of Rx up through time t.

Full Frame Error Calculation with Reset

If the block's Reset port box had been checked and a reset had occurred at
time = 3 seconds, then the last error rate would have been 2/3 instead of 4/10. This value
2/3 would reflect the comparison of 3, 2, and 1 from the Rx signal with 7, 7, and 1 from
the Tx signal. The figure below illustrates this scenario. The Tx and Rx inputs are column
vectors.

Error Calculation on Selected Samples in the Frame

If using the Sel port to calculate errors on a delayed signal, the delay must be added to
the Sel indices. For more information, see “Calculate Errors for Delayed Selected
Samples”.

Parameters
Receive delay

Number of samples by which the received data lags behind the transmitted data. (If
Tx or Rx is a vector, then each entry represents a sample.)

Computation delay
Number of samples that the block should ignore at the beginning of the comparison.

Computation mode
Either Entire frame, Select samples from mask, or Select samples from
port, depending on whether the block should consider all or only part of the input
frames.

3 Blocks — Alphabetical List

3-320

Selected samples from frame
A vector that lists the indices of the elements of the Rx frame vector that the block
should consider when making comparisons. This field appears only if Computation
mode is set to Select samples from mask.

Output data
Either Workspace or Port, depending on where you want to send the output data.

Variable name
Name of variable for the output data vector in the base MATLAB workspace. This field
appears only if Output data is set to Workspace.

Reset port
If you check this box, then an additional input port appears, labeled Rst.

Stop simulation
If you check this box, then the simulation runs only until this block detects a specified
number of errors or performs a specified number of comparisons, whichever comes
first.

Target number of errors
The simulation stops after detecting this number of errors. This field is active only if
Stop simulation is checked.

Maximum number of symbols
The simulation stops after making this number of comparisons. This field is active
only if Stop simulation is checked.

Supported Data Types
Port Supported Data Types
Tx • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 Error Rate Calculation

3-321

Port Supported Data Types
Rx • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Sel • Double-precision floating point
Reset • Double-precision floating point

• Boolean

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but
is not included in the hardware implementation.

See Also
Blocks
Delay | Find Delay

Introduced before R2006a

3 Blocks — Alphabetical List

3-322

EVM Measurement
Measure error vector magnitude

Library
Utility Blocks

Description
The EVM Measurement block measures the error vector magnitude (EVM), which is an
indication of modulator or demodulator performance.

The block has one or two input signals: a received signal and, optionally, a reference
signal. You must select if the block uses a reference from an input port or from a
reference constellation.

The block normalizes to the average reference signal power, average constellation power,
or peak constellation power. For RMS EVM, maximum EVM, and X-percentile EVM, the
output computations reflect the normalization method.

The default EVM output is the RMS EVM in percent, with an option of maximum EVM or
X-percentile EVM values. The maximum EVM represents the worst-case EVM value per
burst. For the X-percentile option, you can enable an output port that returns the number
of symbols processed in the percentile computations.

The table shows the output type, the parameter that selects the output type, the
computation units, and the corresponding measurement interval.

 EVM Measurement

3-323

Output Activation
Parameter

Units Measurement
Interval

RMS EVM None (output by
default)

Percentage Current length |
Entire history |
Custom | Custom
with periodic
reset

Maximum EVM Output maximum
EVM

Percentage Current length |
Entire history |
Custom | Custom
with periodic
reset

Percentile EVM Output X-
percentile EVM

Percentage Entire history

Number of symbols Output X-
percentile EVM and
Output the number
of symbols
processed

None Entire history

Data Type
The block accepts double, single, and fixed-point data types. The output of the block is
always double.

Parameters
Normalize RMS error vector by

Selects the method by which the block normalizes measurements:

• Average reference signal power
• Average constellation power
• Peak constellation power

The default is Average reference signal power.

3 Blocks — Alphabetical List

3-324

Average constellation power
Normalizes EVM measurement by the average constellation power. This parameter is
available only when you set Normalize RMS error vector to Average
constellation power.

Peak constellation power
Normalizes EVM measurement by the peak constellation power. This parameter only
is available if you set Normalize RMS error vector to Peak constellation
power.

Reference signal
Specifies the reference signal source as either Input port or Estimated from
reference constellation.

Reference constellation
Specifies the reference constellation points as a vector. This parameter is available
only when Reference signal is Estimated from reference constellation.
The default is constellation(comm.QPSKModulator).

Measurement interval
Specify the measurement interval as: Input length, Entire history, Custom, or
Custom with periodic reset. This parameter affects the RMS and maximum
EVM outputs only.

• To calculate EVM using only the current samples, set this parameter to 'Input
length'.

• To calculate EVM for all samples, set this parameter to 'Entire history'.
• To calculate EVM over an interval you specify and to use a sliding window, set this

parameter to 'Custom'.
• To calculate EVM over an interval you specify and to reset the object each time the

measurement interval is filled, set this parameter to 'Custom with periodic
reset'.

Custom measurement interval
Specify the custom measurement interval in samples as a real positive integer. This is
the interval over which the EVM is calculated. This parameter is available when
Measurement interval is Custom or Custom with periodic reset. The default
is 100.

 EVM Measurement

3-325

Averaging dimensions
Specify the dimensions over which to average the EVM measurements as a scalar or
row vector whose elements are positive integers. For example, to average across the
rows, set this parameter to 2. The default is 1.

This block supports var-size inputs of the dimensions in which the averaging takes
place. However, the input size for the nonaveraged dimensions must be constant. For
example, if the input size is [1000 3 2] and Averaging dimensions is [1 3], then
the output size is [1 3 1]. The number of elements in the second dimension is fixed
at 3.

Output maximum EVM
Outputs the maximum EVM of an input vector or frame.

Output X-percentile EVM
Enables an output X-percentile EVM measurement. When you select this option,
specify X-percentile value (%).

X-percentile value (%)
This parameter is available only when you select Output X-percentile EVM. The Xth
percentile is the EVM value below which X% of all the computed EVM values lie. The
parameter defaults to the 95th percentile. That is, 95% of all EVM values are below
this value.

Output the number of symbols processed
Outputs the number of symbols that the block uses to compute the X-percentile value.
This parameter is available only when you select Output X-percentile EVM.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

3 Blocks — Alphabetical List

3-326

Examples

Measure RMS and 90th Percentile EVM

Measure the RMS and 90th percentile EVM for an 8-PSK signal in an AWGN channel.

Open the model by typing doc_evm_example on the command line.

Run the model. The Display block shows the number of symbols used to estimate the
EVM. The Time Scope shows the RMS and 90th percentile EVM values.

 EVM Measurement

3-327

matlab:doc_evm_example

Observe that 90% of the symbols had an EVM value of less than 28% and that the average
EVM is approximately 17%.

3 Blocks — Alphabetical List

3-328

Experiment with the model by changing the signal-to-noise ratio in the AWGN Channel
block. Examine its effect on the EVM values.

Algorithms
Both the EVM block and the EVM object provide three normalization methods. You can
normalize measurements according to the average power of the reference signal, average
constellation power, or peak constellation power. Different industry standards follow one
of these normalization methods.

The block or object calculates the RMS EVM value differently for each normalization
method.

EVM Normalization
Method

Algorithm

Reference signal

EVMRMS =

1
N ∑k = 1

N
(ek)

1
N ∑k = 1

N
(Ik2 + Qk

2)
* 100

Average power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

Peak power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

Where:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2

• Ik = In-phase measurement of the kth symbol in the burst
• Qk = Quadrature phase measurement of the kth symbol in the burst
• N = Input vector length
• Pavg = The value for Average constellation power

 EVM Measurement

3-329

• Pmax = The value for Peak constellation power
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received)

symbols.

The max EVM is the maximum EVM value in a frame or EVMmax = max
k ∈ [1, ..., N]

EVMk ,

where k is the kth symbol in a burst of length N.

The definition for EVMk varies depending upon which normalization method you select for
computing measurements. The block or object supports these algorithms.

EVM Normalization Algorithm
Reference signal

EVMk =
ek

1
N ∑k = 1

N
(Ik2 + Qk

2)
* 100

Average power
EVMk = 100

ek
Pavg

Peak power
EVMk = 100

ek
Pmax

The block or object computes the X-percentile EVM by creating a histogram of all the
incoming EVMk values. The output provides the EVM value below which X% of the EVM
values fall.

References
[1] IEEE Standard 802.16-2004. "Part 16: Air interface for fixed broadband wireless

access systems." October 2004.

[2] 3 GPP TS 45.005 V8.1.0 (2008-05). "Radio Access Network: Radio transmission and
reception".

[3] IEEE Standard 802.11a-1999. "Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band." 1999.

3 Blocks — Alphabetical List

3-330

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To generate code in a model using this block, you must enable Dynamic Memory
Allocation in MATLAB Functions. For more information, see “Dynamic memory
allocation in MATLAB functions” (Simulink).

See Also
Blocks
MER Measurement

Objects
comm.EVM

Topics
“EVM and MER Measurements with Simulink”
“Error Vector Magnitude (EVM)”

Introduced in R2009b

 EVM Measurement

3-331

Eye Diagram Scope
Display eye diagram of time-domain signal

Library
Comm Sinks

Description
The Eye Diagram block displays multiple traces of a modulated signal to produce an eye
diagram. You can use the block to reveal the modulation characteristics of the signal,
such as the effects of pulse shaping or channel distortions.

The Eye Diagram block has one input port. This block accepts a column vector or scalar
input signal. The block accepts a signal with the following data types: double, single, base
integer, and fixed point. All data types are cast as double before the block displays results.

3 Blocks — Alphabetical List

3-332

Dialog Box
To modify the eye diagram display, select View > Configuration Properties or click the

Configuration Properties button (). Then select the Main, 2D color histogram,
Axes, or Export tabs and modify the settings.

 Eye Diagram Scope

3-333

Visuals — Eye Diagram Properties
Main Tab

Display mode

Display mode of the eye diagram, specified as Line plot or 2D color histogram.
Selecting 2D color histogram makes the histogram tab available. This parameter is
tunable.

Enable measurements

Select this check box to enable eye measurements of the input signal.

3 Blocks — Alphabetical List

3-334

Show horizontal (jitter) histogram

Select this radio button to display the jitter histogram. This parameter is available when
Display mode is 2D color histogram and Enable measurements is selected. This
can also be accessed by using the histogram button drop down on the toolbar.

Show vertical (noise) histogram

Select this radio button to display the noise histogram. This parameter is available when
Display mode is 2D color histogram and Enable measurements is selected. This
can also be accessed by using the histogram button drop down on the toolbar.

Show horizontal bathtub curve

Select this check box to display the horizontal bathtub curve. This parameter is available
when Enable measurements is selected. This can also be accessed by using the bathtub
curve button on the toolbar.

Show vertical bathtub curve

Select this check box to display the vertical bathtub curve. This parameter is available
when Enable measurements is selected. This can also be accessed by using the bathtub
curve button on the toolbar.

Eye diagram to display

Select either Real only or Real and imaginary to display one or both eye diagrams.
To make eye measurements, this parameter must be Real only. This parameter is
tunable.

Color fading

Select this check box to fade the points in the display as the interval of time after they are
first plotted increases. The default value is false. This parameter is available only when
the Display mode is Line plot. This property is tunable.

Samples per symbol

Number of samples per symbol. Use with Symbols per trace to determine the number of
samples per trace. This parameter is tunable.

 Eye Diagram Scope

3-335

Sample offset

Sample offset, specified as a nonnegative integer smaller than the product of Samples
per symbol and Symbols per trace. The offset provides the number of samples to omit
before plotting the first point. This parameter is tunable.

Symbols per trace

Number of symbols plotted per trace, specified as a positive integer. This parameter is
tunable.

Traces to display

Number of traces plotted. This parameter is available only when the Display mode is
Line plot. This parameter is tunable.

3 Blocks — Alphabetical List

3-336

Axes Tab

Title

Label that appears above the eye diagram plot. By default, the plot has no title. This
parameter is tunable.

Show grid

Toggle this check box to turn the grid on and off. This parameter is tunable.

Y-limits (Minimum)

Minimum value of the y-axis. This parameter is tunable.

 Eye Diagram Scope

3-337

Y-limits (Maximum)

Maximum value of the y-axis. This parameter is tunable.

Real axis label

Text that the scope displays along the real axis. This parameter is tunable.

Imaginary axis label

Text that the scope displays along the imaginary axis. This parameter is tunable.

2D Histogram Tab
The 2D histogram tab is available when you click the histogram button or when the
display mode is set to 2D color histogram.

3 Blocks — Alphabetical List

3-338

Oversampling method

Oversampling method, specified as None, Input interpolation, or Histogram
interpolation. This parameter is tunable.

To plot eye diagrams as quickly as possible, set the Oversampling method to None. The
drawback to not oversampling is that the plots look pixelated when the number of
samples per trace is small. To create smoother, less-pixelated plots using a small number
of samples per trace, set the Oversampling method to Input interpolation or
Histogram interpolation. Input interpolation is the faster of the two
interpolation methods and produces good results when the signal-to-noise ratio (SNR) is
high. With a lower SNR, this oversampling method is not recommended because it

 Eye Diagram Scope

3-339

introduces a bias to the centers of the histogram ranges. Histogram interpolation is
not as fast as the other techniques, but it provides good results even when the SNR is low.

Color scale

Color scale of the histogram plot, specified as either Linear or Logarithmic. Set Color
scale to Logarithmic if certain areas of the eye diagram include a disproportionate
number of points. This parameter is tunable.

Reset

The toolbar contains a histogram reset button , which resets the internal histogram
buffers and clears the display. This button is not available when the display mode is set to
Line plot.

Export Tab

3 Blocks — Alphabetical List

3-340

Export measurements

Select this check box export the eye diagram measurements to the MATLAB workspace.
This parameter is tunable.

Variable name

Specify the name of the variable to which the eye diagram measurements are saved. The
default is EyeData. This parameter is tunable. The data is saved as a structure having
these fields:

• MeasurementSettings
• Measurements
• JitterHistogram
• NoiseHistogram
• HorizontalBathtub
• VerticalBathtub
• BlockName

Style Dialog Box
In the Style dialog box, you can customize the style of the active display. You can change
the color of the figure containing the displays, the background and foreground colors of
display axes, and properties of lines in a display. To open this dialog box, select View >
Style.

 Eye Diagram Scope

3-341

Properties
Figure color

Specify the background color of the scope figure. By default, the figure color is black.

Axes colors

Specify the fill and line colors for the axes.

Line

Specify the line style, line width, and line color for the displayed signal.

Marker

Specify data point markers for the selected signal. This parameter is similar to the
Marker property for MATLAB Handle Graphics® plot objects.

3 Blocks — Alphabetical List

3-342

Specifier Marker Type
none No marker (default)

Circle
Square
Cross
Point
Plus sign
Asterisk
Diamond
Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

Colormap

Specify the colormap of the histogram plots as one of these schemes: Parula, Jet, HSV,
Hot, Cool, Spring, Summer, Autumn, Winter, Gray, Bone, Copper, Pink, Lines, or
Custom. This parameter is active when the Eye Diagram is in Histogram mode. The
default is Hot. If you select Custom, a dialog box pops up from which you can enter code
to specify your own colormap.

Measurements
To open the measurements panel, click on the Eye Measurements button or select Tools
> Measurements > Eye Measurements from the toolbar menu.

Note

• For amplitude measurements, at least one bin per vertical histogram must reach 10
hits before the measurement is taken, ensuring higher accuracy.

 Eye Diagram Scope

3-343

• For time measurements, at least one bin per horizontal histogram must reach 10 hits
before the measurement is taken.

• When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval,
the time measurement wraps to the end of the eye diagram, i.e., the measurement
wraps by 2*Ts seconds (where Ts is the symbol time). For a complex signal case, the
analyze method issues a warning if the crossing time measurement of the in-phase
branch wraps while that of the quadrature branch does not (or vice versa). To avoid
the time-wrapping or a warning, add a half-symbol duration delay to the current value
in the MeasurementDelay property of the eye diagram object. This additional delay
repositions the eye in the approximate center of the scope.

Eye Levels — Amplitude level used to represent data bits

Eye level is the amplitude level used to represent data bits. For the displayed NRZ signal,
the levels are –1 V and +1 V. The eye levels are calculated by averaging the 2-D histogram
within the eye level boundaries.

3 Blocks — Alphabetical List

3-344

Eye Amplitude — Distance between eye levels

Eye amplitude is the distance in V between the mean value of two eye levels.

Eye Height — Statistical minimum distance between eye levels

Eye height is the distance between μ – 3σ of the upper eye level and μ + 3σ of the lower
eye level. μ is the mean of the eye level and σ is the standard deviation.

 Eye Diagram Scope

3-345

Vertical Opening — Distance between BER threshold points

The vertical opening is the distance between the two points that correspond to the BER
threshold. For example, for a BER threshold of 10–12, these points correspond to the 7σ
distance from each eye level.

3 Blocks — Alphabetical List

3-346

Eye SNR — Signal-to-noise ratio

The eye SNR is the ratio of the eye level difference to the difference of the vertical
standard deviations corresponding to each eye level:

SNR =
L1− L0
σ1− σ0

,

where L1 and L0 represent the means of the upper and lower eye levels and σ1 and σ0
represent their standard deviations.

Q Factor — Quality factor

The Q factor is calculated using the same formula as the Eye SNR. However, the standard
deviations of the vertical histograms are replaced with those computed with the dual-
Dirac analysis.

Crossing Levels — Amplitude levels for eye crossings

The crossing levels are the amplitude levels at which the eye crossings occur.

 Eye Diagram Scope

3-347

Crossing Times — Times for which crossings occur

The crossing times are the times at which the crossings occur. The times are computed as
the mean values of the horizontal (jitter) histograms.

3 Blocks — Alphabetical List

3-348

Eye Delay — Mean time between eye crossings

Eye delay is the midpoint between the two crossing times.

 Eye Diagram Scope

3-349

Eye Width — Statistical minimum time between eye crossings

Eye width is the horizontal distance between μ + 3σ of the left crossing time and μ – 3σ of
the right crossing time. μ is the mean of the jitter histogram and σ is the standard
deviation.

3 Blocks — Alphabetical List

3-350

Horizontal Opening — Time between BER threshold points

The horizontal opening is the distance between the two points that correspond to the BER
threshold. For example, for a 10–12 BER, these two points correspond to the 7σ distance
from each crossing time.

 Eye Diagram Scope

3-351

Rise Time — Time to transition from low to high

Rise time is the mean time between the low and high thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

3 Blocks — Alphabetical List

3-352

Fall Time — Time to transition from high to low

Fall time is the mean time between the high and low thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

 Eye Diagram Scope

3-353

Deterministic Jitter — Deterministic deviation from ideal signal timing

The deterministic jitter (DJ) is the distance between the two peaks of the dual-Dirac
histograms. The probability density function (PDF) of DJ is composed of two delta
functions.

3 Blocks — Alphabetical List

3-354

Random Jitter — Random deviation from ideal signal timing

The random jitter (RJ) is the Gaussian unbounded jitter component. The random
component of jitter is modeled as a zero-mean Gaussian random variable with a specified
standard-deviation, σ. The random jitter is computed as:

RJ = (QL + QR)σ ,

where

Q = 2erfc−1 2BER
ρ .

BER is the specified BER threshold. ρ is the amplitude of the left and right Dirac function,
which is determined from the bin counts of the jitter histograms.

 Eye Diagram Scope

3-355

Total Jitter — Deviation from ideal signal timing

Total jitter (TJ) is the sum of the deterministic and random jitter, such that TJ = DJ + RJ.

3 Blocks — Alphabetical List

3-356

The total jitter PDF is the convolution of the DJ PDF and the RJ PDF.

 Eye Diagram Scope

3-357

RMS Jitter — Standard deviation of jitter

RMS jitter is the standard deviation of the jitter calculated in the horizontal (jitter)
histogram at the decision boundary.

3 Blocks — Alphabetical List

3-358

Peak-to-Peak Jitter — Distance between extreme data points of histogram

Peak-to-peak jitter is the maximum horizontal distance between the left and right nonzero
values in the horizontal histogram of each crossing time.

 Eye Diagram Scope

3-359

Measurement Settings
To change measurement settings, first select Enable measurements. Then, in the Eye
Measurements pane, click the arrow next to Settings. You can control these
measurement settings.

Eye level boundaries — Time range for calculating eye levels

[40 60] (default) | two-element vector

Time range for calculating eye levels, specified as a two-element vector. These values are
expressed as a percentage of the symbol duration. Tunable.

3 Blocks — Alphabetical List

3-360

Decision boundary — Amplitude level threshold

0 (default) | scalar

Amplitude level threshold in V, specified as a scalar. This parameter separates the
different signaling regions for horizontal (jitter) histograms. This parameter is tunable,
but the jitter histograms reset when the parameter changes.

For non-return-to-zero (NRZ) signals, set Decision boundary to 0. For return-to-zero
(RZ) signals, set Decision boundary to half the maximum amplitude.

Rise/Fall Thresholds — Amplitude levels of the rise and fall transitions

[10 90] (default) | two-element vector

Amplitude levels of the rise and fall transitions, specified as a two-element vector. These
values are expressed as a percentage of the eye amplitude. This parameter is tunable, but
the crossing histograms of the rise and fall thresholds reset when the parameter changes.

Hysteresis — Amplitude tolerance of the horizontal crossings

0 (default) | scalar

Amplitude tolerance of the horizontal crossings in V, specified as a scalar. Increase
hysteresis to provide more tolerance to spurious crossings due to noise. This parameter is
tunable, but the jitter and the rise and fall histograms reset when the parameter changes.

BER threshold — BER used for eye measurements

1e-12 (default) | nonnegative scalar from 0 to 0.5

BER used for eye measurements, specified as a nonnegative scalar from 0 to 0.5. The
value is used to make measurements of random jitter, total jitter, horizontal eye openings,
and vertical eye openings. Tunable.

Bathtub BERs — BER values used to calculate openings of bathtub curves

[0.5 0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11
1e-12] (default) | vector

BER values used to calculate openings of bathtub curves, specified as a vector whose
elements range from 0 to 0.5. Horizontal and vertical eye openings are calculated for

 Eye Diagram Scope

3-361

each of the values specified by this parameter. To enable this parameter, select Show
horizontal bathtub curve, Show vertical bathtub curve, or both. Tunable.

Measurement delay — Duration of initial data discarded from measurements

0 (default) | nonnegative scalar

Duration of initial data discarded from measurements, in seconds, specified as a
nonnegative scalar.

Examples

View Eye Diagram

Display the eye diagram of a filtered QPSK signal using the Eye Diagram block.

Load the doc_eye_diagram_scope model from the MATLAB command prompt.

doc_eye_diagram_scope

Run the model and observe that two symbols are displayed.

3 Blocks — Alphabetical List

3-362

matlab:doc_eye_diagram_scope

Open the configuration parameters dialog box. Change the Symbols per trace parameter
to 4. Run the simulation and observe that four symbols are displayed.

 Eye Diagram Scope

3-363

Try changing the Raised Cosine Transmit Filter parameters or changing additional Eye
Diagram parameters to see their effects on the eye diagram.

Histogram Plots

Display histogram plots of a noisy GMSK signal.

Load the doc_eye_diagram_gmsk model from the MATLAB command prompt.

doc_eye_diagram_gmsk

3 Blocks — Alphabetical List

3-364

matlab:doc_eye_diagram_gmsk

Run the model. The eye diagram is configured to show a histogram without interpolation.

 Eye Diagram Scope

3-365

The lack of interpolation results in a plot having piecewise-continuous behavior.

Open the 2D Histogram tab of the Configuration Properties dialog box. Set the
Oversampling method to Input interpolation. Run the model.

3 Blocks — Alphabetical List

3-366

The interpolation smooths the eye diagram.

On the AWGN Channel block, change SNR (dB) from 25 to 10. Run the model.

 Eye Diagram Scope

3-367

Observe that vertical striping is present in the eye diagram. This striping is the result of
input interpolation, which has limited accuracy in low-SNR conditions.

Set the Oversampling method to Histogram interpolation. Run the model.

3 Blocks — Alphabetical List

3-368

The eye diagram plot now renders accurately because the histogram interpolation method
works for all SNR values. This method is not as fast as the other techniques and results in
increased execution time.

Visualize Random and Deterministic Jitter

The doc_visualize_jitter model generates bipolar data, adds deterministic and
random jitter, applies white noise, and displays the resulting eye diagram.

 Eye Diagram Scope

3-369

No Jitter Added

In the Channel Model with Jitter block, set the Deterministic jitter parameter to
0 and set the RMS jitter parameter to 0. When the model runs, the signal shows clean
crossings as there is no jitter.

3 Blocks — Alphabetical List

3-370

Deterministic Jitter Added

Set the Deterministic jitter parameter to 100e-12. Run the model to show the effect of
the deterministic jitter. The separation between the two peaks in the jitter histogram
indicates the deterministic jitter.

 Eye Diagram Scope

3-371

RMS Jitter Added

Set the Deterministic jitter parameter to 0 and set the RMS jitter parameter to
50e-12. Run the model to show the effect of the RMS jitter. The fuzziness around each of
the crossings indicates the RMS jitter.

3 Blocks — Alphabetical List

3-372

Deterministic and RMS Jitter Added

Set the Deterministic jitter parameter to 50e-12 and set the RMS jitter parameter to
20e-12. Run the model to show the combined effects of both jitter types.

 Eye Diagram Scope

3-373

More About

Using Eye Diagram in Conditionally Executed Subsystems
When an Eye Diagram block is placed in a conditionally executed subsystem, for example
in a triggered or enabled subsystem:

• Input size must be an integer multiple of SamplesPerSymbol * SymbolsPerTrace

3 Blocks — Alphabetical List

3-374

• Sample offset must be zero
• The rightmost part of the display is intentionally omitted. This figure compares typical

eye diagram display when placed in a normal system versus one placed in a
conditionally executed subsystem.

Eye Diagram Plot in Normal System Eye Diagram Plot in Conditionally
Executed Subsystem

In a regular Eye Diagram, the rightmost
part is a line between the last sample of
a trace and the first sample of the next
trace.

In conditionally executed subsystems,
these traces may be non-contiguous,
thus this rightmost segment could
corrupt the display and is omitted.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is excluded from the generated code when code generation is performed on a
system containing this block.

 Eye Diagram Scope

3-375

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but
is not included in the hardware implementation.

See Also
Blocks
Constellation Diagram

Objects
comm.EyeDiagram

Introduced in R2014a

3 Blocks — Alphabetical List

3-376

Find Delay
Find delay between two signals

Library
Utility Blocks

Description
The Find Delay block finds the delay between a signal and a delayed, and possibly
distorted, version of itself. This is useful when you want to compare a transmitted and
received signal to find the bit error rate, but do not know the delay in the received signal.
This block accepts a column vector or matrix input signal. For a matrix input, the block
outputs a row vector, and finds the delay in each channel of the matrix independently. See
“Delays” for more information about signal delays.

The sRef input port receives the original signal, while the sDel input port receives the
delayed version of the signal. The two input signals must have the same dimensions and
sample times.

The output port labeled delay outputs the delay in units of samples. If you select
Include "change signal" output port, then an output port labeled chg appears.
The chg output port outputs 1 when there is a change from the delay computed at the
previous sample, and 0 when there is no change. The delay output port outputs signals
of type double, and the chg output port outputs signals of type boolean.

The block's Correlation window length parameter specifies how many samples of the
signals the block uses to calculate the cross-correlation. The delay output is a
nonnegative integer less than the Correlation window length.

As the Correlation window length is increased, the reliability of the computed delay
also increases. However, the processing time to compute the delay increases as well.

 Find Delay

3-377

You can make the Find Delay block stop updating the delay after it computes the same
delay value for a specified number of samples. To do so, select Disable recurring
updates, and enter a positive integer in the Number of constant delay outputs to
disable updates field. For example, if you set Number of constant delay outputs to
disable updates to 20, the block will stop recalculating and updating the delay after it
calculates the same value 20 times in succession. Disabling recurring updates causes the
simulation to run faster after the target number of constant delays occurs.

Tips for Using the Block Effectively
• Set Correlation window length sufficiently large so that the computed delay

eventually stabilizes at a constant value. When this occurs, the signal from the
optional chg output port stabilizes at the constant value of zero. If the computed delay
is not constant, you should increase Correlation window length. If the increased
value of Correlation window length exceeds the duration of the simulation, then you
should also increase the duration of the simulation accordingly.

• If the cross-correlation between the two signals is broad, then the Correlation
window length value should be much larger than the expected delay, or else the
algorithm might stabilize at an incorrect value. For example, a CPM signal has a broad
autocorrelation, so it has a broad cross-correlation with a delayed version of itself. In
this case, the Correlation window length value should be much larger than the
expected delay.

• If the block calculates a delay that is greater than 75 percent of the Correlation
window length, the signal sRef is probably delayed relative to the signal sDel. In
this case, you should switch the signal lines leading into the two input ports.

Examples
Finding the Delay Before Calculating an Error Rate
A typical use of this block is to determine the correct Receive delay parameter in the
Error Rate Calculation block. This is illustrated in “Use the Find Delay Block”. In that
example, the modulation/demodulation operation introduces a computational delay into
the received signal and the Find Delay block determines that the delay is 6 samples. This
value of 6 becomes a parameter in the Error Rate Calculation block, which computes the
bit error rate of the system.

Another example of this usage is in “Delays”.

3 Blocks — Alphabetical List

3-378

Finding the Delay to Help Align Words
Another typical use of this block is to determine how to align the boundaries of frames
with the boundaries of codewords or other types of data blocks. “Delays” describes when
such alignment is necessary and also illustrates, in the “Aligning Words of a Block Code”
discussion, how to use the Find Delay block to solve the problem.

Setting the Correlation Window Length
The next example illustrates how to tell when the Correlation window length is not
sufficiently large. Load this model by typing doc_find_delay_example at the command
prompt.

The model uses a Delay block to delay a signal by 10 samples. The Find Delay block
compares the original signal with the delayed version. In this model, the Input
processing parameter of the Delay block is set to Columns as channels. The model
then displays the output of the Find Delay block in a scope. If the Correlation window
length is 15, the scope shows that the calculated delay is not constant over time, as you
can see in the following image.

 Find Delay

3-379

matlab:doc_find_delay_example

This result tells you to increase the Correlation window length. If you increase it to 50,
the calculated delay stabilizes at 10, as shown below.

3 Blocks — Alphabetical List

3-380

Parameters
Correlation window length

The number of samples the block uses to calculate the cross-correlations of the two
signals.

 Find Delay

3-381

Include "change signal" output port
If you select this option, then the block has an extra output port that emits an impulse
when the current computed delay differs from the previous computed delay.

Disable recurring updates
Selecting this option causes the block to stop computing the delay after it computes
the same delay value for a specified number of samples.

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must compute the same delay
before ceasing to update. This field appears only if Disable recurring updates is
selected.

Algorithm
The Find Delay block finds the delay by calculating the cross-correlations of the first
signal with time-shifted versions of the second signal, and then finding the index at which
the cross-correlation is maximized.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Error Rate Calculation

Functions
finddelay

Topics
“Use the Find Delay Block”

3 Blocks — Alphabetical List

3-382

Introduced in R2012a

 Find Delay

3-383

FM Broadcast Demodulator Baseband
Demodulate using broadcast FM method

Library
Modulation > Analog Baseband Modulation

Description
The FM Broadcast Demodulator Baseband block demodulates a complex baseband FM
signal by using the conjugate delay method, and filters the signal by using a de-emphasis
filter. To demodulate stereo audio using 38 kHz, enable stereo demodulation. To
demodulate RBDS signals from the 57 kHz band, enable RBDS demodulation.

Parameters
Sample rate (Hz)

Specify the input signal sample rate as a positive real scalar.
Frequency deviation (Hz)

Specify the frequency deviation of the modulator in Hz as a positive real scalar. The
system bandwidth is equal to twice the sum of the frequency deviation and the
message bandwidth. FM broadcast standards specify a value of 75 kHz in the United
States and 50 kHz in Europe.

3 Blocks — Alphabetical List

3-384

De-emphasis filter time constant (s)
Specify the de-emphasis lowpass filter time constant in seconds as a positive real
scalar. FM broadcast standards specify a value of 75 μs in the United States and 50 μs
in Europe.

Output audio sample rate (Hz)
Specify the output audio sample rate as a positive real scalar.

Play audio device
Select this check box to play sound from a default audio device.

Buffer size (samples)
Specify the buffer size the block uses to communicate with an audio device as a
positive integer scalar. This parameter is available only when the Play audio device
check box is selected.

Stereo audio
Select this check box to enable demodulation of a stereo audio signal. If not selected,
the audio signal is assumed to be monophonic.

RBDS demodulation
Select this check box to demodulate the RBDS signal from the input complex
baseband FM signal. By default, this check box is not selected.

Number of samples per RBDS symbol
Specify the number of samples of the RBDS output as a positive integer. The RBDS
sample rate is given by Number of samples per RBDS symbol × 1187.5 Hz.
According to the RBDS standard, the sample rate of each bit is 1187.5 Hz.

This parameter appears when you select the RBDS demodulation check box.

The default is 10.
RBDS Costas loop

Specify whether a Costas loop is used to recover the phase of the RBDS signal. Select
this check box for radio stations that do not lock the 57 kHz RBDS signal in phase
with the third harmonic of the 19 kHz pilot tone.

This parameter appears when you select the RBDS demodulation check box.

By default, this check box is not selected.
Simulate using

Select the type of simulation to run.

 FM Broadcast Demodulator Baseband

3-385

• Code generation. Simulate model using generate C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option
requires additional startup time but provides faster simulation speed than
Interpreted execution.

• Interpreted execution. Simulate model using the MATLAB interpreter. This
option shortens startup time but has slower simulation speed than Code
generation.

Algorithms
The FM Broadcast demodulator includes the functionality of the baseband FM
demodulator, de-emphasis filtering, and the ability to receive stereophonic signals. The
algorithms which govern basic FM modulation and demodulation are covered in
comm.FMDemodulator.

Filtering
FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To
compensate, FM broadcasters insert a pre-emphasis filter prior to FM modulation to
amplify the high-frequency content. The FM receiver has a reciprocal de-emphasis filter
after the FM demodulator to attenuate high-frequency noise and restore a flat signal
spectrum.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 50 μs in Europe and 75 μs in the
United States. Similarly, the transfer function for the lowpass de-emphasis filter is given
by

3 Blocks — Alphabetical List

3-386

Hd(f) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the following response.

Stereo and RDS/RBDS FM — Multiplex Signal
The FM broadcast demodulator supports stereophonic and monophonic operations. To
support stereo transmission, the left (L) and right (R) channel information (L+R) is
assigned to the mono portion of the spectrum (0 to 15 kHz). The (L-R) information is
amplitude modulated onto the 23 to 53 kHz region of the baseband spectrum using a 38
kHz subcarrier signal. A pilot tone at 19 kHz in the multiplexed signal enables the FM
receiver to coherently demodulate the stereo and RDS/RBDS signals.

Here is the spectrum of the multiplex baseband signal, m(t).

 FM Broadcast Demodulator Baseband

3-387

m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t)− R(t) cos(2π × 38kHz × t)
+ C2RBDS(t)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains
scale the amplitudes of the (L(t)±R(t)) signals, the 19 kHz pilot tone, and the RDS/RBDS
subcarrier, respectively.

The demodulator applies m(t) to three bandpass filters with center frequencies at 19, 38,
and 57 kHz, and to a lowpass filter with a 3-dB cutoff frequency of 15 kHz. The 19 kHz
bandpass filter extracts the pilot tone from the modulated signal. The recovered pilot tone
is doubled and tripled in frequency to produce the 38 kHz and 57 kHz signals, which
demodulate the (L – R) and RDS/RBDS signals, respectively. To generate a scaled version
of the left and right channels that produce the stereo sound, the (L + R) and (L – R)
signals are added and subtracted. The RDS/RBDS signal is recovered by mixing with the
57 kHz signal.

Here is the block diagram of the FM broadcast demodulator.

3 Blocks — Alphabetical List

3-388

Examples

Modulate and Demodulate an Audio Signal
Load an audio input file, modulate and demodulate using the FM broadcast blocks.
Compare the input signal spectrum with the demodulated signal spectrum.

Open the doc_fmbroadcast model.

 FM Broadcast Demodulator Baseband

3-389

matlab:doc_fmbroadcast

Run the model. The spectrum of the baseband FM signal is attenuated at the higher
frequencies relative to the original waveform.

3 Blocks — Alphabetical List

3-390

Experiment with the model by changing the Frequency deviation (Hz) and the Pre-
emphasis filter time constant (s) parameters on the modulator and demodulator and
observe the impact on the FM signal spectrum.

Limitations
The input length must be an integer multiple of the audio decimation factor. If the RBDS
demodulation check box is selected, the input length in addition must be an integer
multiple of the RBDS decimation factor.

 FM Broadcast Demodulator Baseband

3-391

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point

References
[1] Chakrabarti, I. H., and Hatai, I. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

[3] Der, Lawrence. “Frequency Modulation (FM) Tutorial”. FM Tutorial. Silicon
Laboratories Inc., pp. 4–8.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Broadcast Modulator Baseband

Objects
comm.FMBroadcastDemodulator | comm.FMDemodulator |
comm.RBDSWaveformGenerator

3 Blocks — Alphabetical List

3-392

https://www.silabs.com/Marcom%20Documents/Resources/FMTutorial.pdf

Introduced in R2015a

 FM Broadcast Demodulator Baseband

3-393

FM Broadcast Modulator Baseband
Modulate using broadcast FM method

Library
Modulation > Analog Baseband Modulation

Description
The FM Broadcast Modulator Baseband block pre-emphasizes an audio signal and
modulates it onto a baseband FM signal. If you select the Stereo audio check box, the
block modulates the stereo audio (L–R) at the 38 kHz band, in addition to the baseband (L
+R). If you select the RBDS modulation check box, the block also modulates a baseband
RBDS signal at 57 kHz. For more details, see “Algorithms” on page 3-395.

Parameters
Sample rate (Hz)

Specify the output signal sample rate as a positive real scalar.
Frequency deviation (Hz)

Specify the frequency deviation of the modulator in Hz as a positive real scalar. The
system bandwidth is equal to twice the sum of the frequency deviation and the
message bandwidth. FM broadcast standards specify a value of 75 kHz in the United
States and 50 kHz in Europe.

3 Blocks — Alphabetical List

3-394

Pre-emphasis filter time constant (s)
Specify the pre-emphasis highpass filter time constant as a positive real scalar. FM
broadcast standards specify a value of 75 μs in the United States and 50 μs in Europe.

Sample rate of audio input signal (Hz)
Specify the input audio sample rate as a positive real scalar.

Stereo audio
Select this check box if the input signal is a stereophonic audio signal.

RBDS modulation
Select this check box to modulate a baseband RBDS signal at 57 kHz. By default, this
check box is not selected.

Oversampling factor of RBDS input
Specify the number of samples per RBDS symbol as a positive integer. The RBDS
sample rate is given by Oversampling factor of RBDS input × 1187.5 Hz.
According to the RBDS standard, the sample rate of each bit is 1187.5 Hz.

This parameter appears when you select the RBDS modulation check box.

The default is 10.
Simulate using

Select the type of simulation to run.

• Code generation. Simulate model using generate C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option
requires additional startup time but provides faster simulation speed than
Interpreted execution.

• Interpreted execution. Simulate model using the MATLAB interpreter. This
option shortens startup time but has slower simulation speed than Code
generation.

Algorithms
The FM Broadcast modulator includes the functionality of the baseband FM modulator,
pre-emphasis filtering, and the ability to transmit stereophonic signals. The algorithms
which govern basic FM modulation and demodulation are covered in
comm.FMModulator.

 FM Broadcast Modulator Baseband

3-395

Filtering
FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To
compensate, FM broadcasters insert a pre-emphasis filter prior to FM modulation to
amplify the high-frequency content. The FM receiver has a reciprocal de-emphasis filter
after the FM demodulator to attenuate high-frequency noise and restore a flat signal
spectrum.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 50 μs in Europe and 75 μs in the
United States. Similarly, the transfer function for the lowpass de-emphasis filter is given
by

Hd(f) = 1
1 + j2πfτs

.

Irrespective of the audio sampling rate, the signal is converted to a 152 kHz output
sampling rate. For an audio sample rate of 44.1 kHz, the pre-emphasis filter has the
following response.

3 Blocks — Alphabetical List

3-396

Stereo and RDS/RBDS FM – Multiplex Signal
The FM broadcast modulator supports stereophonic and monophonic operations. To
support stereo transmission, the left (L) and right (R) channel information (L+R) is
assigned to the mono portion of the spectrum (0 to 15 kHz). The (L-R) information is
amplitude modulated onto the 23 to 53 kHz region of the baseband spectrum using a 38
kHz subcarrier signal. A pilot tone at 19 kHz in the multiplexed signal enables the FM
receiver to coherently demodulate the stereo and RDS/RBDS signals. Here is the
spectrum of the multiplex baseband signal.

 FM Broadcast Modulator Baseband

3-397

Here is the block diagram of the FM broadcast modulator, which is used to generate the
multiplex baseband signal. L(t) and R(t) denote the time-domain waveforms from the left
and right channels. RBDS(t) denotes the time-domain waveform of the RDS/RBDS signal.

3 Blocks — Alphabetical List

3-398

The multiplex message signal, m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t)− R(t) cos(2π × 38kHz × t)
+ C2RBDS(t)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains
scale the amplitudes of the (L(t)±R(t)) signals, the 19 kHz pilot tone, and the RDS/RBDS
subcarrier, respectively.

Limitations
• If you select the RBDS modulation check box, both the audio and RBDS inputs must

satisfy the following equation:

audioLength
audioSampleRate = RBDSLength

RBDSSampleRate
• The input length of the audio signal must be an integer multiple of the audio

decimation factor. The input length of the RBDS signal must be an integer multiple of
the RBDS decimation factor.

 FM Broadcast Modulator Baseband

3-399

Examples

Modulate and Demodulate an Audio Signal
Load an audio input file, modulate and demodulate using the FM broadcast blocks.
Compare the input signal spectrum with the demodulated signal spectrum.

Open the doc_fmbroadcast model.

Run the model. The spectrum of the baseband FM signal is attenuated at the higher
frequencies relative to the original waveform.

3 Blocks — Alphabetical List

3-400

matlab:doc_fmbroadcast

Experiment with the model by changing the Frequency deviation (Hz) and the Pre-
emphasis filter time constant (s) parameters on the modulator and demodulator and
observe the impact on the FM signal spectrum.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point

 FM Broadcast Modulator Baseband

3-401

Port Supported Data Types
Signal Output • Double-precision floating point

• Single-precision floating point

References
[1] Chakrabarti, I. H., and Hatai, I. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

[3] Der, Lawrence. “Frequency Modulation (FM) Tutorial”. FM Tutorial. Silicon
Laboratories Inc., pp. 4–8.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Broadcast Demodulator Baseband

Objects
comm.FMBroadcastModulator | comm.FMModulator |
comm.RBDSWaveformGenerator

Introduced in R2015a

3 Blocks — Alphabetical List

3-402

https://www.silabs.com/Marcom%20Documents/Resources/FMTutorial.pdf

FM Demodulator Baseband
Demodulate using FM method
Library: Communications Toolbox / Modulation / Analog

Baseband Modulation

Description
The FM Demodulator Baseband block demodulates a complex input signal and returns a
real output signal.

Ports

Input
In — Input data signal
scalar | vector | matrix

Input signal, specified as a real scalar, vector, or matrix.
Data Types: double | single

Output
Out — Output data signal
scalar | vector | matrix

Output signal, returned as a real scalar, vector, or matrix. The data at this port has the
same data type and size as the input signal.
Data Types: double | single

 FM Demodulator Baseband

3-403

Parameters
Frequency deviation (Hz) — Frequency deviation of demodulator
75e3 (default) | positive scalar

Frequency deviation of the demodulator, in Hz, specified as a positive scalar. The system
bandwidth is equal to twice the sum of the frequency deviation and the message
bandwidth.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Algorithms
Represent a frequency modulated passband signal, Y(t), as

3 Blocks — Alphabetical List

3-404

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where A is the carrier amplitude, fc is the carrier frequency, x(τ) is the baseband input
signal, and fΔ is the frequency deviation in Hz. The frequency deviation is the maximum
shift from fc in one direction, assuming |x(t)| ≤ 1.

A baseband FM signal can be derived from the passband representation by
downconverting it by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from ys(t) leaves the baseband signal representation, y(t),
which is expressed as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) is rewritten as

y(t) = A
2 e jϕ(t) ,

where ϕ(t) = 2πfΔ∫0 t
x(τ)dτ, which implies that the input signal is a scaled version of the

derivative of the phase, ϕ(t).

A baseband delay demodulator is used to recover the input signal from y(t).

z-1 ()*

X angle()
y(t) w(t) v(t)

A delayed and conjugated copy of the received signal is subtracted from the signal itself,

 FM Demodulator Baseband

3-405

w(t) = A2

4 e jϕ(t)e− jϕ(t − T) = A2

4 e j ϕ(t)− ϕ(t − T) ,

where T is the sample period. In discrete terms, wn=w(nT), and

wn = A2

4 e j ϕn− ϕn− 1 ,

vn = ϕn− ϕn− 1 .

The signal vn is the approximate derivative of ϕn, such that vn ≈ xn.

References
[1] Chakrabarti, I. H., and I, Hatai. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Modulator Baseband

Objects
comm.FMDemodulator

3 Blocks — Alphabetical List

3-406

Introduced in R2015a

 FM Demodulator Baseband

3-407

FM Modulator Baseband
Modulate using FM method
Library: Communications Toolbox / Modulation / Analog

Baseband Modulation

Description
The FM Modulator Baseband block applies frequency modulation to a real input signal
and returns a complex output signal.

Ports

Input
In — Input data signal
scalar | vector | matrix

Input signal, specified as a real scalar, vector, or matrix.
Data Types: double | single

Output
Out — Output data signal
scalar | vector | matrix

Output signal, returned as a real scalar, vector, or matrix. The data at this port has the
same data type and size as the input signal.
Data Types: double | single

3 Blocks — Alphabetical List

3-408

Parameters
Frequency deviation (Hz) — Frequency deviation of modulator
75e3 (default) | positive scalar

Frequency deviation of the modulator, in Hz, specified as a positive scalar. The system
bandwidth is equal to twice the sum of the frequency deviation and the message
bandwidth.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Algorithms
Represent a frequency modulated passband signal, Y(t), as

 FM Modulator Baseband

3-409

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where A is the carrier amplitude, fc is the carrier frequency, x(τ) is the baseband input
signal, and fΔ is the frequency deviation in Hz. The frequency deviation is the maximum
shift from fc in one direction, assuming |x(t)| ≤ 1.

A baseband FM signal can be derived from the passband representation by
downconverting it by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from ys(t) leaves the baseband signal representation, y(t),
which is expressed as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) is rewritten as

y(t) = A
2 e jϕ(t) ,

where ϕ(t) = 2πfΔ∫0 t
x(τ)dτ, which implies that the input signal is a scaled version of the

derivative of the phase, ϕ(t).

A baseband delay demodulator is used to recover the input signal from y(t).

z-1 ()*

X angle()
y(t) w(t) v(t)

A delayed and conjugated copy of the received signal is subtracted from the signal itself,

3 Blocks — Alphabetical List

3-410

w(t) = A2

4 e jϕ(t)e− jϕ(t − T) = A2

4 e j ϕ(t)− ϕ(t − T) ,

where T is the sample period. In discrete terms, wn=w(nT), and

wn = A2

4 e j ϕn− ϕn− 1 ,

vn = ϕn− ϕn− 1 .

The signal vn is the approximate derivative of ϕn, such that vn ≈ xn.

References
[1] Chakrabarti, I. H., and I, Hatai. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Demodulator Baseband

Objects
comm.FMModulator

 FM Modulator Baseband

3-411

Introduced in R2015a

3 Blocks — Alphabetical List

3-412

FM Demodulator Passband
Demodulate FM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The FM Demodulator Passband block demodulates a signal that was modulated using
frequency modulation. The input is a passband representation of the modulated signal.
Both the input and output signals are real scalar signals.

For best results, use a carrier frequency which is estimated to be larger than 10% of the
reciprocal of your input signal's sample rate. This is due to the implementation of the
Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second. We
then designate a Hilbert Transform filter of order 100. Below is the response of the
Hilbert Transform filter as returned by fvtool.

 FM Demodulator Passband

3-413

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency
larger than 10% (but less than 90%) of the reciprocal of your input signal's sample time
(8000 samples per second, in this example) or equivalently, a carrier frequency larger
than 400Hz, we ensure that the Hilbert Transform Filter will be operating in the flat
section of the filter's magnitude response (shown in blue), and that our modulated signal
will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

3 Blocks — Alphabetical List

3-414

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Frequency deviation (Hz)

The frequency deviation of the carrier frequency in Hertz. Sometimes it is referred to
as the "variation" in the frequency.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block
FM Modulator Passband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Modulator Passband

Introduced before R2006a

 FM Demodulator Passband

3-415

FM Modulator Passband
Modulate using frequency modulation

Library
Analog Passband Modulation, in Modulation

Description
The FM Modulator Passband block modulates using frequency modulation. The output is
a passband representation of the modulated signal. The output signal's frequency varies
with the input signal's amplitude. Both the input and output signals are real scalar
signals.

If the input is u(t) as a function of time t, then the output is

cos 2πfct + 2πKc∫0 t
u(τ)dτ + θ

where:

• fc represents the Carrier frequency parameter.
• θ represents the Initial phase parameter.
• Kc represents the Frequency deviation parameter.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal.

By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

3 Blocks — Alphabetical List

3-416

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Frequency deviation (Hz)

The frequency deviation of the carrier frequency in Hertz. Sometimes it is referred to
as the "variation" in the frequency.

Pair Block
FM Demodulator Passband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Demodulator Passband

Introduced before R2006a

 FM Modulator Passband

3-417

Free Space Path Loss
Reduce amplitude of input signal by amount specified

Library
RF Impairments

Description
The Free Space Path Loss block simulates the loss of signal power due to the distance
between transmitter and receiver. The block reduces the amplitude of the input signal by
an amount that is determined in either of two ways:

• By the Distance (km) and Carrier frequency (MHz) parameters, if you specify
Distance and Frequency in the Mode field

• By the Loss (dB) parameter, if you specify Decibels in the Mode field

This block accepts a column vector input signal. The input signal to this block must be a
complex signal.

Parameters
Mode

Method of specifying the amount by which the signal power is reduced. The choices
are Decibels and Distance and Frequency.

Loss
The signal loss in decibels. This parameter appears when you set Mode to Decibels.
The decibel amount shown on the mask is rounded for display purposes only.

3 Blocks — Alphabetical List

3-418

Distance
Distance between transmitter and receiver in kilometers. This parameter appears
when you set Mode to Distance and Frequency.

Carrier frequency (MHz)
The carrier frequency in megahertz. This parameter appears when you set Mode to
Distance and Frequency.

Examples
The model below illustrates the effect of the Free Space Path Loss block with the
following parameter settings:

• Mode is set to Distance and Frequency.
• Distance (km) is set to 0.5
• Carrier frequency (MHz) is set to 180

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Memoryless Nonlinearity

 Free Space Path Loss

3-419

Introduced before R2006a

3 Blocks — Alphabetical List

3-420

Gaussian Filter
(To be removed) Filter input signal using Gaussian FIR filter

Library
Comm Filters

Note The Gaussian Filter block will be removed in a future release. Use the
gaussdesign function and the Discrete FIR Filter block instead.

Description
The Gaussian Filter block filters the input signal using a Gaussian FIR filter. The block
expects the input signal to be upsampled as its input, so that the Input samples per
symbol parameter, N, is at least 2. The block's icon shows the filter's impulse response."

Characteristics of the Filter
The impulse response of the Gaussian filter is

h(t) =
exp −t2

2δ2

2π ⋅ δ

where

δ = ln(2)
2πBT

and B is the filter's 3-dB bandwidth. The BT product parameter is B times the input
signal's symbol period. For a given BT product, the Signal Processing Toolbox gaussfir

 Gaussian Filter

3-421

function generates a filter that is half the bandwidth of the filter generated by the
Communications Toolbox Gaussian Filter block.

The Group delay parameter is the number of symbol periods between the start of the
filter's response and the peak of the filter's response. The group delay and N determine
the length of the filter's impulse response, which is 2 * N * Group delay + 1.

The Filter coefficient normalization parameter indicates how the block scales the set
of filter coefficients:

• Sum of coefficients means that the sum of the coefficients equals 1.
• Filter energy means that the sum of the squares of the coefficients equals 1.
• Peak amplitude means that the maximum coefficient equals 1.

After the block normalizes the set of filter coefficients as above, it multiplies all
coefficients by the Linear amplitude filter gain parameter. As a result, the output is
scaled by N. If the output of this block feeds the input to the AWGN Channel block,
specify the AWGN signal power parameter to be 1/N.

Input and Output Signals
This block accepts scalar, column vector, and M-by-N matrix input signals. The block
filters an M-by-N input matrix as follows:

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats each column as a separate channel. In this mode, the block
creates N instances of the same filter, each with its own independent state buffer. Each
of the N filters process M input samples at every Simulink time step.

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats each element as a separate channel. In this mode,
the block creates M*N instances of the same filter, each with its own independent
state buffer. Each filter processes one input sample at every Simulink time step.

The output dimensions always equal those of the input signal. For information about the
data types each block port supports, see the table on this page.

Exporting Filter Coefficients to the MATLAB Workspace
To examine or manipulate the coefficients of the filter that this block designs, select
Export filter coefficients to workspace. Then set the Coefficient variable name

3 Blocks — Alphabetical List

3-422

parameter to the name of a variable that you want the block to create in the MATLAB
workspace. Running the simulation causes the block to create the variable, overwriting
any previous contents in case the variable already exists.

Parameters
Input samples per symbol

A positive integer representing the number of samples per symbol in the input signal.
BT product

The product of the filter's 3-dB bandwidth and the input signal's symbol period
Group delay

A positive integer that represents the number of symbol periods between the start of
the filter response and its peak.

Filter coefficient normalization
The block scales the set of filter coefficients so that this quantity equals 1. Choices
are Sum of coefficients, Filter energy, and Peak amplitude.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Linear amplitude filter gain
A positive scalar used to scale the filter coefficients after the block uses the
normalization specified in the Filter coefficient normalization parameter.

Export filter coefficients to workspace
If you check this box, then the block creates a variable in the MATLAB workspace that
contains the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace. This field appears only
if Export filter coefficients to workspace is selected.

 Gaussian Filter

3-423

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool, fvtool,
to analyze the Gaussian filter whenever you apply any changes to the block's
parameters. If you launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a new fvtool in order
to see the new filter characteristics. Also note that if you have launched fvtool, then
it will remain open even after the model is closed.

Rounding mode
Select the rounding mode for fixed-point operations. The filter coefficients do not obey
this parameter; they always round to Nearest. The block uses the Rounding
selection if a number cannot be represented exactly by the specified data type and

3 Blocks — Alphabetical List

3-424

scaling, it is rounded to a representable number. For more information, see Rounding
Modes (DSP System Toolbox) or “Rounding Mode: Simplest” (Fixed-Point Designer).

Overflow mode
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
The block implementation uses a Direct-Form FIR filter. The Coefficients parameter
controls which data type represents the coefficients when the input data is a fixed-
point signal.

Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” (DSP
System Toolbox) for illustrations depicting the use of the coefficient data types in this
block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length of
the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to enter
separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Multiplication Data Types” (DSP System Toolbox) and

 Gaussian Filter

3-425

“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

3 Blocks — Alphabetical List

3-426

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

References
[1] 3GPP TS 05.04 V8.4.0 — 3rd Generation Partnership Project; Technical Specification

Group GSM/EDGE Radio Access Network; Digital cellular telecommunications
system (Phase 2+); Modulation (Release 1999)

See Also
Functions
gaussdesign

Blocks
Discrete FIR Filter | FIR Decimation | FIR Interpolation

Introduced before R2006a

 Gaussian Filter

3-427

Gaussian Noise Generator
(To be removed) Generate Gaussian distributed noise with given mean and variance
values

Note Gaussian Noise Generator will be removed in a future release. Use the MATLAB
Function block and randn function instead.

Library
Noise Generators sublibrary of Comm Sources

Description
The Gaussian Noise Generator block generates discrete-time white Gaussian noise. You
must specify the Initial seed vector in the simulation.

The Mean Value and the Variance can be either scalars or vectors. If either of these is a
scalar, then the block applies the same value to each element of a sample-based output or
each column of a frame-based output. Individual elements or columns, respectively, are
uncorrelated with each other.

When the Variance is a vector, its length must be the same as that of the Initial seed
vector. In this case, the covariance matrix is a diagonal matrix whose diagonal elements
come from the Variance vector. Since the off-diagonal elements are zero, the output
Gaussian random variables are uncorrelated.

When the Variance is a square matrix, it represents the covariance matrix. Its off-
diagonal elements are the correlations between pairs of output Gaussian random
variables. In this case, the Variance matrix must be positive definite, and it must be N-by-
N, where N is the length of the Initial seed.

The probability density function of n-dimensional Gaussian noise is

f (x) = (2π)ndetK −1/2exp −(x− μ)TK−1(x− μ)/2

3 Blocks — Alphabetical List

3-428

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean value vector,
and the superscript T indicates matrix transpose.

Initial Seed
The Initial seed parameter initializes the random number generator that the Gaussian
Noise Generator block uses to add noise to the input signal. When multiple blocks in a
model have the Initial seed parameter, you can choose different initial seeds for each
block to ensure different random streams are used in each block. Set Initial seed to an
integer value for repeatable results or use the randi function to randomize your results.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column vector, or a
sample-based one-dimensional array. These attributes are controlled by the Frame-based
outputs, Samples per frame, and Interpret vector parameters as 1-D parameters.
For additional information, see “Sources and Sinks”.

If the Initial seed parameter is a vector, then its length becomes the number of columns
in a frame-based output or the number of elements in a sample-based vector output. In
this case, the shape (row or column) of the Initial seed parameter becomes the shape of
a sample-based two-dimensional output signal. If the Initial seed parameter is a scalar
but either the Mean value or Variance parameter is a vector, then the vector length
determines the output attributes mentioned above.

Parameters
Mean value

The mean value of the random variable output.
Variance

The covariance among the output random variables.
Initial seed

The initial seed value for the random number generator.
Sample time

The period of each sample-based vector or each row of a frame-based matrix.

 Gaussian Noise Generator

3-429

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs is
unchecked.

Output data type
The output can be set to double or single data types.

See Also
Blocks
AWGN Channel | MATLAB Function | Random Source

Functions
isprime | randi | randn | rng

Introduced before R2006a

3 Blocks — Alphabetical List

3-430

General Block Deinterleaver
Restore ordering of symbols in input vector

Library
Block sublibrary of Interleaving

Description
The General Block Deinterleaver block rearranges the elements of its input vector
without repeating or omitting any elements. If the input contains N elements, then the
Permutation vector parameter is a column vector of length N. The column vector
indicates the indices, in order, of the output elements that came from the input vector.
That is, for each integer k between 1 and N,

Output(Permutation vector(k)) = Input(k)

The Permutation vector parameter must contain unique integers between 1 and N.

Both the input and the Permutation vector parameter must be column vector signals.

This block can output sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” (Simulink).

This block accept the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

To use this block as an inverse of the General Block Interleaver block, use the same
Permutation vector parameter in both blocks. In that case, the two blocks are inverses

 General Block Deinterleaver

3-431

in the sense that applying the General Block Interleaver block followed by the General
Block Deinterleaver block leaves data unchanged.

Parameters
Permutation vector source

A selection that specifies the source of the permutation vector. The source can be
either Dialog or Input port. The default value is Dialog.

Permutation vector
A vector of length N that lists the indices of the output elements that came from the
input vector. This parameter is available only when Permutation vector source is
set to Dialog.

Examples
This example reverses the operation in the example on the General Block Interleaver
block reference page. If you set Permutation vector to [4,1,3,2]' and you set the
General Block Deinterleaver block input to [1;40;59;32], then the output of the
General Block Deinterleaver block is [40;32;59;1].

Pair Block
General Block Interleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-432

See Also
Blocks
General Block Interleaver

Functions
perms

Introduced before R2006a

 General Block Deinterleaver

3-433

General Block Interleaver
Reorder symbols in input vector

Library
Block sublibrary of Interleaving

Description
The General Block Interleaver block rearranges the elements of its input vector without
repeating or omitting any elements. If the input contains N elements, then the
Permutation vector parameter is a column vector of length N. The column vector
indicates the indices, in order, of the input elements that form the length-N output vector;
that is,

Output(k) = Input(Permutation vector(k))

for each integer k between 1 and N. The contents of Permutation vector must be
integers between 1 and N, and must have no repetitions.

Both the input and the Permutation vector parameter must be column vector signals.

This block can output sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” (Simulink).

This block accept the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

3 Blocks — Alphabetical List

3-434

Parameters
Permutation vector source

A selection that specifies the source of the permutation vector. The source can be
either Dialog or Input port. The default value is Dialog.

Permutation vector
A vector of length N that lists the indices of the output elements that came from the
input vector. This parameter is available only when Permutation vector source is
set to Dialog.

Examples
If Permutation vector is [4;1;3;2] and the input vector is [40;32;59;1], then the
output vector is [1;40;59;32]. Notice that all of these vectors have the same length and
that the vector Permutation vector is a permutation of the vector [1:4]'.

Pair Block
General Block Deinterleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Deinterleaver

Functions
perms

 General Block Interleaver

3-435

Introduced before R2006a

3 Blocks — Alphabetical List

3-436

General CRC Generator
Generate CRC code bits according to generator polynomial and append to input data
frames
Library: Communications Toolbox / Error Detection and

Correction / CRC

Description
The General CRC Generator block generates cyclic redundancy check (CRC) code bits for
each input data frame and appends them to the frame. For more information, see “CRC
Generator Operation” on page 3-441.

Ports

Input
In — Input signal
binary column vector

Input signal, specified as a binary column vector. The length of the input frame must be a
multiple of the value of the Checksums per frame parameter.
Data Types: double | Boolean

Output
Out — Output codeword frame
binary column vector

Output codeword frame, returned as a binary column vector that inherits the data type of
the input signal. The output contains the input data frames with the CRC bit sequences
appended to them.

 General CRC Generator

3-437

The length of the output frame is m + k * r, where m is the size of the input frame, k is
the number of checksums per frame, and r is the degree of the generator polynomial.

Parameters
Generator polynomial — Generator polynomial
'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector |
integer row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in

order of descending power. The length of this vector is (N+1), where N is the degree
of the generator polynomial. For example, [1 1 0 1] represents the polynomial x3+
z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the
polynomial in descending order. For example, [3 2 0] represents the polynomial z3 +
z2 + 1.

For more information, see “Character Representation of Polynomials”.

Some commonly used generator polynomials include:

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 +
z^8 + z^7 + z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same
polynomial, p(z) = z 7 + z 2 + 1.

3 Blocks — Alphabetical List

3-438

Initial states — Initial states of internal shift register
0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row
vector with a length equal to the degree of the generator polynomial. A scalar value is
expanded to a row vector of equal length to the degree of the generator polynomial.

Direct method — Use direct algorithm for CRC checksum calculations
off (default) | on

Select to use the direct algorithm for CRC checksum calculations. When cleared, the
block uses the non-direct algorithm for CRC checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and
Correction”.

Reflect input bytes — Reflect input bytes
off (default) | on

Select to flip the input data on a bytewise basis before entering the data into the shift
register. When Reflect input bytes is selected, the input frame length divided by the
value of the Checksums per frame parameter must be an integer and a multiple of 8.
When Reflect input bytes is cleared, the block does not flip the input data.

Reflect checksums before final XOR — Reflect checksums before final XOR
off (default) | on

Select to flip the CRC checksums around their centers after the input data are completely
through the shift register. When Reflect checksums before final XOR is cleared, the
block does not flip the CRC checksums.

Final XOR — Final XOR
0 (default) | 1 | binary row vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the
degree of the generator polynomial. The XOR operation runs using the value of the Final
XOR parameter the CRC checksum before appending the CRC to the input data. A scalar
value is expanded to a row vector of equal length to the degree of the generator
polynomial. A setting of 0 is equivalent to no XOR operation.

Checksums per frame — Number of checksums calculated for each frame
1 (default) | positive integer

 General CRC Generator

3-439

Number of checksums calculated for each frame, specified as a positive integer.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Cyclic Redundancy Check Coding
Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting
errors that occur when a data frame is transmitted. Unlike block or convolutional codes,
CRC codes do not have a built-in error-correction capability. Instead, when a
communications system detects an error in a received codeword, the receiver requests
the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits,
called the checksum or syndrome, and then appends the checksum to the data frame.
After receiving a transmitted codeword, the receiver applies the same rule to the received
codeword. If the resulting checksum is nonzero, an error has occurred and the
transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is
divided into subframes, the rule is applied to each data subframe, and individual
checksums are appended to each subframe. The subframe codewords are concatenated to
output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

3 Blocks — Alphabetical List

3-440

CRC Generator Operation
The CRC generator appends CRC checksums to the input frame according to the specified
generator polynomial and number of checksums per frame.

For a specific initial state of the internal shift register and k checksums per input frame:

1 The input signal is divided into k subframes of equal size.
2 Each of the k subframes are prefixed with the initial states vector.
3 The CRC algorithm is applied to each subframe.
4 The resulting checksums are appended to the end of each subframe.
5 The subframes are concatenated and output as a column vector.

For the scenario shown here, a 10-bit frame is input, a third degree generator polynomial
computes the CRC checksum, the initial state is 0, and the number of checksums per
frame is 2.

The input frame is divided into two subframes of size 5 and checksums of size 3 are
computed and appended to each subframe. The initial states are not shown, because an

 General CRC Generator

3-441

initial state of [0] does not affect the output of the CRC algorithm. The output
transmitted codeword frame has the size 5 + 3 + 5 + 3 = 16.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood

Cliffs, N.J.: Prentice-Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.
Upper Saddle River, N.J.: Prentice Hall, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.CRCGenerator

Blocks
General CRC Generator HDL Optimized | General CRC Syndrome Detector

Topics
“Cyclic Redundancy Check Codes”

Introduced before R2006a

3 Blocks — Alphabetical List

3-442

General CRC Generator HDL Optimized
Generate CRC code bits and append to input data, optimized for HDL code generation

Library
Communications Toolbox > Error Correction and Detection > CRC (commcrc2)

Communications Toolbox HDL Support > Error Correction and Detection > CRC
(commhdlcrc)

Description
This hardware-friendly CRC generator block, like the General CRC Generator block,
generates a cyclic redundancy check (CRC) checksum and appends it to the input
message. With the General CRC Generator HDL Optimized block, the processing is
optimized for HDL code generation. Instead of processing an entire frame at once, the
block accepts and returns a data sample stream with accompanying control signals. The
control signals indicate the validity of the samples and the boundaries of the frame. To
achieve higher throughput, the block accepts vector data up to the CRC length, and
implements a parallel architecture.

 General CRC Generator HDL Optimized

3-443

Signal Attributes
Port Direction Description Data Type
dataIn Input Message data. Data can be a vector of

binary values, or a scalar integer
representing several bits. For example,
vector input [0 0 0 1 0 0 1 1] is equivalent
to uint8 input 19. The data width must be
less than or equal to the CRC length, and
the CRC length must be divisible by the
data width. For example, for CRC-CCITT/
CRC-16, the valid data widths are 16, 8, 4,
2, and 1.

Vector:
double or
Boolean

Scalar:
unsigned
integer
(uint8/16/32)
or
fixdt(0,N,0)

startIn Input Indicates the start of a frame of data. Boolean
endIn Input Indicates the end of a frame of data. Boolean
validIn Input Indicates that input data is valid. Boolean
dataOut Output Message data with the checksum

appended. The output data has the same
vector size as the input data.

Same as
dataIn

startOut Output Indicates the start of a frame of data. Boolean
endOut Output Indicates the end of a frame of data,

including checksum.
Boolean

validOut Output Indicates that output data is valid. Boolean

Parameters
Polynomial

A double or Boolean vector specifying the polynomial, in descending order of powers.
CRC length is length(polynomial) – 1. The default value is [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1].

Initial state
A double or Boolean scalar or vector of length equal to the CRC length, specifying the
initial state of the internal shift register. The default value is 0.

3 Blocks — Alphabetical List

3-444

Direct method

• When this parameter is selected, the block uses the direct algorithm for CRC
checksum calculations.

• When this parameter is not selected, the block uses the nondirect algorithm for
CRC checksum calculations.

The parameter is cleared by default.

To learn about the direct and non-direct algorithms, see “Cyclic Redundancy Check
Codes”.

Reflect input
The input data width must be a multiple of 8.

• When this parameter is selected, each input byte is flipped before entering the
shift register.

• When this parameter is not selected, the message data is passed to the shift
register unchanged.

The parameter is cleared by default.
Reflect CRC checksum

The CRC length must be a multiple of 8.

• When this parameter is selected, each checksum byte is flipped before it is passed
to the final XOR stage.

• When this parameter is not selected, the checksum byte is passed to the final XOR
stage unchanged.

The parameter is cleared by default.
Final XOR value

The value that the CRC checksum is XORed with before it is appended to the input
data. This parameter can be a double or Boolean scalar or vector of length equal to
the CRC length. The default value is 0.

Algorithm
When you use vector or integer input, the block implements a parallel CRC algorithm [1].

 General CRC Generator HDL Optimized

3-445

To provide high throughput for modern communications systems, the CRC algorithm is
implemented with a parallel architecture. This architecture recursively calculates M bits
of CRC checksum for each W input bits. At the end of the frame, the final checksum result
is appended to the message. For a polynomial length of M, the recursive checksum
calculation for W bits in parallel is:

X′ = FW(×)X(+)D

FW is an M-by-M matrix that selects elements of the current state for the polynomial
calculation with the new input bits. D is an M-sample vector that provides the new input
bits, ordered in relation to the polynomial and padded with zeroes. (×) is implemented
with logical AND, and (+) is implemented with logical XOR.

3 Blocks — Alphabetical List

3-446

Timing Diagram
This waveform shows streaming data and the accompanying control signals for a CRC16
with 8-bit binary vector input. There must be enough space between the input frames to
insert the checksum word.

This waveform diagram shows continuous input data. Non-continuous data is also
supported. The output valid signal matches the input valid pattern.

Initial Delay
The General CRC Generator HDL Optimized block introduces a latency on the output.
This latency can be computed with the following equation, assuming the input data is
continuous:

initialdelay = (CRC length/input data width) + 2

References
[1] Campobello, Giuseppe, Giuseppe Patane, and Marco Russo. "Parallel CRC Realization."

IEEE Transactions on Computers. Vol. 52, No. 10, October 2003, pp. 1312–1319.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 General CRC Generator HDL Optimized

3-447

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
Blocks
General CRC Generator | General CRC Syndrome Detector HDL Optimized

Objects
comm.HDLCRCGenerator

Introduced in R2012a

3 Blocks — Alphabetical List

3-448

General CRC Syndrome Detector
Detect errors in received codeword frames according to generator polynomial
Library: Communications Toolbox / Error Detection and

Correction / CRC

Description
The General CRC Syndrome Detector block computes cyclic redundancy check (CRC)
checksums for received codeword frames. For successful CRC detection in a
communications system link, you must align the parameter settings of the General CRC
Syndrome Detector block with the paired General CRC Generator block.

For more information, see “CRC Syndrome Detector Operation” on page 3-453.

Ports

Input
In — Received codeword
binary column vector

Received codeword, specified as a binary column vector.
Data Types: double | Boolean

Output
Out — Output frame
binary column vector

Output frame, returned as a binary column vector that inherits the data type of the input
signal. The output frame contains the received codeword with the checksums removed.

 General CRC Syndrome Detector

3-449

The length of the output frame is n - k * r bits, where n is the size of the received
codeword, k is the number of checksums per frame, and r is the degree of the generator
polynomial.

Err — Checksum error signal
binary column vector

Checksum error signal, returned as a binary column vector that inherits the data type of
the input signal. The length of Err equals the value of Checksums per frame. For each
checksum computation, an element value of 0 in Err indicates no checksum error, and an
element value of 1 in Err indicates a checksum error.

Parameters
Generator polynomial — Generator polynomial
'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector |
integer row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in

order of descending power. The length of this vector is (N+1), where N is the degree
of the generator polynomial. For example, [1 1 0 1] represents the polynomial x3+
z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the
polynomial in descending order. For example, [3 2 0] represents the polynomial z3 +
z2 + 1.

For more information, see “Character Representation of Polynomials”.

Some commonly used generator polynomials include:

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 +
z^8 + z^7 + z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'

3 Blocks — Alphabetical List

3-450

CRC
method

Generator polynomial

CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same
polynomial, p(z) = z 7 + z 2 + 1.

Initial states — Initial states of internal shift register
0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row
vector with a length equal to the degree of the generator polynomial. A scalar value is
expanded to a row vector of equal length to the degree of the generator polynomial.

Direct method — Use direct algorithm for CRC checksum calculations
off (default) | on

Select to use the direct algorithm for CRC checksum calculations. When cleared, the
block uses the non-direct algorithm for CRC checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and
Correction”.

Reflect input bytes — Reflect input bytes
off (default) | on

Select to flip the received codeword on a bytewise basis before entering the data into the
shift register. When Reflect input bytes is selected, the received codeword length
divided by the value of the Checksums per frame parameter must be an integer and a
multiple of 8. When Reflect input bytes is cleared, the block does not flip the input data.

Reflect checksums before final XOR — Reflect checksums before final XOR
off (default) | on

Select Reflect checksums before final XOR to flip the CRC checksums around their
centers after the input data are completely through the shift register. When Reflect
checksums before final XOR is cleared, the block does not flip the CRC checksums.

 General CRC Syndrome Detector

3-451

Final XOR — Final XOR
0 (default) | 1 | binary row vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the
degree of the generator polynomial. The XOR operation runs using the value of the Final
XOR parameter and the CRC checksum before comparing with the input checksum. A
scalar value is expanded to a row vector of equal length to the degree of the generator
polynomial. A setting of 0 is equivalent to no XOR operation.

Checksums per frame — Number of checksums calculated for each frame
1 (default) | positive integer

Number of checksums calculated for each frame, specified as a positive integer.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Cyclic Redundancy Check Coding
Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting
errors that occur when a data frame is transmitted. Unlike block or convolutional codes,
CRC codes do not have a built-in error-correction capability. Instead, when a
communications system detects an error in a received codeword, the receiver requests
the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits,
called the checksum or syndrome, and then appends the checksum to the data frame.
After receiving a transmitted codeword, the receiver applies the same rule to the received

3 Blocks — Alphabetical List

3-452

codeword. If the resulting checksum is nonzero, an error has occurred and the
transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is
divided into subframes, the rule is applied to each data subframe, and individual
checksums are appended to each subframe. The subframe codewords are concatenated to
output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

CRC Syndrome Detector Operation
The CRC syndrome detector outputs the received message frame and a checksum error
vector according to the specified generator polynomial and number of checksums per
frame.

The checksum bits are removed from each subframe, so that the resulting the output
frame length is n - k × r, where n is the size of the received codeword, k is the number of
checksums per frame, and r is the degree of the generator polynomial. The input frame
must be evenly divisible by k.

For a specific initial state of the internal shift register:

1 The received codeword is divided into k equal sized subframes.
2 The CRC is removed from each of the k subframes and compared to the checksum

calculated on the received codeword subframes.
3 The output frame is assembled by concatenating the subframe bits of the k subframes

and then output as a column vector.
4 The checksum error is output as a binary column vector of length k. An element value

of 0 indicates an error-free received subframe, and an element value of 1 indicates an
error occurred in the received subframe.

For the scenario shown here, a 16-bit codeword is received, a third degree generator
polynomial computes the CRC checksum, the initial state is 0, and the number of
checksums per frame is 2.

 General CRC Syndrome Detector

3-453

Since the number of checksums per frame is 2 and the generator polynomial degree is 3,
the received codeword is split in half and two checksums of size 3 are computed, one for
each half of the received codeword. The initial states are not shown, because an initial
state of [0] does not affect the output of the CRC algorithm. The output frame contains
the concatenation of the two halves of the received codeword as a single vector of size 10.
The checksum error signal output contains a 2-by-1 binary frame vector whose entries
depend on whether the computed checksums are zero. As shown in the figure, the first
checksum is nonzero and the second checksum is zero, indicating an error occurred in
reception of the first half of the codeword.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood

Cliffs, N.J.: Prentice-Hall, 1988.

3 Blocks — Alphabetical List

3-454

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.
Upper Saddle River, N.J.: Prentice Hall, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.CRCDetector

Blocks
General CRC Generator | General CRC Syndrome Detector HDL Optimized

Topics
“Cyclic Redundancy Check Codes”

Introduced before R2006a

 General CRC Syndrome Detector

3-455

General CRC Syndrome Detector HDL
Optimized
Detect errors in input data using CRC, optimized for HDL code generation

Library
Communications Toolbox > Error Correction and Detection > CRC (commcrc2)

Communications Toolbox HDL Support > Error Correction and Detection > CRC
(commhdlcrc)

Description
This hardware-friendly CRC detector block performs a cyclic redundancy check (CRC) on
data and compares the resulting checksum with the appended checksum. If the two
checksums do not match, the block reports an error. Instead of processing an entire
frame at once, the block accepts and returns a data sample stream with accompanying
control signals. The control signals indicate the validity of the samples and the boundaries
of the frame. To achieve higher throughput, the block accepts vector data up to the CRC
length, and implements a parallel architecture.

3 Blocks — Alphabetical List

3-456

Signal Attributes
Port Direction Description Data Type
dataIn Input Message data plus checksum. Data can be

a vector of binary values, or a scalar
integer representing several bits. For
example, vector input [0 0 0 1 0 0 1 1] is
equivalent to uint8 input 19. The data
width must be less than or equal to the
CRC length, and the CRC length must be
divisible by the data width. For example,
for CRC-CCITT/CRC-16, the valid data
widths are 16, 8, 4, 2, and 1.

Vector:
double or
Boolean

Scalar:
unsigned
integer
(uint8/16/32)
or
fixdt(0,N,0)

startIn Input Indicates the start of a frame of data,
including checksum.

Boolean

endIn Input Indicates the end of a frame of data. Boolean
validIn Input Indicates that input data is valid. Boolean
dataOut Output Message data. The output data has the

same width as the input data.
Same as
dataIn

startOut Output Indicates the start of a frame of data. Boolean
endOut Output Indicates the end of a frame of data. Boolean
validOut Output Indicates that output data is valid. Boolean
err Output Indicates the corruption of the received

data, when err is high(1).
Boolean

Parameters
Polynomial

A double or Boolean vector specifying the polynomial, in descending order of powers.
The CRC length is length(polynomial) – 1. The default value is [1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1].

Initial state
A double or Boolean scalar or vector of length equal to the CRC length, specifying the
initial state of the internal shift register. The default value is 0.

 General CRC Syndrome Detector HDL Optimized

3-457

Direct method

• When this parameter is selected, the block uses the direct algorithm for CRC
checksum calculations.

• When this parameter is not selected, the block uses the nondirect algorithm for
CRC checksum calculations.

The parameter is cleared by default.

To learn about the direct and non-direct algorithms, see “Cyclic Redundancy Check
Codes”.

Reflect input
The input data width must be a multiple of 8.

• When this parameter is selected, each input byte is flipped before entering the
shift register.

• When this parameter is not selected, the message data is passed to the shift
register unchanged.

The parameter is cleared by default.
Reflect CRC checksum

The CRC length must be a multiple of 8.

• When this parameter is selected, each checksum byte is flipped before it is passed
to the final XOR stage.

• When this parameter is not selected, the checksum byte is passed to the final XOR
stage unchanged.

The parameter is cleared by default.
Final XOR value

The value that the CRC checksum is XORed with before it is appended to the input
data. This parameter can be a double or Boolean scalar or vector of length equal to
the CRC length. The default value is 0.

Algorithm
When you use vector or integer input, the block implements a parallel CRC algorithm [1].

3 Blocks — Alphabetical List

3-458

To provide high throughput for modern communications systems, the CRC algorithm is
implemented with a parallel architecture. This architecture recursively calculates M bits
of CRC checksum for each W input bits. At the end of the frame, the final checksum result
is appended to the message. For a polynomial length of M, the recursive checksum
calculation for W bits in parallel is:

X′ = FW(×)X(+)D

FW is an M-by-M matrix that selects elements of the current state for the polynomial
calculation with the new input bits. D is an M-sample vector that provides the new input
bits, ordered in relation to the polynomial and padded with zeroes. (×) is implemented
with logical AND, and (+) is implemented with logical XOR.

 General CRC Syndrome Detector HDL Optimized

3-459

Timing Diagram
This waveform shows streaming data and the accompanying control signals for a CRC16
with 8-bit binary vector input. The input frames are contiguous, and the output frames
show space between them because the detector block removes the checksum word.

This waveform diagram shows continuous input data. Non-continuous data is also
supported.

Initial Delay
The General CRC Syndrome Detector HDL Optimized block introduces a latency on the
output. This latency can be computed with the following equation, assuming the input
data is continuous:

initialdelay = 3 * (CRC length/input data width) + 2

References
[1] Campobello, Giuseppe, Giuseppe Patane, and Marco Russo. "Parallel CRC Realization."

IEEE Transactions on Computers. Vol. 52, No. 10, October 2003, pp. 1312–1319.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-460

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
Blocks
General CRC Generator HDL Optimized | General CRC Syndrome Detector

Objects
comm.HDLCRCDetector

Introduced in R2012b

 General CRC Syndrome Detector HDL Optimized

3-461

General Multiplexed Deinterleaver
Restore ordering of symbols using specified-delay shift registers

Library
Convolutional sublibrary of Interleaving

Description
The General Multiplexed Deinterleaver block restores the original ordering of a sequence
that was interleaved using the General Multiplexed Interleaver block.

In typical usage, the parameters in the two blocks have the same values. As a result, the
Interleaver delay parameter, V, specifies the delays for each shift register in the
corresponding interleaver, so that the delays of the deinterleaver's shift registers are
actually max(V)-V.

This block accepts a scalar or column vector input signal, which can be real or complex.
The output signal has the same sample time as the input signal.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of the output will be the same
as that of the input signal.

Parameters
Interleaver delay (samples)

A vector that lists the number of symbols that fit in each shift register of the
corresponding interleaver. The length of this vector is the number of shift registers.

3 Blocks — Alphabetical List

3-462

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block
General Multiplexed Interleaver

References
[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic

Publishers, 1999.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

The implementation for the General Multiplexed Deinterleaver block is shift register
based. If you want to suppress generation of reset logic, set the implementation
parameter ResetType tonone.

When you set ResetType to none, reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench

 General Multiplexed Deinterleaver

3-463

errors, determine the number of samples required to fill the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

ResetType Suppress reset logic generation. The default is default, which
generates reset logic. See also “ResetType” (HDL Coder).

See Also
Blocks
Convolutional Deinterleaver | General Multiplexed Interleaver | Helical Deinterleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-464

General Multiplexed Interleaver
Permute input symbols using set of shift registers with specified delays

Library
Convolutional sublibrary of Interleaving

Description
The General Multiplexed Interleaver block permutes the symbols in the input signal.
Internally, it uses a set of shift registers, each with its own delay value.

This block accepts a scalar or column vector input signal, which can be real or complex.
The input and output signals have the same sample time.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The output signal has the same data type as
the input signal.

Parameters
Interleaver delay (samples)

A column vector listing the number of symbols that fit into each shift register. The
length of this vector is the number of shift registers. (In sample-based mode, it can
also be a row vector.)

Initial conditions
The values that fill each shift register at the beginning of the simulation.

If Initial conditions is a scalar, then its value fills all shift registers. If Initial
conditions is a column vector, then each entry fills the corresponding shift register.

 General Multiplexed Interleaver

3-465

(In sample-based mode, Initial conditions can also be a row vector.) If a given shift
register has zero delay, then the value of the corresponding entry in the Initial
conditions vector is unimportant.

Pair Block
General Multiplexed Deinterleaver

References
[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic

Publishers, 1999.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

The implementation for the General Multiplexed Interleaver block is shift register based.
If you want to suppress generation of reset logic, set the implementation parameter
ResetType to'none'.

When you set ResetType to'none', reset is not applied to the shift registers.
Mismatches between Simulink and the generated code occur for some number of samples
during the initial phase, when registers are not fully loaded. To avoid spurious test bench

3 Blocks — Alphabetical List

3-466

errors, determine the number of samples required to fill the shift registers. Then, set the
Ignore output data checking (number of samples) option accordingly. (You can use
the IgnoreDataChecking property for this purpose, if you are using the command-line
interface.)

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

ResetType Suppress reset logic generation. The default is default, which
generates reset logic. See also “ResetType” (HDL Coder).

See Also
Blocks
Convolutional Interleaver | General Multiplexed Deinterleaver | Helical Interleaver

Introduced before R2006a

 General Multiplexed Interleaver

3-467

General QAM Demodulator Baseband
Demodulate QAM-modulated data

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The General QAM Demodulator Baseband block demodulates a signal that was modulated
using quadrature amplitude modulation. The input is a baseband representation of the
modulated signal.

The input must be a discrete-time complex signal. The Signal constellation parameter
defines the constellation by listing its points in a length-M vector of complex numbers.
The block maps the mth point in the Signal constellation vector to the integer m-1.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see the “Supported Data Types” on page 3-477 table on
this page.

Parameters
Signal constellation

A real or complex vector that lists the constellation points.
Output type

Determines whether the block produces integers or binary representations of
integers.

If you set this parameter to Integer, the block produces integers.

3 Blocks — Alphabetical List

3-468

If you set this parameter to Bit, the block produces a group of K bits, called a binary
word, for each symbol, when Decision type is set to Hard decision. If Decision
type is set to Log-likelihood ratio or Approximate log-likelihood ratio,
the block outputs bitwise LLR and approximate LLR, respectively.

Decision type
This field appears when Bit is selected in the pull-down list Output type.

Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
See “Exact LLR Algorithm” and “Approximate LLR Algorithm” in the Communications
Toolbox User's Guide for algorithm details.

Noise variance source
This field appears when you set Approximate log-likelihood ratio or Log-
likelihood ratio for Decision type.

When you set this parameter to Dialog, you can then specify the noise variance in
the Noise variance field. When you set this option to Port, a port appears on the
block through which the noise variance can be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

 General QAM Demodulator Baseband

3-469

Fixed-Point Signal Flow Diagrams

Fixed-Point Signal Flow Diagram for Hard Decision Mode

Note In the figure above, M represents the size of the Signal constellation .

The general QAM Demodulator Baseband block supports fixed-point operations for
computing Hard Decision (Output type set to Bit and Decision type is set to Hard
decision) and Approximate LLR (Output type is set to Bit and Decision type is set to
Approximate Log-Likelihood ratio) output values. The input values must have
fixed-point data type for fixed-point operations.

Note Fixed-Point operations are NOT yet supported for Exact LLR output values.

3 Blocks — Alphabetical List

3-470

Fixed-Point Signal Flow Diagram for Approximate LLR Mode

Note In the figure above, M represents the size of the Signal constellation.

 General QAM Demodulator Baseband

3-471

Fixed-Point Signal Flow Diagram for Approximate LLR Mode: Noise Variance
Operation Modes

Note If Noise variance is set to Dialog, the block performs the operations shown
inside the dotted line once during initialization. The block also performs these operations
if the Noise variance value changes during simulation.

Data Types Attributes
Output

The block supports the following Output options:

When you set the parameter to Inherit via internal rule (default setting), the
block inherits the output data type from the input port. The output data type is the
same as the input data type if the input is of type single or double.

For integer outputs, you can set this block's output to Inherit via internal
rule (default setting), Smallest unsigned integer, int8, uint8, int16,
uint16, int32, uint32, single, and double.

For bit outputs, when you set Decision type to Hard decision, you can set the
output to Inherit via internal rule, Smallest unsigned integer, int8,
uint8, int16, uint16, int32, uint32, boolean, single, or double.

3 Blocks — Alphabetical List

3-472

When you set Decision type to Hard decision or Approximate log-
likelihood ratio and the input is a floating point data type, then the output
inherits its data type from the input. For example, if the input is of data type double,
the output is also of data type double. When you set Decision type to Hard
decision or Approximate log-likelihood ratio, and the input is a fixed-point
signal, the Output parameter, located in the Fixed-Point algorithm parameters region
of the Data-Type tab, specifies the output data type.

When you set the parameter to Smallest unsigned integer, the output data type
is selected based on the settings used in the Hardware Implementation pane of the
Configuration Parameters dialog box. If you select ASIC/FPGA in the Hardware
Implementation pane, the output data type is the ideal minimum size, i.e., ufix(1)
for bit outputs, and uf ix log2M for integer outputs. For all other choices, the
Output data type is an unsigned integer with the smallest available word length large
enough to fit the ideal minimum size, usually corresponding to the size of a char (e.g.,
uint8).

Rounding Mode Parameter
Use this parameter to specify the rounding method to be used when the result of a
fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result.

For more information, see “Rounding Modes” (DSP System Toolbox) or “Rounding
Mode: Simplest” (Fixed-Point Designer).

Saturate on integer overflow
Use this parameter to specify the method to be used if the magnitude of a fixed-point
calculation result does not fit into the range of the data type and scaling that stores
the result:

• Saturate represents positive overflows as the largest positive number in the range
being used, and negative overflows as the largest negative number in the range
being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable
range of the data type. See Modulo Arithmetic (Fixed-Point Designer) for more
information.

For more information, see the Saturate on integer overflow parameter subsection
of “Specify Fixed-Point Attributes for Blocks” (DSP System Toolbox).

Signal constellation
Use this parameter to define the data type of the Signal constellation parameter.

 General QAM Demodulator Baseband

3-473

• When you select Same word length as input the word length of the Signal
constellation parameter matches that of the input to the block. The fraction
length is computed to provide the best precision for given signal constellation
values.

• When you select Specify word length, the Word Length field appears, and
you may enter a value for the word length. The fraction length is computed to
provide the best precision for given signal constellation values.

Accumulator 1
Use this parameter to specify the data type for Accumulator 1:

• When you select Inherit via internal rule, the block automatically
calculates the output word and fraction lengths. For more information, see the
“Inherit via Internal Rule” (DSP System Toolbox) subsection of the DSP System
Toolbox™ User's Guide.

• When you select Binary point scaling, you can enter the word length and the
fraction length of Accumulator 1, in bits.

Product Input
Use this parameter to specify the data type for Product input.

• When you select Same as accumulator 1, the Product Input characteristics
match those of Accumulator 1.

• When you select Binary point scaling you can enter the word length and the
fraction length of Product input, in bits.

Product Output
Use this parameter to select the data type for Product output.

• When you select Inherit via internal rule, the block automatically
calculates the output signal type. For more information, see the Inherit via
Internal Rule (DSP System Toolbox) subsection of the DSP System Toolbox
User's Guide.

• When you select Binary point scaling enter the word length and the fraction
length for Product output, in bits.

Accumulator 2
Use this parameter to specify the data type for Accumulator 2:

3 Blocks — Alphabetical List

3-474

• When you select Inherit via internal rule, the block automatically
calculates the accumulator data type. The internal rule calculates the ideal, full-
precision word length and fraction length as follows:

WLideal accumulator 2 = WLinput to accumulator 2

FLideal accumulator 2 = FL input to accumulator 2

After the full-precision result is calculated, your particular hardware may still
affect the final word and fraction lengths set by the internal rule. For more
information, see The Effect of the Hardware Implementation Pane on the Internal
Rule (DSP System Toolbox) subsection of the DSP System Toolbox User's Guide.

The internal rule always sets the sign of data-type to Unsigned .
• When you select Binary point scaling, you are able to enter the word length

and the fraction length of Accumulator 2, in bits.

The settings for the following fixed-point parameters only apply when you set Decision
type to Approximate log-likelihood ratio.

Accumulator 3
When you select Inherit via internal rule, the block automatically calculates
the accumulator data type. The internal rule first calculates ideal, full-precision word
length and fraction length as follows:

WLideal accumulator 3 = WLinput to accumulator 3 + 1

FL ideal accumulator 3 = FL input to accumulator 3.

After the full-precision result is calculated, your particular hardware may still affect
the final word and fraction lengths set by the internal rule. For more information, see
The Effect of the Hardware Implementation Pane on the Internal Rule (DSP System
Toolbox) subsection of the DSP System Toolbox User's Guide.

The internal rule always sets the sign of data-type to Signed.
Noise scaling input

• When you select Same as accumulator 3, the Noise scaling input
characteristics match those of Accumulator 3.

• When you select Binary point scaling you are able to enter the word length
and the fraction length of Noise scaling input, in bits.

 General QAM Demodulator Baseband

3-475

Inverse noise variance
This field appears when Noise variance source is set to Dialog.

• When you select Same word length as input the word length of the Inverse
noise variance parameter matches that of the input to the block. The fraction
length is computed to provide the best precision for a given inverse noise variance
value.

• When you select Specify word length, the Word Length field appears, and
you may enter a value for the word length. The fraction length is computed to
provide the best precision for a given inverse noise variance value.

Output
When you select Inherit via internal rule , the Output data type is
automatically set for you.

If you set the Noise variance source parameter to Dialog, the output is a result of
product operation as shown in the Noise Variance Operation Modes Signal Flow
Diagram “Fixed-Point Signal Flow Diagram for Approximate LLR Mode: Noise
Variance Operation Modes” on page 3-472. In this case, it follows the internal rule for
Product data types specified in the Inherit via Internal Rule (DSP System Toolbox)
subsection of the DSP System Toolbox User's Guide.

If the Noise variance source parameter is set to Port, the output is a result of
division operation as shown in the signal flow diagram. In this case, the internal rule
calculates the ideal, full-precision word length and fraction length as follows:

WL output = max(WL Noise scaling input, WL Noise variance)

FL output = FL Noise scaling input (dividend)– FL Noise variance (divisor) .

After the full-precision result is calculated, your particular hardware may still affect
the final word and fraction lengths set by the internal rule. For more information, see
“The Effect of the Hardware Implementation Pane on the Internal Rule” (DSP System
Toolbox) subsection of the DSP System Toolbox User's Guide.

The internal rule for Output always sets the sign of data-type to Signed.

For additional information about the parameters pertaining to fixed-point applications,
see “Specify Fixed-Point Attributes for Blocks” (DSP System Toolbox).

3 Blocks — Alphabetical List

3-476

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed–point when Output type is Integer or Output type is Bit and

Decision type is either Hard-decision or Approximate LLR
Var • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard-decision.
• 8-, 16-, and 32-bit signed integers when Output type is Integer or Output type

is Bit and Decision type is Hard-decision
• 8-, 16-, and 32-bit unsigned integers when Output type is Integer or Output

type is Bit and Decision type is Hard-decision
• ufix(1) in ASIC/FPGA when Output type is Bit and Decision type is Hard-

decision
• uf ix log2M in ASIC/FPGA when Output type is Integer
• Signed fixed-point when Output type is Bit and Decision type is Approximate

LLR

Pair Block
General QAM Modulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 General QAM Demodulator Baseband

3-477

See Also
Blocks
General QAM Modulator Baseband | Rectangular QAM Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-478

General QAM Modulator Baseband
Modulate using quadrature amplitude modulation

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The General QAM Modulator Baseband block modulates using quadrature amplitude
modulation. The output is a baseband representation of the modulated signal.

The Signal constellation parameter defines the constellation by listing its points in a
length-M vector of complex numbers. The input signal values must be integers between 0
and M-1. The block maps an input integer m to the (m+1)st value in the Signal
constellation vector.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see the “Supported Data Types” on page 3-481 table on
this page.

Constellation Visualization
The General QAM Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the Constellation Visualization section of the Communications Toolbox User's Guide.

 General QAM Modulator Baseband

3-479

Parameters
Signal constellation

A real or complex vector that lists the constellation points.
Output data type

The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this to Fixed-point or User-defined will enable fields in which you can
further specify details. Setting this to Inherit via back propagation, sets the
output data type and scaling to match the following block..

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point
data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer software. This parameter is only visible when you select User-defined for
the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter, or when you select User-defined and the specified output data
type is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

3 Blocks — Alphabetical List

3-480

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
• uf ix log2M

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
General QAM Demodulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General QAM Demodulator Baseband | Rectangular QAM Modulator Baseband

Introduced before R2006a

 General QAM Modulator Baseband

3-481

General TCM Decoder
Decode trellis-coded modulation data, mapped using arbitrary constellation

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The General TCM Decoder block uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using an arbitrary signal
constellation.

The Trellis structure and Signal constellation parameters in this block should match
those in the General TCM Encoder block, to ensure proper decoding. In particular, the
Signal constellation parameter must be in set-partitioned order.

Input and Output Signals
This block accepts a column vector input signal containing complex numbers. The input
signal must be double or single. The reset port signal must be double or Boolean.
For information about the data types each block port supports, see “Supported Data
Types” on page 3-484.

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the General TCM Decoder block's output is a binary column vector whose length is k
times the vector length of the input signal.

3 Blocks — Alphabetical List

3-482

Operation Modes
The block has three possible methods for transitioning between successive frames. The
Operation mode parameter controls which method the block uses. This parameter also
affects the range of possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning of
the simulation, waits until it accumulates D symbols, and then uses a sequence of D
symbols to compute each of the traceback paths. D can be any positive integer. At the
end of each frame, the block saves its internal state metric for use with the next
frame.

If you select Enable the reset input port, the block displays another input port,
labeled Rst. This port receives an integer scalar signal. Whenever the value at the
Rst port is nonzero, the block resets all state metrics to zero and sets the traceback
memory to zero.

• In Truncated mode, the block treats each frame independently. The traceback path
starts at the state with the lowest metric. D must be less than or equal to the vector
length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path
always starts at the all-zeros state. D must be less than or equal to the vector length of
the input. If you know that each frame of data typically ends at the all-zeros state, then
this mode is an appropriate choice.

Decoding Delay
If you set Operation mode to Continuous, then this block introduces a decoding delay
equal to Traceback depth*k bits for a rate k/n convolutional code. The decoding delay is
the number of zeros that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.

 General TCM Decoder

3-483

Signal constellation
A complex vector that lists the points in the signal constellation in set-partitioned
order.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses in
the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. The choices are Continuous,
Truncated, and Terminated.

Enable the reset input port
When you select this check box, the block has a second input port labeled Rst.
Providing a nonzero value to this port causes the block to set its internal memory to
the initial state before processing the input data. This field appears only if you set
Operation mode to Continuous.

Output data type
Select the data type for the block output signal as boolean or single. By default,
the block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Boolean
Output • Double-precision floating point

• Boolean

Pair Block
General TCM Encoder

3 Blocks — Alphabetical List

3-484

References
[1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded

Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Encoder | M-PSK TCM Decoder | Rectangular QAM TCM Decoder

Functions
poly2trellis

Introduced before R2006a

 General TCM Decoder

3-485

General TCM Encoder
Convolutionally encode binary data and map using arbitrary constellation

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The General TCM Encoder block implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to an arbitrary
signal constellation. The Signal constellation parameter lists the signal constellation
points in set-partitioned order. This parameter is a complex vector with a length, M, equal
to the number of possible output symbols from the convolutional encoder. (That is, log2M
is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals
If the convolutional encoder represents a rate k/n code, then the General TCM Encoder
block's input must be a binary column vector with a length of L*k for some positive
integer L.

This block accepts a binary-valued input signal. The output signal is a complex column
vector of length L. For information about the data types each block port supports, see
“Supported Data Types” on page 3-489.

3 Blocks — Alphabetical List

3-486

Specifying the Encoder
To define the convolutional encoder, use the Trellis structure parameter. This parameter
is a MATLAB structure whose format is described in “Trellis Description of a
Convolutional Code”. You can use this parameter field in two ways:

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, then use a poly2trellis command
within the Trellis structure field. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)
• If you have a variable in the MATLAB workspace that contains the trellis structure,

then enter its name as the Trellis structure parameter. This way is faster because it
causes Simulink software to spend less time updating the diagram at the beginning of
each simulation, compared to the usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that it
resets its registers to the all-zeros state during the course of the simulation. To do this,
set the Operation mode to Reset on nonzero input via port. The block then opens a
second input port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Signal Constellations
The trellis-coded modulation technique partitions the constellation into subsets called
cosets so as to maximize the minimum distance between pairs of points in each coset.

Note When you set the Signal constellation parameter, you must ensure that the
constellation vector is already in set-partitioned order. Otherwise, the block might
produce unexpected or suboptimal results.

As an example, the diagram below shows one way to devise a set-partitioned order for the
points for an 8-PSK signal constellation. The figure at the top of the tree is the entire 8-
PSK signal constellation, while the eight figures at the bottom of the tree contain one
constellation point each. Each level of the tree corresponds to a different bit in a binary
sequence (b3,b2,b1), while each branch in a given level of the tree corresponds to a

 General TCM Encoder

3-487

particular value for that bit. Listing the constellation points using the sequence at the
bottom of the tree leads to the vector

exp(2*pi*j*[0 4 2 6 1 5 3 7]/8)

which is a valid value for the Signal constellation parameter in this block.

b3=1b3=1b3=1b3=1 b3=0

b2=1b2=0

b1=1b1=0

b2=1b2=0

b3=0b3=0b3=0

000 100 010 110 001 101 011 111

For other examples of signal constellations in set-partitioned order, see [1] or the
reference pages for the M-PSK TCM Encoder and Rectangular QAM TCM Encoder blocks.

Coding Gains
Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the
presence of AWGN with multiphase trellis codes [3].

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode (default setting), the block retains the encoder states at the end
of each frame, for use with the next frame.

3 Blocks — Alphabetical List

3-488

In Truncated (reset every frame) mode, the block treats each frame
independently. I.e., the encoder states are reset to all-zeros state at the start of each
frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k,
where x is the number of input bits, and s = constraint length− 1 (or, in the case of
multiple constraint lengths, s =sum(ConstraintLength(i)-1)). The block
supports this mode for column vector input signals.

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

Signal constellation
A complex vector that lists the points in the signal constellation in set-partitioned
order.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1)

Output • Double-precision floating point
• Single-precision floating point

 General TCM Encoder

3-489

Pair Block
General TCM Decoder

References

[1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on
Information Theory, Vol IT28, Jan. 1982, pp. 55–67.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Decoder | M-PSK TCM Encoder | Rectangular QAM TCM Encoder

Functions
poly2trellis

Introduced before R2006a

3 Blocks — Alphabetical List

3-490

GMSK Demodulator Baseband
Demodulate GMSK-modulated data

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The GMSK Demodulator Baseband block uses a Viterbi algorithm to demodulate a signal
that was modulated using the Gaussian minimum shift keying method. The input to this
block is a baseband representation of the modulated signal.

Integer-Valued Signals and Binary-Valued Signals
This block accepts a scalar-valued or column vector input signal with a data type of
single or double. If you set the Output type parameter to Integer, then the block
produces values of 1 and -1. If you set the Output type parameter to Bit, then the block
produces values of 0 and 1.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is two times the number of input
symbols.

 GMSK Demodulator Baseband

3-491

• When you set Output type to Integer, the output width is the number of input
symbols.

For a column vector input signal, the width of the input equals the product of the number
of symbols and the value for the Samples per symbol parameter.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays
Internally, this block creates a trellis description of the modulation scheme and uses the
Viterbi algorithm. The Traceback depth parameter, D, in this block is the number of
trellis branches used to construct each traceback path. D influences the output delay,
which is the number of zero symbols that precede the first meaningful demodulated value
in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
then the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the number
of states, can be chosen using the five-times-the-constraint-length rule, which

corresponds to 5 2◊ log ()numStates . The number of states is determined by the following
equation:

numStates =
p ⋅ 2(L− 1), f or even m

2p ⋅ 2(L− 1), f or odd m

3 Blocks — Alphabetical List

3-492

where:

• h = m/p is the modulation index in proper rational form

• m = numerator of modulation index
• p = denominator of modulation index

• L is the Pulse length

Parameters
Output type

Determines whether the output consists of bipolar or binary values.
BT product

The product of bandwidth and time.
Pulse length (symbol intervals)

The length of the frequency pulse shape.
Symbol prehistory

The data symbols the modulator uses before the start of the simulation.
Phase offset (rad)

The initial phase of the modulated waveform.
Samples per symbol

The number of input samples that represent each modulated symbol, which must be a
positive integer. For more information, see “Upsample Signals and Rate Changes” in
Communications Toolbox User's Guide.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width is the number of symbols (which is given by dividing the input length
by the Samples per symbol parameter value when the Output type parameter is
set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as

 GMSK Demodulator Baseband

3-493

the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth
The number of trellis branches that the GMSK Demodulator Baseband block uses to
construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block
GMSK Modulator Baseband

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New

York: Plenum Press, 1986.

3 Blocks — Alphabetical List

3-494

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPM Demodulator Baseband | GMSK Modulator Baseband | Viterbi Decoder

Introduced before R2006a

 GMSK Demodulator Baseband

3-495

GMSK Modulator Baseband
Modulate using Gaussian minimum shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The GMSK Modulator Baseband block modulates using the Gaussian minimum shift
keying method. The output is a baseband representation of the modulated signal.

The BT product parameter represents bandwidth multiplied by time. This parameter is a
nonnegative scalar. It is used to reduce the bandwidth at the expense of increased
intersymbol interference. The Pulse length parameter measures the length of the
Gaussian pulse shape, in symbol intervals. For an explanation of the pulse shape, see the
work by Anderson, Aulin, and Sundberg among the references on page 3-499 listed below.
The frequency pulse shape is defined by the following equations.

g(t) = 1
2T Q 2πBb

t − T
2

ln(2) − Q 2πBb
t + T

2
ln(2)

Q(t) = ∫
t

∞
1
2πe−τ2/2dτ

For this block, an input symbol of 1 causes a phase shift of π/2 radians.

The group delay is the number of samples between the start of a filter's response and its
peak. The group delay that the block introduces is Pulse length/2 * Samples per
symbol (using a reference of output sample periods). For GMSK, Pulse length denotes

3 Blocks — Alphabetical List

3-496

the truncated frequency pulse length in symbols. The net delay effect at the receiver
(demodulator) is due to the Traceback depth parameter, which in most cases would be
larger than the group delay.

Integer-Valued Signals and Binary-Valued Signals
When you set the Input type parameter to Integer, then the block accepts values of 1
and -1.

When you set the Input type parameter to Bit, then the block accepts values of 0 and 1.

This block accepts a scalar-valued or column vector input signal. For a column vector
input signal, the width of the output equals the product of the number of symbols and the
value for the Samples per symbol parameter.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of 2.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

 GMSK Modulator Baseband

3-497

Parameters
Input type

Indicates whether the input consists of bipolar or binary values.
BT product

The product of bandwidth and time.

The block uses this parameter to reduce bandwidth at the expense of increased
intersymbol interference. Enter a nonnegative scalar value for this parameter.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
A scalar or vector value that specifies the data symbols the block uses before the start
of the simulation, in reverse chronological order. If it is a vector, then its length must
be one less than the Pulse length parameter.

Phase offset (rad)
The initial phase of the output waveform, measured in radians.

Samples per symbol
The number of output samples that the block produces for each integer or bit in the
input, which must be a positive integer. For all non-binary schemes, as defined by the
pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes” in Communications
ToolboxUser's Guide.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width equals the product of the number of symbols and the Samples per
symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals the
symbol period divided by the Samples per symbol parameter value.

3 Blocks — Alphabetical List

3-498

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (When Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
GMSK Demodulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New
York: Plenum Press, 1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 GMSK Modulator Baseband

3-499

See Also
Blocks
CPM Modulator Baseband | GMSK Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-500

Gold Sequence Generator
Generate Gold sequence from set of sequences

Library
Sequence Generators sublibrary of Comm Sources

Description
The Gold Sequence Generator block generates a Gold sequence. Gold sequences form a
large class of sequences that have good periodic cross-correlation properties.

This block can output sequences that vary in length during simulation. For more
information about variable-size signals, see “Variable-Size Signal Basics” (Simulink).

Gold Sequences
The Gold sequences are defined using a specified pair of sequences u and v, of period N =
2n - 1, called a preferred pair, as defined in “Preferred Pairs of Sequences” on page 3-
504 below. The set G(u, v) of Gold sequences is defined by

G(u, v) = u, v, u⊕ v, u⊕ Tv, u⊕ T2v, ..., u⊕ TN − 1v

where T represents the operator that shifts vectors cyclically to the left by one place, and
⊕ represents addition modulo 2. Note that G(u,v) contains N + 2 sequences of period N.
The Gold Sequence Generator block outputs one of these sequences according to the
block's parameters.

Gold sequences have the property that the cross-correlation between any two, or between
shifted versions of them, takes on one of three values: -t(n), -1, or t(n) - 2, where

t(n) =
1 + 2(n + 1)/2 n even

1 + 2(n + 2)/2 n odd

 Gold Sequence Generator

3-501

The Gold Sequence Generator block uses two PN Sequence Generator blocks to generate
the preferred pair of sequences, and then XORs these sequences to produce the output
sequence, as shown in the following diagram.

You can specify the preferred pair by the Preferred polynomial [1] and Preferred
polynomial [2] parameters in the dialog for the Gold Sequence Generator block. These
polynomials, both of which must have degree n, describe the shift registers that the PN
Sequence Generator blocks use to generate their output. For more details on how these
sequences are generated, see the reference page for the PN Sequence Generator block.
You can specify the preferred polynomials using these formats:

• A polynomial character vector that includes the number 1, for example, 'z^4 + z +
1'.

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For example, the character vector 'z^5 + z^2 + 1', the vector [5 2 0], and the
vector [1 0 0 1 0 1] represent the polynomial z5 + z2 + 1.

The following table provides a short list of preferred pairs.

n N Preferred
Polynomial[1]

Preferred
Polynomial[2]

5 31 [5 2 0] [5 4 3 2 0]
6 63 [6 1 0] [6 5 2 1 0]
7 127 [7 3 0] [7 3 2 1 0]

3 Blocks — Alphabetical List

3-502

n N Preferred
Polynomial[1]

Preferred
Polynomial[2]

9 511 [9 4 0] [9 6 4 3 0]
10 1023 [10 3 0] [10 8 3 2 0]
11 2047 [11 2 0] [11 8 5 2 0]

The Initial states[1] and Initial states[2] parameters are vectors specifying the initial
values of the registers corresponding to Preferred polynomial [1] and Preferred
polynomial [2], respectively. These parameters must satisfy these criteria:

• All elements of the Initial states[1] and Initial states[2] vectors must be binary
numbers.

• The length of the Initial states[1] vector must equal the degree of the Preferred
polynomial[1], and the length of the Initial states[2] vector must equal the degree
of the Preferred polynomial[2].

Note At least one element of the Initial states vectors must be nonzero in order for
the block to generate a nonzero sequence. That is, the initial state of at least one of
the registers must be nonzero.

The Sequence index parameter specifies which sequence in the set G(u, v) of Gold
sequences the block outputs. The range of Sequence index is [-2, -1, 0, 1, 2, ..., 2n–2].
The correspondence between Sequence index and the output sequence is given in the
following table.

Sequence Index Output Sequence
-2 u
-1 v
0 u⊕ v
1 u⊕ Tv
2 u⊕ T2v
... ...
2n-2

u⊕ T2n− 2v

 Gold Sequence Generator

3-503

You can shift the starting point of the Gold sequence with the Shift parameter, which is
an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift register to the
initial state by selecting Reset on nonzero input. This creates an input port for the
external signal in the Gold Sequence Generator block. The way the block resets the
internal shift register depends on whether its output signal and the reset signal are
sample-based or frame-based. The following example demonstrates the possible
alternatives. See “Resetting a Signal” on page 3-905 for an example.

Preferred Pairs of Sequences
The requirements for a pair of sequences u, v of period N = 2n–1 to be a preferred pair
are as follows:

• n is not divisible by 4
• v = u[q], where

• q is odd
• q = 2k+1 or q = 22k–2k+1
• v is obtained by sampling every qth symbol of u

•
gcd(n, k) =

1 n ≡ 1mod2
2 n ≡ 2mod4

Parameters
Preferred polynomial[1]

Character vector or vector specifying the polynomial for the first sequence of the
preferred pair.

Initial states[1]
Vector of initial states of the shift register for the first sequence of the preferred pair.

Preferred polynomial[2]
Character vector or vector specifying the polynomial for the second sequence of the
preferred pair.

3 Blocks — Alphabetical List

3-504

Initial states[2]
Vector of initial states of the shift register for the second sequence of the preferred
pair.

Sequence index
Integer specifying the index of the output sequence from the set of sequences.

Shift
Integer scalar that determines the offset of the Gold sequence from the initial time.

Output variable-size signals
Select this check box if you want the output sequences to vary in length during
simulation. The default selection outputs fixed-length signals.

Maximum output size source
Specify how the block defines maximum output size for a signal.

• When you select Dialog parameter, the value you enter in the Maximum
output size parameter specifies the maximum size of the output. When you make
this selection, the oSiz input port specifies the current size of the output signal
and the block output inherits sample time from the input signal. The input value
must be less than or equal to the Maximum output size parameter.

• When you select Inherit from reference port, the block output inherits
sample time, maximum size, and current size from the variable-sized signal at the
Ref input port.

This parameter only appears when you select Output variable-size signals. The
default selection is Dialog parameter.

Maximum output size
Specify a two-element row vector denoting the maximum output size for the block.
The second element of the vector must be 1 For example, [10 1] gives a 10-by-1
maximum sized output signal. This parameter only appears when you select Output
variable-size signals.

Sample time
The time between each sample of a column of the output signal.

Samples per frame
The number of samples per frame in one channel of the output signal.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame

 Gold Sequence Generator

3-505

equal one, the block outputs a sample every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift registers
to the original values of the Initial states parameter

Output data type
The output type of the block can be specified as boolean, double or Smallest
unsigned integer. By default, the block sets this to double.

When the parameter is set to Smallest unsigned integer, the output data type is
selected based on the settings used in the “Hardware Implementation Pane”
(Simulink) of the Configuration Parameters dialog box of the model. If ASIC/FPGA is
selected in the Hardware Implementation pane, the output data type is the ideal
minimum one-bit size, i.e., ufix(1). For all other selections, it is an unsigned integer
with the smallest available word length large enough to fit one bit, usually
corresponding to the size of a char (e.g., uint8).

References

[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

[2] Gold, R., "Maximal Recursive Sequences with 3-valued Recursive Cross-Correlation
Functions," IEEE Trans. Infor. Theory, Jan., 1968, pp. 154-156.

[3] Gold, R., "Optimal Binary Sequences for Spread Spectrum Multiplexing, IEEE Trans.
Infor. Theory, Oct., 1967, pp. 619-621.

[4] Sarwate, D.V., and M.B. Pursley, "Crosscorrelation Properties of Pseudorandom and
Related Sequences," Proc. IEEE, Vol. 68, No. 5, May, 1980, pp. 583-619.

[5] Dixon, Robert, Spread Spectrum Systems with Commercial Applications, Third
Edition, Wiley–Interscience, 1994.

3 Blocks — Alphabetical List

3-506

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Kasami Sequence Generator | PN Sequence Generator

Introduced before R2006a

 Gold Sequence Generator

3-507

Hadamard Code Generator
Generate Hadamard code from orthogonal set of codes

Library
Sequence Generators sublibrary of Comm Sources

Description
The Hadamard Code Generator block generates a Hadamard code from a Hadamard
matrix, whose rows form an orthogonal set of codes. Orthogonal codes can be used for
spreading in communication systems in which the receiver is perfectly synchronized with
the transmitter. In these systems, the despreading operation is ideal, as the codes are
decorrelated completely.

The Hadamard codes are the individual rows of a Hadamard matrix. Hadamard matrices
are square matrices whose entries are +1 or -1, and whose rows and columns are
mutually orthogonal. If N is a nonnegative power of 2, theN-by-N Hadamard matrix,
denoted HN, is defined recursively as follows.

H1 = 1

H2N =
HN HN
HN −HN

The N-by-N Hadamard matrix has the property that

HNHN
T = NIN

where IN is the N-by-N identity matrix.

The Hadamard Code Generator block outputs a row of HN. The output is bipolar. You
specify the length of the code, N,by the Code length parameter. The Code length must

3 Blocks — Alphabetical List

3-508

be a power of 2. You specify the index of the row of the Hadamard matrix, which is an
integer in the range [0, 1, ... , N-1], by the Code index parameter.

Parameters
Code length

A positive integer that is a power of two specifying the length of the Hadamard code.
Code index

An integer between 0 and N-1, where N is the Code length, specifying a row of the
Hadamard matrix.

Sample time
The time between each sample of the output signal. Specify as a nonnegative real
scalar.

Samples per frame
The number of samples in one column of the output signal. Specify as a positive
integer scalar.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame
equal one, the block outputs a sample every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

Output data type
The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

 Hadamard Code Generator

3-509

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

Examples

Orthogonal Spreading - Single-User vs. Two-User Comparison
This example model compares a single-user system vs. a two-user data transmission
system with the two data streams being independently spread by different orthogonal
codes.

The model uses random binary data which is BPSK modulated (real), spread by Hadamard
codes of length 64 and then transmitted over an AWGN channel. The receiver consists of
a despreader followed by a BPSK demodulator. Open the model here:
hadamard_block_example1.

modelname = 'hadamard_block_example1';
open_system(modelname);
sim(modelname);

3 Blocks — Alphabetical List

3-510

matlab:hadamard_block_example1

For the same data and channel settings, the model calculates the performance for one-
and two-user transmissions.

Note that for the individual users, the error rates are exactly the same in both cases. This
shows that perfect despreading is possible due to the ideal cross-correlation properties of
the Hadamard codes.

To experiment with this model further, specify a different Code length or Code index for
the individual users to examine the variations in relative performance.

 Hadamard Code Generator

3-511

close_system(modelname, 0);

Orthogonal Spreading - Multipath Scenario
This example model considers a single-user system in which the signal is transmitted over
multiple paths. This is similar to a mobile channel environment where the signals are
received over multiple paths, each of which have different amplitudes and delays. To take
advantage of the multipath transmission, the receiver employs diversity reception which
combines the independent paths coherently.

Note, to keep the system simple, no shadowing effects are considered and the receiver
has a priori knowledge of the number of paths and their respective delays. Open the
model here: hadamard_block_example2.

modelname = 'hadamard_block_example2';
open_system(modelname);
sim(modelname);

For the data transmission with the same spreading code that was used in the first
example, we now see deterioration in performance when compared with that example
(compare the 180 errors with 81 in the previous case). This can be attributed to the non-
ideal auto-correlation values of the orthogonal spreading codes chosen, which prevents
perfect resolution of the individual paths. Consequently, we don't see the merits of
diversity combining.

3 Blocks — Alphabetical List

3-512

matlab:hadamard_block_example2

To experiment with this model further, try selecting other path delays to see how the
performance varies for the same code. Also try different codes with the same delays.

close_system(modelname, 0);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

See Also
Blocks
OVSF Code Generator | Walsh Code Generator

Introduced before R2006a

 Hadamard Code Generator

3-513

Hamming Decoder
Decode Hamming code to recover binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Hamming Decoder block recovers a binary message vector from a binary Hamming
codeword vector. For proper decoding, the parameter values in this block should match
those in the corresponding Hamming Encoder block.

If the Hamming code has message length K and codeword length N, then N must have the
form 2M-1 for some integer M greater than or equal to 3. Also, K must equal N-M.

This block accepts a column vector input signal of length N. The output signal is a column
vector of length K.

The coding scheme uses elements of the finite field GF(2M). You can either specify the
primitive polynomial that the algorithm should use, or you can rely on the default setting:

• To use the default primitive polynomial, simply enter N and K as the first and second
dialog parameters, respectively. The algorithm uses gfprimdf(M) as the primitive
polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a binary vector
as the second parameter. The vector represents the primitive polynomial by listing its
coefficients in order of ascending exponents. You can create primitive polynomials
using the Communications Toolbox gfprimfd function.

• In addition, you can specify the primitive polynomial as a character vector, for
example, 'D^3 + D + 1'.

3 Blocks — Alphabetical List

3-514

For information about the data types each block port supports, see the “Supported Data
Type” on page 3-515 table on this page.

Parameters
Codeword length N

The codeword length N, which is also the input vector length.
Message length K, or M-degree primitive polynomial

The message length, which is also the input vector length or a binary vector that
represents a primitive polynomial for GF(2M) or a polynomial character vector.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Hamming Encoder

 Hamming Decoder

3-515

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Hamming Encoder

Functions
hammgen

Introduced before R2006a

3 Blocks — Alphabetical List

3-516

Hamming Encoder
Create Hamming code from binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Hamming Encoder block creates a Hamming code with message length K and
codeword length N. The number N must have the form 2M-1, where M is an integer
greater than or equal to 3. Then K equals N-M.

This block accepts a column vector input signal of length K. The output signal is a column
vector of length N.

The coding scheme uses elements of the finite field GF(2M). You can either specify the
primitive polynomial that the algorithm should use, or you can rely on the default setting:

• To use the default primitive polynomial, simply enter N and K as the first and second
dialog parameters, respectively. The algorithm uses gfprimdf(M) as the primitive
polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a binary vector
as the second parameter. The vector represents the primitive polynomial by listing its
coefficients in order of ascending exponents. You can create primitive polynomials
using the Communications Toolbox gfprimfd function.

• In addition, you can specify the primitive polynomial as a character vector, for
example, 'D^3 + D + 1'.

For information about the data types each block port supports, see the “Supported Data
Type” on page 3-518 table on this page.

 Hamming Encoder

3-517

Parameters
Codeword length N

The codeword length, which is also the output vector length.
Message length K, or M-degree primitive polynomial

The message length, which is also the input vector length or a binary vector that
represents a primitive polynomial for GF(2M) or a polynomial character vector.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Hamming Decoder

3 Blocks — Alphabetical List

3-518

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Hamming Decoder

Functions
hammgen

Introduced before R2006a

 Hamming Encoder

3-519

Helical Deinterleaver
Restore ordering of symbols permuted by helical interleaver

Library
Convolutional sublibrary of Interleaving

Description
The Helical Deinterleaver block permutes the symbols in the input signal by placing them
in an array row by row and then selecting groups in a helical fashion to send to the output
port.

The block uses the array internally for its computations. If C is the Number of columns
in helical array parameter, then the array has C columns and unlimited rows. If N is the
Group size parameter, then the block accepts an input of length C·N at each time step
and inserts them into the next N rows of the array. The block also places the Initial
condition parameter into certain positions in the top few rows of the array (not only to
accommodate the helical pattern but also to preserve the vector indices of symbols that
pass through the Helical Interleaver and Helical Deinterleaver blocks in turn).

The output consists of consecutive groups of N symbols. Counting from the beginning of
the simulation, the block selects the kth output group in the array from column k mod C.
The selection is helical because of the reduction modulo C and because the first symbol in
the kth group is in row 1+(k-1)*s, where s is the Helical array step size parameter.

This block accepts a column vector input signal containing C·N elements.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of this output will be the same
as that of the input signal.

3 Blocks — Alphabetical List

3-520

Delay of Interleaver-Deinterleaver Pair
After processing a message with the Helical Interleaver block and the Helical
Deinterleaver block, the deinterleaved data lags the original message by

CN s(C− 1)
N

samples. Before this delay elapses, the deinterleaver output is either the Initial
condition parameter in the Helical Deinterleaver block or the Initial condition
parameter in the Helical Interleaver block.

If your model incurs an additional delay between the interleaver output and the
deinterleaver input, then the restored sequence lags the original sequence by the sum of
the additional delay and the amount in the formula above. For proper synchronization, the
delay between the interleaver and deinterleaver must be m· C · N for some nonnegative
integer m. You can use the DSP System Toolbox Delay block to adjust delays manually, if
necessary.

Parameters
Number of columns in helical array

The number of columns, C, in the helical array.
Group size

The size, N, of each group of symbols. The input width is C times N.
Helical array step size

The number of rows of separation between consecutive output groups as the block
selects them from their respective columns of the helical array.

Initial conditions
A scalar that fills the array before the first input is placed.

Pair Block
Helical Interleaver

 Helical Deinterleaver

3-521

References
[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic Block Codes." U. S.

Patent 4559625, Dec. 17, 1985.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Multiplexed Deinterleaver | Helical Interleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-522

Helical Interleaver
Permute input symbols using helical array

Library
Convolutional sublibrary of Interleaving

Description
The Helical Interleaver block permutes the symbols in the input signal by placing them in
an array in a helical fashion and then sending rows of the array to the output port.

The block uses the array internally for its computations. If C is the Number of columns
in helical array parameter, then the array has C columns and unlimited rows. If N is the
Group size parameter, then the block accepts an input of length C·N at each time step
and partitions the input into consecutive groups of N symbols. Counting from the
beginning of the simulation, the block places the kth group in the array along column k
mod C. The placement is helical because of the reduction modulo C and because the first
symbol in the kth group is in row 1+(k-1)· s, where s is the Helical array step size
parameter. Positions in the array that do not contain input symbols have default contents
specified by the Initial condition parameter.

The block sends C·N symbols from the array to the output port by reading the next N
rows sequentially. At a given time step, the output symbols might be the Initial
condition parameter value, symbols from that time step's input vector, or symbols left in
the array from a previous time step.

This block accepts a column vector input signal containing C·N elements.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of this output will be the same
as that of the input signal.

 Helical Interleaver

3-523

Parameters
Number of columns in helical array

The number of columns, C, in the helical array.
Group size

The size, N, of each group of input symbols. The input width is C times N.
Helical array step size

The number of rows of separation between consecutive input groups in their
respective columns of the helical array.

Initial conditions
A scalar that fills the array before the first input is placed.

Examples
Suppose that C = 3, N = 2, the Helical array step size parameter is 1, and the Initial
condition parameter is -1. After receiving inputs of [1:6]', [7:12]', and [13:18]',
the block's internal array looks like the schematic below. The coloring of the inputs and
the array indicate how the input symbols are placed within the array. The outputs at the
first three time steps are [1; -1; -1; 2; 3; -1], [7; 4; 5; 8; 9; 6], and
[13; 10; 11; 14; 15; 12]. (The outputs are not color-coded in the schematic.)

Inputs

. . .

. . .

. . .

Outputs from successive
rows of array

Block's Internal Array

13

14

13

14

15

16

15

16

17

18
17

18

7

8
7

8
9

10
9

10
11

12

11

12

1
1 -1 -1

-1
2

2

3

4

3

4

5

6

5

6

13

10

11

14

15

12

7

4

5

8

9

6

1

-1

-1

2

3

-1

3 Blocks — Alphabetical List

3-524

Pair Block
Helical Deinterleaver

References
[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic Block Codes." U. S.

Patent 4559625, Dec. 17, 1985.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Multiplexed Interleaver | Helical Deinterleaver

Introduced before R2006a

 Helical Interleaver

3-525

Ideal Rectangular Pulse Filter
Shape input signal using ideal rectangular pulses

Library
Comm Filters

Description
The Ideal Rectangular Pulse Filter block upsamples and shapes the input signal using
rectangular pulses. The block replicates each input sample N times, where N is the Pulse
length parameter. After replicating input samples, the block can also normalize the
output signal and/or apply a linear amplitude gain.

If the Pulse delay parameter is nonzero, then the block outputs that number of zeros at
the beginning of the simulation, before starting to replicate any of the input values.

This block accepts a scalar, column vector, or matrix input signal. For information about
the data types each block port supports, see the “Supported Data Type” on page 3-531
table on this page.

The vector size, the pulse length, and the pulse delay are mutually independent. They do
not need to satisfy any conditions with respect to each other.

Single-Rate Processing
When you set the Rate options parameter to Enforce single-rate processing, the
input and output of the block have the same sample rate. To generate the output while
maintaining the input sample rate, the block resamples the data in each column of the
input such that the frame size of the output (Mo) is L times larger than that of the input
(Mo = Mi*L), where L is the Pulse length (number of samples) parameter value.

3 Blocks — Alphabetical List

3-526

Multirate Processing
When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size. However, the sample rate of the output is
L times faster than that of the input (i.e. the output sample time is 1/N times the input
sample time). When the block is in multirate processing mode, you must also specify a
value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats an M-by-N matrix input as M*N independent
channels, and processes each channel over time. The output sample period (Tso) is L
times shorter than the input sample period (Tso = Tsi/L), while the input and output
sizes remain identical.

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats an Mi-by-N matrix input as N independent channels. The
block processes each column of the input over time by keeping the frame size constant
(Mi=Mo), while making the output frame period (Tfo) L times shorter than the input
frame period (Tfo = Tfi/L).

Normalization Methods
You determine the block's normalization behavior using the Normalize output signal
and Linear amplitude gain parameters.

• If you clear Normalize output signal, then the block multiplies the set of replicated
values by the Linear amplitude gain parameter. This parameter must be a scalar.

• If you select Normalize output signal, then the Normalization method parameter
appears. The block scales the set of replicated values so that one of these conditions is
true:

• The sum of the samples in each pulse equals the original input value that the block
replicated.

• The energy in each pulse equals the energy of the original input value that the
block replicated. That is, the sum of the squared samples in each pulse equals the
square of the input value.

After the block applies the scaling specified in the Normalization method parameter, it
multiplies the scaled signal by the constant scalar value specified in the Linear
amplitude gain parameter.

 Ideal Rectangular Pulse Filter

3-527

The output is scaled by N. If the output of this block feeds the input to the AWGN
Channel block, specify the AWGN signal power parameter to be 1/N.

Parameters
Pulse length (number of samples)

The number of samples in each output pulse; that is, the number of times the block
replicates each input value when creating the output signal.

Pulse delay (number of samples)
The number of zeros that appear in the output at the beginning of the simulation,
before the block replicates any input values.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Rate options
Specify the method by which the block should upsample and shape the input signal.
You can select one of the following options:

• Enforce single-rate processing — When you select this option, the block
maintains the input sample rate, and processes the signal by increasing the output
frame size by a factor of L. To select this option, you must set the Input
processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block
processes the signal such that the output sample rate is L times faster than the
input sample rate.

Normalize output signal
If you select this, then the block scales the set of replicated values before applying the
linear amplitude gain.

3 Blocks — Alphabetical List

3-528

Normalization method
The quantity that the block considers when scaling the set of replicated values.
Choices are Sum of samples and Energy per pulse. This field appears only if
you select Normalize method.

Linear amplitude gain
A positive scalar used to scale the output signal.

Rounding mode
Use this parameter to specify the rounding method to be used when the result of a
fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result. The filter coefficients do not obey this parameter;
they always round to Nearest.

For more information, see Rounding Modes (DSP System Toolbox) or “Rounding
Mode: Simplest” (Fixed-Point Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” (DSP
System Toolbox) in DSP System Toolbox Reference Guide for illustrations depicting
the use of the coefficient data types in this block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length of
the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to enter

 Ideal Rectangular Pulse Filter

3-529

separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on
integer overflow parameters; they are always saturated and rounded to
Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) in DSP System Toolbox Reference
Guide for illustrations depicting the use of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

3 Blocks — Alphabetical List

3-530

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this check box to prevent any fixed-point scaling you specify in the block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Examples
If Pulse length is 4 and Pulse delay is the scalar 3, then the table below shows how the
block treats the beginning of a ramp (1, 2, 3,...) in several situations. (The values shown
in the table do not reflect vector sizes but merely indicate numerical values.)

 Ideal Rectangular Pulse Filter

3-531

Normalization Method, If
Any

Linear Amplitude Gain First Several Output
Values

None (Normalize output
signal cleared)

1 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3,...

None (Normalize output
signal cleared)

10 0, 0, 0, 10, 10, 10, 10, 20,
20, 20, 20, 30, 30, 30, 30,...

Sum of samples 1 0, 0, 0, 0.25, 0.25, 0.25,
0.25, 0.5, 0.5, 0.5, 0.5,
0.75, 0.75, 0.75, 0.75,...,
where 0.25*4=1

Sum of samples 10 0, 0, 0, 2.5, 2.5, 2.5, 2.5,
5, 5, 5, 5, 7.5, 7.5, 7.5,
7.5, ...

Energy per pulse 1 0, 0, 0, 0.5, 0.5, 0.5, 0.5,
1.0, 1.0, 1.0, 1.0, 1.5,
1.5, 1.5, 1.5,..., where
(0.5)^2*4=1^2

Energy per pulse 10 0, 0, 0, 5, 5, 5, 5, 10, 10,
10, 10, 15, 15, 15, 15,...

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Integrate and Dump | Upsample

Introduced before R2006a

3 Blocks — Alphabetical List

3-532

Insert Zero
Distribute input elements in output vector

Library
Sequence Operations

Description
The Insert Zero block constructs an output vector by inserting zeros among the elements
of the input vector. The input signal can be real or complex. Both the input signal and the
Insert zero vector parameter are column vector signals. The number of 1s in the Insert
zero vector parameter must be evenly divisible by the input data length. If the input
vector length is greater than the number of 1s in the Insert zero vector parameter, then
the block repeats the insertion pattern until it has placed all input elements in the output
vector.

The block determines where to place the zeros by using the Insert zero vector
parameter.

• For each 1 the block places the next element of the input vector in the output vector
• For each 0 the block places a 0 in the output vector

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

To implement punctured coding using the Puncture and Insert Zero blocks, use the same
vector for the Insert zero vector parameter in this block and for the Puncture vector
parameter in the Puncture block.

 Insert Zero

3-533

Parameters
Insert zero vector

A binary vector with a pattern of 0s and 1s that indicate where the block places either
0s or input vector elements in the output vector.

Examples
If the Insert zero vector parameter is the six-element vector [1;0;1;1;1;0], then the
block inserts zeros after the first and last elements of each consecutive grouping of four
input elements. It considers groups of four elements because the Insert zero vector
parameter has four 1s.

The diagram below depicts the block's operation using this Insert zero vector
parameter. Notice that the insertion pattern applies twice.

3 Blocks — Alphabetical List

3-534

1

4

3

5

7

9

10

11

1

4

3

5

7

9

10

11

0

0

0

0

Compare this example with that on the reference page for the Puncture block.

 Insert Zero

3-535

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Puncture

Introduced before R2006a

3 Blocks — Alphabetical List

3-536

Integer-Input RS Encoder
Create Reed-Solomon code from integer vector data
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The Integer-Input RS Encoder block creates a Reed-Solomon code.

The symbols for the code are integers between 0 and 2M-1, which represent elements of
the finite field GF(2M). The default value of M is the smallest integer that is greater than
or equal to log2(N+1), that is, ceil(log2(N+1)). You can change the default value of M
by specifying the primitive polynomial for GF(2M), as described in “Specify the Primitive
Polynomial” on page 3-543 below. Restrictions on M and N are described in “Restrictions
on M and the Codeword Length N” on page 3-543.

The input and output are integer-valued signals that represent messages and codewords,
respectively. For more information, see “Input and Output Signal Length in RS Blocks” on
page 3-541.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit
errors) in each codeword.

Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a vector of length 5 whose
entries are integers between 0 and 7. A corresponding codeword is a vector of length 7
whose entries are integers between 0 and 7. The following figure illustrates possible input
and output signals to this block when Codeword length N is set to 7, Message length
K is set to 5, and the default primitive and generator polynomials are used.

 Integer-Input RS Encoder

3-537

Ports

Input
In — Message
integer column vector

Message, specified as one of the following:

• When there is no message shortening, a (NC×K)-by-1 integer column vector.
• When there is message shortening, a (NC×S)-by-1 integer column vector.

NC is the number of message words, K is the Message length K, and S is the Shortened
message length S.

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-541.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output
Out — Reed-Solomon codeword
integer column vector

3 Blocks — Alphabetical List

3-538

Reed-Solomon codeword, returned as an (NC×(N – K + S – P)-by-1 integer column vector.
NC is the number of codewords, N is the Codeword length N, K is the Message length
K, S is the Shortened message length S, P is the number of punctures per codeword.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-541.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

For more information, see “Supported Data Types” on page 3-545.

Parameters
Codeword length N — Codeword length
7 (default) | integer

Codeword length, specified as an integer.

For more information, see “Restrictions on M and the Codeword Length N” on page 3-
543 and “Input and Output Signal Length in RS Blocks” on page 3-541.

Message length K — Message word length
3 (default) | integer

Message word length, specified as an integer in the range [1, N–2], where N is the
codeword length.

Shortened message length S — Shortened message word length
3 (default) | integer

Shortened message word length, specified as an integer, such that S ≤ K. When
Shortened message length S < Message length K, the Reed-Solomon code is
shortened.

You still specify N and K values for the full-length (N, K) code but the decoding is
shortened to an (N–K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

 Integer-Input RS Encoder

3-539

Generator polynomial — Generator polynomial
rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector |
binary row vector | binary Galois row vector

Generator polynomial with values in the range [0 to 2M–1], in order of descending power,
specified as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• An integer row vector that represents the coefficients of the generator polynomial in
order of descending power.

• An integer Galois row vector that represents the coefficients of the generator
polynomial in order of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For
more information, see “Specify the Generator Polynomial” on page 3-543.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial
'X^3 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. This polynomial is of order M and
defines the finite Galois field GF(2M) corresponding to the integers that form message
words and codewords. Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Specify the Primitive Polynomial” on page 3-543.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code,
de2bi(primpoly(3,'nodisplay'),'left-msb')

Dependencies

To enable this parameter, select Specify primitive polynomial.

3 Blocks — Alphabetical List

3-540

Puncture vector — Puncture vector
[ones(2,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s
represent data symbol indices that pass through the block unaltered. Element indices
with 0s represent data symbol indices that get punctured, or removed, from the data
stream. For more information, see “Puncturing and Erasures” on page 3-544.

Note If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

Dependencies

To enable this parameter, select Puncture code.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About
Input and Output Signal Length in RS Blocks
The Reed-Solomon code has a message word length, K, or shortened message word
length, S. The codeword length is N – K + S – P, where N is the full codeword length and
P is the number of punctures per codeword. When there is no message shortening, the
codeword length expression reduces to N – P, because K = S. If the decoder is processing
multiple codewords per frame, then the same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-
Solomon encoder and decoder.

 Integer-Input RS Encoder

3-541

The notation y = NC × x denotes that y is an integer multiple of x.

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening

Used
Message Shortening Used

Integer-Input RS Encoder Input Length (symbols):

NC × K

Output Length (symbols):

NC × (N–P)

Input Length (symbols):

NC × S

Output Length (symbols):

NC × (N–K+S–P)
Integer-Output RS Decoder Input Length (symbols):

NC × (N–P)

Erasures Length
(symbols):

NC × (N–P)

Output Length (symbols):

NC × K

Input Length (symbols):

NC × (N–K+S–P)

Erasures Length
(symbols):

NC × (N–K+S–P)

Output Length (symbols):

NC × S

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures, and is equal to the number of zeros in the puncture

vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an

integer between 0 and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format
(Reed-Solomon Only)”.

3 Blocks — Alphabetical List

3-542

Restrictions on M and the Codeword Length N
• If you do not select Specify primitive polynomial, valid values for the codeword

length, N, are from 7 to 65535. In this case, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default primitive
polynomial by running primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial
degree, M, are from 3 to 16. The valid values for N in this case are from 7 to 2M–1.
Selecting Specify primitive polynomial enables you to specify the primitive
polynomial that defines the finite field GF(2M), which corresponds to the values that
form message words and codewords.

Specify the Primitive Polynomial
You can specify the primitive polynomial that defines the finite field GF(2M),
corresponding to the integers that form messages and codewords. To do so, first select
Specify primitive polynomial. Then, in the Primitive polynomial text box, enter a
binary row vector that represents a primitive polynomial over GF(2M), in descending
order of powers. For example, to specify the polynomial x3+x+1, enter the vector [1 0 1
1].

If you do not select Specify primitive polynomial, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default polynomial by
entering primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Specify the Generator Polynomial
Select Specify generator polynomial to enable the Generator polynomial parameter
for specifying the generator polynomial of the Reed-Solomon code. Enter an integer row
vector with element values from 0 to 2M-1. The vector represents a polynomial, in
descending order of powers, whose coefficients are elements of GF(2M) represented in
integer format. For more information about integer and binary format, see “Integer
Format (Reed-Solomon Only)”. The generator polynomial must be equal to a polynomial
with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and
b is an integer.

 Integer-Input RS Encoder

3-543

If you do not select Specify generator polynomial, the block uses the default generator
polynomial, corresponding to b=1, for Reed-Solomon encoding. You can display the
default generator polynomial by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is
not selected), the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial
is selected) and you specify the primitive polynomial as poly, the generator
polynomial is rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length
and K is the message word length.

Puncturing and Erasures
1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see
“Shortening, Puncturing, and Erasures”.

3 Blocks — Alphabetical List

3-544

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
Integer-Output RS Decoder

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Input RS Encoder | Integer-Output RS Decoder

 Integer-Input RS Encoder

3-545

Objects
comm.RSEncoder

Functions

Introduced before R2006a

3 Blocks — Alphabetical List

3-546

Integer-Input RS Encoder HDL Optimized
Encode data using a Reed-Solomon encoder

Library
Block sublibrary of Error Correction and Detection

Description
Reed-Solomon encoding follows the same standards as any other cyclic redundancy code.
The Integer-Input RS Encoder HDL Optimized block can be used to model many
communication system Forward Error Correcting (FEC) codes.

For more about the Reed-Solomon encoder, see the Integer-Input RS Encoder block
reference. For more information on representing data for Reed-Solomon codes, see
“Integer Format (Reed-Solomon Only)”.

Signal Attributes
The Integer-Input RS Encoder HDL Optimized block has four input ports and four output
ports.

 Integer-Input RS Encoder HDL Optimized

3-547

Port Direction Description Data Type
dataIn Input Message data, one symbol at a time. The

wordlength of each symbol must be
ceil(log2(codewordLength+1)).

Integer or
fixdt with
any binary
point scaling.
double is
allowed for
simulation
but not for
HDL code
generation.

startIn Input Indicates the start of a frame of data. Boolean
endIn Input Indicates the end of a frame of data. Boolean
validIn Input Indicates that input data is valid. Boolean
dataOut Output Message data with the checksum

appended. The data width is the same as
the input data port.

Same as
dataIn

startOut Output Indicates the start of a frame of data. Boolean
endOut Output Indicates the end of a frame of data,

including checksum.
Boolean

validOut Output Indicates that output data is valid. Boolean

Parameters
Codeword length

The length of the code word, N, must be equal to 2M-1, where M is the input word
length. M can be between 3 and 16 bits.

Message length
The message length, K. The number of parity symbols, N-K, must be a positive even
integer, greater than or equal to the input word length, M.

Each input frame, i.e. the number of valid data samples between start and end,
must contain more than N-K symbols, and fewer than or equal to K symbols. A
shortened code is inferred anytime the number of input data samples in a frame is
less than K.

3 Blocks — Alphabetical List

3-548

Source of primitive polynomial
Select Property to enable the Primitive polynomial parameter.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending order of
powers. When you provide a primitive polynomial, the number of input bits, M, must
be an integer multiple of K times the order of the primitive polynomial.

This parameter applies when only when Property is selected for Primitive
polynomial.

Source of puncture pattern
Select Property to enable the Puncture pattern vector parameter.

Puncture pattern vector
A column vector of length N-K. In a puncture vector, 1 represents that the data
symbol passes unaltered. The value 0 represents that the data symbol is punctured, or
removed from the data stream.

The default value is [ones(2,1); zeros(2,1)].

This field is available only when Property is selected for Source of puncture
pattern.

Source of B, the starting power for roots of the primitive polynomial
Select Property to enable the B value parameter. When you select Auto, the block
uses B = 1.

B value
The starting exponent of the roots.

This field is available only when you select Property for Source of B, the starting
power for roots of the primitive polynomial.

The generator polynomial is not specified explicitly. However, it is defined by the code
word length, the message length, and the B value for the starting exponent of the
roots. To get the value of B from a generator polynomial, use the genpoly2b
function. The default value is 1.

 Integer-Input RS Encoder HDL Optimized

3-549

Algorithm

Timing Diagram

Examples
“Using HDL Optimized RS Encoder/Decoder Library Blocks”

Pair Block
Integer-Output RS Decoder HDL Optimized

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

3 Blocks — Alphabetical List

3-550

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
Blocks
Integer-Input RS Encoder | Integer-Output RS Decoder HDL Optimized

Objects
comm.HDLRSEncoder

Introduced in R2012b

 Integer-Input RS Encoder HDL Optimized

3-551

Integer-Output RS Decoder
Decode Reed-Solomon code to recover integer vector data
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The Integer-Output RS Decoder block recovers a message vector from a Reed-Solomon
codeword vector. For proper decoding, the parameter values in this block must match
those in the corresponding Integer-Input RS Encoder block.

The Reed-Solomon code has message length K, and codeword length N – number of
punctures. You specify N and K directly in the block dialog. The symbols for the code are
integers in the range [0, 2M-1], which represent elements of the finite field GF(2M).
Restrictions on M and N are described in “Restrictions on the M and the Codeword
Length N” on page 3-559 below.

This icon shows optional ports.

The input and output are integer-valued signals that represent codewords and messages,
respectively. For more information, see “Input and Output Signal Length in RS Blocks” on
page 3-557. The block inherits the output data type from the input data type. For
information about the data types each block port supports, see “Supported Data Types”
on page 3-561.

For more information on representing data for Reed-Solomon codes, see the section
“Integer Format (Reed-Solomon Only)”.

If the decoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

3 Blocks — Alphabetical List

3-552

The default value of M is ceil(log2(N+1)), that is, the smallest integer greater than or
equal to log2(N+1). You can change the value of M from the default by specifying the
primitive polynomial for GF(2M), as described in “Specify the Primitive Polynomial” on
page 3-559 below.

You can also specify the generator polynomial for the Reed-Solomon code, as described in
“Specify the Generator Polynomial” on page 3-559.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit
errors) in each codeword.

If decoding fails, the message portion of the decoder input is returned unchanged as the
decoder output.

The sample times of the input and output signals are equal.

Ports

Input
In — Reed-Solomon codeword
integer column vector

Reed-Solomon codeword, specified as an (NC×(N – K + S – P)-by-1 integer column vector.
NC is the number of codewords, N is the Codeword length N, K is the Message length
K, S is the Shortened message length S, P is the number of punctures per codeword.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-557.
Data Types: single | double | integer

Era — Erasure vector
binary column vector

Erasure vector, specified as a binary column vector input signal with the same size as the
input Reed-Solomon codeword.

Erasure values of 1 correspond to erased bits in the same position in the codeword.
Values of 0 correspond to bits that are not erased. For more information, see “Puncturing
and Erasures” on page 3-560.

 Integer-Output RS Decoder

3-553

Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Output
Out — Decoded message
integer column vector

Decoded message, returned as one of the following:

• When there is no message shortening, a (NC×K)-by-1 integer column vector.
• When there is message shortening, a (NC×S)-by-1 integer column vector.

NC is the number of message words, K is the Message length K (symbols), and S is the
Shortened message length S (symbols).

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 3-557.

Err — Decoding errors
integer vector

Symbol decoding errors, returned as an integer vector with NC elements, where NC is the
number of codewords. This port indicates the number of symbol errors detected during
decoding of each codeword. A negative integer indicates that the block detected more
errors than it could correct by using the specified coding scheme.

Note An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword. When a received codeword contains more than (N-K)/2
symbol errors, a decoding failure occurs.

Dependencies

To enable this port, select Output number of corrected symbol errors.

3 Blocks — Alphabetical List

3-554

Data Types: double

For more information, see “Supported Data Types” on page 3-561.

Parameters
Codeword length N — Codeword length
7 (default) | integer

Codeword length, specified as an integer.

For more information, see“Restrictions on the M and the Codeword Length N” on page 3-
559 and “Input and Output Signal Length in RS Blocks” on page 3-557.

Message length K — Message word length
3 (default) | integer

Message word length, specified as an integer in the range [1, N–2], where N is the
codeword length.

Shortened message length S — Shortened message word length
3 (default) | integer

Shortened message word length, specified as an integer, such that S ≤ K. When
Shortened message length S < Message length K, the Reed-Solomon code is
shortened.

You still specify N and K values for the full-length (N, K) code but the decoding is
shortened to an (N–K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial
rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector |
binary row vector | binary Galois row vector

Generator polynomial with values in the range [0, 2M–1], in order of descending power,
specified as one of the following:

 Integer-Output RS Decoder

3-555

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• An integer row vector that represents the coefficients of the generator polynomial in
order of descending power.

• An integer Galois row vector that represents the coefficients of the generator
polynomial in order of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For
more information, see “Specify the Generator Polynomial” on page 3-543.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial
'X^3 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. This polynomial is of order M and
defines the finite Galois field GF(2M) corresponding to the integers that form message
words and codewords. Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Character Representation
of Polynomials”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Specify the Primitive Polynomial” on page 3-543.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code,
de2bi(primpoly(3,'nodisplay'),'left-msb')

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector
[ones(2,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s
represent data symbol indices that pass through the block unaltered. Element indices
with 0s represent data symbol indices that get punctured, or removed, from the data
stream. For more information, see “Puncturing and Erasures” on page 3-560.

3 Blocks — Alphabetical List

3-556

Note If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

Dependencies

To enable this parameter, select Puncture code.

Enable erasures input port — Enable erasures input port
off (default) | on

Selecting this check box enables the erasures port, Era. For more information, see
“Puncturing and Erasures” on page 3-560.

Output number of corrected symbol errors — Enable port to output number
of corrected symbol errors
off (default) | on

Selecting this check box enables an additional output port, Err, which indicates the
number of symbol errors the block corrected in the input codeword.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Input and Output Signal Length in RS Blocks
The Reed-Solomon code has a message word length, K, or shortened message word
length, S. The codeword length is N – K + S – P, where N is the full codeword length and
P is the number of punctures per codeword. When there is no message shortening, the

 Integer-Output RS Decoder

3-557

codeword length expression reduces to N – P, because K = S. If the decoder is processing
multiple codewords per frame, then the same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-
Solomon encoder and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening

Used
Message Shortening Used

Integer-Input RS Encoder Input Length (symbols):

NC × K

Output Length (symbols):

NC × (N–P)

Input Length (symbols):

NC × S

Output Length (symbols):

NC × (N–K+S–P)
Integer-Output RS Decoder Input Length (symbols):

NC × (N–P)

Erasures Length
(symbols):

NC × (N–P)

Output Length (symbols):

NC × K

Input Length (symbols):

NC × (N–K+S–P)

Erasures Length
(symbols):

NC × (N–K+S–P)

Output Length (symbols):

NC × S

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures, and is equal to the number of zeros in the puncture

vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an

integer between 0 and 2M–1 that belongs to the finite Galois field GF(2M).

3 Blocks — Alphabetical List

3-558

For more information on representing data for Reed-Solomon codes, see “Integer Format
(Reed-Solomon Only)”.

Restrictions on the M and the Codeword Length N
• If you do not select Specify primitive polynomial, valid values for the codeword

length, N, are from 7 to 65535. In this case, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default primitive
polynomial by running primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial
degree, M, are from 3 to 16. The valid values for N in this case are from 7 to 2M–1.
Selecting Specify primitive polynomial enables you to specify the primitive
polynomial that defines the finite field GF(2M), which corresponds to the values that
form message words and codewords.

Specify the Primitive Polynomial
You can specify the primitive polynomial that defines the finite field GF(2M),
corresponding to the integers that form messages and codewords. To do so, first select
Specify primitive polynomial. Then, in the Primitive polynomial text box, enter a
binary row vector that represents a primitive polynomial over GF(2M), in descending
order of powers. For example, to specify the polynomial x3+x+1, enter the vector [1 0 1
1].

If you do not select Specify primitive polynomial, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default polynomial by
entering primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Specify the Generator Polynomial
Select Specify generator polynomial to enable the Generator polynomial parameter
for specifying the generator polynomial of the Reed-Solomon code. Enter an integer row
vector with element values from 0 to 2M-1. The vector represents a polynomial, in
descending order of powers, whose coefficients are elements of GF(2M) represented in
integer format. For more information about integer and binary format, see “Integer
Format (Reed-Solomon Only)”. The generator polynomial must be equal to a polynomial
with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

 Integer-Output RS Decoder

3-559

α is the primitive element of the Galois field over which the input message is defined, and
b is an integer.

If you do not select Specify generator polynomial, the block uses the default generator
polynomial, corresponding to b=1, for Reed-Solomon encoding. You can display the
default generator polynomial by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is
not selected), the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial
is selected) and you specify the primitive polynomial as poly, the generator
polynomial is rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length
and K is the message word length.

Puncturing and Erasures
1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see
“Shortening, Puncturing, and Erasures”.

3 Blocks — Alphabetical List

3-560

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• If the input is uint8, uint16, or uint32, then the number of

errors output datatype is int8, int16, or int32, respectively.

Pair Block
Integer-Input RS Encoder

Algorithms
This block uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see “Algorithms for BCH and RS Errors-only Decoding”.

References
[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage.

Upper Saddle River, N.J.: Prentice Hall, 1995.

 Integer-Output RS Decoder

3-561

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital
Communications, New York: Plenum Press, 1981.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Output RS Decoder

Objects
comm.RSDecoder

Functions
primpoly | rsdec | rsgenpoly

Introduced before R2006a

3 Blocks — Alphabetical List

3-562

Integer-Output RS Decoder HDL Optimized
Decode data using a Reed-Solomon decoder

Library
Block sublibrary of Error Correction and Detection

Description
Reed-Solomon encoding follows the same standards as any other cyclic redundancy code.
The Integer-Output RS Decoder HDL Optimized block can be used to model many
communication system Forward Error Correcting (FEC) codes.

For more about the Reed-Solomon decoder, see the Integer-Output RS Decoder block
reference. For more information on representing data for Reed-Solomon codes, see
“Integer Format (Reed-Solomon Only)”.

Signal Attributes
The Integer-Output RS Decoder HDL Optimized block has four input ports and six output
ports (5 required, 1 optional).

 Integer-Output RS Decoder HDL Optimized

3-563

Port Direction Description Data Type
dataIn Input Message data, one symbol at a time. Integer or fixdt

with any binary
point scaling.
double is allowed
for simulation but
not for HDL code
generation.

startIn Input Indicates the start of a frame of data. Boolean
endIn Input Indicates the end of a frame of data. Boolean
validIn Input Indicates that input data is valid. Boolean
dataOut Output Message data with the checksum

appended. The data width is the
same as the input data port.

Same as dataIn

startOut Output Indicates the start of a frame of data. Boolean
endOut Output Indicates the end of a frame of data,

including checksum.
Boolean

validOut Output Indicates that output data is valid. Boolean
errOut Output Indicates the corruption of the

received data when error is high.
Boolean

numErrors Output
(optional)

Count of detected errors. uint8

Troubleshooting
• Each input frame must contain more than (N-K)*2 symbols, and fewer than or equal

to N symbols. A shortened code is inferred when the number of valid data samples
between startIn and endIn is less than N. A shortened code still requires N cycles to
perform the Chien search. If the input is less than N symbols, leave a guard interval of
at least N-size inactive cycles before starting the next frame.

• The decoder can operate on up to 4 messages at a time. If the block receives the start
of a fifth message before completely decoding the first message, the block drops data
samples from the first message. To avoid this issue, increase the number of inactive
cycles between input messages.

3 Blocks — Alphabetical List

3-564

• The generator polynomial is not specified explicitly. However, it is defined by the code
word length, the message length, and the B value for the starting exponent of the
roots. To get the value of B from a generator polynomial, use the genpoly2b function.

Parameters
Codeword length

The length of the code word in symbols, N, must be equal to 2M-1, where M is the
input word length. M can be between 3 and 16 bits.

Message length
The message length in symbols, K. The number of parity symbols, N-K, must be a
positive even integer, greater than or equal to the input word length, M.

Source of primitive polynomial
Select Property to enable the Primitive polynomial parameter.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending order of
powers. When you provide a primitive polynomial, the number of input bits must be
an integer multiple of K times the order of the primitive polynomial instead.

This parameter applies when only when Property is selected for Primitive
polynomial.

Source of B, the starting power for roots of the primitive polynomial
Select Property to enable the B value parameter. When you select Auto, the block
uses B = 1.

B value
The starting exponent of the roots.

This field is available only when you select Property for Source of B, the starting
power for roots of the primitive polynomial. The default is 1.

Enable number of errors output
Check this box to enable the numErrors output port. This port outputs the detected
symbol error count.

 Integer-Output RS Decoder HDL Optimized

3-565

Algorithm

Timing Diagram

Examples
“Using HDL Optimized RS Encoder/Decoder Library Blocks”

Pair Block
Integer-Input RS Encoder HDL Optimized

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

3 Blocks — Alphabetical List

3-566

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Integer-Input RS Encoder HDL Optimized | Integer-Output RS Decoder

Objects
comm.HDLRSDecoder

Introduced in R2012b

 Integer-Output RS Decoder HDL Optimized

3-567

Integer to Bit Converter
Map vector of integers to vector of bits

Library
Utility Blocks

Description
The Integer to Bit Converter block maps each integer (or fixed-point value) in the input
vector to a group of bits in the output vector.

The block maps each integer value (or stored integer when you use a fixed point input) to
a group of M bits, using the selection for the Output bit order to determine the most
significant bit. The resulting output vector length is M times the input vector length.

When you set the Number of bits per integer parameter to M and Treat input values
as to Unsigned, then the input values must be between 0 and 2M-1. When you set
Number of bits per integer to M and Treat input values as to Signed, then the input
values must be between –2M-1 and 2M-1-1. During simulation, the block performs a run-
time check and issues an error if any input value is outside of the appropriate range.
When the block generates code, it does not perform this run-time check.

This block is single-rate and single-channel. It accepts a length N column vector or a
scalar-valued (N = 1) input signal and outputs a length N·M column vector.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, double, and fixed point.

3 Blocks — Alphabetical List

3-568

Dialog Box

Number of bits per integer
The number of bits the block uses to represent each integer of the input. This
parameter must be an integer between 1 and 32.

Treat input values as
Indicate if the integer value input ranges should be treated as signed or unsigned.
The default setting is Unsigned.

Output bit order
Define whether the first bit of the output signal is the most significant bit (MSB) or
the least significant bit (LSB). The default selection is MSB first.

Output data type
You can choose the following Output data type options:

• Inherit via internal rule
• Smallest integer

 Integer to Bit Converter

3-569

• Same as input
• double
• single
• uint8
• uint16
• uint32

The default selection for this parameter is Inherit via internal rule.

When the parameter is set to Inherit via internal rule, the block determines
the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data
type is the same as the input data type.

• If the input data type is not floating-point, the output data type is determined as if
the parameter is set to Smallest integer.

When the parameter is set to Smallest integer, the block selects the output data
type based on settings used in the “Hardware Implementation Pane” (Simulink) of the
Configuration Parameters dialog box.

• If you select ASIC/FPGA, the output data type is the ideal one-bit size; ufix1.
• For all other selections, the output data type is an unsigned integer with the

smallest available word length, as defined in the Hardware Implementation
settings (e.g. uint8)

Examples

Fixed-Point Integer To Bit and Bit To Integer Conversion
(Audio Scrambling and Descrambling Example)
Overview

This example illustrates how to use the Bit to Integer and Integer to Bit Converter blocks
with fixed-point signals.

3 Blocks — Alphabetical List

3-570

This example uses a simplified audio scrambler configuration and a 16-bit, fixed-point
digital audio source, which is recorded speech. The left-side of the model represents the
audio scrambler subsystem and the right-side represents the descrambler subsystem.

Opening the Model

You can open the model by typing doc_audioscrambler at the MATLAB command line.

Structure

In the audio scrambler subsystem, the Integer to Bit Converter block unpacks each 16-bit
audio sample into a binary, 1-bit signal. The binary signal passes to a linear feedback shift
register (LFSR) scrambler, which randomizes the bits in a controllable way, thereby
scrambling the signal. The Communications Toolbox Scrambler block is used in the LFSR
implementation. From the LFSR, the scrambled audio bits pass to the Bit to Integer
Converter block. This block packs the scrambled 1-bit samples into 16-bit audio samples.
The audio samples pass to the Data Type Conversion block, which converts the integer-
based audio samples back into fixed-point samples.

The fixed-point samples pass from the scrambler subsystem to a channel. The channel
sends the samples to the descrambler subsystem. For illustrative purposes, this example
uses a noiseless channel. In an actual system, a channel may introduce noise. Removing
such noise requires a more sophisticated design.

In the audio descrambler subsystem, the Integer to Bit Converter block unpacks each 16-
bit audio sample into a binary, 1-bit signal. The binary signal passes to a linear feedback
shift register (LFSR) descrambler, which randomizes the bits in a controllable way,
reversing the scrambling process. This LFSR descrambler implementation uses the
Communications Toolbox Descrambler block. From the LFSR, the descrambled audio bits
pass to the Bit to Integer Converter block. This block packs the descrambled 1-bit
samples into 16-bit audio samples. The audio samples pass to the Data Type Conversion
block, which converts the integer-based audio samples back into fixed-point samples.

In Simulink, the sfix16_En15 data type represents a signed (s) fixed-point (fix) signal with
word length 16 and fraction length 15. Therefore, this model represents audio signals
using the sfix16_En15 data type, except when converting to and from 1-bit binary signals.
All 1-bit signals are represented by ufix1, as seen at the output of the Integer to Bit
Converter block. The audio source has a frame size (or number of samples per frame) of
1024. For more information on fixed-point signals, please refer to Fixed-Point Numbers in
the Simulink documentation.

 Integer to Bit Converter

3-571

matlab:doc_audioscrambler

Running the Model

You must run the example before you can listen to any of the audio signals.

You can run the example by clicking Simulation > Run.

You can hear the audio signals by clicking the model’s yellow, audio icons.

Converter Block Settings

In the audio scrambler and descrambler subsystems, the Integer to Bit Converter block
settings are:

• Number of bits per integer: 16

3 Blocks — Alphabetical List

3-572

• Treat input values as: Signed
• Output bit order: MSB first
• Output data type: Inherit via internal rule

In the audio scrambler and descrambler subsystems, the Bit to Integer Converter block
settings are:

• Number of bits per integer: 16
• Input bit order: MSB first
• After bit packing, treat resulting integer values as: Signed
• Output data type: Inherit via internal rule

Pair Block
Bit to Integer Converter on page 3-108

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bit to Integer Converter on page 3-108

Functions
de2bi | dec2bin

Introduced before R2006a

 Integer to Bit Converter

3-573

Integrate and Dump
Integrate discrete-time signal, resetting to zero periodically

Library
Comm Filters

Description
The Integrate and Dump block creates a cumulative sum of the discrete-time input signal,
while resetting the sum to zero according to a fixed schedule. When the simulation
begins, the block discards the number of samples specified in the Offset parameter. After
this initial period, the block sums the input signal along columns and resets the sum to
zero every N input samples, where N is the Integration period parameter value. The
reset occurs after the block produces its output at that time step.

Receiver models often use the integrate-and-dump operation when the system's
transmitter uses a simple square-pulse model. Fiber optics and in spread-spectrum
communication systems, such as CDMA (code division multiple access) applications, also
use the operation.

This block accepts a scalar, column vector, or matrix input signal. When the input signal is
not a scalar value, it must contain k·N rows for some positive integer k. For these input
signals, the block processes each column independently.

Selecting Output intermediate values affects the contents, dimensions, and sample
time as follows:

• If you clear the check box, then the block outputs the cumulative sum at each reset
time.

3 Blocks — Alphabetical List

3-574

• If the input is a scalar value, then the output sample time is N times the input
sample time and the block experiences a delay whose duration is one output
sample period. In this case, the output dimensions match the input dimensions.

• If the input is a (k·N)-by-n matrix, then the output is k-by-n. In this case, the block
experiences no delay and the output period matches the input period.

• If you select the check box, then the block outputs the cumulative sum at each time
step. The output has the same sample time and the same matrix dimensions as the
input.

Transients and Delays
A nonzero value in the Offset parameter causes the block to output one or more zeros
during the initial period while it discards input samples. If the input is a matrix with n
columns and the Offset parameter is a length-n vector, then the mth element of the Offset
vector is the offset for the mth column of data. If Offset is a scalar, then the block applies
the same offset to each column of data. The output of initial zeros due to a nonzero Offset
value is a transient effect, not a persistent delay.

When you clear Output intermediate values, the block's output is delayed, relative to
its input, throughout the simulation:

• If the input is a scalar value, then the output is delayed by one sample after any
transient effect is over. That is, after removing transients from the input and output,
you can see the result of the mth integration period in the output sample indexed by m
+1.

• If the input is a column vector or matrix and the Offset parameter is nonzero, then
after the transient effect is over, the result of each integration period appears in the
output frame corresponding to the last input sample of that integration period. This is
one frame later than the output frame corresponding to the first input sample of that
integration period, in cases where an integration period spans two input frames. For
an example of this situation, see “Example of Transient and Delay” on page 3-579.

Parameters
Integration period

The number of input samples between resets.

 Integrate and Dump

3-575

Offset
A nonnegative integer vector or scalar specifying the number of input samples to
discard from each column of input data at the beginning of the simulation.

Output intermediate values
Determines whether the block outputs the intermediate cumulative sums between
successive resets.

Fixed-Point Signal Flow Diagram

Fixed-Point Attributes
The settings for the following parameters only apply when block inputs are fixed-point
signals.

Rounding mode
Use this parameter to specify the rounding method to be used when the result of a
fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result.

For more information, see “Rounding Modes” (DSP System Toolbox) or “Rounding
Mode: Simplest” (Fixed-Point Designer).

Saturate on integer overflow
Use this parameter to specify the method to be used if the magnitude of a fixed-point
calculation result does not fit into the range of the data type and scaling that stores
the result:

3 Blocks — Alphabetical List

3-576

• Saturate represents positive overflows as the largest positive number in the range
being used, and negative overflows as the largest negative number in the range
being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable
range of the data type. See “Modulo Arithmetic” (Fixed-Point Designer) for more
information.

Accumulator—Mode
Use the Accumulator—Mode parameter to specify how you would like to designate
the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the block automatically
calculates the accumulator output word and fraction lengths.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator.

Output
Use the Output parameter to choose how you specify the word length and fraction
length of the output of the block:

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, enter the word length and the fraction
length of the output, in bits.

• When you select Slope and bias scaling, enter the word length, in bits, and
the slope of the output.

For additional information about the parameters pertaining to fixed-point applications,
see “Specify Fixed-Point Attributes for Blocks” (DSP System Toolbox).

 Integrate and Dump

3-577

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Fixed-point

Examples
If Integration period is 4 and Offset is the scalar 3, then the table below shows how the
block treats the beginning of a ramp (1, 2, 3, 4,...) in several situations. (The values
shown in the table do not reflect vector sizes but merely indicate numerical values.)

Output intermediate
values Check Box

Input Signal
Properties

First Several Output Values

Cleared Scalar 0, 0, 4+5+6+7, and 8+9+10+11,
where one 0 is an initial transient
value and the other 0 is a delay value
that results from the cleared check
box and scalar value input.

Cleared Column vector of length
4

0, 4+5+6+7, and 8+9+10+11, where 0
is an initial delay value that results
from the nonzero offset. The output is
a scalar value.

Selected Scalar 0, 0, 0, 4, 4+5, 4+5+6, 4+5+6+7, 8,
8+9, 8+9+10, 8+9+10+11, and 12,
where the three 0s are initial
transient values.

3 Blocks — Alphabetical List

3-578

Output intermediate
values Check Box

Input Signal
Properties

First Several Output Values

Selected Column vector of length
4

0, 0, 0, 4, 4+5, 4+5+6, 4+5+6+7, 8,
8+9, 8+9+10, 8+9+10+11, and 12,
where the three 0s are initial
transient values. The output is a
column vector of length 4.

In all cases, the block discards the first three input samples (1, 2, and 3).

Example of Transient and Delay
The figure below illustrates a situation in which the block exhibits both a transient effect
for three output samples, as well as a one-sample delay in alternate subsequent output
samples for the rest of the simulation. The figure also indicates how the input and output
values are organized as column vectors. In each vector in the figure, the last sample of
each integration period is underlined, discarded input samples are white, and transient
zeros in the output are white.

Integrate

and Dump

Integration period = 5

O�set = 13

Output intermediate values cleared Input signal
 = column vector of length 10

The transient effect lasts for ceil(13/5) output samples because the block discards 13
input samples and the integration period is 5. The first output sample after the transient
effect is over, 80, corresponds to the sum 14+15+16+17+18 and appears at the time of
the input sample 18. The next output sample, 105, corresponds to the sum

 Integrate and Dump

3-579

19+20+21+22+23 and appears at the time of the input sample 23. Notice that the input
sample 23 is one frame later than the input sample 19; that is, this five-sample
integration period spans two input frames. As a result, the output of 105 is delayed
compared to the first input (19) that contributes to that sum.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Discrete-Time Integrator | Ideal Rectangular Pulse Filter | Windowed Integrator

Introduced before R2006a

3 Blocks — Alphabetical List

3-580

Interlacer
Alternately select elements from two input vectors to generate output vector

Library
Sequence Operations

Description
The Interlacer block accepts two inputs that have the same vector size, complexity, and
sample time. It produces one output vector by alternating elements from the first input
(labeled O for odd) and from the second input (labeled E for even) . As a result, the output
vector size is twice that of either input. The output vector has the same complexity and
sample time of the inputs.

Both input ports accept scalars or column vectors with the same number of elements. The
block accepts the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input
signal.

This block can be useful for combining in-phase and quadrature information from
separate vectors into a single vector.

Examples
If the two input vectors have the values [1; 2; 3; 4] and [5; 6; 7; 8], then the
output vector is [1; 5; 2; 6; 3; 7; 4; 8].

 Interlacer

3-581

Pair Block
Deinterlacer

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Deinterlacer | General Block Interleaver | Mux

Introduced before R2006a

3 Blocks — Alphabetical List

3-582

I/Q Imbalance
Create complex baseband model of signal impairments caused by imbalances between in-
phase and quadrature receiver components

Library
RF Impairments

Description
The I/Q Imbalance block creates a complex baseband model of the signal impairments
caused by imbalances between in-phase and quadrature receiver components. Typically,
these are caused by differences in the physical channels for the two components of the
signal.

The I/Q Imbalance block applies amplitude and phase imbalances to the in-phase and
quadrature components of the input signal, and then combines the results into a complex
signal. The block

1 Separates the signal into its in-phase and quadrature components.
2 Applies amplitude and phase imbalances, specified by the I/Q amplitude imbalance

(dB) and I/Q phase imbalance (deg) parameters, respectively, to both components.
3 Combines the in-phase and quadrature components into a complex signal.
4 Applies an in-phase dc offset, specified by the I dc offset parameter, and a

quadrature offset, specified by the Q dc offset parameter, to the signal.

The block performs these operations in the subsystem shown in the following diagram,
which you can view by right-clicking the block and selecting Mask > Look under mask:

 I/Q Imbalance

3-583

Let

Ia = I/Q amplitude imbalance

Ip = I/Q phase imbalance

IDC = in-phase DC offset

QDC = quadrature DC offset

Also let x = xr + j *xi be the complex input to the block, with xr and xi being the real and
imaginary parts, respectively, of x. Let y be the complex output of the block.

Then, for an I/Q amplitude imbalance, Ia

y AmplitudeImbalance = [10(0.5 *
Ia
20) * xr] + j[10(− 0.5 *

Ia
20) * xi]

≜ y rAmplitudeImbalance
 + j*yiAmplitudeImbalance

For an I/Q phase imbalance Ip

yPhaseImbalance =
[exp(− 0.5 * j * π * Ip

180) * yrAmplitudeImbalance] + exp[j(π
2 + 0.5 * π * Ip

180)] * yiAmplitudeImbalance

3 Blocks — Alphabetical List

3-584

≜ yrPhaseImbalance
+ j * yiPhaseImbalance

For DC offsets IDC and QDC

y = (yr PhaseImbalance
 + IDC) + j * (yiPhaseImbalance

 + QDC)

The value of the I/Q amplitude imbalance (dB) parameter is divided between the in-
phase and quadrature components such that the block applies a gain of +X/2 dB to the in-
phase component and a gain of -X/2 dB to the quadrature component where X can be
positive or negative.

The effects of changing the block's parameters are illustrated by the following scatter
plots of a signal modulated by 16-ary quadrature amplitude modulation (QAM) with an
average power of 0.01 watts. The usual 16-ary QAM constellation without distortion is
shown in the first scatter plot:

The following figure shows a scatter plot of an output signal, modulated by 16-ary QAM,
from the I/Q block with I/Q amplitude imbalance (dB) set to 8 and all other parameters
set to 0:

 I/Q Imbalance

3-585

Observe that the scatter plot is stretched horizontally and compressed vertically
compared to the undistorted constellation.

If you set IQ phase imbalance (deg) to 30 and all other parameters to 0, the scatter
plot is skewed clockwise by 30 degrees, as shown below:

3 Blocks — Alphabetical List

3-586

Setting the I dc offset to 0.02 and the Q dc offset to 0.04 shifts the constellation 0.02
to the right and 0.04 up, as shown below:

 I/Q Imbalance

3-587

See “Illustrate RF Impairments That Distort a Signal” for a description of the model that
generates this plot.

Parameters
I/Q amplitude imbalance (dB)

Scalar specifying the I/Q amplitude imbalance in decibels.
I/Q phase imbalance (deg)

Scalar specifying the I/Q phase imbalance in degrees.
I dc offset

Scalar specifying the in-phase dc offset.
Q dc offset

Scalar specifying the amplitude dc offset.

See Also
Memoryless Nonlinearity

Introduced before R2006a

3 Blocks — Alphabetical List

3-588

I/Q Compensator Coefficient to Imbalance
Convert compensator coefficient into amplitude and phase imbalance

Library
RF Impairments Correction

Description
The I/Q Compensator Coefficient to Imbalance block converts a compensator coefficient
into its equivalent amplitude and phase imbalance.

This block has a single input port, which accepts a complex coefficient or a vector of
coefficients. There are amplitude and phase imbalance output ports both of which are
real. The amplitude imbalance is expressed in dB while the phase imbalance is expressed
in degrees.

Algorithms
See the iqcoef2imbal function reference page for more information on the inputs,
outputs, and algorithms.

 I/Q Compensator Coefficient to Imbalance

3-589

Supported Data Types
Port Supported Data Types
Compensator Coefficient • Double-precision, complex floating point

• Single-precision, complex floating point
Amplitude Imbalance (dB) • Double-precision floating point

• Single-precision floating point
Phase Imbalance (deg) • Double-precision floating point

• Single-precision floating point

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Imbalance Compensator

Functions
iqcoef2imbal

Introduced in R2014b

3 Blocks — Alphabetical List

3-590

I/Q Imbalance Compensator
Compensate for imbalance between in-phase and quadrature components

Library
RF Impairments Correction

Description
The I/Q Imbalance Compensator mitigates the effects of an amplitude and phase
imbalance between the in-phase and quadrature components of a modulated signal. The
supported modulation schemes include OFDM, M-PSK, and M-QAM, where M > 2.

This block accepts up to three input ports, of which one is the input signal. When you set
the Source of compensator coefficient parameter to Estimated from input
signal, two additional input ports are enabled. The first is enabled when you set the
Source of adaptation step size parameter to Input port and the second is enabled
when you check the Coefficient adaptation input port box. The two options are
independent. Additionally, you can check the Estimated coefficient output port box to
create an optional output port from which the estimated compensator coefficients are
made available.

When you set the Source of compensator coefficient parameter to Input port, only
one possible configuration is possible (input signal port, coefficient input port, and output
signal port).

 I/Q Imbalance Compensator

3-591

Parameters
Source of compensator coefficient

Specify the source of the compensator coefficients as Estimated from input
signal or Input port. If set to Estimated from input signal, the
compensator calculates the coefficients from the input signal. If set to Input port,
all other properties are disabled and you must provide the coefficients through the
input port. The default value is Estimated from input signal.

Initial compensator coefficient
Specify the initial coefficient used by the internal algorithm to compensate for the I/Q
imbalance. The default value is 0+0j.

Source of adaptation step size
Specify the source of the adaptation step size as Property or Input port. If set to
Property, specify the step size in the Adaptation step size field. If set to Input
port, you must specify the step size through an input port. The default value is
Property.

Adaptation step size
Specify the step size of the adaptation algorithm as a real scalar. This parameter is
available only when Source of adaptation step size is set to Property. The default
value is 0.00001.

Coefficient adaptation input port
Select this check box to create an input port that permits a signal to control the
adaptation process. If the check box is selected and if the input signal is true, the
estimated compensation coefficients are updated. If the adaptation port is not enabled
or if the input signal is false, the compensation coefficients do not change. By
default, the check box is not selected.

Estimated coefficient output port
Select this check box to provide the estimated compensation coefficients to an output
port. By default, the check box is not selected.

Algorithms
This block implements the algorithm, inputs, and outputs described on the
comm.IQImbalanceCompensator reference page. The object properties correspond to
the block parameters.

3 Blocks — Alphabetical List

3-592

Examples
Compensate for I/Q Imbalance
This example shows how to use the I/Q Imbalance Compensator block to remove the
effects of an amplitude and phase imbalance on a modulated signal.

Open the model, doc_iqimbcomp, from the MATLAB command prompt.

doc_iqimbcomp

The model includes these blocks:

• Random Integer Generator
• M-PSK Modulator Baseband
• I/Q Imbalance
• I/Q Imbalance Compensator
• Constellation Diagram

Double-click the I/Q Imbalance block. You can see that the I/Q amplitude imbalance
(dB) parameter is set to 5 and the I/Q phase imbalance (deg) parameter is also set to
5.

 I/Q Imbalance Compensator

3-593

matlab:doc_iqimbcomp

Run the model. In the Signal with I/Q Imbalance constellation diagram, observe the
effects of the amplitude imbalance and phase imbalance on the 8-PSK signal.

3 Blocks — Alphabetical List

3-594

Look at the Compensated Signal constellation diagram. Observe that the signal is not well
aligned with the reference constellation (shown in red).

 I/Q Imbalance Compensator

3-595

Increase the simulation time from 20 seconds to 100 seconds and run the model again.
You can see that the constellation is now well aligned with the reference constellation.
This is because the compensation algorithm is adaptive; consequently, it requires time to
accurately estimate the I/Q imbalance.

3 Blocks — Alphabetical List

3-596

Try changing other simulation parameters such as the step size in the I/Q Imbalance
Compensator block, the amplitude and phase imbalance in the I/Q Imbalance block, the
modulation type etc. Observe the effects on the Compensated Signal constellation
diagram.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point

 I/Q Imbalance Compensator

3-597

Port Supported Data Types
Signal Output • Double-precision floating point

• Single-precision floating point
Step Size • Double-precision floating point

• Single-precision floating point
Adaptation • Logical
Input Coefficients • Double-precision floating point

• Single-precision floating point
Output Coefficients • Double-precision floating point

• Single-precision floating point

See Also
I/Q Imbalance

comm.IQImbalanceCompensator

iqcoef2imbal

iqimbal2coef

Selected Bibliography

[1] Anttila, L., M. Valkama and M. Renfors. “Blind Compensation of Frequency-Selective
I/Q Imbalances in Quadrature Radio Receivers: Circularity-Based Approach”.
Proc. IEEE ICASSP. 2007, pp. III-245 -III-248.

[2] Kiayani, A., L. Anttila, Y. Zou, and M. Valkama, “Advanced Receiver Design for
Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF
Measurements”. Journal of Electrical and Computer Engineering. Vol. 2012.

Introduced in R2014b

3 Blocks — Alphabetical List

3-598

I/Q Imbalance to Compensator Coefficient
Converts amplitude and phase imbalance into I/Q compensator coefficient

Library
RF Impairments Correction

Description
The I/Q Imbalance to Compensator Coefficient block returns a complex coefficient to
compensate for amplitude and phase imbalance.

This block has an amplitude imbalance input port and a phase imbalance input port,
where the amplitude imbalance is a real number expressed in dB and the phase
imbalance is a real number expressed in degrees. The imbalance inputs are vectors. The
complex coefficients are returned from a single output port.

Algorithms
See iqimbal2coef for more information on the inputs, outputs, and algorithms.

 I/Q Imbalance to Compensator Coefficient

3-599

Supported Data Types
Port Supported Data Types
Compensator Coefficient • Double-precision, complex floating point

• Single-precision, complex floating point
Amplitude Imbalance (dB) • Double-precision floating point

• Single-precision floating point
Phase Imbalance (deg) • Double-precision floating point

• Single-precision floating point

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Imbalance Compensator

Functions
iqimbal2coef

Introduced in R2014b

3 Blocks — Alphabetical List

3-600

Kasami Sequence Generator
Generate Kasami sequence from set of Kasami sequences

Library
Sequence Generators sublibrary of Comm Sources

Description
The Kasami Sequence Generator block generates a sequence from the set of Kasami
sequences. The Kasami sequences are a set of sequences that have good cross-correlation
properties.

This block can output sequences that vary in length during simulation. For more
information about variable-size signals, see “Variable-Size Signal Basics” (Simulink).

Kasami Sequences
There are two sets of Kasami sequences: the small set and the large set. The large set
contains all the sequences in the small set. Only the small set is optimal in the sense of
matching Welch's lower bound for correlation functions.

Kasami sequences have period N = 2n - 1, where n is a nonnegative, even integer. Let u
be a binary sequence of length N, and let w be the sequence obtained by decimating u by
2n/2 +1. The small set of Kasami sequences is defined by the following formulas, in which
T denotes the left shift operator, m is the shift parameter for w, and ⊕ denotes addition
modulo 2.

Ks(u, n, m) =
u m = − 1

u⊕ Tmw m = 0, ..., 2n/2− 2

Small Set of Kasami Sequences for n Even

 Kasami Sequence Generator

3-601

Note that the small set contains 2n/2 sequences.

For mod(n, 4) = 2, the large set of Kasami sequences is defined as follows. Let v be the
sequence formed by decimating the sequence u by 2n/2 + 1+ 1. The large set is defined by
the following table, in which k and m are the shift parameters for the sequences v and w,
respectively.

KL(u, n, k, m) =

u k = − 2; m = − 1
v k = − 1; m = − 1

u⊕ Tkv k = 0, ..., 2n− 2; m = − 1

u⊕ Tmw k = − 2; m = 0, ..., 2n/2− 2

v⊕ Tmw k = − 1; m = 0, ..., 2n/2− 2

u⊕ Tkv⊕ Tmw k = 0, ..., 2n− 2; m = 0, ..., 2n/2− 2

Large Set of Kasami Sequences for mod(n, 4) = 2

The sequences described in the first three rows of the preceding figure correspond to the
Gold sequences for mod(n, 4) = 2. See the reference page for the Gold Sequence
Generator block for a description of Gold sequences. However, the Kasami sequences
form a larger set than the Gold sequences.

The correlation functions for the sequences takes on the values

{-t(n), -s(n), -1, s(n) -2 , t(n) - 2}

where

t(n) = 1 + 2(n + 2)/2, n even

s(n) = 1
2 t(n) + 1

Block Parameters
The Generator polynomial parameter specifies the generator polynomial, which
determines the connections in the shift register that generates the sequence u. You can
specify the Generator polynomial parameter using these formats:

• A polynomial character vector that includes the number 1, for example, 'z^4 + z +
1'.

3 Blocks — Alphabetical List

3-602

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For example, 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the
same polynomial, p(z) = z8+z2+1.

The Initial states parameter specifies the initial states of the shift register that
generates the sequence u. Initial States is a binary scalar or row vector of length equal
to the degree of the Generator polynomial. If you choose a binary scalar, the block
expands the scalar to a row vector of length equal to the degree of the Generator
polynomial, all of whose entries equal the scalar.

The Sequence index parameter specifies the shifts of the sequences v and w used to
generate the output sequence. You can specify the parameter in either of two ways:

• To generate sequences from the small set, for n is even, you can specify the Sequence
index as an integer m. The range of m is [-1, ..., 2n/2 - 2]. The following table describes
the output sequences corresponding to Sequence index m:

Sequence Index Range of Indices Output Sequence
-1 m = -1 u
m m = 0, ... , 2n/2 - 2 u⊕ Tmw

• To generate sequences from the large set, for mod (n, 4) = 2, where n is the degree of
the Generator polynomial, you can specify Sequence index as an integer vector [k
m]. In this case, the output sequence is from the large set. The range for k is [-2, ..., 2n

- 2], and the range for m is [-1, ..., 2n/2 - 2]. The following table describes the output
sequences corresponding to Sequence index [k m]:

Sequence Index [k
m]

Range of Indices Output Sequence

[-2 -1] k = -2, m = -1 u
[-1 -1] k = -1, m = -1 v
[k -1] k = 0, 1, ... , 2n - 2

m = -1

u⊕ Tkv

 Kasami Sequence Generator

3-603

Sequence Index [k
m]

Range of Indices Output Sequence

[-2 m] k = -2

m = 0, 1, ..., 2n/2 - 2

u⊕ Tmw

[-1 m] k = -1

m = 0, ... , 2n/2 - 2

v⊕ Tmw

[k m] k = 0, ... , 2n - 2

m = 0, ... , 2n/2 - 2

u⊕ Tkv⊕ Tmw

You can shift the starting point of the Kasami sequence with the Shift parameter, which is
an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift register to the
initial state by selecting Reset on nonzero input. This creates an input port for the
external signal in the Kasami Sequence Generator block. The way the block resets the
internal shift register depends on whether its output signal and the reset signal are
sample-based or frame-based. See “Resetting a Signal” on page 3-905 for an example.

Polynomials for Generating Kasami Sequences
The following table lists some of the polynomials that you can use to generate the Kasami
set of sequences.

n N Polynomial Set
4 15 [4 1 0] Small
6 63 [6 1 0] Large
8 255 [8 4 3 2 0] Small
10 1023 [10 3 0] Large
12 4095 [12 6 4 1 0] Small

3 Blocks — Alphabetical List

3-604

Parameters
Generator polynomial

Character vector or binary vector specifying the generator polynomial for the
sequence u.

Initial states
Binary scalar or row vector of length equal to the degree of the Generator
polynomial, which specifies the initial states of the shift register that generates the
sequence u.

Sequence index
Integer or vector specifying the shifts of the sequences v and w used to generate the
output sequence.

Shift
Integer scalar that determines the offset of the Kasami sequence from the initial time.

Output variable-size signals
Select this if you want the output sequences to vary in length during simulation. The
default selection outputs fixed-length signals.

Maximum output size source
Specify how the block defines maximum output size for a signal.

• When you select Dialog parameter, the value you enter in the Maximum
output size parameter specifies the maximum size of the output. When you make
this selection, the oSiz input port specifies the current size of the output signal
and the block output inherits sample time from the input signal. The input value
must be less than or equal to the Maximum output size parameter.

• When you select Inherit from reference port, the block output inherits
sample time, maximum size, and current size from the variable-sized signal at the
Ref input port.

This parameter only appears when you select Output variable-size signals. The
default selection is Dialog parameter.

Maximum output size
Specify a two-element row vector denoting the maximum output size for the block.
The second element of the vector must be 1. For example, [10 1] gives a 10-by-1
maximum sized output signal. This parameter only appears when you select Output
variable-size signals.

 Kasami Sequence Generator

3-605

Sample time
The time between each sample of a column of the output signal.

Samples per frame
The number of samples per frame in one channel of the output signal.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame
equal one, the block outputs a sample every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift registers
to the original values of the Initial states.

Output data type
The output type of the block can be specified as a boolean or double. By default,
the block sets this to double.

Example

Kasami Spreading with Two Users and Multipath
This model considers Kasami spreading for a combined two-user transmission in a
multipath environment.

Open the model here: kasami_sequence_block_example

modelname = 'kasami_sequence_block_example';
open_system(modelname);
sim(modelname);

3 Blocks — Alphabetical List

3-606

matlab:kasami_sequence_block_example

You can see very good user separation over multiple paths with the gains of combining.
This can be attributed to the "good" correlation properties of Kasami sequences, which
provide a balance between the ideal cross-correlation properties of orthogonal codes and
the ideal auto-correlation properties of PN sequences. See the relevant examples on the
Hadamard Code Generator and PN Sequence Generator reference pages.

To experiment with this model further, try selecting other path delays to see how the
performance varies for the same code. Also try different codes with the same delays.

 Kasami Sequence Generator

3-607

close_system(modelname, 0);

Reference
[1] Peterson and Weldon, Error Correcting Codes, 2nd Ed., MIT Press, Cambridge, MA,

1972.

[2] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

[3] Sarwate, D. V. and Pursley, M.B., "Crosscorrelation Properties of Pseudorandom and
Related Sequences," Proc. IEEE, Vol. 68, No. 5, May 1980, pp. 583-619.

Blocks
Gold Sequence Generator | Hadamard Code Generator | PN Sequence Generator

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

3 Blocks — Alphabetical List

3-608

LDPC Decoder
Decode binary low-density parity-check (LDPC) code
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The LDPC Decoder block uses the belief propagation algorithm to decode a binary LDPC
code, which is input to the block as the soft-decision output (log-likelihood ratio of
received bits) from demodulation. The block decodes generic binary LDPC codes where
no patterns in the parity-check matrix are assumed. For more information, see “Belief
Propagation Decoding” on page 3-613.

The input and output are discrete-time signals. The ratio of the output sample time to the
input sample time is:

• N/K when only the information-part of the codeword is decoded
• 1 when the entire codeword is decoded

N is the length of the received signal and must be in the range (0, 231). K is the length of
the uncoded message and must be less than N.

This icon shows all ports, including optional ports, for the LDPC Decoder block.

 LDPC Decoder

3-609

Ports

Input
In — Log-likelihood ratios
column vector

Log-likelihood ratios, specified as an N-by-1 column vector containing the soft-decision
output from demodulation. N is the number of bits in the LDPC codeword before
modulation. Each element is the log-likelihood ratio for a received bit and the value is
more likely to be 0 if the log-likelihood ratio is positive. The first K elements correspond
to the information-part of the input message.
Data Types: double

Output
Out — Decoded data
column vector

Decoded data, returned as a column vector. The Decision type parameter specifies
whether the block outputs hard decisions or soft decisions (log-likelihood ratios).

• If the Output format parameter is set to Information part, the output includes
only the information-part of the received codeword.

• If the Output format parameter is set to Whole codeword, the output includes the
whole log-likelihood ratio vector.

Data Types: double | Boolean

Iter — Number of executed decoding iterations
positive integer

Number of executed decoding iterations, returned as a positive integer.

Dependencies

To enable this port, select the Output number of iterations executed parameter.
Data Types: double

3 Blocks — Alphabetical List

3-610

ParChk — Final parity checks
column vector

Final parity checks after decoding the input LDPC code, returned as an (N-K)-by-1 column
vector. N is the number of bits in the LDPC codeword before modulation. K is the length
of the uncoded message.

Dependencies

To enable this port, select the Output final parity checks parameter.

Parameters
Parity-check matrix (sparse binary (N-K)-by-N matrix) — Parity-check
matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the
length of the received signal and must be in the range (0, 231). K is the length of the
uncoded message and must be less than N. The last (N – K) columns in the parity-check
matrix must be an invertible matrix in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I,
that defines the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This parameter accepts numeric data types. When you set this parameter to a sparse
binary matrix, this parameter also accepts the Boolean data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix
for half-rate LDPC coding, as specified in the DVB-S.2 standard.
Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2
standard, where R is the code rate, and 'indices' specifies the output format of
dvbs2ldpc as a two-column double-precision matrix that defines the row and column
indices of the 1s in the parity-check matrix.
Data Types: double | Boolean

Output format — Output value format
Information part (default) | Whole codeword

 LDPC Decoder

3-611

Output value format, specified as one of these values:

• Information part — The block outputs a K-by-1 column vector containing only the
information-part of the received log-likelihood ratio vector. K is the length of the
uncoded message.

• Whole codeword — The block outputs an N-by-1 column vector containing the whole
log-likelihood ratio vector. N is the length of the received signal.

N and K must align with the dimension of the (N–K)-by-K parity-check matrix.

Decision type — Decision method
Hard decision (default) | Soft decision

Decision method used for decoding, specified as one of these values:

• Hard decision — The block outputs decoded data of data type double or boolean.
Specify this data type using the Output data type parameter.

• Soft decision — The block outputs log-likelihood ratios of data type double.

Output data type — Output value data type
double (default) | boolean

Output value data type, specified as double or boolean.

Dependencies

To enable this parameter, set the Decision type parameter to Hard decision.

Number of iterations — Maximum number of decoding iterations
50 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.

Stop iterating when all parity-checks are satisfied — Condition for
iteration termination
off (default) | on

Select this parameter to terminate decoding after all parity checks are satisfied. If not all
parity checks are satisfied, decoding terminates after the number of iterations specified
by the Number of iterations parameter.

3 Blocks — Alphabetical List

3-612

Output number of iterations executed — Output number of iterations
executed
off (default) | on

Select this parameter to enable the Iter output port.

Output final parity-checks — Output number of iterations executed
off (default) | on

Select this parameter to enable the ParChk output port.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size
Signals

no

Algorithms
This block performs LDPC decoding using the belief propagation algorithm, also known as
a message-passing algorithm.

Belief Propagation Decoding
The implementation of the belief propagation algorithm is based on the decoding
algorithm presented by Gallager.

message LDPC

Encoder

LDPC

Decoder
Modulator Channel Demodulator

0 1 1(, , ,)
n

c c c
-

=c ... LLR ()
i

L c=

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC
decoder is the log-likelihood ratio (LLR) value

L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

 LDPC Decoder

3-613

In each iteration, the key components of the algorithm are updated based on these
equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for
transmitted bit ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-
decision output for ci is 1. Otherwise, the hard-decision output for ci is 0.

If configured to stop when all parity checks are satisfied, the algorithm verifies the parity-
check equation (H c' = 0) at the end of each iteration. When all parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj
correspond to all nonzero elements in column i and row j of the PCM, respectively.

This figure highlights the computation of these index sets in a given PCM for i = 5 and j =
3.

3 Blocks — Alphabetical List

3-614

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(-1) are set to
19.07 and –19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07)
and –1 for tanh(-19.07).

References
[1] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 LDPC Decoder

3-615

See Also
Blocks
LDPC Encoder

Objects
comm.LDPCDecoder

Functions
dvbs2ldpc

Introduced in R2007a

3 Blocks — Alphabetical List

3-616

LDPC Encoder
Encode binary low-density parity-check (LDPC) code
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The LDPC Encoder block applies LDPC coding to a binary input message. LDPC codes are
linear error control codes with sparse parity-check matrices and long block lengths that
can attain performance near the Shannon limit.

The input and output are discrete-time signals. The ratio of the output sample time to the
input sample time is K/N, where:

• N is the length of the received signal and must be in the range (0, 231).
• K is the length of the uncoded message and must be less than N.

Ports
Input
In — Input message
binary column vector

Input message, specified as a K-by-1 column vector containing binary-valued elements. K
is the length of the uncoded message.
Data Types: double | Boolean

Output
Out — LDPC codeword
column vector

 LDPC Encoder

3-617

LDPC codeword, returned as an N-by-1 column vector. N is the number of bits in the
LDPC codeword. The output signal inherits its data type from the input signal. The LDPC
codeword output is a solution to the parity-check equation. The input message comprises
the first K bits of the LDPC codeword output, and the parity check comprises the
remaining (N – K) bits.
Data Types: double | Boolean

Parameters
Parity-check matrix (sparse binary (N-K)-by-N matrix) — Parity-check
matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the
length of the output LDPC codeword and must be in the range (0, 231). K is the length of
the uncoded message and must be less than N. The last (N – K) columns in the parity-
check matrix must be an invertible matrix in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I,
that defines the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This parameter accepts numeric data types. When you set this parameter to a sparse
binary matrix, this parameter also accepts the Boolean data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix
for half-rate LDPC coding, as specified in the DVB-S.2 standard.

Note

• When the last (N – K) columns of the parity-check matrix form a triangular matrix,
forward or backward substitution is performed to solve the parity-check equation.

• When the last (N – K) columns of the parity-check matrix do not form a triangular
matrix, a matrix inversion is performed to solve the parity-check equation. If a large
matrix needs to be inverted, initializations or updates take more time.

Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2
standard, where R is the code rate, and 'indices' specifies the output format of

3 Blocks — Alphabetical List

3-618

dvbs2ldpc as a two-column double-precision matrix that defines the row and column
indices of the 1s in the parity-check matrix.
Data Types: double | Boolean

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
LDPC Decoder

Objects
comm.LDPCEncoder

Functions
dvbs2ldpc

Introduced in R2007a

 LDPC Encoder

3-619

Linear Equalizer
Equalize modulated signals using linear filtering
Library: Communications Toolbox / Equalizers

Description
The Linear Equalizer block uses a tapped delay line filter to equalize a linearly modulated
signal through a dispersive channel. Using an estimate of the channel modeled as a finite
input response (FIR) filter, the block processes input frames and outputs the estimated
signal.

This icon shows the block with all ports enabled for configurations that use the LMS or
RLS adaptive algorithm.

This icon shows the block with all ports enabled for configurations that use the CMA
adaptive algorithm.

3 Blocks — Alphabetical List

3-620

Ports
Input
in — Input signal
column vector

Input signal, specified as a column vector. The vector length of in must be equal to an
integer multiple of the Number of input samples per symbol parameter. For more
information, see “Symbol Tap Spacing” on page 3-628.
Data Types: double
Complex Number Support: Yes

Desired — Training symbols
column vector

Training symbols, specified as a column vector. The vector length of Desired must be less
than or equal to the length of input in. The Desired input port is ignored when the Train
input port is 0.
Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS.
Data Types: double
Complex Number Support: Yes

Train — Train equalizer flag
1 | 0

Train equalizer flag, specified as 1 or 0. The block starts training when this value changes
from 0 to 1 (at the rising edge). The block trains until all symbols in the Desired input
port are processed.
Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS and select the
Enable training control input parameter.
Data Types: Boolean

Update — Update tap weights flag
1 | 0

 Linear Equalizer

3-621

Update tap weights flag, specified as 1 or 0. The tap weights are updated when this value
is 1.
Dependencies

To enable this port, set the Adaptive algorithm parameter to CMA and the Source of
adapt weights flag parameter to Input port.
Data Types: Boolean

Reset — Reset equalizer flag
1 | 0

Reset equalizer flag, specified as 1 or 0. If Reset is set to 1, the block resets the tap
weights before processing the incoming signal. The block performs initial training until all
symbols in the Desired input port are processed.
Dependencies

To enable this port, select the Enable reset input parameter.
Data Types: Boolean

Output
Out — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal
in.

This port is unnamed until you select the Output error signal or Output taps weights
parameter.

Err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal in.

w — Tap weights
column vector

Tap weights, returned as an NTaps-by-1 vector, where NTaps is the value of the Number of
Taps parameter. w contains the tap weights from the last tap weight update.

3 Blocks — Alphabetical List

3-622

Parameters
Structure parameters

Number of taps — Number of equalizer taps
5 (default) | positive integer

Number of equalizer taps, specified as a positive integer.

Signal constellation — Signal constellation
pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation
generated using this code: pskmod(0:3,4,pi/4).

Tunable: Yes

Number of input samples per symbol — Number of input samples per symbol
1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this
parameter to any number greater than 1 effectively creates a fractionally spaced
equalizer. For more information, see “Symbol Tap Spacing” on page 3-628.

Algorithm parameters

Adaptive algorithm — Adaptive algorithm
LMS (default) | RLS | CMA

Adaptive algorithm used for equalization, specified as one of these values:

• LMS — Update the equalizer tap weights using the “Least Mean Square (LMS)
Algorithm” on page 3-630.

• RLS — Update the equalizer tap weights using the “Recursive Least Square (RLS)
Algorithm” on page 3-631.

• CMA — Update the equalizer tap weights using the “Constant Modulus Algorithm
(CMA)” on page 3-631.

Step size — Step size
0.01 (default) | positive scalar

 Linear Equalizer

3-623

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the
step size reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to LMS or CMA.

Forgetting factor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the
equalizer output estimates to be less stable.

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Initial inverse correlation matrix — Initial inverse correlation matrix
0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is
equal to the Number of Taps parameter value. If you specify this value as a scalar, a, the
equalizer sets the initial inverse correlation matrix to a times the identity matrix:
a(eye(NTaps)).

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Control parameters

Reference tap — Reference tap
3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the Number of Taps
parameter value. The equalizer uses the reference tap location to track the main energy
of the channel.

3 Blocks — Alphabetical List

3-624

Input signal delay (samples) — Input signal delay
0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a
nonnegative integer. If the input signal is a vector of length greater than 1, then the input
delay is relative to the start of the input vector. If the input signal is a scalar, then the
input delay is relative to the first call of the block and to the first call of the block after
the Reset input port toggles to 1.
Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Source of adapt weights flag — Source of adapt tap weights request
Property (default) | Input port

Source of the adapt tap weights request, specified as one of these values:

• Property — Specify this value to use the Adaptive algorithm parameter to control
when the block adapts tap weights.

• Input port — Specify this value to use the Update input port to control when the
block adapts tap weights.

Dependencies

To enable this parameter, set Adaptive algorithm to CMA.

Adapt tap weights — Adapt tap weights
on (default) | off

Select this parameter to adaptively update the equalizer tap weights. If this parameter is
cleared, the block keeps the equalizer tap weights unchanged.

Tunable: Yes
Dependencies

To enable this parameter, set Adaptive algorithm to CMA and Source of adapt weights
flag to Property.

Initial tap weights source — Source for initial tap weights
Auto (default) | Property

Source for initial tap weights, specified as one of these values:

 Linear Equalizer

3-625

• Auto — Initialize the tap weights to the algorithm-specific default values, as described
in the Initial weights parameter.

• Property — Initialize the tap weights using the Initial weights parameter value.

Initial weights — Initial tap weights
0 or [0;0;1;0;0] (default) | scalar | column vector

Initial tap weights used by the adaptive algorithm, specified as a scalar or an NTaps-by-1
vector. NTaps is equal to the Number of Taps parameter value. The default is 0 when the
Adaptive algorithm parameter is set to LMS or RLS. The default is [0;0;1;0;0] when
the Adaptive algorithm parameter is set to CMA.

If you specify Initial weights as a vector, the vector length must be equal to the Number
of Taps parameter value. If you specify Initial weights as a scalar, the equalizer uses
scalar expansion to create a vector of length Number of Taps with all values set to
Initial weights.

Tunable: Yes

Dependencies

To enable this parameter, set Initial tap weights source to Property.

Tap weight update period (symbols) — Tap weight update period
1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer
updates the tap weights after processing this number of symbols.

Enable training control input — Enable training control input
off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block
does not reenter training mode after the initial tap training.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

3 Blocks — Alphabetical List

3-626

Update tap weights when not training — Update tap weights when not
training
on (default) | off

Select this parameter to use decision directed mode to update equalizer tap weights. If
this parameter is cleared, the block keeps the equalizer tap weights unchanged after
training.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Enable reset input — Enable reset input
off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block
does not reenter training mode after the initial tap training.

Tunable: Yes

Diagnostic parameters

Output error signal — Enable error signal output
off (default) | on

Select this parameter to enable output port Err containing the equalizer error signal.

Tunable: Yes

Output taps weights — Enable tap weights output
off (default) | on

Select this parameter to enable output port w containing tap weights from the last tap
weight update.

Tunable: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

 Linear Equalizer

3-627

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Symbol Tap Spacing
You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional
symbol-spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per
symbol as 1. Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-
rate equalizers are sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of
input samples per symbol as an integer greater than 1 and provide an input signal
oversampled at that sampling rate. Fractional symbol-spaced equalizers have taps
spaced at an integer fraction of the input symbol duration. Fractional symbol-spaced
equalizers are not sensitive to timing phase.

3 Blocks — Alphabetical List

3-628

Algorithms

Linear Equalizers
Linear equalizers can remove intersymbol interference (ISI) when the frequency response
of a channel has no null. If a null exists in the frequency response of a channel, linear
equalizers tend to enhance the noise. In this case, use decision feedback equalizers to
avoid enhancing the noise.

A linear equalizer consists of a tapped delay line that stores samples from the input
signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the
delay line and updates the weights to prepare for the next symbol period.

Linear equalizers can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output
sample rate equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an
integer greater than 1. Typically, K is 4 for fractionally spaced equalizers. The output
sample rate is 1/T and the input sample rate is K/T, where T is the symbol period. Tap-
weight updating occurs at the output rate.

This schematic shows a linear equalizer with L weights, a symbol period of T, and K
samples per symbol. If K is 1, the result is a symbol-spaced linear equalizer instead of a
fractional symbol-spaced linear equalizer.

 Linear Equalizer

3-629

In each symbol period, the equalizer receives K input samples at the tapped delay line.
The equalizer then outputs a weighted sum of the values in the tapped delay line and
updates the weights to prepare for the next symbol period.

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm
For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is
a vector of all inputs ui. Based on the current set of weights, the LMS algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed when using the LMS
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = d - y.

3 Blocks — Alphabetical List

3-630

Recursive Least Square (RLS) Algorithm
For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u
is the vector of all inputs ui. Based on the current set of inputs, u, and the inverse
correlation matrix, P, the RLS algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range
(0, 1]. Decreasing the forgetting factor reduces the equalizer convergence time but
causes the equalized output signal to be less stable. H denotes the Hermitian transpose.
Based on the current inverse correlation matrix, the new inverse correlation matrix is

Pnew =
Pcurrent(1− KuH)
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)
For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights
wi, and u is the vector of all inputs ui. Based on the current set of weights, the CMA
adaptive algorithm creates the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed by the CMA
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = y(R - |y|2), where R is a constant related to the
signal constellation.

 Linear Equalizer

3-631

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | MLSE Equalizer

Objects
comm.LinearEqualizer

Topics
“Equalization”
“Adaptive Equalizers”

Introduced in R2019a

3 Blocks — Alphabetical List

3-632

Linearized Baseband PLL
Implement linearized version of baseband phase-locked loop

Library
Components sublibrary of Synchronization

Description
The Linearized Baseband PLL block is a feedback control system that automatically
adjusts the phase of a locally generated signal to match the phase of an input signal.
Unlike the Phase-Locked Loop block, this block uses a baseband model method. Unlike
the Baseband PLL block, which uses a nonlinear model, this block simplifies the
computations by using x to approximate sin(x). The baseband PLL model depends on the
amplitude of the incoming signal but does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.
• A filter. You specify the filter's transfer function using the Lowpass filter numerator

and Lowpass filter denominator parameters. Each is a vector that gives the
respective polynomial's coefficients in order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2 in
Signal Processing Toolbox software. The default filter is a Chebyshev type II filter
whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO signal to

its input using the VCO input sensitivity parameter. This parameter, measured in
Hertz per volt, is a scale factor that determines how much the VCO shifts from its
quiescent frequency.

 Linearized Baseband PLL

3-633

This block accepts a sample-based scalar input signal. The input signal represents the
received signal. The three output ports produce:

• The output of the filter
• The output of the phase detector
• The output of the VCO

Parameters
Lowpass filter numerator

The numerator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO's
quiescent frequency.

References
For more information about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-634

See Also
Blocks
Baseband PLL | Phase-Locked Loop

Introduced before R2006a

 Linearized Baseband PLL

3-635

LMS Decision Feedback Equalizer
(To be removed) Equalize using decision feedback equalizer that updates weights with
LMS algorithm

Library
Equalizers

Note will be removed in a future release. Use Decision Feedback Equalizer instead.

Description
The LMS Decision Feedback Equalizer block uses a decision feedback equalizer and the
LMS algorithm to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the LMS algorithm to update the weights,
once per symbol. If the Number of samples per symbol parameter is 1, then the block
implements a symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of forward taps parameter.

3 Blocks — Alphabetical List

3-636

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

Parameters
Number of forward taps

The number of taps in the forward filter of the decision feedback equalizer.
Number of feedback taps

The number of taps in the feedback filter of the decision feedback equalizer.
Number of samples per symbol

The number of input samples for each symbol.

 LMS Decision Feedback Equalizer

3-637

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0 corresponds
to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
If you select this check box, the block has an input port that enables you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
If you select this check box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

3 Blocks — Alphabetical List

3-638

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

Compatibility Considerations

LMS Decision Feedback Equalizer will be removed
Not recommended starting in R2019a

LMS Decision Feedback Equalizer will be removed in a future release. Use Decision
Feedback Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

 LMS Decision Feedback Equalizer

3-639

LMS Linear Equalizer
(To be removed) Equalize using linear equalizer that updates weights with LMS algorithm

Library
Equalizers

Note will be removed in a future release. Use Linear Equalizer instead.

Description
The LMS Linear Equalizer block uses a linear equalizer and the LMS algorithm to
equalize a linearly modulated baseband signal through a dispersive channel. During the
simulation, the block uses the LMS algorithm to update the weights, once per symbol.
When you set the Number of samples per symbol parameter to 1, then the block
implements a symbol-spaced (i.e. T-spaced) equalizer. When you set the Number of
samples per symbol parameter to a value greater than one, the block updates the
weights once every Nth sample for a T/N-spaced equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of taps parameter.

3 Blocks — Alphabetical List

3-640

The Equalized port outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

Parameters
Number of taps

The number of taps in the filter of the linear equalizer.
Number of samples per symbol

The number of input samples for each symbol.
Signal constellation

A vector of complex numbers that specifies the constellation for the modulated signal,
as determined by the modulator in your model

 LMS Linear Equalizer

3-641

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0 corresponds
to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
If you select this check box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you select this check box, the block outputs the current weights.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,
Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

3 Blocks — Alphabetical List

3-642

Compatibility Considerations

LMS Linear Equalizer will be removed
Not recommended starting in R2019a

LMS Linear Equalizer will be removed in a future release. Use Linear Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

 LMS Linear Equalizer

3-643

Matrix Deinterleaver
Permute input symbols by filling matrix by columns and emptying it by rows

Library
Block sublibrary of Interleaving

Description
The Matrix Deinterleaver block performs block deinterleaving by filling a matrix with the
input symbols column by column and then sending the matrix contents to the output port
row by row. The Number of rows and Number of columns parameters are the
dimensions of the matrix that the block uses internally for its computations.

This block accepts a column vector input signal. The length of the input vector must be
Number of rows times Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.

3 Blocks — Alphabetical List

3-644

Examples
If the Number of rows and Number of columns parameters are 2 and 3, respectively,
then the deinterleaver uses a 2-by-3 matrix for its internal computations. Given an input
signal of [1; 2; 3; 4; 5; 6], the block produces an output of
[1; 3; 5; 2; 4; 6].

Pair Block
Matrix Interleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Deinterleaver | Matrix Interleaver

Introduced before R2006a

 Matrix Deinterleaver

3-645

Matrix Helical Scan Deinterleaver
Restore ordering of input symbols by filling matrix along diagonals

Library
Block sublibrary of Interleaving

Description
The Matrix Helical Scan Deinterleaver block performs block deinterleaving by filling a
matrix with the input symbols in a helical fashion and then sending the matrix contents to
the output port row by row. The Number of rows and Number of columns parameters
are the dimensions of the matrix that the block uses internally for its computations.

Helical fashion means that the block places input symbols along diagonals of the matrix.
The number of elements in each diagonal matches the Number of columns parameter,
after the block wraps past the edges of the matrix when necessary. The block traverses
diagonals so that the row index and column index both increase. Each diagonal after the
first one begins one row below the first element of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the amount by which
the row index increases as the column index increases by one. This parameter must be an
integer between zero and the Number of rows parameter. If the Array step size
parameter is zero, then the block does not deinterleave and the output is the same as the
input.

This block accepts a column vector input signal. The number of elements of the input
vector must be the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

3 Blocks — Alphabetical List

3-646

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.
Array step size

The slope of the diagonals that the block writes.

Pair Block
Matrix Helical Scan Interleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Deinterleaver | Matrix Helical Scan Interleaver

Introduced before R2006a

 Matrix Helical Scan Deinterleaver

3-647

Matrix Helical Scan Interleaver
Permute input symbols by selecting matrix elements along diagonals

Library
Block sublibrary of Interleaving

Description
The Matrix Helical Scan Interleaver block performs block interleaving by filling a matrix
with the input symbols row by row and then sending the matrix contents to the output
port in a helical fashion. The Number of rows and Number of columns parameters are
the dimensions of the matrix that the block uses internally for its computations.

Helical fashion means that the block selects output symbols by selecting elements along
diagonals of the matrix. The number of elements in each diagonal matches the Number
of columns parameter, after the block wraps past the edges of the matrix when
necessary. The block traverses diagonals so that the row index and column index both
increase. Each diagonal after the first one begins one row below the first element of the
previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the amount by which
the row index increases as the column index increases by one. This parameter must be an
integer between zero and the Number of rows parameter. If the Array step size
parameter is zero, then the block does not interleave and the output is the same as the
input.

This block accepts a column vector input signal. The number of elements of the input
vector must be the product of Number of rows and Number of columns.

3 Blocks — Alphabetical List

3-648

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.
Array step size

The slope of the diagonals that the block reads.

Examples
If the Number of rows and Number of columns parameters are 6 and 4, respectively,
then the interleaver uses a 6-by-4 matrix for its internal computations. If the Array step
size parameter is 1, then the diagonals are as shown in the figure below. Positions with
the same color form part of the same diagonal, and diagonals with darker colors precede
those with lighter colors in the output signal.

Given an input signal of [1:24]', the block produces an output of

1

5

9

13

17

21

6

10

14

18

22

11

15

19

23

16

20

24

2

Block's Internal Array

3

7

4

8

12
[1 : 24] '

[1, 6, 11, 16, . . .

5, 10, 15, 20, . . .

9, 14, 19, 24,

13, 18, 23, 4, . . .

17, 22, 3, 8, . . .

21, 2, 7, 12, . . .

[1; 6; 11; 16; 5; 10; 15; 20; 9; 14; 19; 24; 13; 18; 23;...
4; 17; 22; 3; 8; 21; 2; 7; 12]

 Matrix Helical Scan Interleaver

3-649

Pair Block
Matrix Helical Scan Deinterleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Interleaver | Matrix Helical Scan Deinterleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-650

Matrix Interleaver
Permute input symbols by filling matrix by rows and emptying it by columns

Library
Block sublibrary of Interleaving

Description
The Matrix Interleaver block performs block interleaving by filling a matrix with the input
symbols row by row and then sending the matrix contents to the output port column by
column.

The Number of rows and Number of columns parameters are the dimensions of the
matrix that the block uses internally for its computations.

This block accepts a column vector input signal. The number of elements of the input
vector must be the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.

 Matrix Interleaver

3-651

Examples
If the Number of rows and Number of columns parameters are 2 and 3, respectively,
then the interleaver uses a 2-by-3 matrix for its internal computations. Given an input
signal of [1; 2; 3; 4; 5; 6], the block produces an output of
[1; 4; 2; 5; 3; 6].

Pair Block
Matrix Deinterleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Interleaver | Matrix Deinterleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-652

M-DPSK Demodulator Baseband
Demodulate DPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The M-DPSK Demodulator Baseband block demodulates a signal that was modulated
using the M-ary differential phase shift keying method. The input is a baseband
representation of the modulated signal. The input and output for this block are discrete-
time signals. This block accepts a scalar-valued or column vector input signal. For
information about the data types each block port supports, see the “Supported Data
Types” on page 3-655 table on this page.

The M-ary number parameter, M, is the number of possible output symbols that can
immediately follow a given output symbol. The block compares the current symbol to the
previous symbol. The block's first output is the initial condition of zero (or a group of
zeros, if the Output type parameter is set to Bit) because there is no previous symbol.

Integer-Valued Signals and Binary-Valued Signals
If you set the Output type parameter to Integer, then the block demodulates a phase
difference of

θ + 2πk/M

to k, where θ represents the Phase rotation parameter and k represents an integer
between 0 and M-1.

 M-DPSK Demodulator Baseband

3-653

When you set the Output type parameter to Bit, the block outputs binary-valued signals
that represent integers. The block represents each integer using a group of K = log2(M)
bits, where K represents the number of bits per symbol. The output vector length must be
an integer multiple of K.

In binary output mode, the symbols can be either binary-demapped or Gray-demapped.
The Constellation ordering parameter indicates how the block maps an integer to a
corresponding group of K output bits. See the reference pages for the M-DPSK Modulator
Baseband and M-PSK Modulator Baseband blocks for details.

Dialog Box

3 Blocks — Alphabetical List

3-654

M-ary number
The number of possible modulated symbols that can immediately follow a given
symbol.

Output type
Determines whether the output consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each integer to a group of output bits.

Phase rotation (rad)
This phase difference between the current and previous modulated symbols that
results in an output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting), the
block will inherit the output data type from the input port. The output data type will
be the same as the input data type if the input is of type single or double.

For integer outputs, this block can output the data types int8, uint8, int16,
uint16, int32, uint32, single, and double. For bit outputs, output can be int8,
uint8, int16, uint16, int32, uint32, boolean, single, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type set to Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
M-DPSK Modulator Baseband

 M-DPSK Demodulator Baseband

3-655

References
[1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial and Satellite Channels,"

IEEE Transactions on Communications, Vol. COM-32, July 1984, 752-761.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DBPSK Demodulator Baseband | DQPSK Demodulator Baseband | M-DPSK Modulator
Baseband | M-PSK Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-656

M-DPSK Modulator Baseband
Modulate using M-ary differential phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The M-DPSK Modulator Baseband block modulates using the M-ary differential phase
shift keying method. The output is a baseband representation of the modulated signal.
The M-ary number parameter, M, is the number of possible output symbols that can
immediately follow a given output symbol.

The input must be a discrete-time signal. For integer inputs, the block can accept the data
types int8, uint8, int16, uint16, int32, uint32, single, and double. For bit
inputs, the block can accept int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

The input can be either bits or integers, which are binary-mapped or Gray-mapped into
symbols.

This block accepts column vector input signals. For a bit input, the input width must be an
integer multiple of the number of bits per symbol.

Integer-Valued Signals and Binary-Valued Signals
If you set the Input type parameter to Integer, then valid input values are integers
between 0 and M-1. In this case, the input can be either a scalar or a frame-based column
vector. If the first input is k1, then the modulated symbol is

 M-DPSK Modulator Baseband

3-657

exp jθ + j2π
k1
m

where θ represents the Phase rotation parameter. If a successive input is k, then the
modulated symbol is

exp jθ + j2π k
m ⋅ (previous modulated symbol)

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

The input can be a column vector with a length that is an integer multiple of K.

In binary input mode, the Constellation ordering parameter indicates how the block
maps a group of K input bits to a corresponding phase difference. The Binary option
uses a natural binary-to-integer mapping, while the Gray option uses a Gray-coded
assignment of phase differences. For example, the following table indicates the
assignment of phase difference to three-bit inputs, for both the Binary and Gray options.
θ is the Phase rotation parameter. The phase difference is between the previous symbol
and the current symbol.

Current Input Binary-Coded Phase
Difference

Gray-Coded Phase
Difference

[0 0 0] jθ jθ
[0 0 1] jθ + jπ/4 jθ + jπ/4
[0 1 0] jθ + jπ2/4 jθ + jπ3/4
[0 1 1] jθ + jπ3/4 jθ + jπ2/4
[1 0 0] jθ + jπ4/4 jθ + jπ7/4
[1 0 1] jθ + jπ5/4 jθ + jπ6/4

3 Blocks — Alphabetical List

3-658

Current Input Binary-Coded Phase
Difference

Gray-Coded Phase
Difference

[1 1 0] jθ + jπ6/4 jθ + jπ4/4
[1 1 1] jθ + jπ7/4 jθ + jπ5/4

For more details about the Binary and Gray options, see the reference page for the M-
PSK Modulator Baseband block. The signal constellation for that block corresponds to the
arrangement of phase differences for this block.

Dialog Box

 M-DPSK Modulator Baseband

3-659

M-ary number
The number of possible output symbols that can immediately follow a given output
symbol.

Input type
Indicates whether the input consists of integers or groups of bits. If this parameter is
set to Bit, then the M-ary number parameter must be 2K for some positive integer
K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding integer.

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the
input is zero.

Output data type
The output data type can be either single or double. By default, the block sets this
to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean (binary input mode only)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block
M-DPSK Demodulator Baseband

3 Blocks — Alphabetical List

3-660

References
[1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial and Satellite Channels,"

IEEE Transactions on Communications, Vol. COM-32, July 1984, 752-761.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DBPSK Modulator Baseband | DQPSK Modulator Baseband | M-DPSK Demodulator
Baseband | M-PSK Modulator Baseband

Introduced before R2006a

 M-DPSK Modulator Baseband

3-661

Memoryless Nonlinearity
Apply memoryless nonlinearity to complex baseband signal

Library
RF Impairments

Description
The Memoryless Nonlinearity block applies a memoryless nonlinearity to a complex,
baseband signal. You can use the block to model radio frequency (RF) impairments to a
signal at the receiver.

This block accepts a column vector input signal.

Note All values of power assume a nominal impedance of 1 ohm.

The Memoryless Nonlinearity block provides five different methods for modeling the
nonlinearity, which you specify by the Method parameter. The options for the Method
parameter are

• Cubic polynomial
• Hyperbolic tangent
• Saleh model
• Ghorbani model
• Rapp model

The block implements these five methods using subsystems underneath the block mask.
For each of the first four methods, the nonlinearity subsystem has the same basic
structure, as shown in the following figure.

3 Blocks — Alphabetical List

3-662

Nonlinearity Subsystem

For the first four methods, each subsystem applies a nonlinearity to the input signal as
follows:

1 Multiply the signal by a gain factor.
2 Split the complex signal into its magnitude and angle components.
3 Apply an AM/AM conversion to the magnitude of the signal, according to the selected

Method, to produce the magnitude of the output signal.
4 Apply an AM/PM conversion to the phase of the signal, according to the selected

Method, and adds the result to the angle of the signal to produce the angle of the
output signal.

5 Combine the new magnitude and angle components into a complex signal and
multiply the result by a gain factor, which is controlled by the Linear gain
parameter.

Each subsystem implements the AM/AM and AM/PM conversions differently, according to
the Method you specify. The Rapp model does not apply a phase change to the input
signal. The nonlinearity subsystem for Rapp model has following structure:

 Memoryless Nonlinearity

3-663

Nonlinearity Subsystem for Rapp Model

The Rapp Subsystem applies nonlinearity as follows:

1 Multiply the signal by a gain factor.
2 Split the complex signal into its magnitude and angle components.
3 Apply an AM/AM conversion to the magnitude of the signal, according to the selected

Method, to produce the magnitude of the output signal.
4 Combine the new magnitude and angle components into a complex signal and

multiply the result by a gain factor, which is controlled by the Linear gain
parameter.

If you want to see exactly how the Memoryless Nonlinearity block implements the
conversions for a specific method, you can view the AM/AM and AM/PM subsystems that
implement these conversions as follows:

1 Right-click on the Memoryless Nonlinearity block and select Mask > Look under
mask. This displays the block's configuration underneath the mask. The block
contains five subsystems corresponding to the five nonlinearity methods.

2 Double-click the subsystem for the method you are interested in. This displays the
subsystem shown in the preceding figure, “Nonlinearity Subsystem” on page 3-663.

3 Double-click on one of the subsystems labeled AM/AM or AM/PM to view how the
block implements the conversions.

3 Blocks — Alphabetical List

3-664

AM/PM Characteristics of the Cubic Polynomial and Hyperbolic
Tangent Methods
The following illustration shows the AM/PM behavior for the Cubic polynomial and
Hyperbolic tangent methods:

Max
shift

Lower limit Upper limit

Ph
as

e
sh

ift
 (

de
g)

Input power level (dBm)

0

The AM/PM conversion scales linearly with input power value between the lower and
upper limits of the input power level (specified by Lower input power limit for AM/PM
conversion (dBm) and Upper input power limit for AM/PM conversion (dBm)).
Beyond these values, AM/PM conversion is constant at the values corresponding to the
lower and upper input power limits, which are zero and
(AM/PM conversion) ⋅ (upper input power limit− lower input power limit), respectively.

AM/AM and AM/PM Characteristics of the Saleh Method
The following figure shows, for the Saleh method, plots of

• Output voltage against input voltage for the AM/AM conversion
• Output phase against input voltage for the AM/PM conversion

 Memoryless Nonlinearity

3-665

Example with 16-ary QAM
You can see the effect of the Memoryless Nonlinearity block on a signal modulated by 16-
ary quadrature amplitude modulation (QAM) in a scatter plot. The constellation for 16-ary
QAM without the effect of the Memoryless Nonlinearity block is shown in the following
figure:

3 Blocks — Alphabetical List

3-666

You can generate a scatter plot of the same signal after it passes through the Memoryless
Nonlinearity block, with the Method parameter set to Saleh Model, as shown in the
following figure.

 Memoryless Nonlinearity

3-667

This plot is generated by the model described in “Illustrate RF Impairments That Distort a
Signal” with the following parameter settings for the Rectangular QAM Modulator
Baseband block:

• Normalization method set to Average Power
• Average power (watts) set to 1e-2

The following sections discuss parameters specific to the Saleh, Ghorbani, and Rapp
models.

Parameters for the Saleh Model
The Input scaling (dB) parameter scales the input signal before the nonlinearity is
applied. The block multiplies the input signal by the parameter value, converted from
decibels to linear units. If you set the parameter to be the inverse of the input signal
amplitude, the scaled signal has amplitude normalized to 1.

The AM/AM parameters, alpha and beta, are used to compute the amplitude gain for an
input signal using the following function:

3 Blocks — Alphabetical List

3-668

FAM/AM(u) = alpha * u
1 + beta * u2

where u is the magnitude of the scaled signal.

The AM/PM parameters, alpha and beta, are used to compute the phase change for an
input signal using the following function:

FAM/PM(u) = alpha * u2

1 + beta * u2

where u is the magnitude of the scaled signal. Note that the AM/AM and AM/PM
parameters, although similarly named alpha and beta, are distinct.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Ghorbani Model
The Input scaling (dB) parameter scales the input signal before the nonlinearity is
applied. The block multiplies the input signal by the parameter value, converted from
decibels to linear units. If you set the parameter to be the inverse of the input signal
amplitude, the scaled signal has amplitude normalized to 1.

The AM/AM parameters, [x1 x2 x3 x4], are used to compute the amplitude gain for an input
signal using the following function:

FAM/AM(u) =
x1ux2

1 + x3ux2
+ x4u

where u is the magnitude of the scaled signal.

The AM/PM parameters, [y1 y2 y3 y4], are used to compute the phase change for an input
signal using the following function:

FAM/PM(u) =
y1uy2

1 + y3uy2
+ y4u

where u is the magnitude of the scaled signal.

The Output scaling (dB) parameter scales the output signal similarly.

 Memoryless Nonlinearity

3-669

Parameters for the Rapp Model
The Linear gain (dB) parameter scales the input signal before the nonlinearity is
applied. The block multiplies the input signal by the parameter value, converted from
decibels to linear units. If you set the parameter to be the inverse of the input signal
amplitude, the scaled signal has amplitude normalized to 1.

The Smoothness factor and Output saturation level parameters are used to compute
the amplitude gain for the input signal:

FAM/AM(u) = u

1 + u
Osat

2S 1/2S

where u is the magnitude of the scaled signal, S is the Smoothness factor, and Osat is
the Output saturation level.

The Rapp model does not apply a phase change to the input signal.

The Output saturation level parameter limits the output signal level.

Parameters
Method

The nonlinearity method.

The following describes specific parameters for each method.

3 Blocks — Alphabetical List

3-670

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scaler specifying the AM/PM conversion in degrees per decibel.

Lower input power limit (dBm)
Scalar specifying the minimum input power for which AM/PM conversion scales
linearly with input power value. Below this value, the phase shift resulting from
AM/PM conversion is zero.

Upper input power limit (dBm)
Scalar specifying the maximum input power for which AM/PM conversion scales
linearly with input power value. Above this value, the phase shift resulting from
AM/PM conversion is constant. The value of this maximum shift is given by:

(AM/PM conversion) ⋅ (upper input power limit− lower input power limit)

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scalar specifying the AM/PM conversion in degrees per decibel.

 Memoryless Nonlinearity

3-671

Lower input power limit (dBm)
Scalar specifying the minimum input power for which AM/PM conversion scales
linearly with input power value. Below this value, the phase shift resulting from
AM/PM conversion is zero.

Upper input power limit (dBm)
Scalar specifying the maximum input power for which AM/PM conversion scales
linearly with input power value. Above this value, the phase shift resulting from
AM/PM conversion is constant. The value of this maximum shift is given by:

(AM/PM conversion) ⋅ (upper input power limit− lower input power limit)

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [alpha beta]
Vector specifying the AM/AM parameters.

AM/PM parameters [alpha beta]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

3 Blocks — Alphabetical List

3-672

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [x1 x2 x3 x4]
Vector specifying the AM/AM parameters.

AM/PM parameters [y1 y2 y3 y4]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

Linear gain (db)
Scalar specifying the linear gain for the output function.

Smoothness factor
Scalar specifying the smoothness factor

Output saturation level
Scalar specifying the output saturation level.

 Memoryless Nonlinearity

3-673

Reference
[1] Saleh, A.A.M., "Frequency-independent and frequency-dependent nonlinear models of

TWT amplifiers," IEEE Trans. Communications, vol. COM-29, pp.1715-1720,
November 1981.

[2] A. Ghorbani, and M. Sheikhan, "The effect of Solid State Power Amplifiers (SSPAs)
Nonlinearities on MPSK and M-QAM Signal Transmission", Sixth Int'l Conference
on Digital Processing of Signals in Comm., 1991, pp. 193-197.

[3] C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a Digital Sound
Broadcasting System", in Proceedings of the Second European Conference on
Satellite Communications, Liege, Belgium, Oct. 22-24, 1991, pp. 179-184.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Imbalance

Introduced before R2006a

3 Blocks — Alphabetical List

3-674

M-FSK Demodulator Baseband
Demodulate FSK-modulated data

Library
FM, in Digital Baseband sublibrary of Modulation

Description
The M-FSK Demodulator Baseband block demodulates a signal that was modulated using
the M-ary frequency shift keying method. The input is a baseband representation of the
modulated signal. The input and output for this block are discrete-time signals. This block
accepts a scalar value or column vector input signal of type single or double. For
information about the data types each block port supports, see “Supported Data Types”
on page 3-679.

The M-ary number parameter, M, is the number of frequencies in the modulated signal.
The Frequency separation parameter is the distance, in Hz, between successive
frequencies of the modulated signal.

The M-FSK Demodulator Baseband block implements a non-coherent energy detector. To
obtain the same BER performance as that of coherent FSK demodulation, use the CPFSK
Demodulator Baseband block.

Integer-Valued Signals and Binary-Valued Signals
When you set the Output type parameter to Integer, the block outputs integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued signals
that represent integers. The block represents each integer using a group of K = log2(M)

 M-FSK Demodulator Baseband

3-675

bits, where K represents the number of bits per symbol. The output vector length must be
an integer multiple of K.

The Symbol set ordering parameter indicates how the block maps a symbol to a group
of K output bits. When you set the parameter to Binary, the block maps the integer, I, to
[u(1) u(2) ... u(K)] bits, where the individual u(i) are given by

I = ∑
i = 1

K
u(i)2K − i

u(1) is the most significant bit.

For example, if M = 8, you set Symbol set ordering to Binary, and the demodulated
integer symbol value is 6, then the binary output word is [1 1 0].

When you set Symbol set ordering to Gray, the block assigns binary outputs from
points of a predefined Gray-coded signal constellation. The predefined M-ary Gray-coded
signal constellation assigns the binary representation

M = 8; P = [0:M-1]';
de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The typical Binary to Gray mapping for M = 8 is shown in the following tables.

Binary to Gray Mapping for Bits

Binary Code Gray Code
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

3 Blocks — Alphabetical List

3-676

Binary to Gray Mapping for Integers

Binary Code Gray Code
0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Whether the output is an integer or a binary representation of an integer, the block maps
the highest frequency to the integer 0 and maps the lowest frequency to the integer M-1.
In baseband simulation, the lowest frequency is the negative frequency with the largest
absolute value.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

 M-FSK Demodulator Baseband

3-677

• When you set Output type to Integer, the output is a scalar.

To run the M-FSK Demodulator block in multirate mode, clear the Treat each discrete
rate as a separate task checkbox (in Simulation > Configuration Parameters >
Solver).

Parameters
M-ary number

The number of frequencies in the modulated signal.
Output type

Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for some
positive integer K.

Symbol set ordering
Determines how the block maps each integer to a group of output bits.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Samples per symbol
The number of input samples that represent each modulated symbol.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample times. The block implements the
rate change by making a size change at the output when compared to the input.
The output width is the number of symbols (which is given by dividing the input
length by the Samples per symbol parameter value when the Output type
parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

3 Blocks — Alphabetical List

3-678

Output data type
The output type of the block can be specified here as boolean, int8, uint8, int16,
uint16, int32, uint32, or double. By default, the block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
M-FSK Modulator Baseband

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper

Saddle River, NJ: Prentice-Hall, 2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 M-FSK Demodulator Baseband

3-679

See Also
Blocks
CPFSK Demodulator Baseband | M-FSK Modulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-680

M-FSK Modulator Baseband
Modulate using M-ary frequency shift keying method

Library
FM, in Digital Baseband sublibrary of Modulation

Description
The M-FSK Modulator Baseband block modulates using the M-ary frequency shift keying
method. The output is a baseband representation of the modulated signal. For information
about the data types each block port supports, see “Supported Data Types” on page 3-
685.

To prevent aliasing from occurring in the output signal, set the sampling frequency
greater than the product of M and the Frequency separation parameter. Sampling
frequency is Samples per symbol divided by the input symbol period (in seconds).

Integer-Valued Signals and Binary-Valued Signals
The input and output signals for this block are discrete-time signals.

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

 M-FSK Modulator Baseband

3-681

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol, oversampled by the Samples per symbol
parameter value, for each group of K bits.

The Symbol set ordering parameter indicates how the block maps a group of K input
bits to a corresponding symbol. When you set the parameter to Binary, the block maps
[u(1) u(2) ... u(K)] to the integer

∑
i = 1

K
u(i)2K − i

and assumes that this integer is the input value. u(1) is the most significant bit.

If you set M = 8, Symbol set ordering to Binary, and the binary input word is [1 1 0],
the block converts [1 1 0] to the integer 6. The block produces the same output when the
input is 6 and the Input type parameter is Integer.

When you set Symbol set ordering to Gray, the block uses a Gray-coded arrangement
and assigns binary inputs to points of a predefined Gray-coded signal constellation. The
predefined M-ary Gray-coded signal constellation assigns the binary representation

M = 8; P = [0:M-1]';
de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The following tables show the typical Binary to Gray mapping for M = 8.

3 Blocks — Alphabetical List

3-682

Binary to Gray Mapping for Bits
Binary Code Gray Code
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Binary to Gray Mapping for Integers
Binary Code Gray Code
0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of K, the
number of bits per symbol.

 M-FSK Modulator Baseband

3-683

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

To run the M-FSK Modulator block in multirate mode, clear the Treat each discrete rate
as a separate task checkbox (in Simulation > Configuration Parameters > Solver).

Parameters
M-ary number

The number of frequencies in the modulated signal.
Input type

Indicates whether the input consists of integers or groups of bits. If you set this
parameter to Bit, then the M-ary number parameter must be 2K for some positive
integer K.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding integer.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Phase continuity
Determines whether the modulated signal changes phases in a continuous or
discontinuous way.

If you set the Phase continuity parameter to Continuous, then the modulated
signal maintains its phase even when it changes its frequency. If you set the Phase

3 Blocks — Alphabetical List

3-684

continuity parameter to Discontinuous, then the modulated signal comprises
portions of M sinusoids of different frequencies. Thus, a change in the input value
sometimes causes a change in the phase of the modulated signal.

Samples per symbol
The number of output samples that the block produces for each integer or binary
word in the input.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width equals the product of the number of symbols and the Samples per
symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals the
symbol period divided by the Samples per symbol parameter value.

Output data type
You can specify the output type of the block as either a double or a single. By
default, the block sets this value to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (bit input mode only)
• 8-, 16-, and 32-bit signed integers (integer input mode only)
• 8-, 16-, and 32-bit unsigned integers (integer input mode only)

Output • Double-precision floating point
• Single-precision floating point

 M-FSK Modulator Baseband

3-685

Pair Block
M-FSK Demodulator Baseband

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper

Saddle River, NJ: Prentice-Hall, 2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPFSK Modulator Baseband | M-FSK Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-686

MIL-188 QAM Demodulator Baseband
MIL-STD-188-110 B/C standard-specific quadrature amplitude demodulation
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / AM
Communications Toolbox / Modulation / Digital
Baseband Modulation / Standard-Compliant

Description
The MIL-188 QAM Demodulator Baseband block demodulates the input signal using
“MIL-STD-188-110” on page 3-692 standard-specific quadrature amplitude modulation
(QAM). For a description of MIL-STD-188 compliant demodulation, see “MIL-STD-188-110
QAM Hard Demodulation” on page 3-692 and “MIL-STD-188-110 QAM Soft
Demodulation” on page 3-692.

This icon shows the block with all ports enabled:

Ports

Input
In — MIL-STD-188 standard-specific QAM modulated signal
scalar | vector | matrix

MIL-STD-188 standard-specific QAM modulated signal, specified as a scalar, vector, or
matrix. When this input is a matrix, each column is treated as an independent channel.
This port is unnamed until the Var port is enabled.
Data Types: single | double
Complex Number Support: Yes

 MIL-188 QAM Demodulator Baseband

3-687

Var — Noise variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise
variance or signal power result in computations involving extreme positive or negative
magnitudes, see “MIL-STD-188-110 QAM Soft Demodulation” on page 3-692 for
demodulation decision type considerations.

Dependencies

To enable this port set the Noise variance source parameter to Input port.

Output
Out — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of the
demodulated signal depend on the specified Output type and Decision type parameter
values. This port is unnamed on the block.

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated
Signal

Integer — Demodulated integer
values in the range [0,
(M – 1)]

The output signal has the same
dimensions as input signal.

Bit Hard
decision

Demodulated bits The number of rows in the output
signal is log2(M) times the number of
rows in the input signal. Each
demodulated symbol is mapped to a
group of log2(M) elements in a
column, where the first element
represents the MSB, and the last
element represents the LSB.

Log-
likeliho
od ratio

Log-likelihood ratio
value for each bit

Approxim
ate log-
likeliho
od ratio

Approximate log-
likelihood ratio value for
each bit

M is the value of Modulation order.

Use Output data type to specify the output data type.

3 Blocks — Alphabetical List

3-688

Parameters
Modulation order — Modulation order
16 (default) | 32 | 64 | 256

Modulation order, M, specified as 16, 32, 64, or 256. The modulation order specifies the
total number of points in the constellation of the input signal.

Constellation scaling — Constellation scaling
As specified in standard (default) | Unit average power

Constellation scaling preference, specified as:

• As specified in standard – The block scales the constellation based on
specifications in the relevant standard [1].

• Unit average power – The block scales the constellation to an average power of 1
watt referenced to 1 ohm.

Output type — Input type
Integer (default) | Bit

Output type, specified as Integer or Bit. To use Integer, the input signal must consist
of integers in the range [0, (M – 1)]. To use Bit, the input signal must contain binary
values, and the number of rows must be an integer multiple of log2(M), where M is the
Modulation order.

Decision type — Demodulation decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-
likelihood ratio

Demodulation decision type, specified as Hard decision, Log-likelihood ratio, or
Approximate log-likelihood ratio. See “MIL-STD-188-110 QAM Soft
Demodulation” on page 3-692 for algorithm selection considerations.

Dependencies

This parameter applies when Output type is set to Bit.

Noise variance source — Noise variance source
Property (default) | Input port

Noise variance source, specified as:

 MIL-188 QAM Demodulator Baseband

3-689

• Property — The noise variance is set using the Noise variance parameter.
• Input port — The noise variance is set using the Var input port.

Dependencies

This parameter applies only when Decision type is set to either Log-likelihood ratio
or Approximate log-likelihood ratio.

Noise variance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.
• When specified as a vector, the vector length must be equal to the number of columns

in the input signal. Each noise variance vector element is applied to its corresponding
column in the input signal.

When the noise variance or signal power result in computations involving extreme
positive or negative magnitudes, see “MIL-STD-188-110 QAM Soft Demodulation” on
page 3-692 for demodulation decision type considerations.

Dependencies

This parameter applies only when Noise variance is set to Property and Decision type is
set to either Log-likelihood ratio or Approximate log-likelihood ratio.
Data Types: double

Output data type — Output data type
double (default) | ...

Output data type, specified as one of the acceptable values from this table. Acceptable
Output data type values depend on the Output type and Decision type parameter values.

Output type Decision type Output data type Options
Integer Not applicable double, single, int8, uint8, int16, uint16,

int32, or uint32
Bit Hard decision double, single, int8, uint8, int16, uint16,

int32, uint32, or logical

3 Blocks — Alphabetical List

3-690

Output type Decision type Output data type Options
Log-
likelihood
ratio or
Approximate
log-
likelihood
ratio

The output signal is the same data type as the input
signal.

Dependencies

This parameter applies only when Output type is set to Integer or when Output type is
set to Bit and Decision type is set to Hard decision.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

For information on execution speed, see “Tips” on page 3-693.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size
Signals

no

 MIL-188 QAM Demodulator Baseband

3-691

More About

MIL-STD-188-110
MIL-STD-188-110 is a US Department of Defense standard for HF communications using
serial PSK mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul
communications. The modulation scheme specified by the standard is a mix of QAM and
APSK. For a detailed description of the modulation scheme, see [1].

MIL-STD-188-110 QAM Hard Demodulation
The hard demodulation algorithm uses optimum decision region-based demodulation.
Since all the constellation points are equally probable, maximum a posteriori probability
(MAP) detection reduces to a maximum likelihood (ML) detection. The ML detection rule
is equivalent to choosing the closest constellation point to the received symbol. The
decision region for each constellation point is designed by drawing perpendicular
bisectors between adjacent points. A received symbol is mapped to the proper
constellation point based on which decision region it lies in.

Since all MIL-STD constellations are quadrant-based symmetric, for each symbol the
optimum decision region-based demodulation:

• Maps the received symbol into the first quadrant
• Chooses the decision region for the symbol
• Maps the constellation point back to its original quadrant using the sign of real and

imaginary parts of the received symbol

MIL-STD-188-110 QAM Soft Demodulation
For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are
available: exact LLR and approximate LLR. This table compares these algorithms.

Algorithm Accuracy Execution Speed
Exact LLR more accurate slower execution
Approximate LLR less accurate faster execution

3 Blocks — Alphabetical List

3-692

For further description of these algorithms, see “Exact LLR Algorithm” and “Approximate
LLR Algorithm”.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

Tips
• For faster execution of the MIL-188 QAM Demodulator Baseband block, set the

Simulate using parameter to:

• Code generation when using hard decision demodulation.
• Interpreted execution when using soft decision demodulation.

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data

Modems." Department of Defense Interface Standard, USA.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 MIL-188 QAM Demodulator Baseband

3-693

See Also
Blocks
DVBS-APSK Demodulator Baseband | M-APSK Demodulator Baseband | MIL188-QAM
Modulator Baseband

Functions
mil188qamdemod

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”

Introduced in R2018b

3 Blocks — Alphabetical List

3-694

MIL-188 QAM Modulator Baseband
MIL-STD-188-110 B/C standard-specific quadrature amplitude modulation (QAM)
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / AM
Communications Toolbox / Modulation / Digital
Baseband Modulation / Standard-Compliant

Description
The MIL-188 QAM Modulator Baseband block modulates the input signal using “MIL-
STD-188-110” on page 3-698 standard-specific quadrature amplitude modulation (QAM).

Ports

Input
In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The input signal must be binary
values or integers in the range [0, (M – 1)], where M is the Modulation order. This port is
unnamed on the block.

Note To process the input signal as binary elements, set the Input type parameter value
to Bit. For binary inputs, the number of rows must be an integer multiple of log2(M).
Groups of log2(M) bits in a column are mapped onto a symbol, with the first bit
representing the MSB and the last bit representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

 MIL-188 QAM Modulator Baseband

3-695

Output
Out — MIL-STD-188 standard-specific QAM modulated signal
scalar | vector | matrix

MIL-STD-188 standard-specific QAM modulated signal, returned as a complex scalar,
vector, or matrix. The output signal dimensions depend on the specified Input type
parameter value. This port is unnamed on the block.

Input type Dimensions of Output Signal
Integer The output signal has the same dimensions as the input signal.
Bit The number of rows in the output signal equals the number of

rows in the input signal divided by log2(M), where M is the
Modulation order.

Parameters
Modulation order — Modulation order
16 (default) | 32 | 64 | 256

Modulation order, M, specified as 16, 32, 64, or 256. The modulation order specifies the
total number of points in the constellation of the output signal.

Constellation scaling — Constellation scaling
As specified in standard (default) | Unit average power

Constellation scaling preference, specified as:

• As specified in standard – The block scales the constellation based on
specifications in the relevant standard [1].

• Unit average power – The block scales the constellation to an average power of 1
watt referenced to 1 ohm.

Input type — Input type
Integer (default) | Bit

Input type, specified as Integer or Bit. To use Integer, the input signal must consist of
integers in the range [0, (M – 1)]. To use Bit, the input signal must contain binary values,

3 Blocks — Alphabetical List

3-696

and the number of rows must be an integer multiple of log2(M), where M is the
Modulation order.

Output data type — Output data type
double (default) | single

Output data type, specified as double or single.

View Constellation — Plot reference constellation
button

To plot the reference constellation, click the View Constellation button.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In Interpreted execution mode, you can debug the source code of
the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size
Signals

no

 MIL-188 QAM Modulator Baseband

3-697

More About

MIL-STD-188-110
MIL-STD-188-110 is a US Department of Defense standard for HF communications using
serial PSK mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul
communications. The modulation scheme specified by the standard is a mix of QAM and
APSK. For a detailed description of the modulation scheme, see [1].

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data

Modems." Department of Defense Interface Standard, USA.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DVBS-APSK Modulator Baseband | M-APSK Modulator Baseband | MIL188-QAM
Demodulator Baseband

Functions
mil188qammod

Introduced in R2018b

3 Blocks — Alphabetical List

3-698

MIMO Fading Channel
Filter input signal through MIMO multipath fading channel
Library: Communications Toolbox / Channels

Communications Toolbox / MIMO

Description
The MIMO Fading Channel block filters an input signal using a multi-input/multi-output
(MIMO) multipath fading channel. This block models both Rayleigh and Rician fading and
employs the Kronecker model for modeling the spatial correlation between the links. For
processing details, see the Algorithms on page 3-712 section.

Signal Dimensions
The availability and dimensions of input and output port signals depends on:

• The Antenna selection parameter setting on the Main tab
• The Initial time source parameter setting on the Realization tab
• The Output channel path gains selection on the Realization tab

Antenna
Selection
Parameter

Signal
Input (in)

Transmit
Selection
Input (Tx
Sel)

Receive
Selection
Input (Rx
Sel)

Initial
Time
Offset
Input (Init
Time)

Signal
Output
(Out1)

Optional
Channel
Gain
Output
(Gain)

Off NS-by-NT N/A N/A nonnegativ
e scalar

NS-by-NR NS-by-NP-
by-NT-by-
NR

Tx NS-by-NST 1-by-NT N/A NS-by-NR

Rx NS-by-NT N/A 1-by-NR NS-by-NSR

Tx and
Rx

NS-by-NST 1-by-NT 1-by-NR NS-by-NSR

 MIMO Fading Channel

3-699

• NS represents the number of samples in the input signal.
• NT represents the number of transmit antennas, as determined by:

• Transmit spatial correlation when Specify spatial correlation is set to Separate
Tx Rx

• Number of transmit antennas when Specify spatial correlation is set to None or
Combined

• NR represents the number of receive antennas, as determined by:

• Receive spatial correlation when Specify spatial correlation is set to Separate Tx
Rx

• Number of receive antennas when Specify spatial correlation is set to None
• Combined spatial correlation and Number of transmit antennas when Specify

spatial correlation is set to Combined
• NP represents the number of channel paths, as determined by the Discrete path delays

(s) or Average path gains (dB).
• NST represents the number of selected transmit antennas, as determined by the

number of elements set to 1 in the vector provided to the Tx Sel input port.
• NSR represents the number of selected receive antennas, as determined by the number

of elements set to 1 in the vector provided to the Rx Sel input port.

Ports

Input
in — Input data signal
vector

Input data signal, specified as an NS-by-NT or NS-by-NST matrix.

• NS represents the number of samples in the input signal.
• NT represents the number of transmit antennas.
• NST represents the number of selected transmit antennas.

Data Types: double | single
Complex Number Support: Yes

3 Blocks — Alphabetical List

3-700

Tx Sel — Select active transmit antennas
binary vector

Select active transmit antennas, specified as a 1-by-NT binary vector. NT represents the
number of transmit antennas. Elements set to 1 identify selected antenna indices and 0
identify nonselected antenna indices.

Dependencies

To enable this port, on the Main tab, set Antenna selection to Tx or Tx and Rx.
Data Types: double

Rx Sel — Select active receive antennas
binary vector

Select active receive antennas, specified as a 1-by-NR binary vector. NR represents the
number of receive antennas. Elements set to 1 identify selected antenna indices and 0
identify nonselected antenna indices.

Dependencies

To enable this port, on the Main tab, set Antenna selection to Rx or Tx and Rx.
Data Types: double

Init Time — Initial time offset
nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

Init Time must be greater than the last frame end time. When Init Time is not a
multiple of 1/Sample Rate (Hz), it is rounded up to the nearest sample position.

Dependencies

To enable this port, on the Realization tab, set Initial time source to Input port.
Data Types: double

Output
Out1 — Output data signal for fading channel
vector

 MIMO Fading Channel

3-701

Output data signal for the fading channel, returned as an NS-by-NR or NS-by-NSR matrix.

• NS represents the number of samples in the input signal.
• NR represents the number of receive antennas.
• NSR represents the number of selected receive antennas.

Gain — Discrete path gains
4-D array

Discrete path gains of the underlying fading process, returned as an NS-by-NP-by-NT-by-
NR array.

• NS represents the number of samples in the input signal.
• NP represents the number of channel paths.
• NT represents the number of transmit antennas.
• NR represents the number of receive antennas.

Entries for nonselected paths are filled with NaN.

Dependencies

To enable this port, on the Realization tab, select Output channel path gains.

Parameters

Main Tab
Multipath parameters (frequency selectivity)

Inherit sample rate from input — Option to inherit the sample rate from
input
on (default) | off

Select this parameter to use the sample rate of the input signal when processing. When
Inherit sample rate from input is selected, the sample rate is NS/TS, where NS is
the number of input samples, and TS is the model sample time.

Sample rate (Hz) — Input signal sample rate
1 (default) | positive scalar

3 Blocks — Alphabetical List

3-702

Input signal sample rate, specified in hertz as a positive scalar. To match the model
settings, set the sample rate to NS/TS, where NS is the number of input samples, and TS is
the model sample time.
Dependencies

This parameter appears when Inherit sample rate from input is not selected.
Data Types: double

Discrete path delays (s) — Delays for each discrete path
0 (default) | nonnegative scalar | row vector

Delays for each discrete path in seconds, specified as a nonnegative scalar or row vector.

• When you set Discrete path delays (s) to a scalar, the MIMO channel is frequency
flat.

• When you set Discrete path delays (s) to a vector, the MIMO channel is frequency
selective.

Data Types: double

Average path gains (dB) — Average gain for each discrete path
0 (default) | scalar | row vector

Average gain for each discrete path in decibels, specified as a scalar or row vector.
Average path gains (dB) must have the same size as Discrete path delays (s).
Data Types: double

Normalize average path gains to 0 dB — Option to normalize average path
gains to 0 dB
on (default) | off

Select this parameter to normalize the fading processes so that the total power of the
path gains, averaged over time, is 0 dB.

Fading distribution — Fading distribution of channel
Rayleigh (default) | Rician

Select the fading distribution of the channel, either Rayleigh or Rician.

K-factors — K-factor of Rician fading channel
3 (default) | positive scalar | row vector

 MIMO Fading Channel

3-703

K-factor of a Rician fading channel, specified as a positive scalar or a 1-by-NP vector of
positive-valued elements. NP equals the value of the Discrete path delays (s) parameter.

• If you set K-factors to a scalar, the first discrete path is a Rician fading process with a
Rician K-factor of K-factors. Any remaining discrete paths are independent Rayleigh
fading processes.

• If you set K-factors to a row vector, the discrete path corresponding to a positive
element of the K-factors vector is a Rician fading process with a Rician K-factor
specified by that element. The discrete path corresponding to a zero-valued element of
the K-factors vector is a Rayleigh fading process.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path Doppler shifts (Hz) — Doppler shifts for line-of-sight components
0 (default) | scalar | row vector

Doppler shifts for the line-of-sight components of the Rician fading channel in hertz,
specified as a scalar or row vector. This parameter must have the same size as K-factors.

• If you set LOS path Doppler shifts (Hz) to a scalar, it represents the line-of-sight
component Doppler shift of the first discrete path that is a Rician fading process.

• If you set LOS path Doppler shifts (Hz) to a row vector, the discrete path that is a
Rician fading process has its line-of-sight component Doppler shift specified by the
elements of LOS path Doppler shifts (Hz) that correspond to positive elements in
the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path initial phases (rad) — Initial phases for line-of-sight components
0 (default) | scalar | row vector

Initial phases for the line-of-sight component of the Rician fading channel in radians,
specified as a scalar or row vector. This parameter must have the same size as K-factors.

3 Blocks — Alphabetical List

3-704

• If you set LOS path initial phases (rad) to a scalar, it is the line-of-sight component
initial phase of the first discrete path that is a Rician fading process.

• If you set LOS path initial phases (rad) to a row vector, the discrete path that is a
Rician fading process has its line-of-sight component initial phase specified by the
elements of LOS path initial phases (rad) that correspond to positive elements in
the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

Doppler parameters (time dispersion)

Maximum Doppler shift (Hz) — Maximum Doppler shift for all channel paths
0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths in hertz, specified as a nonnegative scalar.

Maximum Doppler shift (Hz) must be smaller than (Sample Rate (Hz)/10)/fc for each
path, where fc is the cutoff frequency factor of the path. For more information, see “Cutoff
Frequency Factor” on page 3-712.
Data Types: double

Doppler spectrum — Doppler spectrum shape for all channel paths
doppler('Jakes') (default) | doppler('Flat') | doppler('Rounded', ...) |
doppler('Bell', ...) | doppler('Asymmetric Jakes', ...) |
doppler('Restricted Jakes', ...) | doppler('Gaussian', ...) |
doppler('BiGaussian', ...)

Doppler spectrum shape for all channel paths, specified as a single Doppler spectrum
structure returned from the doppler function or a 1-by-NP cell array of such structures.
The default value of this parameter is the Jakes Doppler spectrum (doppler('Jakes')).

• If you assign a single call to doppler, all paths have the same specified Doppler
spectrum.

• If you assign a 1-by-NP cell array of calls to doppler using any of the specified
syntaxes, each path has the Doppler spectrum specified by the corresponding Doppler
spectrum structure in the array. In this case, NP equals the value of the Discrete path
delays (s) parameter.

 MIMO Fading Channel

3-705

Dependencies

This parameter applies when Maximum Doppler shift (Hz) is greater than zero.

If the Technique for generating fading samples parameter is set to Sum of sinusoids,
Doppler spectrum must be doppler('Jakes').

Antenna parameters (spatial dispersion)

Specify spatial correlation — Spatial correlation mode
None (default) | Separate Tx Rx | Combined

Select the spatial correlation mode: None, Separate Tx Rx, or Combined.

• Choose 'None' to specify the number of transmit and receive antennas.
• Choose 'Spatial Tx Rx' to specify the transmit and receive spatial correlation

matrices separately. The number of transmit (NT) and receive (NR) antennas are
derived from the dimensions of the Transmit spatial correlation and Receive spatial
correlation parameters, respectively.

• Choose 'Combined' to specify a single correlation matrix for the whole channel. The
product of NT and NR is derived from the dimension of Combined spatial correlation.

Number of transmit antennas — Number of transmit antennas
2 (default) | positive integer

Number of transmit antennas, specified as a positive integer.

Dependencies

This parameter appears when Specify spatial correlation is None or Combined.
Data Types: double

Number of receive antennas — Number of receive antennas
2 (default) | positive integer

Number of receive antennas, specified as a positive integer.

Dependencies

This parameter appears when Specify spatial correlation is None.
Data Types: double

3 Blocks — Alphabetical List

3-706

Transmit spatial correlation — Spatial correlation of transmitter
[1 0; 0 1] (default) | matrix | 3-D array

Specify the spatial correlation of the transmitter as an NT-by-NT matrix or NT-by-NT-by-NP
array. NT is the number of transmit antennas, and NP equals the value of the Discrete path
delays (s) parameter.

• If Discrete path delays (s) is a scalar, the channel is frequency flat, and Transmit
spatial correlation is an NT-by-NT Hermitian matrix. The magnitude of any off-
diagonal element must be no larger than the geometric mean of the two corresponding
diagonal elements.

• If Discrete path delays (s) is a vector, the channel is frequency selective, and you
can specify Transmit spatial correlation as a matrix. Each path has the same
transmit spatial correlation matrix.

• Alternatively, you can specify Transmit spatial correlation as an NT-by-NT-by-NP
array, where each path can have its own different transmit spatial correlation matrix.

Dependencies

This parameter appears when Specify spatial correlation is Separate Tx Rx.
Data Types: double
Complex Number Support: Yes

Receive spatial correlation — Spatial correlation of receiver
[1 0; 0 1] (default) | matrix | 3-D array

Specify the spatial correlation of the receiver as an NR-by-NR matrix or NR-by-NR-by-NP
array. NR is the number of receive antennas, and NP equals the value of the Discrete path
delays (s) parameter.

• If Discrete path delays (s) is a scalar, the channel is frequency flat, and Receive
spatial correlation is an NR-by-NR Hermitian matrix. The magnitude of any off-
diagonal element must be no larger than the geometric mean of the two corresponding
diagonal elements.

• If Discrete path delays (s) is a vector, the channel is frequency selective, and you
can specify Receive spatial correlation as a matrix. Each path has the same receive
spatial correlation matrix.

• Alternatively, you can specify Receive spatial correlation as an NR-by-NR-by-NP
array, where each path can have its own different receive spatial correlation matrix.

 MIMO Fading Channel

3-707

Dependencies

This parameter appears when Specify spatial correlation is Separate Tx Rx.
Data Types: double
Complex Number Support: Yes

Combined spatial correlation — Combined spatial correlation matrix
[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] (default) | matrix | 3-D array

Specify the combined spatial correlation matrix as an NTR-by-NTR matrix or NTR-by-NTR-by-
NP array, where NTR = (NT ✕ NR), and NP equals the number of delay paths specified by
the Discrete path delays (s) parameter.

• If Discrete path delays (s) is a scalar, the channel is frequency flat, and Combined
spatial correlation is an NTR-by-NTR Hermitian matrix. The magnitude of any off-
diagonal element must be no larger than the geometric mean of the two corresponding
diagonal elements.

• If Discrete path delays (s) is a vector, the channel is frequency selective, and you can
specify Combined spatial correlation as a matrix. Each path has the same spatial
correlation matrix.

• Alternatively, you can specify Combined spatial correlation as an NTR-by-NTR-by-NP
array, where each path can have its own different combined spatial correlation matrix.

Dependencies

This parameter appears when Specify spatial correlation is Combined.
Data Types: double

Normalize outputs by number of receive antennas — Normalize channel
output
on (default) | off

Select this parameter to normalize the channel outputs by the number of receive
antennas.

Simulate using — Compilation type
Interpreted execution (default) | Code generation

Compilation type, specified as Interpreted execution or Code generation.

3 Blocks — Alphabetical List

3-708

Antenna selection — Antenna mode
Off (default) | Tx | Rx | Tx and Rx

The antenna mode you select corresponds to additional input ports on the block.

Antenna selection Setting Input Ports Added
Off None
Tx Tx Sel
Rx Rx Sel
Tx and Rx Tx Sel, Rx Sel

Realization Tab
Technique for generating fading samples — Channel modeling technique
Filtered Gaussian noise (default) | Sum of sinusoids

Select the channel modeling technique, either Filtered Gaussian noise or Sum of
sinusoids.

Number of sinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.

Dependencies

This parameter appears when Technique for generating fading samples is Sum of
sinusoids.

Initial time source — Source of initial time offset
Property (default) | Input port

Indicate the source of the initial time offset for the fading model, either Property or
Input port.

• When you set Initial time source to Property, use Initial time (s) to set the initial
time offset.

• When you set Initial time source to Input port, use the input port Init Time to set
the initial time offset.

 MIMO Fading Channel

3-709

Dependencies

This parameter appears when Technique for generating fading samples is Sum of
sinusoids.

Initial time (s) — Initial time offset
0 (default) | nonnegative scalar

Initial time offset for the fading model, specified as a nonnegative scalar.

When Initial time (s) is not a multiple of 1/Sample Rate (Hz), it is rounded up to
the nearest sample position.

Dependencies

This parameter appears when Technique for generating fading samples is Sum of
sinusoids and Initial time source is set to Property.

Initial seed — Random number generator initial seed
73 (default) | nonnegative integer

Random number generator initial seed for this block, specified as a nonnegative integer.

Output channel path gains — Option to output channel path gains
off (default) | on

Select this parameter to add the Gain output port to the block and output the channel
path gains of the underlying fading process.

Visualization Tab
Channel visualization — Select the channel visualization
Off (default) | Impulse response | Frequency response | Doppler spectrum |
Impulse and frequency responses

Select the channel visualization: Off, Impulse response, Frequency response,
Doppler spectrum, or Impulse and frequency responses. When visualization is
on, the selected channel characteristics, such as impulse response or Doppler spectrum,
display in a separate window. For more information, see Channel Visualization.

Antenna pair to display — Transmit-receive antenna pair to display
[1,1] (default) | vector

3 Blocks — Alphabetical List

3-710

Transmit-receive antenna pair to display, specified as a 1-by-2 vector, where the first
element corresponds to the desired transmit antenna and the second corresponds to the
desired receive antenna. At this time, only a single pair can be displayed.

Dependencies

This parameter appears when Channel visualization is not Off.

Percentage of samples to display — Percentage of samples to display
25% (default) | 10% | 50% | 100%

Select the percentage of samples to display: 10%, 25%, 50%, or 100%. Increasing the
percentage improves display accuracy at the expense of simulation speed.

Dependencies

This parameter appears when Channel visualization is Impulse response, Frequency
response, or Impulse and frequency responses.

Path for Doppler spectrum display — Path for which Doppler spectrum is
displayed
1 (default) | positive integer

Path for which the Doppler spectrum is displayed, specified as a positive integer from 1 to
NP, where NP equals the value of the Discrete path delays (s) parameter.

Dependencies

This parameter appears when Channel visualization is Doppler spectrum.

Block Characteristics
Data Types double | single
Multidimensional
Signals

yes

Variable-Size
Signals

yes

 MIMO Fading Channel

3-711

Algorithms
The fading processing per link is described in Methodology for Simulating Multipath
Fading Channels and assumes the same parameters for all (NT × NR) links of the MIMO
channel. Each link comprises all multipaths for that link.

The Kronecker Model
The Kronecker model assumes that the spatial correlations at the transmit and receive
sides are separable. Equivalently, the direction of departure (DoD) and directions of
arrival (DoA) spectra are assumed to be separable. The full correlation matrix is:

RH = E Rt⊗ Rr

• The ⊗ symbol represents the Kronecker product.
• Rt represents the correlation matrix at the transmit side: Rt = E HHH , of size NT-by-

NT.
• Rr represents the correlation matrix at the receive side: Rr = E HHH , of size NR-by-

NR.

You can obtain a realization of the MIMO channel matrix as:

H = Rr

1
2 ARt

1
2

A is an NR-by-NT matrix of independent identically distributed complex Gaussian variables
with zero mean and unit variance.

Cutoff Frequency Factor
The following information explains how the cutoff frequency factor, fc, is determined for
different Doppler spectrum types:

• For any Doppler spectrum type other than Gaussian and BiGaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals

NormalizedStandardDeviation∙sqrt(2∙log(2)).
• For a doppler('BiGaussian') spectrum type:

3 Blocks — Alphabetical List

3-712

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are
both 0, then fc equals NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are
both 0, then fc equals NormalizedStandardDeviation(2)∙sqrt(2∙log(2)).

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• In all other cases, fc equals 1.

Antenna Selection
When the object is in antenna selection mode, it uses the following algorithms to process
an input signal:

• All random path gains are always generated and keep evolving for each link, whether
or not a given link is selected. The path gain values output for the non-selected links
are populated with NaN.

• The spatial correlation only applies to the selected transmit and/or receive antennas,
and the correlation coefficients are the corresponding entries in the transmit, receive,
or combined correlation matrices. In other words, the spatial correlation matrix for the
selected transmit or receive antennas is a submatrix of the transmit, receive, or
combined spatial correlation matrix property value.

• For signal paths associated with nonactive antennas, a signal with zero power is
transmitted to the channel filter.

• Channel output normalization happens over the number of selected receive antennas.

References
[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World

Propagation to Space-Time Code Design. Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G. Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. "A
stochastic MIMO radio channel model with experimental validation." IEEE Journal
on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp. 1211–1226.

 MIMO Fading Channel

3-713

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems. Second Edition. New York: Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. "Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms." IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
AWGN Channel | SISO Fading Channel

Functions
doppler

Objects
comm.MIMOChannel

Topics
Channel Visualization

Introduced in R2013b

3 Blocks — Alphabetical List

3-714

MLSE Equalizer
Equalize using Viterbi algorithm

Library
Equalizer Block

Description
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly modulated
signal through a dispersive channel. The block processes input frames and outputs the
maximum likelihood sequence estimate (MLSE) of the signal, using an estimate of the
channel modeled as a finite input response (FIR) filter.

This block supports single and double data types.

Channel Estimates
The channel estimate takes the form of a column vector containing the coefficients of an
FIR filter in descending order of powers. The length of this vector is the channel memory,
which must be a multiple of the block's Samples per input symbol parameter.

To specify the channel estimate vector, use one of these methods:

• Set Specify channel via to Dialog and enter the vector in the Channel coefficients
field.

• Set Specify channel via to Input port and the block displays an additional input
port, labeled Ch, which accepts a column vector input signal.

 MLSE Equalizer

3-715

Signal Constellation
The Signal constellation parameter specifies the constellation for the modulated signal,
as determined by the modulator in your model. Signal constellation is a vector of
complex numbers, where the kth complex number in the vector is the constellation point
to which the modulator maps the integer k-1.

Note The sequence of constellation points must be consistent between the modulator in
your model and the Signal constellation parameter in this block.

For example, to specify the constellation given by the mapping

0 + 1 + i
1 − 1 + i
2 − 1− i
3 + 1− i

set Constellation points to [1+i, -1+i, -1-i, 1-i]. Note that the sequence of
numbers in the vector indicates how the modulator maps integers to the set of
constellation points. The labeled constellation is shown below.

1 0

2 3

3 Blocks — Alphabetical List

3-716

Preamble and Postamble
If your data is accompanied by a preamble (prefix) or postamble (suffix), then configure
the block accordingly:

• If you select Input contains preamble, then the Expected preamble parameter
specifies the preamble that you expect to precede the data in the input signal.

• If you check the Input contains postamble, then the Expected postamble
parameter specifies the postamble that you expect to follow the data in the input
signal.

The Expected preamble or Expected postamble parameter must be a vector of
integers between 0 and M-1, where M is the number of constellation points. An integer
value of k-1 in the vector corresponds to the kth entry in the Constellation points vector
and, consequently, to a modulator input of k-1.

The preamble or postamble must already be included at the beginning or end,
respectively, of the input signal to this block. If necessary, you can concatenate vectors in
Simulink software using the Matrix Concatenation block.

To learn how the block uses the preamble and postamble, see “"Reset Every Frame"
Operation Mode” on page 3-717 below.

"Reset Every Frame" Operation Mode
One way that the Viterbi algorithm can transition between successive frames is called
Reset every frame mode. You can choose this mode using the Operation mode
parameter.

In Reset every frame mode, the block decodes each frame of data independently,
resetting the state metric at the end of each frame. The traceback decoding always starts
at the state with the minimum state metric.

The initialization of state metrics depends on whether you specify a preamble and/or
postamble:

• If you do not specify a preamble, the decoder initializes the metrics of all states to 0 at
the beginning of each frame of data.

• If you specify a preamble, the block uses it to initialize the state metrics at the
beginning of each frame of data. More specifically, the block decodes the preamble

 MLSE Equalizer

3-717

and assigns a metric of 0 to the decoded state. If the preamble does not decode to a
unique state -- that is, if the length of the preamble is less than the channel memory --
the decoder assigns a metric of 0 to all states that can be represented by the
preamble. Whenever you specify a preamble, the traceback path ends at one of the
states represented by the preamble.

• If you do not specify a postamble, the traceback path starts at the state with the
smallest metric.

• If you specify a postamble, the traceback path begins at the state represented by the
postamble. If the postamble does not decode to a unique state, the decoder identifies
the smallest of all possible decoded states that are represented by the postamble and
begins traceback decoding at that state.

Note In Reset every frame mode, the input to the MLSE Equalizer block must
contain at least T symbols, not including an optional preamble, where T is the
Traceback depth parameter.

Continuous Operation Mode
An alternative way that the Viterbi algorithm can transition between successive frames is
called Continuous with reset option mode. You can choose this mode using the
Operation mode parameter.

In Continuous with reset option mode, the block initializes the metrics of all states
to 0 at the beginning of the simulation. At the end of each frame, the block saves the
internal state metric for use in computing the traceback paths in the next frame.

If you select Enable the reset input port, the block displays another input port, labeled
Rst. In this case, the block resets the state metrics whenever the scalar value at the Rst
port is nonzero.

Decoding Delay
The MLSE Equalizer block introduces an output delay equal to the Traceback depth in
the Continuous with reset option mode, and no delay in the Reset every frame
mode.

3 Blocks — Alphabetical List

3-718

Parameters
Specify channel via

The method for specifying the channel estimate. If you select Input port, the block
displays a second input port that receives the channel estimate. If you select Dialog,
you can specify the channel estimate as a vector of coefficients for an FIR filter in the
Channel coefficients field.

Channel coefficients
Vector containing the coefficients of the FIR filter that the block uses for the channel
estimate. This field is visible only if you set Specify channel via to Dialog.

Signal constellation
Vector of complex numbers that specifies the constellation for the modulation.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses in
the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous with reset
option and Reset every frame.

Input contains preamble
When checked, you can set the preamble in the Expected preamble field. This option
appears only if you set Operation mode to Reset every frame.

Expected preamble
Vector of integers between 0 and M-1 representing the preamble, where M is the size
of the constellation. This field is visible and active only if you set Operation mode to
Reset every frame and then select Input contains preamble.

Input contains postamble
When checked, you can set the postamble in the Expected postamble field. This
option appears only if you set Operation mode to Reset every frame.

Expected postamble
Vector of integers between 0 and M-1 representing the postamble, where M is the
size of the constellation. This field is visible and active only if you set Operation
mode to Reset every frame and then select Input contains postamble.

Samples per input symbol
The number of input samples for each constellation point.

 MLSE Equalizer

3-719

Enable the reset input port
When you check this box, the block has a second input port labeled Rst. Providing a
nonzero input value to this port causes the block to set its internal memory to the
initial state before processing the input data. This option appears only if you set
Operation mode to Continuous with reset option.

References
[1] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,

2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, Wiley,
1996.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CMA Equalizer | LMS Decision Feedback Equalizer | LMS Linear Equalizer | RLS Decision
Feedback Equalizer | RLS Linear Equalizer

Functions
mlseeq

Objects
comm.MLSEEqualizer

Topics
“MLSE Equalizers”

3 Blocks — Alphabetical List

3-720

Introduced before R2006a

 MLSE Equalizer

3-721

MER Measurement
Measure signal-to-noise ratio (SNR) in digital modulation applications

Library
Utility Blocks

Description
The MER Measurement block outputs the modulation error ratio (MER). MER is a
measure of the signal-to-noise ratio (SNR) in digital modulation applications. The block
measures all outputs in dB.

The MER Measurement block accepts a received signal at input port Rcv. It may use an
ideal input signal at reference port Ref or, optionally, a reference constellation. The MER
block then outputs a measure of the modulation accuracy by comparing these inputs. The
modulation error ratio is the ratio of the average reference signal power to the mean
square error. This ratio corresponds to the SNR of the AWGN channel.

The block output always outputs MER in dB, with an option to output minimum MER and
X-percentile MER values. The minimum MER represents the best-case MER value per
burst. For the X-percentile option, you can select to output the number of symbols
processed in the percentile computations.

The table shows the output type, the parameter that selects the output type, the
computation units, and the corresponding measurement interval.

3 Blocks — Alphabetical List

3-722

Output Activation
Parameter

Units Measurement
Interval

MER None (output by
default)

dB Current length |
Entire history |
Custom | Custom
with periodic
reset

Minimum MER Output minimum
MER

dB Current length |
Entire history |
Custom | Custom
with periodic
reset

Percentile MER Output X-
percentile EVM

dB Entire history

Number of symbols Output X-
percentile EVM and
Output the number
of symbols
processed

None Entire history

Data Type
The block accepts double, single, and fixed-point data types. The output of the block is
always double.

Algorithms

Parameters
Reference signal

Specifies the reference signal source as either Input port or Estimated from
reference constellation.

Reference constellation
Specifies the reference constellation points as a vector. This parameter is available
only when Reference signal is Estimated from reference constellation.
The default is constellation(comm.QPSKModulator).

 MER Measurement

3-723

Measurement interval
Specify the measurement interval as: Input length, Entire history, Custom, or
Custom with periodic reset. This parameter affects the RMS and minimum
MER outputs only.

• To calculate MER using only the current samples, set this parameter to 'Input
length'.

• To calculate MER for all samples, set this parameter to 'Entire history'.
• To calculate MER over an interval you specify and to use a sliding window, set this

parameter to 'Custom'.
• To calculate MER over an interval you specify and to reset the object each time the

measurement interval is filled, set this parameter to 'Custom with periodic
reset'.

Custom measurement interval
Specify the custom measurement interval in samples as a real positive integer. This is
the interval over which the MER is calculated. This parameter is available when
Measurement interval is Custom or Custom with periodic reset. The default
is 100.

Averaging dimensions
Specify the dimensions over which to average the MER measurements as a scalar or
row vector whose elements are positive integers. For example, to average across the
rows, set this parameter to 2. The default is 1.

This block supports var-size inputs of the dimensions in which the averaging takes
place. However, the input size for the nonaveraged dimensions must be constant. For
example, if the input size is [1000 3 2] and Averaging dimensions is [1 3], then
the output size is [1 3 1]. The number of elements in the second dimension is fixed
at 3.

Output minimum MER
Outputs the minimum MER of an input vector or frame.

Output X-percentile MER
Enables an output X-percentile MER measurement. When you select this option,
specify X-percentile value (%).

X-Percentile value (%)
This parameter is available only when you select Output X-percentile MER. The Xth
percentile is the MER value above which X% of all the computed MER values lie. The

3 Blocks — Alphabetical List

3-724

parameter defaults to the 95th percentile. That is, 95% of all MER values are above
this output.

Output the number of symbols processed
Outputs the number of symbols that the block uses to compute the Output X-
percentile MER. This parameter is available only when you select Output X-
percentile MER.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

Examples

Measure MER of Noisy PSK Signal

Measure the MER of a noisy 8-PSK signal.

Load the model by typing doc_mer_example at the command line.

 MER Measurement

3-725

matlab:doc_mer_example

Run the model. The MER is shown in the Display block and is approximately equal to the
SNR, which is set by using the Constant block. Experiment with different SNR values, and
observe the effect on the estimated MER.

Algorithms
MER is a measure of the SNR in a modulated signal calculated in dB. The MER over N
symbols is

MER = 10 · log10

∑
n = 1

N
Ik2 + Qk

2

∑
n = 1

N
ek

dB,

The MER for the kth symbol is

3 Blocks — Alphabetical List

3-726

MERk = 10 * log10

1
N ∑n = 1

N
Ik2 + Qk

2

ek
dB.

The minimum MER represents the minimum MER value in a burst, or

MERmin = min
k ∈ [1, ..., N]

MERk ,

where:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2

• Ik = In-phase measurement of the kth symbol in the burst
• Qk = Quadrature phase measurement of the kth symbol in the burst
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received)

symbols.

The block computes the X-percentile MER by creating a histogram of all the incoming
MERk values. The output provides the MER value above which X% of the MER values fall.

References
[1] DVB (ETSI) Standard ETR290. Digital Video Broadcasting (DVB): Measurement

guidelines for DVB systems. May 1997.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To generate code in a model using this block, you must enable Dynamic Memory
Allocation in MATLAB Functions. For more information, see “Dynamic memory
allocation in MATLAB functions” (Simulink).

 MER Measurement

3-727

See Also
Blocks
EVM Measurement

Objects
comm.MER

Topics
“EVM and MER Measurements with Simulink”
“Modulation Error Ratio (MER)”

Introduced in R2009b

3 Blocks — Alphabetical List

3-728

M-APSK Demodulator Baseband
M-ary amplitude phase shift keying (APSK) demodulation
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / APM

Description
The M-APSK Demodulator Baseband block demodulates a baseband representation of an
M-ary amplitude phase shift keying (APSK) modulated signal. M is the “Modulation Order
for M-APSK” on page 3-735. For a description of M-APSK demodulation, see “APSK Hard
Demodulation” on page 3-735 and “APSK Soft Demodulation” on page 3-736.

Note M-APSK Demodulator Baseband specifically applies to multiple ring PSK
constellations. For a single ring PSK constellation, use M-PSK Demodulator Baseband.

This icon shows the block with all ports enabled:

Ports

Input
In — APSK modulated signal
scalar | vector | matrix

 M-APSK Demodulator Baseband

3-729

APSK modulated signal, specified as a scalar, vector, or matrix. When this input is a
matrix, each column is treated as an independent channel. This port is unnamed until the
Var port is enabled.
Data Types: double | single
Complex Number Support: Yes

Var — Noise variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise
variance or signal power result in computations involving extreme positive or negative
magnitudes, see “APSK Soft Demodulation” on page 3-736 for demodulation decision
type considerations.

Dependencies

To enable this port, set Noise variance source to Input port.
Data Types: double | single

Output
Out — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The data type and dimensions
of the demodulated signal depend on the values specified by the Output type and Decision
type parameters. This port is unnamed on the block.

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated
Signal

Integer — Demodulated integer
values in the range [0,
(M – 1)]

The output signal has the same
dimensions as the input signal.

Bit Hard
decision

Demodulated bits The number of rows in the output
signal is log2(M) times the number of
rows in the input signal. Each
demodulated symbol is mapped to a
group of log2(M) elements in a
column, where the first element

Log-
likeliho
od ratio

Log-likelihood ratio
value for each bit

3 Blocks — Alphabetical List

3-730

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated
Signal

Approxim
ate log-
likeliho
od ratio

represents the MSB and the last
element represents the LSB.

Approximate log-
likelihood ratio value for
each bit

M is the “Modulation Order for M-APSK” on page 3-735.

Use Output data type to specify the output data type.
Data Types: single | double

Parameters
Constellation points per circle — Constellation points per PSK ring
[4,12] (default) | vector

Constellation points per PSK ring, specified as a vector with more than one element. Each
vector element indicates the number of constellation points in its corresponding PSK ring.
The first element corresponds to the innermost circle, and so on until the last element,
which corresponds to the outermost circle. The sum of the elements in Constellation
points per circle determines the modulation order. Element values must be multiples of
four, and the modulation order must be a power of two.
Example: [4,12,16] specifies a three PSK ring constellation with a modulation order of
32.

Radius of each circle — Radius per PSK ring
[0.5,1] (default) | vector

Radius per PSK ring, specified as a vector with the same length as Constellation points
per circle. Each vector element indicates the radius of its corresponding PSK ring. The
first element corresponds to the innermost circle, and so on until the last element, which
corresponds to the outermost circle. These element values must be positive values
arranged in increasing order.
Example: [0.5,1,2] defines radii for three constellation PSK rings. The inner ring has a
radius of 0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.

Phase offset of each circle (rad) — Phase offset per PSK ring
[pi/4,pi/12] (default) | scalar | vector

 M-APSK Demodulator Baseband

3-731

Phase offset per PSK ring in radians, specified as a scalar or vector with the same length
as Constellation points per circle. Each vector element indicates the phase offset of its
corresponding PSK ring. The first element corresponds to the innermost circle, and so on
until the last element, which corresponds to the outermost circle. The Phase offset of
each circle (rad) can be a scalar only if all the elements of Constellation points per
circle are the same value.
Example: [pi/4,pi/12,pi/16] defines phase offsets for three constellation PSK rings.
The inner ring has a phase offset of π/4, the second ring has a phase offset of π/12, and
the outer ring has a phase offset of π/16.

Symbol mapping — Symbol mapping
Auto (default) | Contourwise-gray | Gray | User-defined

Symbol mapping, specified as one of the following:

• Contourwise-gray — Uses Gray mapping along the contour in the phase dimension
for each PSK ring.

• Gray — Uses Gray mapping along the contour in both the amplitude and phase
dimensions. For Gray symbol mapping, all elements in Constellation points per circle
must be equal, and all elements in Phase offset of each circle (rad) must be equal. For
a description of the Gray mapping used, see [2].

• User-defined — See Custom symbol mapping.

The default symbol mapping depends on the Constellation points per circle and Phase
offset of each circle (rad) parameters. When all elements in Constellation points per
circle are equal, and all elements in Phase offset of each circle (rad) are equal, the
default is Gray. For all other cases, the default is Contourwise-gray.

Custom symbol mapping — Custom symbol mapping
[0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9] (default) | integer vector

Custom symbol mapping, specified as an integer vector. This vector must consist of M
unique elements with values in the range [0, (M – 1)], where M is the “Modulation Order
for M-APSK” on page 3-735. The first element in Custom symbol mapping corresponds
to the constellation point in the first quadrant of the innermost circle, with subsequent
elements positioned counterclockwise around the PSK rings.
Example: The default value, [0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9], specifies
contourwise-gray symbol mapping. The distribution of constellation points is nonuniform
on all contours.

3 Blocks — Alphabetical List

3-732

Dependencies

To enable this parameter, set Symbol mapping to User-defined.

Output type — Output type
Integer (default) | Bit

Output type, specified as Integer or Bit.
Data Types: char | string

Decision type — Demodulation decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-
likelihood ratio

Demodulation decision type, specified as Hard decision, Log-likelihood ratio, or
Approximate log-likelihood ratio. See “APSK Soft Demodulation” on page 3-736
for algorithm selection considerations.

Dependencies

This parameter applies only when Output type is set to Bit.

Noise variance source — Noise variance source
Property (default) | Input port

Noise variance source, specified as:

• Property — The noise variance is set using the Noise variance parameter.
• Input port — The noise variance is set using the Var input port.

Dependencies

This parameter applies only when Decision type is set to either Log-likelihood ratio
or Approximate log-likelihood ratio.

Noise variance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.

 M-APSK Demodulator Baseband

3-733

• When specified as a vector, the vector length must be equal to the number of columns
in the input signal. Each noise variance vector element is applied to its corresponding
column in the input signal.

When the noise variance or signal power result in computations involving extreme
positive or negative magnitudes, see “APSK Soft Demodulation” on page 3-736 for
Decision type specification considerations.
Dependencies

This parameter applies only when Noise variance source is set to Property and Decision
type is set to either Log-likelihood ratio or Approximate log-likelihood
ratio.
Data Types: double

Output data type — Output data type
double (default) | ...

Output data type, specified as one of the acceptable values from this table. Acceptable
Output data type values depend on the Output type and Decision type parameter values.

Output type Decision type Output data type Options
Integer Not applicable double, single, int8, uint8, int16, uint16,

int32, or uint32
Bit Hard decision double, single, int8, uint8, int16, uint16,

int32, uint32, or logical
Log-
likelihood
ratio or
Approximate
log-
likelihood
ratio

The output signal is the same data type as the input
signal.

Dependencies

This parameter applies only when Output type is set to Integer or when Output type is
set to Bit and Decision type is set to Hard decision.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

3 Blocks — Alphabetical List

3-734

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

For information on execution speed, see “Tips” on page 3-737.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size
Signals

no

More About

Modulation Order for M-APSK
The modulation order, M, for M-APSK equals the sum of the vector elements in the
Constellation points per circle parameter and is the total number of points in the signal
constellation. Element values in Constellation points per circle must be multiples of
four, and M must be a power of two.

APSK Hard Demodulation
The hard demodulation algorithm applies amplitude phase decoding, as described in [1].

 M-APSK Demodulator Baseband

3-735

APSK Soft Demodulation
For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are
available: exact LLR and approximate LLR. This table compares these algorithms.

Algorithm Accuracy Execution Speed
Exact LLR more accurate slower execution
Approximate LLR less accurate faster execution

3 Blocks — Alphabetical List

3-736

For further description of these algorithms, see “Exact LLR Algorithm” and “Approximate
LLR Algorithm”.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

Tips
• For faster execution of the M-APSK Demodulator Baseband block, set the Simulate

using parameter to:

• Code generation when using hard decision demodulation.
• Interpreted execution when using soft decision demodulation.

References
[1] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied

Mathematics, Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V.
Mladenov, and Z. Bojkovic, eds.). Vouliagmeni, Athens, Greece: WSEAS Press,
2009.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 M-APSK Demodulator Baseband

3-737

See Also
Blocks
DVBS-APSK Demodulator Baseband | M-APSK Modulator Baseband | M-PSK Demodulator
Baseband | MIL188-QAM Demodulator Baseband

Functions
apskdemod

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”

Introduced in R2018b

3 Blocks — Alphabetical List

3-738

M-APSK Modulator Baseband
M-ary amplitude phase shift keying (APSK) modulation
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / APM

Description
The M-APSK Modulator Baseband block modulates the input signal using M-ary amplitude
phase shift keying (APSK) modulation. The output is a baseband representation of the
modulated signal. M, the “Modulation Order for M-APSK” on page 3-743, equals the sum
of the elements in Constellation points per circle. For a description of M-APSK
modulation, see “Algorithms” on page 3-743.

Note M-APSK Modulator Baseband specifically applies to multiple ring PSK
constellations. For a single ring PSK constellation, use M-PSK Modulator Baseband.

Ports

Input
In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The input signal must consist of
binary values or integers in the range [0, (M – 1)], where M is the “Modulation Order for
M-APSK” on page 3-743. This port is unnamed on the block.

Note To process the input signal as binary elements, set the Input type parameter value
to Bit. For binary inputs, the number of rows must be an integer multiple of log2(M).

 M-APSK Modulator Baseband

3-739

Groups of log2(M) bits in a column are mapped onto a symbol, with the first bit
representing the MSB and the last bit representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Output
Out — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, returned as a complex scalar, vector, or matrix. The output signal
dimensions depend on the specified Input type value. This port is unnamed on the block.

Input type Dimensions of Output Signal
Integer The output signal has the same dimensions as the input signal.
Bit The number of rows in the output signal equals the number of

rows in the input signal divided by log2(M), where M is the
“Modulation Order for M-APSK” on page 3-743.

Use Output data type to specify the output data type.

Parameters
Constellation points per circle — Constellation points per PSK ring
[4,12] (default) | vector

Constellation points per PSK ring, specified as a vector with more than one element. Each
vector element indicates the number of constellation points in its corresponding PSK ring.
The first element corresponds to the innermost circle, and so on until the last element,
which corresponds to the outermost circle. The sum of the elements in Constellation
points per circle determines the modulation order. Element values must be multiples of
four, and the modulation order must be a power of two.
Example: [4,12,16] specifies a three PSK ring constellation with a modulation order of
32.

Radius of each circle — Radius per PSK ring
[0.5,1] (default) | vector

3 Blocks — Alphabetical List

3-740

Radius per PSK ring, specified as a vector with the same length as Constellation points
per circle. Each vector element indicates the radius of its corresponding PSK ring. The
first element corresponds to the innermost circle, and so on until the last element, which
corresponds to the outermost circle. These element values must be positive and arranged
in increasing order.
Example: [0.5,1,2] defines radii for three constellation PSK rings. The inner ring has a
radius of 0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.

Phase offset of each circle (rad) — Phase offset per PSK ring
[pi/4,pi/12] (default) | scalar | vector

Phase offset per PSK ring in radians, specified as a scalar or vector with the same length
as Constellation points per circle. Each vector element indicates the phase offset of its
corresponding PSK ring. The first element corresponds to the innermost circle, and so on
until the last element, which corresponds to the outermost circle. The Phase offset of
each circle (rad) can be a scalar only if all the elements of Constellation points per
circle are the same value.
Example: [pi/4,pi/12,pi/16] defines phase offsets for three constellation PSK rings.
The inner ring has a phase offset of π/4, the second ring has a phase offset of π/12, and
the outer ring has a phase offset of π/16.

Symbol mapping — Symbol mapping
Auto (default) | Contourwise-gray | Gray | User-defined

Symbol mapping, specified as one of the following:

• Contourwise-gray — Uses Gray mapping along the contour in the phase dimension
for each PSK ring.

• Gray — Uses Gray mapping along the contour in both the amplitude and phase
dimensions. For Gray symbol mapping, all the values for Constellation points per circle
must be equal and all the values for Phase offset of each circle (rad) must be equal.
For a description of the Gray mapping used, see [2].

• User-defined — See Custom symbol mapping.

The default symbol mapping depends on Constellation points per circle and Phase
offset of each circle (rad). When all the elements of Constellation points per circle
are equal and all the elements of Phase offset of each circle (rad) are equal, the
default is Gray. For all other cases, the default is Contourwise-gray.

 M-APSK Modulator Baseband

3-741

Custom symbol mapping — Custom symbol mapping
[0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9] (default) | integer vector

Custom symbol mapping, specified as an integer vector. This vector must consist of M
unique elements with values in the range [0, (M – 1)], where M is the “Modulation Order
for M-APSK” on page 3-743. The first element in Custom symbol mapping corresponds
to the constellation point in the first quadrant of the innermost circle, with subsequent
elements positioned counterclockwise around the PSK rings.
Example: The default value, [0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9], specifies
contourwise-gray symbol mapping. The distribution of constellation points is nonuniform
on all contours.

Dependencies

To enable this parameter, set Symbol mapping to User-defined.

Input type — Input type
Integer (default) | Bit

Input type, specified as Integer or Bit. To use Integer, the input signal must consist of
integers in the range [0, (M – 1)]. To use Bit, the input signal must contain binary values,
and the number of rows must be an integer multiple of log2(M), where M is the
“Modulation Order for M-APSK” on page 3-743.

Output data type — Output data type
double (default) | single

Output data type, specified as double or single.

View Constellation — Plot reference constellation
button

To plot the reference constellation, click the View Constellation button.

Tip Click Apply before clicking the View Constellation to view latest parameter values.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

3 Blocks — Alphabetical List

3-742

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size
Signals

no

More About

Modulation Order for M-APSK
The modulation order, M, for M-APSK is the total number of points in the signal
constellation. M equals the sum of the elements in Constellation points per circle. The
element values in Constellation points per circle must be multiples of four. M must be
a power of two.

Algorithms
The block implements a pure APSK constellation.

A pure M-APSK constellation is composed of NC concentric rings or contours, each with
uniformly spaced PSK points. The M-APSK constellation set is

 M-APSK Modulator Baseband

3-743

c

p q

p q
=

+
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = -

+
Ê

Ë

R j
M

i i M

R j
M

i

1

1

1 1

2

2

2

2
0 1

2

exp , , , ,

exp

…

ÁÁ
ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = -

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê

Ë
Á
Á

ˆ

¯

, , , ,

exp

i M

R j
M

iN

N

0 1

2

2
…

M M

C

C

Nc

p q ˜̃
˜

= -

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

, , , ,i MN0 1…
C

where

• The modulation order is equal to the sum of all Ml for l = 1, 2, ... , NC.
• NC is the number of concentric rings. NC ≥ 2.
• Ml is the number of constellation points in the lth ring.
• Rl is the radius of the lth ring.
• θl is the phase offset of the lth ring.
•

j = -1

References
[1] Corazza, Giovanni E. Digital Satellite Communications. New York: Springer Science

Business Media, LLC, 2007.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-744

See Also
Blocks
DVBS-APSK Modulator Baseband | M-APSK Demodulator Baseband | M-PSK Modulator
Baseband | MIL188-QAM Modulator Baseband

Functions
apskmod

Introduced in R2018b

 M-APSK Modulator Baseband

3-745

M-PAM Demodulator Baseband
Demodulate PAM-modulated data

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The M-PAM Demodulator Baseband block demodulates a signal that was modulated using
M-ary pulse amplitude modulation. The input is a baseband representation of the
modulated signal.

The signal constellation has M points, where M is the M-ary number parameter. M must
be an even integer. The block scales the signal constellation based on how you set the
Normalization method parameter. For details on the constellation and its scaling, see
the reference page for the M-PAM Modulator Baseband block.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see “Supported Data Types” on page 3-753.

Note All values of power assume a nominal impedance of 1 ohm.

Integer-Valued Signals and Binary-Valued Signals
When you set the Output type parameter to Integer, the block outputs integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued signals
that represent integers. The block represents each integer using a group of K = log2(M)

3 Blocks — Alphabetical List

3-746

bits, where K represents the number of bits per symbol. The output vector length must be
an integer multiple of K.

The Constellation ordering parameter indicates how the block assigns binary words to
points of the signal constellation. More details are on the reference page for the M-PAM
Modulator Baseband block.

Algorithm
The demodulator algorithm maps received input signal constellation values to M-ary
integer symbol indices between 0 and M-1 and then maps these demodulated symbol
indices to formatted output values.

The integer symbol index computation is performed by first scaling the real part of the
input signal constellation (possibly with noise) by a denormalization factor derived from
the Normalization method and related parameters. This denormalized value is added to
M-1 to translate it into an approximate range between 0 and 2 x (M-1) plus noise. The
resulting value is then rescaled via a divide-by-two (or, equivalently, a right-shift by one
bit for fixed-point operation) to obtain a range approximately between 0 and M-1 (plus
noise). The noisy index value is rounded to the nearest integer and clipped, via saturation,
to the exact range of [0 M-1]. Finally, based on other block parameters, the integer index
is mapped to a symbol value that is formatted and cast to the selected Output data type.

The following figures contains signal flow diagrams for floating-point and fixed-point
algorithm operation. The floating-point diagrams apply when the input signal data type is
double or single. The fixed-point diagrams apply when the input signal is a signed
fixed-point data type. Note that the diagram is simplified when using normalized
constellations (i.e., denormalization factor is 1).

 M-PAM Demodulator Baseband

3-747

Floating Point Fixed Point

Demodulator input

(complex)

Demodulator output

inDT

Re

Sum DT

Sum DT
Fixed-point addM-1 +

Sum DT

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

Cast before sum

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Demodulator input

(complex)

inDT

Re

inDT
M-1 +

inDT

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Floating-pt add

Signal-Flow Diagrams with Denormalization Factor Equal to 1

3 Blocks — Alphabetical List

3-748

Demodulator input

(complex)

inDTinDT

Re

inDT

inDT

Denormalization
factor

Floating Point Fixed Point

M-1

+

+
inDT

Demodulator input

(complex)

Demodulator output

inDTDenormalization

factor DT

Re

Product output DT

Sum DT

Sum DT

Denormalization
factor

Fixed-point multiply

Fixed-point addM-1

+

+
Sum DT

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

Cast before sum

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Floating-pt add

Floating-pt
multiply

Signal-Flow Diagrams with Nonunity Denormalization Factor

 M-PAM Demodulator Baseband

3-749

Parameters
M-ary number

The number of points in the signal constellation. It must be an even integer.
Output type

Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for some
positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output bits.

Normalization method
Determines how the block scales the signal constellation. Choices are
Min. distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

3 Blocks — Alphabetical List

3-750

Output
When the parameter is set to 'Inherit via internal rule' (default setting), the
block will inherit the output data type from the input port. The output data type will
be the same as the input data type if the input is of type single or double.
Otherwise, the output data type will be as if this parameter is set to 'Smallest
unsigned integer'.

When the parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is the ideal minimum
size, i.e., ufix(1) for bit outputs, and ufix(ceil(log2(M))) for integer outputs.
For all other selections, it is an unsigned integer with the smallest available word

 M-PAM Demodulator Baseband

3-751

length large enough to fit the ideal minimum size, usually corresponding to the size of
a char (e.g., uint8).

For integer outputs, this parameter can be set to Smallest unsigned integer,
int8, uint8, int16, uint16, int32, uint32, single, and double. For bit outputs,
the options are Smallest unsigned integer, int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double.

Denormalization factor
This parameter applies when a fixed-point input is not normalized. It can be set to
Same word length as input or Specify word length, in which case a field is
enabled for user input. A best-precision fraction length is always used.

Product output
This parameter only applies when the input is a fixed-point signal and there is a
nonunity (not equal to 1) denormalized factor. It can be set to Inherit via
internal rule or Specify word length, which enables a field for user input.

Setting to Inherit via internal rule computes the full-precision product word
length and fraction length. Internal Rule for Product Data Types (DSP System
Toolbox) in DSP System Toolbox User's Guide describes the full-precision Product
output internal rule.

Setting to Specify word length allows you to define the word length. The block
computes a best-precision fraction length based on the word length specified and the
pre-computed worst-case (min/max) real world value Product output result. The
worst-case Product output result is precomputed by multiplying the denormalized
factor with the worst-case (min/max) input signal range, purely based on the input
signal data type.

The block uses the Rounding method when the result of a fixed-point calculation
does not map exactly to a number representable by the data type and scaling storing
the result. For more information, see “Rounding Modes” (DSP System Toolbox) or
“Rounding Mode: Simplest” (Fixed-Point Designer).

Sum
This parameter only applies when the input is a fixed-point signal. It can be set to
Inherit via internal rule, Same as product output, or Specify word
length, in which case a field is enabled for user input

Setting Inherit via internal rule computes the full-precision sum word length
and fraction length, based on the two inputs to the Sum in the fixed-point Hard

3 Blocks — Alphabetical List

3-752

Decision Algorithm on page 3-747 signal flow diagram. The rule is the same as the
fixed-point inherit rule of the internal Accumulator data type parameter in the
Simulink Sum block.

Setting Specify word length allows you to define the word length. A best
precision fraction length is computed based on the word length specified in the pre-
computed maximum range necessary for the demodulated algorithm to produce
accurate results. The signed fixed-point data type that has the best precision fully
contains the values in the range 2 * (M-1) for the specified word length.

Setting to Same as product output allows the Sum data type to be the same as
the Product output data type (when Product output is used). If the Product
output is not used, then this setting will be ignored and the Inherit via
internal rule Sum setting will be used.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• uf ix log2M in ASIC/FPGA when Output type is Integer

Pair Block
M-PAM Modulator Baseband

 M-PAM Demodulator Baseband

3-753

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General QAM Demodulator Baseband | M-PAM Modulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-754

M-PAM Modulator Baseband
Modulate using M-ary pulse amplitude modulation

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The M-PAM Modulator Baseband block modulates using M-ary pulse amplitude
modulation. The output is a baseband representation of the modulated signal. The M-ary
number parameter, M, is the number of points in the signal constellation. It must be an
even integer.

Note All values of power assume a nominal impedance of 1 ohm.

Constellation Size and Scaling
Baseband M-ary pulse amplitude modulation using the block's default signal constellation
maps an integer m between 0 and M-1 to the complex value

2m - M + 1

Note This value is actually a real number. The block's output signal is a complex data-
type signal whose imaginary part is zero.

The block scales the default signal constellation based on how you set the Normalization
method parameter. The following table lists the possible scaling conditions.

 M-PAM Modulator Baseband

3-755

Value of Normalization Method
Parameter

Scaling Condition

Min. distance between symbols The nearest pair of points in the
constellation is separated by the value of
the Minimum distance parameter

Average Power The average power of the symbols in the
constellation is the Average power
parameter

Peak Power The maximum power of the symbols in the
constellation is the Peak power parameter

Integer-Valued Signals and Binary-Valued Signals
This block accepts a scalar or column vector input signal.

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

The Constellation ordering parameter indicates how the block assigns binary words to
points of the signal constellation.

• If Constellation ordering is set to Binary, then the block uses a natural binary-
coded constellation.

• If Constellation ordering is set to Gray, then the block uses a Gray-coded
constellation.

For details about the Gray coding, see the reference page for the M-PSK Modulator
Baseband block.

3 Blocks — Alphabetical List

3-756

Constellation Visualization
The M-PAM Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the Constellation Visualization section of the Communications Toolbox User's Guide.

Parameters
M-ary number

The number of points in the signal constellation. It must be an even integer.
Input type

Indicates whether the input consists of integers or groups of bits. If this parameter is
set to Bit, then the M-ary number parameter must be 2K for some positive integer
K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding integer.

Normalization method
Determines how the block scales the signal constellation. Choices are
Min. distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

 M-PAM Modulator Baseband

3-757

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point
data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer software. This parameter is only visible when you select User-defined for
the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data type
is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

3 Blocks — Alphabetical List

3-758

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
• uf ix log2M when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
M-PAM Demodulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General QAM Modulator Baseband | M-PAM Demodulator Baseband

Introduced before R2006a

 M-PAM Modulator Baseband

3-759

M-PSK Demodulator Baseband
Demodulate PSK-modulated data
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / PM
Communications Toolbox HDL Support / Modulation /
PM

Description
The M-PSK Demodulator Baseband block demodulates a baseband representation of a
PSK-modulated signal. The modulation order, M, is equivalent to the number of points in
the signal constellation and is determined by the M-ary number parameter. The block
accepts scalar or column vector input signals.

Input/Output Ports

Input
Port_1 — Input signal
scalar | vector

Input port accepting a baseband representation of a PSK-modulated signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Output
Port_1 — Output signal
scalar | vector

Output signal, returned as a scalar or vector. The output is a demodulated version of the
PSK-modulated signal.
Data Types: single | double | fixed point

3 Blocks — Alphabetical List

3-760

Parameters
M-ary number — Modulation order of the PSK constellation
8 (default) | scalar

Specify the modulation order as a positive integer power of two.
Example: 2 | 16

Output type — Output signal data type
Integer (default) | Bit

Specify the elements of the input signal as integers or bits. If Output type is Bit, the
number of samples per frame is an integer multiple of the number of bits per symbol,
log2(M).

Decision type — Demodulator output
Hard decision (default) | Log-likelihood ratio | Approximate log-
likelihood ratio

Specify the demodulator output to be hard decision, log-likelihood ratio (LLR), or
approximate LLR. The LLR and approximate LLR outputs are used with error decoders
that support soft-decision inputs such as a Viterbi decoder, to achieve superior
performance. This parameter is available when Output type is Bit.

See “Phase Modulation” for algorithm details. The output values for Log-likelihood
ratio and Approximate log-likelihood ratio decision types are of the same data
type as the input values

Noise variance source — Source of noise variance
Dialog (default) | Port

Specify the source of the noise variance estimate. This parameter is available when
Decision type is Log-likelihood ratio or Approximate log-likelihood ratio.

• To specify the noise variance from the dialog box, select Dialog.
• To input the noise variance from an input port, select Port.

Noise variance — Estimate of noise variance
1 (default) | positive scalar

 M-PSK Demodulator Baseband

3-761

Specify the estimate of the noise variance as a positive scalar. This parameter is available
when Noise variance source is Dialog.

This parameter is tunable in all simulation modes. If you use the Simulink Coder rapid
simulation (RSIM) target to build an RSIM executable, then you can tune the parameter
without recompiling the model. Avoiding recompilation is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps on multiple
computers) with different amounts of noise.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic.
Computation of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm
because it does not compute exponentials.

Constellation ordering — Symbol mapping
Gray (default) | Binary | User-defined

Specify how the integer or group of log2(M) bits is mapped to the corresponding symbol.

• When Constellation ordering is set to Gray, the output symbol is mapped to the
input signal using a Gray-encoded signal constellation.

• When Constellation ordering is set to Binary, the modulated symbol is exp(jϕ
+j2πm/M), where ϕ is the phase offset in radians, m is the integer output such that 0 ≤
m ≤ M – 1, and M is the modulation order.

• When Constellation ordering is User-defined, specify a vector of size M, which
has unique integer values in the range [0, M–1]. The first element of this vector
corresponds to the constellation point having a value of ejϕ with subsequent elements
running counterclockwise.

Example: [0 3 2 1]

Constellation mapping — User-defined symbol mapping
[0:7] (default) | vector

3 Blocks — Alphabetical List

3-762

Specify the order in which input integers are mapped to output integers. The parameter
is available when Constellation ordering is User-defined, and must be a row or
column vector of size M having unique integer values in the range [0, M – 1].

The first element of this vector corresponds to the constellation point at 0 + Phase offset
angle, with subsequent elements running counterclockwise. The last element corresponds
to the -2π/M + Phase offset constellation point.

Phase offset (rad) — Phase offset in radians
pi/8 (default) | scalar

Specify, in radians, the phase offset of the initial constellation as a real scalar.
Example: pi/4

Output data type — Output data type
Inherit via internal rule (default) | Smallest unsigned integer | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32

Specify the data type of the demodulated output signal.

Block Characteristics
Data Types Boolean | double | fixed pointabc | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

a. M = 2, 4, 8 only.
b. Fixed-point inputs must be signed.
c. When ASIC/FPGA is selected in the Hardware Implementation Pane, output is ufix(1) for bit outputs, and

ufix(ceil(log2(M))) for integer outputs.

Algorithms
BPSK
Diagrams for hard-decision demodulation of BPSK signals follow.

 M-PSK Demodulator Baseband

3-763

{ , }0 1

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , }0 1

Hard-Decision BPSK Demodulator Signal Diagram for Trivial Phase Offset
(multiple of π/2)

3 Blocks — Alphabetical List

3-764

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

input DT

input DT

(constant derotate factors)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Floating-Point Signal Diagram for Nontrivial
Phase Offset

 M-PSK Demodulator Baseband

3-765

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Fixed-Point Signal Diagram for Nontrivial
Phase Offset

QPSK
Diagrams for hard-decision demodulation of QPSK signals follow.

3 Blocks — Alphabetical List

3-766

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , , , }0 1 2 3

Hard-Decision QPSK Demodulator Signal Diagram for Trivial Phase Offset (odd
multiple of π/4)

 M-PSK Demodulator Baseband

3-767

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

u

+

+

-

+

+

+

I input DT

input DT

input DT

input DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Floating-Point Signal Diagram for Nontrivial
Phase Offset

3 Blocks — Alphabetical List

3-768

+

+

-

+

+

+

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Output DT

symbol

index

(integer)

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

Re

Im

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Fixed-Point Signal Diagram for Nontrivial
Phase Offset

Higher-Order PSK
Diagrams for hard-decision demodulation of higher-order (M ≥ 8) signals follow.

 M-PSK Demodulator Baseband

3-769

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

Re
derotate to

Phase offset

constellation

mapping to

symbol index

(simple sign

comparisons)

u I

Input DT

input DT

Input DT

complex multiply

complex multiply

Q

I

Q
Im

π 8

3 8π

derotate to

Phase offset

Input DT

input DT

Input DT
(constant

derotate

factors)

(constant

derotate

factors)

I

Q

{ , , , }0 1 2 7 …

sin()

cos

Phase offset − 3 8π

(()Phase offset − 3 8π

sin()

cos()

Phase Offset

Phase Offset

−

−

π

π

8

8

Hard-Decision 8-PSK Demodulator Floating-Point Signal Diagram

3 Blocks — Alphabetical List

3-770

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

Re
derotate to

Phase offset

constellation

mapping to

symbol index

(simple sign

comparisons)

u I

Derotate

factor DT

input DT

Derotate

factor DT

complex fixed-point

multiply (with saturate on)

complex fixed-point

multiply (with saturate on)

Q

I

Q
Im

π 8

3 8π

derotate to

Phase offset

Derotate

factor DT

input DT

Derotate

factor DT

(constant

derotate

factors)

(constant

derotate

factors)

I

Q

{ , , , }0 1 2 7 …

sin()

cos

Phase offset − 3 8π

(()Phase offset − 3 8π

sin()

cos()

Phase Offset

Phase Offset

−

−

π

π

8

8

Hard-Decision 8-PSK Demodulator Fixed-Point Signal Diagram

 M-PSK Demodulator Baseband

3-771

Output

formatting

(and data

type casting)

Constellation mapping to

symbol index

Compute phase of constell-

ation point using

Scale floating-point result

by

Round result to nearest integer

Clip out of range values to

0 or

input

DT

Output DT

symbol

index

(integer)

I

input

DT

Q

Derotate input to

 Phase offset

u

+

+

-

+

+

+

I

input

DT

input

DT

input

DT

input

DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

{ , , , ..., }

tan ()

0 1 2 1

0

2

1

1

 M

Q I

M

M

−

−

−

π

Hard-Decision M-PSK Demodulator (M > 8) Floating-Point Signal Diagram for
Nontrivial Phase Offset

For M > 8, to improve speed and implementation costs, no derotation arithmetic is
performed when Phase offset is 0, π/2, π, or 3π/2 (that is, when it is trivial).

3 Blocks — Alphabetical List

3-772

Also, for M > 8, this block only supports double and single input types.

Log-Likelihood Ratio and Approximate Log-Likelihood Ratio
The exact LLR and approximate LLR algorithms (soft-decision) are described in “Phase
Modulation”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

 M-PSK Demodulator Baseband

3-773

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
M-DPSK Demodulator Baseband | M-PSK Modulator Baseband

Topics
“Phase Modulation”
“Gray Coded 8-PSK”

Introduced before R2006a

3 Blocks — Alphabetical List

3-774

M-PSK Modulator Baseband
Modulate using M-ary phase shift keying
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / PM
Communications Toolbox HDL Support / Modulation /
PM

Description
The M-PSK Modulator Baseband block modulates an input signal using M-ary phase shift
keying (PSK) and returns a complex baseband output. The modulation order, M, which is
equivalent to the number of points in the signal constellation, is determined by the M-ary
number parameter. The block accepts scalar or column vector input signals.

Input/Output Ports

Input
Port_1 — Input signal
scalar | vector

Specify the input signal as an integer scalar, integer vector, or binary vector.

• When Input type is Integer, specify the input signal elements as integers from 0 to
M – 1.

• When Input type is Bit, specify the input signal as a binary vector in which the
number of elements is an integer multiple of the bits per symbol. The bits per symbol
is equal to log2(M).

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

 M-PSK Modulator Baseband

3-775

Output
Port_1 — Output signal
scalar | vector

Output signal, returned as a complex scalar or vector. The output is the complex
baseband representation of the PSK-modulated signal.
Data Types: single | double | fixed point

Parameters
M-ary number — Modulation order of the PSK constellation
8 (default) | scalar

Specify the modulation order as a positive integer power of two.
Example: 2 | 16

Input type — Type of input signal
Integer (default) | Bit

Specify the elements of the input signal as integers or bits. If Input type is Bit, the
number of samples per frame must be an integer multiple of the number of bits per
symbol. The number of bits per symbol is log2(M).

Constellation ordering — Symbol mapping
Gray (default) | Binary | User-defined

Specify how the integer or group of log2(M) bits is mapped to the corresponding symbol.

• When Constellation ordering is set to Gray, the input signal is mapped to the output
symbols using a Gray-encoded signal constellation.

• When Constellation ordering is set to Binary, the modulated symbol is exp(jϕ
+j2πm/M), where ϕ is the phase offset in radians, m is the integer input such that 0 ≤
m ≤ M – 1, and M is the modulation order.

• When Constellation ordering is User-defined, specify a vector of size M, which
has unique integer values in the range [0, M–1]. The first element of this vector
corresponds to the constellation point having an value of ejϕ with subsequent elements
running counterclockwise.

3 Blocks — Alphabetical List

3-776

Example: [0 3 2 1]

Constellation mapping — User-defined symbol mapping
[0:7] (default) | vector

Specify the order in which input integers are mapped to output integers. The parameter
is available when Constellation ordering is User-defined, and must be a row or
column vector of size M having unique integer values in the range [0, M – 1].

The first element of this vector corresponds to the constellation point at 0 + Phase offset
angle, with subsequent elements running counterclockwise. The last element corresponds
to the -2π/M + Phase offset constellation point.

Phase offset (rad) — Phase offset in radians
pi/8 (default) | scalar

Specify, in radians, the phase offset of the initial constellation as a real scalar.
Example: pi/4

Output data type — Output data type
double (default) | single | Inherit via back propagation | fixdt(1,16) |
fixdt(1,16,0) | <data type expression>

Specify the data type of the modulated output signal. Set this parameter to one of the
fixed point options or <data type expression> to enable parameters in which you
specify additional details. Set this parameter to Inherit via back propagation, to
match the output data type and scaling to the following block in the model.

Block Characteristics
Data Types Boolean | double | fixed pointab | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

a. ufix(1) at the input if ''input type'' is set to ''bit''. ufix(ceil(log2(M))) at input if ''input type'' is set to
''integer'' for M-ary modulation.

b. Fixed-point outputs must be signed.

 M-PSK Modulator Baseband

3-777

Tips
The M-PSK Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. Clicking the View Constellation button allows you to
visualize a signal constellation for the specified block parameters.

Algorithms
The block outputs a baseband signal by mapping input bits or integers to complex
symbols according to the following:

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

This applies when a natural binary ordering is used. Another common mapping is Gray
coding, which has the advantage that only one bit changes between adjacent constellation
points. This results in better bit error rate performance. For 8-PSK modulation with Gray
coding, the mapping between the input and output symbols is shown.

Input Output
0 0 (000)
1 1 (001)
2 3 (011)
3 2 (010)
4 6 (110)
5 7 (111)
6 5 (101)
7 4 (100)

The corresponding constellation diagram follows.

3 Blocks — Alphabetical List

3-778

When the input signal is composed of bits, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of log2(M) bits.

 M-PSK Modulator Baseband

3-779

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
M-DPSK Modulator Baseband | M-PSK Demodulator Baseband

Topics
“Phase Modulation”

3 Blocks — Alphabetical List

3-780

“Gray Coded 8-PSK”

Introduced before R2006a

 M-PSK Modulator Baseband

3-781

M-PSK Phase Recovery
(To be removed) Recover carrier phase using M-Power method

Note M-PSK Phase Recovery will be removed in a future release. Use the Carrier
Synchronizer block instead.

Library
Carrier Phase Recovery sublibrary of Synchronization

Description
The M-PSK Phase Recovery block recovers the carrier phase of the input signal using the
M-Power method. This feedforward, non-data-aided, clock-aided method is suitable for
systems that use baseband phase shift keying (PSK) modulation. It is also suitable for
systems that use baseband quadrature amplitude modulation (QAM), although the results
are less accurate than those for comparable PSK systems. The alphabet size for the
modulation must be an even integer.

For PSK signals, the M-ary number parameter represents the alphabet size. For QAM
signals, the M-ary number should be 4 regardless of the alphabet size because the 4-
power method is the most appropriate for QAM signals.

The M-Power method assumes that the carrier phase is constant over a series of
consecutive symbols, and returns an estimate of the carrier phase for the series. The
Observation interval parameter is the number of symbols for which the carrier phase is
assumed constant. This number must be an integer multiple of the input signal's vector
length.

Input and Output Signals
This block accepts a scalar or column vector input signal of type double or single. The
input signal represents a baseband signal at the symbol rate, so it must be complex-
valued and must contain one sample per symbol.

3 Blocks — Alphabetical List

3-782

The outputs are as follows:

• The output port labeled Sig gives the result of rotating the input signal
counterclockwise, where the amount of rotation equals the carrier phase estimate. The
Sig output is thus a corrected version of the input signal, and has the same sample
time and vector size as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in degrees, for all
symbols in the observation interval. The Ph output is a scalar signal.

Note Because the block internally computes the argument of a complex number, the
carrier phase estimate has an inherent ambiguity. The carrier phase estimate is
between -180/M and 180/M degrees and might differ from the actual carrier phase by
an integer multiple of 360/M degrees.

Delays and Latency
The block's algorithm requires it to collect symbols during a period of length
Observation interval before computing a single estimate of the carrier phase.
Therefore, each estimate is delayed by Observation interval symbols and the corrected
signal has a latency of Observation interval symbols, relative to the input signal.

Parameters
M-ary number

The number of points in the signal constellation of the transmitted PSK signal. This
value as an even integer.

Observation interval
The number of symbols for which the carrier phase is assumed constant. The
observation interval parameter must be an integer multiple of the input signal vector
length.

When this parameter is exactly equal to the vector length of the input signal, then the
block always works. When the integer multiple is not equal to 1, select Simulation >
Configuration Parameters > Solver and clear the Treat each discrete rate as a
separate task checkbox.

 M-PSK Phase Recovery

3-783

Algorithm
If the symbols occurring during the observation interval are x(1), x(2), x(3),..., x(L), then
the resulting carrier phase estimate is

1
Marg ∑

k = 1

L
(x(k))M

where the arg function returns values between -180 degrees and 180 degrees.

References
[1] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital

Receivers, New York, Plenum Press, 1997.

[2] Moeneclaey, Marc, and Geert de Jonghe, "ML-Oriented NDA Carrier Synchronization
for General Rotationally Symmetric Signal Constellations," IEEE Transactions on
Communications, Vol. 42, No. 8, Aug. 1994, pp. 2531-2533.

See Also
CPM Phase Recovery, M-PSK Modulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-784

M-PSK TCM Decoder
Decode trellis-coded modulation data, modulated using PSK method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The M-PSK TCM Decoder block uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using a PSK signal constellation.

The M-ary number parameter represents the number of points in the signal
constellation, which also equals the number of possible output symbols from the
convolutional encoder. (That is, log2(M-ary number) is the number of output bit streams
from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block should match those
in the M-PSK TCM Encoder block, to ensure proper decoding.

Input and Output Signals
This block accepts a column vector input signal containing complex numbers. The input
signal must be double or single. The reset port signal must be double or Boolean.
For information about the data types each block port supports, see “Supported Data
Types” on page 3-787.

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the M-PSK TCM Decoder block's output is a binary column vector whose length is k
times the vector length of the input signal.

 M-PSK TCM Decoder

3-785

Operation Modes
The block has three possible methods for transitioning between successive frames. The
Operation mode parameter controls which method the block uses. This parameter also
affects the range of possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning of
the simulation, waits until it accumulates D symbols, and then uses a sequence of D
symbols to compute each of the traceback paths. D can be any positive integer. At the
end of each frame, the block saves its internal state metric for use with the next
frame.

If you select Enable the reset input, the block displays another input port, labeled
Rst. This port receives an integer scalar signal. Whenever the value at the Rst port is
nonzero, the block resets all state metrics to zero and sets the traceback memory to
zero.

• In Truncated mode, the block treats each frame independently. The traceback path
starts at the state with the lowest metric. D must be less than or equal to the vector
length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path
always starts at the all-zeros state. D must be less than or equal to the vector length of
the input. If you know that each frame of data typically ends at the all-zeros state, then
this mode is an appropriate choice.

Decoding Delay
If you set Operation mode to Continuous, then this block introduces a decoding delay
equal to Traceback depth*k bits, for a rate k/n convolutional code. The decoding delay is
the number of zeros that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
M-ary number

The number of points in the signal constellation.

3 Blocks — Alphabetical List

3-786

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses in
the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous, Truncated,
and Terminated.

Enable the reset input port
When you check this box, the block has a second input port labeled Rst. Providing a
nonzero input value to this port causes the block to set its internal memory to the
initial state before processing the input data. This option appears only if you set
Operation mode to Continuous.

Output data type
The output type of the block can be specified as a boolean or double. By default,
the block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Boolean
Output • Double-precision floating point

• Boolean

Pair Block
M-PSK TCM Encoder

 M-PSK TCM Decoder

3-787

References
[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded

Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Decoder | M-PSK TCM Encoder

Functions
poly2trellis

Introduced before R2006a

3 Blocks — Alphabetical List

3-788

M-PSK TCM Encoder
Convolutionally encode binary data and modulate using PSK method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The M-PSK TCM Encoder block implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to a PSK signal
constellation.

The M-ary number parameter is the number of points in the signal constellation, which
also equals the number of possible output symbols from the convolutional encoder. (That
is, log2(M-ary number) is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals
If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the block input signal must be a binary column vector with a length of L*k for some
positive integer L.

This block accepts a binary-valued input signal. The output signal is a complex column
vector of length L.

 M-PSK TCM Encoder

3-789

Specifying the Encoder
To define the convolutional encoder, use the Trellis structure parameter. This parameter
is a MATLAB structure whose format is described in “Trellis Description of a
Convolutional Code”. You can use this parameter field in two ways:

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, then use a poly2trellis command
within the Trellis structure field. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)
• If you have a variable in the MATLAB workspace that contains the trellis structure,

then enter its name as the Trellis structure parameter. This way is faster because it
causes Simulink software to spend less time updating the diagram at the beginning of
each simulation, compared to the usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that it
resets its registers to the all-zeros state during the course of the simulation. To do this,
set the Operation mode to Reset on nonzero input via port. The block then opens a
second input port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Signal Constellations
The trellis-coded modulation technique partitions the constellation into subsets called
cosets, so as to maximize the minimum distance between pairs of points in each coset.
This block internally forms a valid partition based on the value you choose for the M-ary
number parameter.

The figure below shows the labeled set-partitioned signal constellation that the block uses
when M-ary number is 8. For constellations of other sizes, see [1].

3 Blocks — Alphabetical List

3-790

Coding Gains
Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the
presence of AWGN with multiphase trellis codes [3].

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode (default setting), the block retains the encoder states at the end
of each frame, for use with the next frame.

 M-PSK TCM Encoder

3-791

In Truncated (reset every frame) mode, the block treats each frame
independently. I.e., the encoder states are reset to all-zeros state at the start of each
frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k,
where x is the number of input bits, and s = constraint length− 1 (or, in the case of
multiple constraint lengths, s =sum(ConstraintLength(i)-1)). The block
supports this mode for column vector input signals.

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Pair Block
M-PSK TCM Decoder

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on
Information Theory, Vol IT28, Jan. 1982, pp. 55–67.

3 Blocks — Alphabetical List

3-792

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Encoder | M-PSK TCM Decoder

Functions
poly2trellis

Introduced before R2006a

 M-PSK TCM Encoder

3-793

MSK Demodulator Baseband
Demodulate differentially encoded MSK-modulated data

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The MSK Demodulator Baseband block demodulates a signal that was modulated using
the differentially encoded minimum shift keying method. The block expects the input
signal to be a baseband representation of a coherent modulated signal with no precoding.
The Phase offset parameter represents the initial phase of the modulated waveform.

Pulse Shape Filtering
Differentially encoded minimum shift keying modulation uses pulse shaping to smooth the
phase transitions of the modulated signal. The function q(t) is the phase response

obtained from the frequency pulse, g(t), through this relation:
q t g t dt

t
() ()=

-•Ú

The specified frequency pulse shape corresponds to this rectangular pulse shape
expression, g(t).

3 Blocks — Alphabetical List

3-794

Pulse Shape Expression
Rectangular

g t LT
t LT

()
,

=
£ £

Ï

Ì
Ô

ÓÔ

1

2
0

0 otherwise

• Lmain is the main lobe pulse duration in symbol intervals.
• The duration of the pulse, LT, is the pulse length in symbol intervals.

Integer-Valued Signals and Binary-Valued Signals
This block accepts a scalar-valued or column vector input signal with a data type of
single or double. If you set the Output type parameter to Integer, then the block
produces values of 1 and -1. If you set the Output type parameter to Bit, then the block
produces values of 0 and 1.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

 MSK Demodulator Baseband

3-795

Traceback Depth and Output Delays
Internally, this block creates a trellis description of the modulation scheme and uses the
Viterbi algorithm. The Traceback depth parameter, D, in this block is the number of
trellis branches used to construct each traceback path. D influences the output delay,
which is the number of zero symbols that precede the first meaningful demodulated value
in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
then the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the number
of states, can be chosen using the “five-times-the-constraint-length” rule, which
corresponds to 5×log2(numStates). The number of states is determined by the following
equation:

numStates =
p ⋅ 2(L− 1), f or even m

2p ⋅ 2(L− 1), f or odd m

where:

• h = m/p is the modulation index proper rational form

• m = numerator of modulation index
• p = denominator of modulation index

• L is the Pulse length

Parameters
Output type

Determines whether the output consists of bipolar or binary values.
Phase offset (rad)

The initial phase of the modulated waveform.

3 Blocks — Alphabetical List

3-796

Samples per symbol
The number of input samples that represent each modulated symbol, which must be a
positive integer. For more information, see “Upsample Signals and Rate Changes”.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width is the number of symbols (which is given by dividing the input length
by the Samples per symbol parameter value when the Output type parameter is
set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth
The number of trellis branches that the MSK Demodulator Baseband block uses to
construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

 MSK Demodulator Baseband

3-797

Pair Block
MSK Modulator Baseband

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation, New

York, Plenum Press, 1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPM Demodulator Baseband | MSK Modulator Baseband | Viterbi Decoder

Introduced before R2006a

3 Blocks — Alphabetical List

3-798

MSK Modulator Baseband
Modulate using differentially encoded minimum shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The MSK Modulator Baseband block modulates using the differentially encoded minimum
shift keying method. The output is a baseband representation of the modulated signal.

This block accepts a scalar-valued or column vector input signal. For a column vector
input signal, the width of the output equals the product of the number of symbols and the
value for the Samples per symbol parameter.

Pulse Shape Filtering
Differentially encoded minimum shift keying modulation uses pulse shaping to smooth the
phase transitions of the modulated signal. The function q(t) is the phase response

obtained from the frequency pulse, g(t), through this relation:
q t g t dt

t
() ()=

-•Ú

The specified frequency pulse shape corresponds to this rectangular pulse shape
expression, g(t).

 MSK Modulator Baseband

3-799

Pulse Shape Expression
Rectangular

g t LT
t LT

()
,

=
£ £

Ï

Ì
Ô

ÓÔ

1

2
0

0 otherwise

• Lmain is the main lobe pulse duration in symbol intervals.
• The duration of the pulse, LT, is the pulse length in symbol intervals.

Integer-Valued Signals and Binary-Valued Signals
When you set the Input type parameter to Integer, then the block accepts values of 1
and -1.

When you set the Input type parameter to Bit, then the block accepts values of 0 and 1.

For information about the data types each block port supports, see the “Supported Data
Types” on page 3-802 table on this page.

Single-Rate Processing
In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of K, the
number of bits per symbol.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing
In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

3 Blocks — Alphabetical List

3-800

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

Parameters
Input type

Indicates whether the input consists of bipolar or binary values.
Phase offset (rad)

The initial phase of the output waveform, measured in radians.
Samples per symbol

The number of output samples that the block produces for each integer or binary
word in the input, which must be a positive integer. For all non-binary schemes, as
defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes” in Communications
ToolboxUser's Guide.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. The
output width equals the product of the number of symbols and the Samples per
symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals the
symbol period divided by the Samples per symbol parameter value.

Output data type
Specify the block output data type as double and single. By default, the block sets
this to double.

 MSK Modulator Baseband

3-801

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (when Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (when Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
MSK Demodulator Baseband

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation, New

York, Plenum Press, 1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPM Modulator Baseband | MSK Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-802

MSK-Type Signal Timing Recovery
Recover symbol timing phase using fourth-order nonlinearity method

Library
Timing Phase Recovery sublibrary of Synchronization

Description
The MSK-Type Signal Timing Recovery block recovers the symbol timing phase of the
input signal using a fourth-order nonlinearity method. This block implements a general
non-data-aided feedback method that is independent of carrier phase recovery but
requires prior compensation for the carrier frequency offset. This block is suitable for
systems that use baseband minimum shift keying (MSK) modulation or Gaussian minimum
shift keying (GMSK) modulation.

Inputs
By default, the block has one input port. The input signal could be (but is not required to
be) the output of a receive filter that is matched to the transmitting pulse shape, or the
output of a lowpass filter that limits the amount of noise entering this block.

This block accepts a scalar-valued or column vector input signal. The input uses N
samples to represent each symbol, where N > 1 is the Samples per symbol parameter.

• For a column vector input signal, the block operates in single-rate processing mode. In
this mode, the output signal inherits its sample rate from the input signal. The input
length must be a multiple of N.

• For a scalar input signal, the block operates in multirate processing mode. In this
mode, the input and output signals have different sample rates. The output sample
rate equals N multiplied by the input sample rate.

 MSK-Type Signal Timing Recovery

3-803

• This block accepts input signals of type Double or Single

If you set the Reset parameter to On nonzero input via port, then the block has a
second input port, labeled Rst. The Rst input determines when the timing estimation
process restarts, and must be a scalar.

• If the input signal is a scalar value, the sample time of the Rst input equals the symbol
period

• If the input signal is a column vector, the sample time of the Rst input equals the
input port sample time

• This block accepts reset signals of type Double or Boolean

Outputs
The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase correction to the input
signal. This output is the signal value for each symbol, which can be used for decision
purposes. The values in the Sym output occur at the symbol rate:

• For a column vector input signal of length N*R, the Sym output is a column vector
of length R having the same sample rate as the input signal.

• For a scalar input signal, the sample rate of the Sym output equals N multiplied by
the input sample rate.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N. Noninteger values for
the phase estimate correspond to interpolated values that lie between two values of
the input signal. The sample time of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per symbol, or if the
actual timing phase offset in your input signal is very close to zero, then the block's
accuracy might be compromised by small amounts of noise or jitter. The block works
well when the timing phase offset is significant rather than very close to zero.

• The output signal inherits its data type from the input signal.

3 Blocks — Alphabetical List

3-804

Delays
When the input signal is a vector, this block incurs a delay of two symbols. When the input
signal is a scalar, this block incurs a delay of three symbols.

Parameters
Modulation type

The type of modulation in the system. Choices are MSK and GMSK.
Samples per symbol

The number of samples, N, that represent each symbol in the input signal. This must
be greater than 1.

Error update gain
A positive real number representing the step size that the block uses for updating
successive phase estimates. Typically, this number is less than 1/N, which
corresponds to a slowly varying phase.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. For
more information, see Tunable Parameters (Simulink).

Reset
Determines whether and under what circumstances the block restarts the phase
estimation process. Choices are None, Every frame, and On nonzero input via
port. The last option causes the block to have a second input port, labeled Rst.

Algorithm
This block's algorithm extracts timing information by passing the sampled baseband
signal through a fourth-order nonlinearity followed by a digital differentiator whose
output is smoothed to yield an error signal. The algorithm then uses the error signal to
make the sampling adjustments.

More specifically, this block uses a timing error detector whose result for the kth symbol
is e(k), given in [2] by

 MSK-Type Signal Timing Recovery

3-805

e(k) = (−Re r2(kT − Ts + dk− 1)r * 2((k− 1)T − Ts + dk− 2)

−(−Re r2(kT + Ts + dk− 1)r * 2((k− 1)T + Ts + dk− 1)

e k r kT T d r k T T d
D

s k s k

D

() () Re{ () (())}

() R

*
= - - + - - +

- -

+

- -

+

1 1

1

1 2
1

2
2

1
ee{ () (())}

*
r kT T d r k T T ds k s k

2
1

2
11+ + - + +

- -

where

• r is the block's input signal
• T is the symbol period
• Ts is the sampling period
• * means complex conjugate
• dk is the phase estimate for the kth symbol
• D is 1 for MSK and 2 for Gaussian MSK modulation

References
[1] D'Andrea, A. N., U. Mengali, and R. Reggiannini, "A Digital Approach to Clock

Recovery in Generalized Minimum Shift Keying," IEEE Transactions on Vehicular
Technology, Vol. 39, No. 3, August 1990, pp. 227-234.

[2] Mengali, Umberto and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

See Also
Blocks
Symbol Synchronizer

Introduced before R2006a

3 Blocks — Alphabetical List

3-806

Multipath Rayleigh Fading Channel
(To be removed) Simulate multipath Rayleigh fading propagation channel

Library
Channels

Note Multipath Rayleigh Fading Channel will be removed in a future release. Use SISO
Fading Channel instead.

Description
The Multipath Rayleigh Fading Channel block implements a baseband simulation of a
multipath Rayleigh fading propagation channel. You can use this block to model mobile
wireless communication systems. For details about fading channels, see the references
listed below.

This block accepts a scalar value or column vector input signal. The block inherits sample
time from the input signal. The input signal must have a discrete sample time greater
than 0.

Relative motion between the transmitter and receiver causes Doppler shifts in the signal
frequency. You can specify the Doppler spectrum of the Rayleigh process using the
Doppler spectrum type parameter. For channels with multiple paths, you can assign
each path a different Doppler spectrum, by entering a vector of doppler objects in the
Doppler spectrum field.

Because a multipath channel reflects signals at multiple places, a transmitted signal
travels to the receiver along several paths, each of which may have differing lengths and

 Multipath Rayleigh Fading Channel

3-807

associated time delays. In the block's parameter dialog box, the Discrete path delay
vector specifies the time delay for each path. If you do not check Normalize gain vector
to 0 dB overall gain, then the Average path gain vector specifies the gain for each
path. When you check the box, the block uses a multiple of Average path gain vector
instead of the Average path gain vector itself, choosing the scaling factor so that the
channel's effective gain, considering all paths, is 0 dB.

The number of paths is implicitly indicated via the number of elements in Discrete path
delay vector or Average path gain vector. If both of these parameters are vectors, then
they must have the same length; if exactly one of these parameters contains a scalar
value, then the block expands it into a vector whose size matches that of the other vector
parameter.

The block multiplies the input signal by samples of a Rayleigh-distributed complex
random process. The scalar Initial seed parameter seeds the random number generator
and the block generates random numbers using the Ziggurat method.

Double-clicking this block during simulation or selecting Open channel visualization at
start of simulation plots the channel characteristics using the channel visualization tool.
For more information, see “Channel Visualization”.

Parameters
Maximum Doppler shift (Hz)

A positive scalar value that indicates the maximum Doppler shift.
Doppler spectrum type

Specifies the Doppler spectrum of the Rayleigh process.

This parameter defaults to Jakes Doppler spectrum. Alternatively, you can also
choose any of the following types:

• Flat on page 2-450
• Gaussian on page 2-453
• Rounded on page 2-463
• Restricted Jakes on page 2-459
• Asymmetrical Jakes on page 2-440
• Bi-Gaussian on page 2-446

3 Blocks — Alphabetical List

3-808

• Bell on page 2-443

For all Doppler spectrum types except Jakes and Flat, you can choose one or more
parameters to control the shape of the spectrum.

You can also select Specify as dialog parameter for the Doppler spectrum
type. Specify the Doppler spectrum by entering an object in the Doppler spectrum
field. See the doppler function reference for details on how to construct Doppler
objects, and also for the meaning of the parameters associated with the various
Doppler spectrum types.

Discrete path delay vector (s)
A vector that specifies the propagation delay for each path.

Average path gain vector (dB)
A vector that specifies the gain for each path.

Normalize gain vector to 0 dB overall gain
Checking this box causes the block to scale the Gain vector parameter so that the
channel's effective gain (considering all paths) is 0 dB.

Initial seed
The scalar seed for the Gaussian noise generator.

Open channel visualization at start of simulation
Select this check box to open the channel visualization tool when a simulation begins.

Complex path gains port
Select this check box to create a port that outputs the values of the complex path
gains for each path. In this N-by-M multichannel output, N represents the number of
samples the input signal contains and M represents the number of discrete paths
(number of delays).

Channel filter delay port
Select this check box to create a port that outputs the value of the delay (in samples)
that results from the filtering operation of this block. This delay is zero if only one
path is simulated, but can be greater than zero if more than one path is present. See
“Methodology for Simulating Multipath Fading Channels” for a definition of this delay,
where it is denoted as N1.

 Multipath Rayleigh Fading Channel

3-809

Algorithm
This implementation is based on the direct-form simulator described in Reference [1]. A
detailed explanation of the implementation, including a review of the different Doppler
spectra, can be found in [4].

Some wireless applications prefer to specify Doppler shifts in terms of the speed of the
mobile. If the mobile moves at speed v making an angle of θ with the direction of wave
motion, then the Doppler shift is

fd = (vf/c)cos θ

where f is the transmission carrier frequency and c is the speed of light. The Doppler
frequency represents the maximum Doppler shift arising from motion of the mobile.

Example

Generating Ideal Theoretical BER Results for a Rayleigh
Fading Channel
This example illustrates how to generate ideal theoretical BER results for a flat Rayleigh
fading channel. The model reproduces known theoretical results and shows the correct
BER performance for a flat Rayleigh fading channel. In this example, you will run the
model and compare the simulation results to the BERTool theoretical results for
verification purposes. Note that the EbNo value for the model's AWGN block is 5 dB. You
can change the noise power by double-clicking the AWGN block and entering another
numeric value in the EbNo parameter.

Opening the Model

You can open the model by clicking here in the MATLAB Help browser. Alternatively, you
can type doc_qpsk_rayleigh_derotated at the MATLAB command line.

Running the Model and Comparing Results

1 You can run the example by clicking Simulation > Run.
2 After the model collects more than 5000 errors, click the stop button.
3 Close the three scopes.

3 Blocks — Alphabetical List

3-810

matlab:doc_qpsk_rayleigh_derotated

4 In the Simulink model window, double-click the Transmitter Output block. In the
mask window, click the Figure Properties tab, uncheck Open scope at start of
Simulation, then click OK.

5 In the Simulink model window, double-click the Rayleigh Channel Output block. In
the mask window, click the Figure Properties tab, uncheck Open scope at start of
Simulation, then click OK.

6 In the Simulink model window, double-click the Noisy Rayleigh Channel Output block.
In the mask window, click the Figure Properties tab, uncheck Open scope at start
of Simulation, then click OK.

7 In the Simulink model window, double-click the Error Rate Calculation block, check
Stop simulation, enter 5000 for Target number of error, then click OK.

8 Click the play button to rerun the example.
9 Open BERTool by typing bertool at the MATLAB command line.
10 In BERTool, click the Theoretical tab and make the following selections:

 Multipath Rayleigh Fading Channel

3-811

• For Eb/No range enter 0:10
• For Channel type, select Rayleigh
• For Diversity Order enter 1
• For Modulation Type, select PSK
• For Modulation order, select 4

11 Click Plot.
12 Since the Simulink model uses an EbNo value of 5 dB, verify the probability of error

on the BERTool curve at 5 dB. The two values should be approximately equal.

3 Blocks — Alphabetical List

3-812

Click the Data Cursor button (second from right) and click on the BERTool curve
at 5dB.

See Also
Rayleigh Noise Generator, SISO Fading Channel, doppler

References

[1] Jeruchim, Michel C., Balaban, Philip, and Shanmugan, K. Sam, Simulation of
Communication Systems, Second edition, New York, Kluwer Academic/Plenum,
2000.

[2] Jakes, William C., ed. Microwave Mobile Communications, New York, IEEE Press,
1974.

 Multipath Rayleigh Fading Channel

3-813

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, 2nd Ed. New York,
Wiley, 1993.

[4] Iskander, Cyril-Daniel, A MATLAB-based Object-Oriented Approach to Multipath
Fading Channel Simulation, a MATLAB Central submission available from
www.mathworks.com.

Introduced before R2006a

3 Blocks — Alphabetical List

3-814

https://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file
https://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file

Multipath Rician Fading Channel
(To be removed) Simulate multipath Rician fading propagation channel

Library
Channels

Note Multipath Rician Fading Channel will be removed in a future release. Use SISO
Fading Channel instead.

Description
The Multipath Rician Fading Channel block implements a baseband simulation of a
multipath Rician fading propagation channel. You can use this block to model mobile
wireless communication systems when the transmitted signal can travel to the receiver
along a dominant line-of-sight or direct path. For more details, see “Fading Channels”.

This block accepts a scalar value or column vector input signal. The block inherits sample
time from the input signal. The input signal must have a discrete sample time greater
than 0.

Relative motion between the transmitter and receiver causes Doppler shifts in the signal
frequency. You can specify the Doppler spectrum of the Rician process using the Doppler
spectrum type pop-up menu. For channels with multiple paths, you can assign each path
a different Doppler spectrum, by entering a vector of doppler objects in the Doppler
spectrum field.

Because a multipath channel reflects signals at multiple places, a transmitted signal
travels to the receiver along several paths, each of which may have differing lengths and
associated time delays. In the block's parameter dialog box, the Discrete path delay
vector specifies the time delay for each path. If you do not check the Normalize gain

 Multipath Rician Fading Channel

3-815

vector to 0 dB overall gain box, then the Average path gain vector specifies the gain
for each path. When you check the box, the block uses a multiple of Average path gain
vector instead of the Average path gain vector itself, choosing the scaling factor so that
the channel's effective gain considering all paths is 0 dB.

The number of paths is implicitly indicated via the number of elements in Discrete path
delay vector or Average path gain vector. If both of these parameters are vectors, they
must have the same length; if exactly one of these parameters contains a scalar value, the
block expands it into a vector whose size matches that of the other vector parameter.

Fading causes the signal to become diffuse. The K-factor parameter, which is part of the
statistical description of the Rician distribution, represents the ratio between the power
in the line-of-sight component and the power in the diffuse component. The ratio is
expressed linearly, not in decibels. While the Average path gain vector parameter controls
the overall gain through the channel, the K-factor parameter controls the gain's partition
into line-of-sight and diffuse components.

You can specify the K-factor parameter as a scalar or a vector. If the K-factor parameter
is a scalar, then the first discrete path of the channel is a Rician fading process (it
contains a line-of-sight component) with the specified K-factor, while the remaining
discrete paths indicate independent Rayleigh fading processes (with no line-of-sight
component). If the K-factor parameter is a vector of the same size as Discrete path
delay vector, then each discrete path is a Rician fading process with a K-factor given by
the corresponding element of the vector. You can attribute the line-of-sight component a
Doppler shift, through the Doppler shift(s) of line-of-sight component(s) parameter,
and an initial phase, through the Initial phase(s) of line-of-sight component(s). The
Doppler shift(s) of line-of-sight component(s) and Initial phase(s) of line-of-sight
component(s) parameters must be of the same size as the K-factor parameter.

The block multiplies the input signal by samples of a Rician-distributed complex random
process. The scalar Initial seed parameter seeds the random number generator and the
block generates random numbers using the Ziggurat method.

Double-clicking this block during simulation or selecting the block dialog's check box
labeled Open channel visualization at start of simulation plots the channel
characteristics using the channel visualization tool. For more information, see “Channel
Visualization”.

3 Blocks — Alphabetical List

3-816

Parameters
K-factor

The ratio of power in the line-of-sight component to the power in the diffuse
component. The ratio is expressed linearly, not in decibels. If K-factor is a scalar
value, then the first discrete path is a Rician fading process (it contains a line-of-sight
component) with the specified K-factor, while the remaining discrete paths are
independent Rayleigh fading processes (with no line-of-sight component). If K-factor
is a vector of the same size as Discrete path delay vector, then each discrete path is
a Rician fading process with a K-factor given by the corresponding element of the
vector.

Doppler shift(s) of line-of-sight components(s) (Hz)
The Doppler shift of the line-of-sight component. It must be a scalar (if K-factor is a
scalar) or a vector of the same size as K-factor. If this parameter contains a scalar
value, then the line-of-sight component of the first discrete path has the specified
Doppler shift, while the remaining discrete paths become independent Rayleigh
fading processes. If the parameter contains a vector, then the line-of-sight component
of each discrete path has a Doppler shift given by the corresponding element of the
vector.

Initial phase(s) of line-of-sight component(s) (rad)
The initial phase of the line-of-sight component. It must be either a scalar (if K-factor
is a scalar value) or a vector of the same size as K-factor.

Maximum diffuse Doppler shift (Hz)
A positive scalar value that indicates the maximum diffuse Doppler shift.

Doppler spectrum type
Specifies the Doppler spectrum of the Rician process.

This parameter defaults to Jakes Doppler spectrum. Alternately, you can choose any
of the following types:

• Flat on page 2-450
• Gaussian on page 2-453
• Rounded on page 2-463
• Restricted Jakes on page 2-459
• Asymmetrical Jakes on page 2-440

 Multipath Rician Fading Channel

3-817

• Bi-Gaussian on page 2-446
• Bell on page 2-443

For all Doppler spectrum types except Jakes and Flat, You can use one or more
parameters to control the shape of the spectrum.

You can also select Specify as dialog parameter for the Doppler spectrum
type. Specify the Doppler spectrum by entering an object in the Doppler spectrum
field. See the doppler function reference for details on how to construct doppler
objects, and for the meaning of the parameters associated with the various Doppler
spectrum types.

Discrete delay vector(s)
A vector that specifies the propagation delay for each path.

Average path gain vector (dB)
A vector that specifies the gain for each path.

Initial seed
The scalar seed for the Gaussian noise generator.

Open channel visualization at start of simulation
Select this check box to open the channel visualization tool when a simulation begins.
This block supports channel visualization for a column vector input signal.

Complex path gains port
Select this check box to create a port that outputs the values of the complex path
gains for each path. In this N-by-M multichannel output, N represents the number of
samples the input contains and M represents the number of discrete paths (number of
delays).

Channel filter delay port
Select this check box to create a port that outputs the value of the delay (in samples)
that results from the filtering operation of this block. This delay is zero if only one
path is simulated, but can be greater than zero if more than one path is present. See
“Methodology for Simulating Multipath Fading Channels” for a definition of this delay,
where it is denoted as N1.

3 Blocks — Alphabetical List

3-818

Algorithm
This implementation is based on the direct form simulator described in Reference [1]. A
detailed explanation of the implementation, including a review of the different Doppler
spectra, can be found in [4].

Some wireless applications prefer to specify Doppler shifts in terms of the speed of the
mobile. If the mobile moves at speed v making an angle of θ with the direction of wave
motion, the Doppler shift is

fd = (vf/c)cos θ

where f is the transmission carrier frequency and c is the speed of light. The Doppler
frequency is the maximum Doppler shift arising from the motion of the mobile.

See Also
Rician Noise Generator, SISO Fading Channel, doppler

References
[1] Jeruchim, Michel C., Balaban, P., and Shanmugan, K. Sam, Simulation of

Communication Systems, Second edition, New York, Kluwer Academic/Plenum,
2000.

[2] Jakes, William C., ed., Microwave Mobile Communications, New York, IEEE Press,
1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, 2nd ed., New York,
John Wiley & Sons, Inc., 1993.

[4] Iskander, Cyril-Daniel, A MATLAB-based Object-Oriented Approach to Multipath
Fading Channel Simulation, a MATLAB Central submission available from
www.mathworks.com.

Introduced in R2006a

 Multipath Rician Fading Channel

3-819

https://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file
https://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file

Mu-Law Compressor
Implement µ-law compressor for source coding

Library
Source Coding

Description
The Mu-Law Compressor block implements a µ-law compressor for the input signal. The
formula for the µ-law compressor is

y = Vlog(1 + μ x /V)
log(1 + μ) sgn(x)

where µ is the µ-law parameter of the compressor, V is the peak magnitude of x, log is the
natural logarithm, and sgn is the signum function (sign in MATLAB).

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
mu value

The µ-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output.

3 Blocks — Alphabetical List

3-820

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
Mu-Law Expander

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J.: Prentice-Hall, 1988.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
A-Law Compressor | Mu-Law Expander

Introduced before R2006a

 Mu-Law Compressor

3-821

Mu-Law Expander
Implement µ-law expander for source coding

Library
Source Coding

Description
The Mu-Law Expander block recovers data that the Mu-Law Compressor block
compressed. The formula for the µ-law expander, shown below, is the inverse of the
compressor function.

x = V
μ e y log(1 + μ)/V − 1 sgn(y)

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
mu value

The µ-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output.

3 Blocks — Alphabetical List

3-822

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
Mu-Law Compressor

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J.: Prentice-Hall, 1988.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
A-Law Expander | Mu-Law Compressor

Introduced before R2006a

 Mu-Law Expander

3-823

Normalized LMS Decision Feedback Equalizer
(To be removed) Equalize using decision feedback equalizer that updates weights with
normalized LMS algorithm

Library
Equalizer Block

Note will be removed in a future release. Use Decision Feedback Equalizer instead.

Description
The Normalized LMS Decision Feedback Equalizer block uses a decision feedback
equalizer and the normalized LMS algorithm to equalize a linearly modulated baseband
signal through a dispersive channel. During the simulation, the block uses the normalized
LMS algorithm to update the weights, once per symbol. When you set the Number of
samples per symbol parameter to 1, then the block implements a symbol-spaced (i.e. T-
spaced) equalizer. When you set the Number of samples per symbol parameter to a
value greater than 1, , the weights are updated once every Nth sample, for a T/N-spaced
equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

3 Blocks — Alphabetical List

3-824

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

Parameters
Number of forward taps

The number of taps in the forward filter of the decision feedback equalizer.
Number of feedback taps

The number of taps in the feedback filter of the decision feedback equalizer.

 Normalized LMS Decision Feedback Equalizer

3-825

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Step size
The step size of the normalized LMS algorithm.

Leakage factor
The leakage factor of the normalized LMS algorithm, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Bias
The bias parameter of the normalized LMS algorithm, a nonnegative real number.
This parameter is used to overcome difficulties when the algorithm's input signal is
small.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
If you select this check box, the block has an input port that enables you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. The equalizer will train for the length of
the Desired signal. If the mode input is not present, the equalizer will train at the
beginning of every frame for the length of the Desired signal.

Output error
If you select this check box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

3 Blocks — Alphabetical List

3-826

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,
Wiley, 1998.

Compatibility Considerations

Normalized LMS Decision Feedback Equalizer will be removed
Not recommended starting in R2019a

Normalized LMS Decision Feedback Equalizer will be removed in a future release. Use
Decision Feedback Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

 Normalized LMS Decision Feedback Equalizer

3-827

Normalized LMS Linear Equalizer
(To be removed) Equalize using linear equalizer that updates weights with normalized
LMS algorithm

Library
Equalizers

Note will be removed in a future release. Use Linear Equalizer instead.

Description
The Normalized LMS Linear Equalizer block uses a linear equalizer and the normalized
LMS algorithm to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the normalized LMS algorithm to update
the weights, once per symbol. When you set the Number of samples per symbol
parameter to 1, the block implements a symbol-spaced (i.e. T-spaced) equalizer and
updates the filter weights once for each symbol. When you set the Number of samples
per symbol parameter to a value greater than 1, the weights are updated once every Nth

sample, for a T/N-spaced equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

3 Blocks — Alphabetical List

3-828

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

Parameters
Number of taps

The number of taps in the filter of the linear equalizer.
Number of samples per symbol

The number of input samples for each symbol.

 Normalized LMS Linear Equalizer

3-829

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Step size
The step size of the normalized LMS algorithm.

Leakage factor
The leakage factor of the normalized LMS algorithm, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Bias
The bias parameter of the normalized LMS algorithm, a nonnegative real number.
This parameter is used to overcome difficulties when the algorithm's input signal is
small.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
If you check this box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you check this box, the block outputs the current weights.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

3 Blocks — Alphabetical List

3-830

Compatibility Considerations

Normalized LMS Linear Equalizer will be removed
Not recommended starting in R2019a

Normalized LMS Linear Equalizer will be removed in a future release. Use Linear
Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

 Normalized LMS Linear Equalizer

3-831

OFDM Demodulator Baseband
Demodulate orthogonal frequency division modulated data

Library
OFDM, in Digital Baseband sublibrary of Modulation

Description
The Orthogonal Frequency Division Modulation (OFDM) Demodulator Baseband block
demodulates an OFDM input signal. The block accepts a single input and has one or two
output ports, depending on the status of Pilot output port.

Signal Dimensions
Pilot Output
Port

Pilot Carrier
Indices

Signal Input Signal Output Pilot Output

false N/A NCPTotal
+NFFT×Nsym-by-
Nr

Ndata-by-Nsym-by-
Nr

N/A
true 2-D Npilot-by-Nsym-by-

Nr

3-D Npilot-by-Nsym-by-
Nt-by-Nr

where

• NCP represents the cyclic prefix length as determined by Cyclic prefix length.

3 Blocks — Alphabetical List

3-832

• NCPTotal represents the cyclic prefix length over all the symbols. When NCP is a scalar,
NCPTotal = NCP × Nsym. When NCP is a row vector, NCPTotal = ∑ NCP.

• NFFT represents the number of subcarriers as determined by FFT length.
• Nsym represents the number of symbols as determined by Number of OFDM

symbols.
• Nr represents the number of receive antennas as determined by Number of receive

antennas.
• Ndata represents the number of data subcarriers. For further information on how Ndata

is determined, see the info reference page.
• Npilot represents the number of pilot symbols determined by the second dimension in

the Pilot subcarrier indices array.
• Nt represents the number of transmit antennas. This parameter is derived from the

third dimension of the Pilot subcarrier indices array.

Parameters
FFT Length

Specify the FFT length, which is equivalent to the number of subcarriers. The length
of the FFT, NFFT, must be greater than or equal to 8.

Number of guard bands
Assign the number of subcarriers to the left, NleftG, and right, NrightG, guard bands. The
input is a 2-by-1 vector. The number of subcarriers must fall within [0,NFFT/2 − 1].

Remove DC carrier
Select to remove the DC subcarrier.

Pilot output port
Select to separate the data from the pilot signal and output the demodulated pilot
signal.

Pilot subcarrier indices
Specify the pilot subcarrier indices. This field is available only when the Pilot output
port check box is selected. You can assign the indices can be assigned to the same or
different subcarriers for each symbol. Similarly, the pilot carrier indices can differ
across multiple transmit antennas. Depending on the desired level of control for index
assignments, the dimensions of the indices’ array vary from 1 to 3. Valid pilot indices
fall in the range

 OFDM Demodulator Baseband

3-833

NleftG + 1, NFFT/2 ∪ NFFT/2 + 2, NFFT−NrightG ,

where the index value cannot exceed the number of subcarriers. If the number of
transmit antennas is greater than one, ensure that the indices per symbol are
mutually distinct across antennas to minimize interference.

Cyclic prefix length
Specify the length of the cyclic prefix. If you specify a scalar, the prefix length is the
same for all symbols through all antennas. If you specify a row vector of length Nsym,
the prefix length can vary across symbols but remains the same length through all
antennas.

Number of OFDM symbols
Specify the number of OFDM symbols, Nsym, in the time-frequency grid.

Number of receive antennas
Specify the number of receive antennas, Nr, as a positive integer such that Nr ≤ 64.

Simulate using
Select the simulation type from these choices:

• Code generation
• Interpreted execution

Algorithms
This block implements the algorithm, inputs, and outputs described in the OFDM
Demodulator System object reference page. The object properties correspond to the
block parameters.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point
Pilot
(optional)

• Double-precision floating point

Output • Double-precision floating point

3 Blocks — Alphabetical List

3-834

Pair Block
OFDM Modulator Baseband

References
[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile

Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX.Upper Saddle
River, NJ: Prentice Hall, 2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OFDM Modulator Baseband | QPSK Demodulator Baseband | Rectangular QAM
Demodulator Baseband

Objects
comm.OFDMDemodulator

Topics
“IEEE 802.16-2009 WirelessMAN-OFDMA PHY Downlink PUSC”
“Digital Video Broadcasting - Terrestrial”

Introduced in R2014a

 OFDM Demodulator Baseband

3-835

OFDM Modulator Baseband
Modulate using orthogonal frequency division modulation

Library
OFDM, in Digital Baseband sublibrary of Modulation

Description
The OFDM Modulator Baseband block applies OFDM modulation to an incoming data
signal. The block accepts one or two inputs depending on the state of the Pilot input
port.

Signal Dimensions
Pilot Input Port Signal Input Pilot Input Signal Output
false Ndata-by-Nsym-by-Nt N/A NCPTotal+NFFT×Nsym-

by-Nttrue Npilot-by-Nsym-by-Nt

where

• Ndata represents the number of data subcarriers. For further information on how Ndata
is determined, see the info reference page.

• Nsym represents the number of symbols determined by Number of OFDM symbols.
• Nt represents the number of transmit antennas determined by Number of transmit

antennas.

3 Blocks — Alphabetical List

3-836

• Npilot represents the number of pilot symbols determined by the first dimension size in
the Pilot subcarrier indices array.

• NCP represents the cyclic prefix length as determined by Cyclic prefix length.
• NCPTotal represents the cyclic prefix length over all the symbols. When NCP is a scalar,

NCPTotal = NCP × Nsym. When NCP is a row vector, NCPTotal = ∑ NCP.
• NFFT represents the number of subcarriers as determined by FFT length.

Parameters
FFT Length

Specify the FFT length, which is equivalent to the number of subcarriers. The length
of the FFT, NFFT, must be greater than or equal to 8.

Number of guard bands
Assign the number of subcarriers to the left and right guard bands. The input is a 2-
by-1 vector. The number of subcarriers must fall within [0,NFFT/2 − 1].

Insert DC null
Select to insert a null on the DC subcarrier.

Pilot input port
Select to allow the specifying of pilot subcarrier indices.

Pilot subcarrier indices
Specify the pilot subcarrier indices. This field is available only when the Pilot input
port check box is selected. You can assign the indices to the same or different
subcarriers for each symbol. Similarly, the pilot carrier indices can differ across
multiple transmit antennas. Depending on the desired level of control for index
assignments, the dimensions of the indices array vary. Valid pilot indices fall in the
range

NleftG + 1, NFFT/2 ∪ NFFT/2 + 2, NFFT−NrightG ,

where the index value cannot exceed the number of subcarriers. When the pilot
indices are the same for every symbol and transmit antenna, the property has
dimensions Npilot-by-1. When the pilot indices vary across symbols, the property has
dimensions of Npilot-by-Nsym. If there is only one symbol but multiple transmit
antennas, the property has dimensions of Npilot-by-1-by-Nt. If the indices vary across
the number of symbols and transmit antennas, the property will have dimensions of

 OFDM Modulator Baseband

3-837

Npilot-by-Nsym-by-Nt. If the number of transmit antennas is greater than one, ensure
that the indices per symbol are mutually distinct across antennas to minimize
interference. The default value is [12; 26; 40; 54].

Cyclic prefix length
Specify the length of the cyclic prefix. If you specify a scalar, the prefix length is the
same for all symbols through all antennas. If you specify a row vector of length Nsym,
the prefix length can vary across symbols but remains the same through all antennas.

Apply raised cosine windowing between OFDM symbols
Select to apply raised cosine windowing. Windowing is the process in which the
OFDM symbol is multiplied by a raised cosine window before transmission to reduce
the power of out-of-band subcarriers, which serves to reduce spectral regrowth.

Window length
Set the length of the raised cosine window. The field is available only when Apply
raised cosine windowing between OFDM symbols is selected. Use positive
integers having a maximum value no greater than the minimum cyclic prefix length.
For example, in a configuration in which there are four symbols with cyclic prefix
lengths of [12 16 14 18], the window length cannot exceed 12.

Number of OFDM symbols
Specify the number of OFDM symbols in the time-frequency grid.

Number of transmit antennas
Specify the number of transmit antennas, Nt, as a positive integer such that Nt ≤ 64.

Simulate using
Select the simulation type from these choices:

• Code generation
• Interpreted execution

Algorithms
This block implements the algorithm, inputs, and outputs described in the OFDM
Modulator System object reference page. The object properties correspond to the block
parameters.

3 Blocks — Alphabetical List

3-838

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point
Pilot
(optional)

• Double-precision floating point

Output • Double-precision floating point

Pair Block
OFDM Demodulator Baseband

References
[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile

Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX.Upper Saddle
River, NJ: Prentice Hall, 2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OFDM Demodulator Baseband | QPSK Modulator Baseband | Rectangular QAM
Modulator Baseband

 OFDM Modulator Baseband

3-839

Objects
comm.OFDMModulator

Functions

Topics
“IEEE 802.16-2009 WirelessMAN-OFDMA PHY Downlink PUSC”
“Digital Video Broadcasting - Terrestrial”

Introduced in R2014a

3 Blocks — Alphabetical List

3-840

OQPSK Demodulator Baseband
Demodulation using OQPSK method
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / PM

Description
The OQPSK Demodulator Baseband block applies pulse shape filtering to the input
waveform and demodulates it using the offset quadrature phase shift keying (OQPSK)
method. For more information, see “Pulse Shaping Filter” on page 3-848. The input is a
baseband representation of the modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see
“Modulation Delays” on page 3-846.

Ports
Input
In — Input baseband waveform
scalar | column vector

Input baseband waveform, specified as a discrete-time complex scalar or column vector.

The block processes the input signal based on the Output type setting.
Data Types: double
Complex Number Support: Yes

Output
Out — Output data
integer column vector | bit column vector

 OQPSK Demodulator Baseband

3-841

Output data, returned as an integer or bit column vector.

Parameters

Modulation
Output type — Output type
Integer (default) | Bit

Output type, specified as Integer or Bit.

• When you set Output type to Integer, the block outputs a vector of integer symbols
with values from 0 to 3, the length of which is the number of output symbols.

• When you set Output type to Bit, the block outputs a 2-bit binary representation of
integers, in a binary-valued, even-length vector.

The input period for each integer or bit pair is the Samples per symbol times the output
sample period.

Phase offset (rad) — Phase of zeroth point of signal constellation
0 (default) | scalar

Phase of zeroth point of the signal constellation in radians, specified as a scalar.
Example: Setting Phase offset (rad) to 0 aligns the OQPSK signal constellation points on
the axes, {(1,0), (0,j), (-1,0), (0,-j)}.

Symbol mapping — Signal constellation bit mapping
Gray (default) | Binary | custom 4-element numeric vector of integers with values from 0
to 3

Signal constellation bit mapping, specified as Gray, Binary, or a custom 4-element
numeric vector of integers with values from 0 to 3.

3 Blocks — Alphabetical List

3-842

Setting Constellation
Mapping for
Integers

Constellation
Mapping for Bits

Comment

Gray The signal
constellation
mapping is Gray-
encoded.

Binary The signal
constellation
mapping for the
input integer m (0 ≤
m ≤ 3) is the complex
value e(j*(PhaseOffset
+π/4) + j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d]
must be composed of
the set of values [0,
1, 2, 3] in any order.

Filtering
Pulse shape — Filtering pulse shape
Half sine (default) | Normal raised cosine | Root raised cosine | Custom

Select the filtering pulse shape: Half sine, Normal raised cosine, Root raised
cosine, or Custom.

Rolloff factor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar from 0 to 1.
Dependencies

This property appears when Pulse shape is Normal raised cosine or Root raised
cosine.

 OQPSK Demodulator Baseband

3-843

Data Types: double

Filter span (in symbols) — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite
impulse response. However, to realize a practical implementation of this filter, the object
truncates the impulse response to Filter span (in symbols) symbols.

Dependencies

This property appears when Pulse shape is Normal raised cosine or Root raised
cosine.
Data Types: double

Filter numerator — Filter numerator
[0.7071 0.7071] (default) | row vector

Filter numerator, specified as a row vector.

Dependencies

This parameter appears when Pulse shape is Custom.
Data Types: double

Samples per symbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

Other Parameters
Rate options — Processing rate option
Enforce single-rate processing (default) | Allow multirate processing

• Enforce single-rate processing — Executes the model, ensuring that the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. For
integer outputs, the output width equals 1/Samples per symbol times the input width.

3 Blocks — Alphabetical List

3-844

For more information, see Single-Rate Processing with OQPSK Demodulator Block.
• Allow multirate processing — Executes the model, allowing the input and

output signals to have different port sample times. The output symbol time is Samples
per symbol times the input sample time.

For more information, see Multirate Processing with OQPSK Demodulator Block.

Output data type — Output data type
double (default) | single | uint8

Select the output data type: double, single, or uint8.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

OQPSK Signal Flow Diagram
Every Samples per symbol input samples produce one output symbol. In this figure, the
dotted line represents the region comprising the input sample processing.

 OQPSK Demodulator Baseband

3-845

+

Re
complex

in D.T.

in D.T.

in D.T.

in D.T.

in D.T.

in

D.T.

(in

D.T.)

complex

out D.T.

(independent

of in D.T.)

derotate factor

(phase offset

not multiple of)

Input

Output

z
-1

z
-1

QPSK

Demodulator

Im

Re

Im

π 2

Modulation Delays
Digital modulation and demodulation blocks incur delays between their inputs and
outputs that result in an offset in the arrival time of the received data. Data that enters a
modulation or demodulation block at time T appears in the output at time T+delay. Take
system delays into account when comparing transmitted data with received data, such as
in overlaid plots or when computing error statistics. As shown here, the OQPSK
modulation-demodulation delay varies depending on the pulse shaping filter, input/output
data setting, and simulation configuration.

Pulse Shape Rate Options Treat Each
Discrete Rate
as a Separate
Task?

Input/Output
Data (*)

End-to-End
Delay Incurred
by an OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Half sine or
Custom

Enforce
single-rate
operation

N/A Integer 1
Bit 2

Allow
multirate
processing

false (single
tasking)

Integer length(data) + 1
+ 1

3 Blocks — Alphabetical List

3-846

Pulse Shape Rate Options Treat Each
Discrete Rate
as a Separate
Task?

Input/Output
Data (*)

End-to-End
Delay Incurred
by an OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Bit length(data) + 2
+ 2

true
(multitasking)

Integer length(data) + 1
+ 2

Bit length(data) + 2
+ 4

Normal
raised
cosine or Root
raised
cosine

Enforce
single-rate
operation

N/A Integer Filter span (in
symbols)

Bit 2*Filter span
(in symbols)

Allow
multirate
processing

false (single
tasking)

Integer length(data) +
Filter span (in
symbols) + 1

Bit length(data) +
2*Filter span
(in symbols) +
2

true
(multitasking)

Integer 2*length(data) +
Filter span (in
symbols) + 2

Bit 2*length(data) +
2*Filter span
(in symbols) +
4

(*) The data type parameter is Input type for modulation and Output type for
demodulation.

 OQPSK Demodulator Baseband

3-847

Pulse Shaping Filter
The OQPSK modulation scheme requires oversampling of two or greater in order to delay
(or offset) the quadrature channel by 90 degrees. This oversampling is achieved through
interpolation filtering implemented by pulse shaping.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OQPSK Modulator Baseband | QPSK Demodulator Baseband

Objects
comm.OQPSKDemodulator

Topics
Phase Modulation

Introduced before R2006a

3 Blocks — Alphabetical List

3-848

OQPSK Modulator Baseband
Modulation using OQPSK method
Library: Communications Toolbox / Modulation / Digital

Baseband Modulation / PM

Description
The OQPSK Modulator Baseband block modulates the input signal using the offset
quadrature phase shift keying (OQPSK) method and applies pulse shape filtering to the
waveform. For more information, see “Pulse Shaping Filter” on page 3-855. The output
is a baseband representation of the modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see
“Modulation Delays” on page 3-853.

Ports

Input
In — Input data
integer column vector | bit column vector

Input data, specified as an integer or bit column vector.

The input signal is processed based on the setting selected for Input type.
Data Types: double

Output
Out — Output baseband waveform
column vector

 OQPSK Modulator Baseband

3-849

Output baseband waveform, returned as a column vector of complex data.

Parameters

Modulation
Input type — Input type
Integer (default) | Bit

Input type, specified as Integer or Bit.

• When you set Input type to Integer, the input can be a scalar value or column
vector, the length of which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of two.

The output sample period is the period of each integer or bit pair in the input divided by
Samples per symbol.

Phase offset (rad) — Phase of zeroth point of signal constellation
0 (default) | scalar

Phase of zeroth point of the signal constellation in radians, specified as a scalar.
Example: Setting Phase offset (rad) to 0 aligns the OQPSK signal constellation points on
the axes, {(1,0), (0,j), (-1,0), (0,-j)}.

Symbol mapping — Signal constellation bit mapping
Gray (default) | Binary | custom 4-element numeric vector of integers with values from 0
to 3

Signal constellation bit mapping, specified as Gray, Binary, or a custom 4-element
numeric vector of integers with values from 0 to 3.

3 Blocks — Alphabetical List

3-850

Setting Constellation
Mapping for
Integers

Constellation
Mapping for Bits

Comment

Gray The signal
constellation
mapping is Gray-
encoded.

Binary The signal
constellation
mapping for the
input integer m (0 ≤
m ≤ 3) is the complex
value e(j*(PhaseOffset
+π/4) + j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d]
must be composed of
the set of values [0,
1, 2, 3] in any order.

Filtering
Pulse shape — Filtering pulse shape
Half sine (default) | Normal raised cosine | Root raised cosine | Custom

Select the filtering pulse shape: Half sine, Normal raised cosine, Root raised
cosine, or Custom.

Rolloff factor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar in the range [0, 1].
Dependencies

This property appears when Pulse shape is Normal raised cosine or Root raised
cosine.

 OQPSK Modulator Baseband

3-851

Data Types: double

Filter span (in symbols) — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite
impulse response. However, to realize a practical implementation of this filter, the object
truncates the impulse response to Filter span (in symbols) symbols.
Dependencies

This property appears when Pulse shape is Normal raised cosine or Root raised
cosine.
Data Types: double

Filter numerator — Filter numerator
[0.7071 0.7071] (default) | row vector

Filter numerator, specified as a row vector.
Dependencies

This parameter appears when Pulse shape is Custom.
Data Types: double

Samples per symbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

Other Parameters
Rate options — Processing rate option
Enforce single-rate processing (default) | Allow multirate processing

• Enforce single-rate processing — Executes the model, ensuring that the input
and output signals have the same port sample time. The block implements the rate
change by making a size change at the output when compared to the input. For
integer inputs, the output width equals Samples per symbol times the number of
symbols.

3 Blocks — Alphabetical List

3-852

For more information, see Single-Rate Processing with OQPSK Modulator Block.
• Allow multirate processing — Executes the model, allowing the input and

output signals to have different port sample times. The output sample time equals the
symbol period divided by Samples per symbol.

For more information, see Single-Rate Processing with OQPSK Modulator Block.

Output data type — Output data type
double (default) | single

Select the output data type: double or single.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Modulation Delays
Digital modulation and demodulation blocks incur delays between their inputs and
outputs that result in an offset in the arrival time of the received data. Data that enters a
modulation or demodulation block at time T appears in the output at time T+delay. Take
system delays into account when comparing transmitted data with received data, such as
in overlaid plots or when computing error statistics. As shown here, the OQPSK
modulation-demodulation delay varies depending on the pulse shaping filter, input/output
data setting, and simulation configuration.

 OQPSK Modulator Baseband

3-853

Pulse Shape Rate Options Treat Each
Discrete Rate
as a Separate
Task?

Input/Output
Data (*)

End-to-End
Delay Incurred
by an OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Half sine or
Custom

Enforce
single-rate
operation

N/A Integer 1
Bit 2

Allow
multirate
processing

false (single
tasking)

Integer length(data) + 1
+ 1

Bit length(data) + 2
+ 2

true
(multitasking)

Integer length(data) + 1
+ 2

Bit length(data) + 2
+ 4

Normal
raised
cosine or Root
raised
cosine

Enforce
single-rate
operation

N/A Integer Filter span (in
symbols)

Bit 2*Filter span
(in symbols)

Allow
multirate
processing

false (single
tasking)

Integer length(data) +
Filter span (in
symbols) + 1

Bit length(data) +
2*Filter span
(in symbols) +
2

true
(multitasking)

Integer 2*length(data) +
Filter span (in
symbols) + 2

3 Blocks — Alphabetical List

3-854

Pulse Shape Rate Options Treat Each
Discrete Rate
as a Separate
Task?

Input/Output
Data (*)

End-to-End
Delay Incurred
by an OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Bit 2*length(data) +
2*Filter span
(in symbols) +
4

(*) The data type parameter is Input type for modulation and Output type for
demodulation.

Pulse Shaping Filter
The OQPSK modulation scheme requires oversampling of two or greater in order to delay
(or offset) the quadrature channel by 90 degrees. This oversampling is achieved through
interpolation filtering implemented by pulse shaping.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OQPSK Demodulator Baseband | QPSK Modulator Baseband

Objects
comm.OQPSKModulator

 OQPSK Modulator Baseband

3-855

Topics
Phase Modulation

Introduced before R2006a

3 Blocks — Alphabetical List

3-856

OSTBC Combiner
Combine inputs for received signals and channel estimate according to orthogonal space-
time block code (OSTBC)

Library
MIMO

Description
The OSTBC Combiner block combines the input signal (from all of the receive antennas)
and the channel estimate signal to extract the soft information of the symbols that were
encoded using an OSTBC. The input channel estimate may not be constant during each
codeword block transmission and the combining algorithm uses only the estimate for the
first symbol period per codeword block. A symbol demodulator or decoder would follow
the Combiner block in a MIMO communications system.

The block conducts the combining operation for each symbol independently. The
combining algorithm depends on the structure of the OSTBC. For more information, see
the OSTBC Combining Algorithms on page 3-859 section of this help page.

Dimension
Along with the time and spatial domains for OSTBC transmission, the block supports an
optional dimension, over which the combining calculation is independent. This dimension
can be thought of as the frequency domain for OFDM-based applications. The following
illustration indicates the supported dimensions for inputs and output of the OSTBC
Combiner block.

 OSTBC Combiner

3-857

The following table describes each variable for the block.

Variable Description
F The additional dimension; typically the frequency dimension.

The combining calculation is independent of this dimension.
N Number of transmit antennas.
M Number of receive antennas.
T Output symbol sequence length in time domain.
R Symbol rate of the code.

Note On the two inputs, T/R is the symbol sequence length in the time domain.

F can be any positive integers. M can be 1 through 8, indicated by the Number of
receive antennas parameter. N can be 2, 3 or 4, indicated by the Number of transmit
antennas parameter. The time domain length T/R must be a multiple of the codeword
block length (2 for Alamouti; 4 for all other OSTBC). For N = 2, T/R must be a multiple of
2. When N > 2, T/R must be a multiple of 4. R defaults to 1 for 2 antennas. R can be
either 34 or 12 for more than 2 antennas.

The supported dimensions for the block depend upon the values of F and M. For one
receive antenna (M = 1), the received signal input must be a column vector or a full 2–D
matrix, depending on the value for F. The corresponding channel estimate input must be
a full 2-D or 3-D matrix.

3 Blocks — Alphabetical List

3-858

For more than one receive antenna (M > 1), the received signal input must be a full 2-D
or 3-D matrix, depending on the value for F. Correspondingly, the channel estimate input
must be a 3-D or 4-D matrix, depending on the value for F.

To understand the block's dimension propagation, refer to the following table.

 Input 1 (Received
Signal)

Input 2 (Channel
Estimate)

Output

F = 1 and M = 1 Column vector 2-D Column vector
F = 1 and M > 1 2-D 3-D Column vector
F > 1 and M = 1 2-D 3-D 2-D
F > 1 and M > 1 3-D 4-D 2-D

Data Type
For information about the data types each block port supports, see the “Supported Data
Type” on page 3-865 table on this page. The output signal inherits the data type from
the inputs. The block supports different fixed-point properties for the two inputs. For
fixed-point signals, the output word length and fractional length depend on the block’s
mask parameter settings. See Fixed-Point Signals for more information about fixed-point
data propagation of this block.

Frames
The output inherits the frameness of the received signal input. For either column vector
or full 2-D matrix input signal, the input can be either frame-based or sample-based. A 3–
D or 4–D matrix input signal must have sample-based input.

OSTBC Combining Algorithms
The OSTBC Combiner block supports five different OSTBC combining computation
algorithms. Depending on the selection for Rate and Number of transmit antennas,
you can select one of the algorithms shown in the following table.

 OSTBC Combiner

3-859

Transmit
Antenna

Rate Computational Algorithm per Codeword Block Length

2 1 s 1

s 2
= 1

H 2 ∑j = 1

M h1, j* r 1, j + h2, j r 2, j*

h2,* j r 1, j− h1, j r 2, j*
⋅

3 1/2 s 1

s 2
= 1

H 2 ∑j = 1

M h1, j* r 1, j + h2, j r 2, j* + h3,* j r 3, j

h2,* j r 1, j− h1, j r 2, j* − h3, j r 4, j*
⋅

3 3/4 s 1

s 2

s 3

= 1
H 2 ∑j = 1

M
h1, j* r 1, j + h2, j r 2, j* − h3, j r 3, j*

h2,* j r 1, j− h1, j r 2, j* − h3, j r 4, j*

h3, j* r 1, j + h1, j r 3, j* + h2, j r 4, j*
⋅

4 1/2 s 1

s 2
= 1

H 2 ∑j = 1

M h1, j* r 1, j + h2, j r 2, j* + h3, j* 3, j r 3, j + h4, j r 4, j*

h2,* j r 1, j− h1, j r 2, j* + h4, j* r 3, j− h3, j r 4, j*
⋅

4 3/4 s 1

s 2

s 3

= 1
H 2 ∑j = 1

M
h1, j* r 1, j + h2, j r 2, j* − h3, j r 3, j* − h4*, j r 4 j

h2,* j r 1 j− h1, j r 2, j* + h4*, j r 3, j− h3, j r 4, j*

h3,* j r 1 j + h4, j* r 2, j + h1, j r 3, j* + h2, j r 4, j*
⋅

s k represents the estimated kth symbol in the OSTBC codeword matrix. hij represents the
estimate for the channel from the ith transmit antenna and the jth receive antenna. The
values of i and j can range from 1 to N (the number of transmit antennas) and to M (the
number of receive antennas) respectively. rlj represents the lth symbol at the jth receive
antenna per codeword block. The value of l can range from 1 to the codeword block
length. H 2 represents the summation of channel power per link, i.e.,

H 2 = ∑
i = 1

N
∑

j = 1

M
hi j

2

Fixed-Point Signals
Use the following formula for s 1 for Alamouti code with 1 receive antenna to highlight
the data types used for fixed-point signals.

s 1 =
h1, 1,* r1, 1 + h2, 1, r 2, 1*

H 2 =
h1, 1,* r1, 1 + h2, 1, r 2, 1*
h1, 1h1, 1,* + h2, 1, h2, 1*

3 Blocks — Alphabetical List

3-860

In this equation, the data types for Product output and Accumulator correspond to the
product and summation in the numerator. Similarly, the types for Energy product
output and Energy accumulator correspond to the product and summation in the
denominator.

Signal Flow Diagram for s1 Combining Calculation of Alamouti Code with One
Receive Antenna

The following formula shows the data types used within the OSTBC Combiner block for
fixed-point signals for more than one receive antenna for Alamouti code, where M
represents the number of receive antennas.

s 1 =
h1, 1,* r1, 1 + h2, 1, r 2, 1* + h1, 2* r1, 2 + h2, 2r 2, 2* + ... + h1, M,* r1, M + h2, M r 2, M*
h1, 1h1, 1* + h2, 1h2, 1* + h1, 2h1, 2* + h2, 2h2, 2* + ... + h1, Mh1, M* + h2, M, h2, M*

 OSTBC Combiner

3-861

Signal Flow Diagram for Complex Multiply of a + ib and c + id

For Binary point scaling, you cannot specify WLp and FLp. Instead, the blocks determine
these values implicitly from WLa and FLa

The Internal Rule for Product output and Energy product output are:

• When you select Inherit via internal rule, the internal rule (DSP System
Toolbox) determines WLp and FLp. Therefore, WLa = WLp + 1 and FLa = FLp

• For Binary point scaling, you specify WLa and FLa. Therefore, WLp = WLa –1 and
FLa = FLp.

For information on how the Internal Rule applies to the Accumulator and Energy
Accumulator, see Inherit via Internal Rule (DSP System Toolbox).

Parameters
Number of transmit antennas

Sets the number of transmit antennas. The block supports 2, 3, or 4 transmit
antennas. This value defaults to 2.

3 Blocks — Alphabetical List

3-862

Rate
Sets the symbol rate of the code. You can specify either 3/4 or 1/2. This field only
appears when you use more than 2 transmit antennas. This field defaults to 34 for
more than 2 transmit antennas. For 2 transmit antennas, there is no rate option and
the implicit (default) rate defaults to 1.

Number of receive antennas
The number of antennas the block uses to receive signal streams. The block supports
from 1 to 8 receive antennas. This value defaults to 1.

Rounding mode
Sets the rounding mode for fixed-point calculations. The block uses the rounding
mode if a value cannot be represented exactly by the specified data type and scaling.
When this occurs, the value is rounded to a representable number. For more
information refer to Rounding (Fixed-Point Designer).

Saturate on integer overflow
Sets the overflow mode for fixed-point calculations. Use this parameter to specify the
method to be used if the magnitude of a fixed-point calculation result does not fit into
the range of the data type and scaling that stores the result. For more information
refer to Precision and Range (DSP System Toolbox).

Product Output
Complex product in the numerator for the diversity combining. For more information
refer to the Fixed-Point Signals section of this help page.

Accumulator
Summation in the numerator for the diversity combining.

Fixed-point Communications Toolbox blocks that must hold summation results for
further calculation usually allow you to specify the data type and scaling of the
accumulator. Most such blocks cast to the accumulator data type prior to summation:

 OSTBC Combiner

3-863

Use the Accumulator—Mode parameter to specify how you would like to designate
the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output word
and fraction lengths are automatically calculated for you. Refer to Inherit via
Internal Rule (DSP System Toolbox) for more information.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the first
input to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. The bias of all signals in DSP
System Toolbox software is zero.

Energy product output
Complex product in the denominator for calculating total energy in the MIMO
channel .

Energy accumulator
Summation in the denominator for calculating total energy in the MIMO channel.

Division output
Normalized diversity combining by total energy in the MIMO channel.

3 Blocks — Alphabetical List

3-864

Supported Data Type
Port Supported Data Types
Rx • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

cEst • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

Examples
For an example of this block in use, see OSTBC Over 3x2 Rayleigh Fading Channel. The
model shows the use of a rate ¾ OSTBC for 3 transmit and 2 receive antennas with BPSK
modulation using independent fading links and AWGN.

You can also see the block in the Concatenated OSTBC with TCM example by typing
commtcmostbc at the MATLAB command line.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OSTBC Encoder

 OSTBC Combiner

3-865

matlab:commtcmostbc

Introduced in R2009a

3 Blocks — Alphabetical List

3-866

OSTBC Encoder
Encode input message using orthogonal space-time block code (OSTBC)

Library
MIMO

Description
The OSTBC Encoder block encodes an input symbol sequence using orthogonal space-
time block code (OSTBC). The block maps the input symbols block-wise and concatenates
the output codeword matrices in the time domain. For more information, see the OSTBC
Encoding Algorithms on page 3-869 section of this help page.

Dimension
The block supports time and spatial domains for OSTBC transmission. It also supports an
optional dimension, over which the encoding calculation is independent. This dimension
can be thought of as the frequency domain. The following illustration indicates the
supported dimensions for the inputs and output of the OSTBC Encoder block.

 OSTBC Encoder

3-867

The following table describes the variables.

Variable Description
F The additional dimension; typically the

frequency domain. The encoding does not
depend on this dimension.

T Input symbol sequence length for the time
domain.

R Symbol rate of the code.
N Number of transmit antennas.

Note On the output, T/R is the symbol sequence length in time domain.

F can be any positive integer. N can be 2, 3 or 4, indicated by Number of transmit
antennas. For N = 2, R must be 1. For N = 3 or 4, R can be 3/4 or 1/2, indicated by Rate.
The time domain length T must be a multiple of the number of symbols in each codeword
matrix. Specifically, for N = 2 or R = 1/2, T must be a multiple of 2 and when R = 3/4, T
must be a multiple of 3.

To understand the block’s dimension propagation, refer to the following table.

Dimension Input Output
F = 1 Column vector 2-D
F > 1 2-D 3-D

Data Type
For information about the data types each block port supports, see the “Supported Data
Type” on page 3-871 table on this page. The output signal inherits the data type from
the input signal. For fixed-point signals, the complex conjugation may cause overflows
which the fixed-point parameter Saturate on integer overflow must handle.

3 Blocks — Alphabetical List

3-868

Frames
The output signal inherits frame type from the input signal. A column vector input
requires either frame-based or sample-based input; otherwise, the input must be sample-
based.

OSTBC Encoding Algorithms
The OSTBC Encoder block supports five different OSTBC encoding algorithms. Depending
on the selection for Rate and Number of transmit antennas, the block implements one
of the algorithms in the following table:

Transmit
Antenna

Rate OSTBC Codeword Matrix

2 1 s1 s2

−s2* s1*

3 1/2 s1 s2 0
−s2* s1* 0

0 0 s1

0 0 −s2*

3 3/4 s1 s2 s3

−s2* s1* 0

s3* 0 −s1*

0 s3* −s2*

4 1/2 s1 s2 0 0
−s2* s1* 0 0

0 0 s1 s2

0 0 −s2* s1*

 OSTBC Encoder

3-869

Transmit
Antenna

Rate OSTBC Codeword Matrix

4 3/4 s1 s2 s3 0
−s2* s1* 0 s3

s3* 0 −s1* s2

0 s3* −s2* −s1

In each matrix, its (l, i) entry indicates the symbol transmitted from the ith antenna in the
lth time slot of the block. The value of i can range from 1 to N (the number of transmit
antennas). The value of l can range from 1 to the codeword block length.

Parameters
Number of transmit antennas

Sets the number of antennas at the transmitter side. The block supports 2, 3, or 4
transmit antennas. The value defaults to 2.

Rate
Sets the symbol rate of the code. You can specify either 3/4 or 1/2. This field only
appears when using more than 2 transmit antennas. This field defaults to 34 for more
than 2 transmit antennas. For 2 transmit antennas, there is no rate option and the
rate defaults to 1.

Saturate on integer overflow
Sets the overflow mode for fixed-point calculations. Use this parameter to specify the
method to be used if the magnitude of a fixed-point calculation result does not fit into
the range of the data type and scaling that stores the result. For more information
refer to “Precision and Range” (DSP System Toolbox).

3 Blocks — Alphabetical List

3-870

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

Examples
For an example of this block in use, see “OSTBC Over 3x2 Rayleigh Fading Channel” . The
model shows the use of a rate ¾ OSTBC for 3 transmit and 2 receive antennas with BPSK
modulation using independent fading links and AWGN

You can also see the block in the Concatenated OSTBC with TCM example by typing
commtcmostbc at the MATLAB command line.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OSTBC Combiner

Introduced in R2009a

 OSTBC Encoder

3-871

matlab:commtcmostbc

OVSF Code Generator
Generate orthogonal variable spreading factor (OVSF) code from set of orthogonal codes

Library
Spreading Codes

Description
The OVSF Code Generator block generates an OVSF code from a set of orthogonal codes.
OVSF codes were first introduced for 3G communication systems. OVSF codes are
primarily used to preserve orthogonality between different channels in a communication
system.

OVSF codes are defined as the rows of an N-by-N matrix, CN, which is defined recursively
as follows. First, define C1 = [1]. Next, assume that CN is defined and let CN(k) denote the
kth row of CN. Define C2N by

C2N =

CN(0) CN(0)
CN(0) −CN(0)
CN(1) CN(1)
CN(1) −CN(1)

... ...
CN(N − 1) CN(N − 1)
CN(N − 1) −CN(N − 1)

Note that CN is only defined for N a power of 2. It follows by induction that the rows of CN
are orthogonal.

The OVSF codes can also be defined recursively by a tree structure, as shown in the
following figure.

3 Blocks — Alphabetical List

3-872

C8,0 = [1 1 1 1 1 1 1 1]

C4,0 = [1 1 1 1]

C4,1 = [1 1 -1 -1]

C4,2 = [1 -1 1 -1]

C4,3 = [1 -1 -1 1]

C2,0 = [1 1]

C1,0 = [1]

C2,1 = [1 -1]

C8,1 = [1 1 1 1 -1 -1 -1 -1]

C8,2 = [1 1 -1 -1 1 1 -1 -1]

C8,3 = [1 1 -1 -1 -1 -1 1 1]

C8,4 = [1 -1 1 -1 1 -1 1 -1]

C8,5 = [1 -1 1 -1 -1 1 -1 1]

C8,6 = [1 -1 -1 1 1 -1 -1 1]

C8,7 = [1 -1 -1 1 -1 1 1 -1]

SF = 2 SF = 4 SF = 8SF = 1

If [C] is a code length 2r at depth r in the tree, where the root has depth 0, the two
branches leading out of C are labeled by the sequences [C C] and [C -C], which have
length 2r+1. The codes at depth r in the tree are the rows of the matrix CN, where N = 2r.

Note that two OVSF codes are orthogonal if and only if neither code lies on the path from
the other code to the root. Since codes assigned to different users in the same cell must
be orthogonal, this restricts the number of available codes for a given cell. For example, if
the code C41 in the tree is assigned to a user, the codes C10, C20, C82, C83, and so on,
cannot be assigned to any other user in the same cell.

 OVSF Code Generator

3-873

Block Parameters
You specify the code the OVSF Code Generator block outputs by two parameters in the
block's dialog: the Spreading factor, which is the length of the code, and the Code
index, which must be an integer in the range [0, 1, ... , N - 1], where N is the spreading
factor. If the code appears at depth r in the preceding tree, the Spreading factor is 2r.
The Code index specifies how far down the column of the tree at depth r the code
appears, counting from 0 to N - 1. For CN, k in the preceding diagram, N is the Spreading
factor and k is the Code index.

You can recover the code from the Spreading factor and the Code index as follows.
Convert the Code index to the corresponding binary number, and then add 0s to the left,
if necessary, so that the resulting binary sequence x1 x2 ... xr has length r, where r is the
logarithm base 2 of the Spreading factor. This sequence describes the path from the
root to the code. The path takes the upper branch from the code at depth i if xi = 0, and
the lower branch if xi = 1.

To reconstruct the code, recursively define a sequence of codes Ci for as follows. Let C0 be
the root [1]. Assuming that Ci has been defined, for i < r, define Ci+1 by

Ci + 1 =
CiCi if xi = 0
Ci(− Ci) if xi = 1

The code CN has the specified Spreading factor and Code index.

For example, to find the code with Spreading factor 16 and Code index 6, do the
following:

1 Convert 6 to the binary number 110.
2 Add one 0 to the left to obtain 0110, which has length 4 = log2 16.
3 Construct the sequences Ci according to the following table.

i xi Ci

0 C0 = [1]
1 0 C1 = C0 C0 = [1] [1]
2 1 C2 = C1 -C1 = [1 1] [-1 -1]
3 1 C3 = C2 -C2 = [1 1 -1 -1] [-1 -1 1 1]
4 0 C4 = C3 C3 = [1 1 -1 -1 -1 -1 1 1] [1 1 -1 -1 -1 -1 1 1]

3 Blocks — Alphabetical List

3-874

The code C4 has Spreading factor 16 and Code index 6.

Parameters
Spreading factor

Positive integer that is a power of 2, specifying the length of the code.
Code index

Integer in the range [0, 1, ... , N - 1] specifying the code, where N is the Spreading
factor.

Sample time
The time between each sample of the output signal. Specify as a nonnegative real
scalar.

Samples per frame
The number of samples per frame in one column of the output signal. Specify as a
positive integer scalar.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame
equal one, the block outputs a sample every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

Output data type
The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

 OVSF Code Generator

3-875

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

See Also
Blocks
Hadamard Code Generator | Walsh Code Generator

Introduced before R2006a

3 Blocks — Alphabetical List

3-876

Phase/Frequency Offset
Apply phase and frequency offsets to complex baseband signal

Library
RF Impairments

Description
The Phase/Frequency Offset block applies phase and frequency offsets to an incoming
signal.

The block inherits its output data type from the input signal. If the input signal is u(t),
then the output signal is:

y(t) = u(t) ⋅ cos 2π∫0 t
f τ dτ + φ(t) + jsin 2π∫0 t

f τ dτ + φ(t)

where

f(t) = Frequency offset

φ(t) = Phase offset

The discrete-time output is:

y(0) = u(0) cos φ(0) + jsin φ(0)

y(i) = u(i) cos 2π ∑
n = 0

i− 1
f n Δt + φ(i) + jsin 2π ∑

n = 0

i− 1
f n Δt + φ(i) i > 0

where

Δt = Sample time

 Phase/Frequency Offset

3-877

This block accepts real and complex inputs of data type double or single.

Phase Offset
The block applies a phase offset to the input signal, specified by the Phase offset
parameter.

Frequency Offset
The block applies a frequency offset to the input signal, specified by the Frequency
offset parameter. Alternatively, when you select Frequency offset from port, the Frq
input port provides the offset to the block. The frequency offset must be a scalar value,
vector with the same number of rows or columns as the data input, or a matrix with the
same size as the data input. For more information, see “Interdependent Parameter-Port
Dimensions” on page 3-880.

The effects of changing the block's parameters are illustrated by the following scatter
plots of a signal modulated by 16-ary quadrature amplitude modulation (QAM). The usual
16-ary QAM constellation without the effect of the Phase/Frequency Offset block is shown
in the first scatter plot:

3 Blocks — Alphabetical List

3-878

The following figure shows a scatter plot of an output signal, modulated by 16-ary QAM,
from the Phase/Frequency Offset block with Phase offset set to 20 and Frequency
offset set to 0:

Observe that each point in the constellation is rotated by a 20 degree angle
counterclockwise.

If you set Frequency offset to 2 and Phase offset to 0, the angles of points in the
constellation change linearly over time. This causes points in the scatter plot to shift
radially, as shown in the following figure:

 Phase/Frequency Offset

3-879

Note that every point in the scatter plot has magnitude equal to a point in the original
constellation.

See “Illustrate RF Impairments That Distort a Signal” for a description of the model that
generates this plot.

Interdependent Parameter-Port Dimensions
Number of
Dimensions

Data I/O
Dimension

Frame
Size

Number of
Channels

Frequency/Phase
Offset Parameter
Dimension

Frequency Offset
Input Port
Dimension

Any Scalar 1 1 Scalar Scalar
2 M-by-1 M 1 M-by-1, 1-by-M, 1-by-1 M, M-by-1, 1, 1-by-1
2 1-by-N 1 N N-by-1, 1-by-N, 1-by-1 N, 1-by-N, 1, 1-by-1
2 M-by-N M N M-by-N, N-by-1, 1-by-N,

M-by-1, 1-by-M, 1-by-1
M-by-N, N, 1-by-N,
1, 1-by-1, M, M-by-1

• When you specify a scalar offset parameter the block applies the same offset to all
elements of the input signal

3 Blocks — Alphabetical List

3-880

• When you specify a 2-by-1 offset parameter for a 2-by-3 input signal (one offset value
per sample), the block applies the same sample offset across the three channels.

• When you specify a 1-by-3 offset parameter for a 2-by-3 input signal (one offset value
per channel), the same channel offset is applied across the two samples of a channel.

• When you specify a 2-by-3 offset parameter for a 2-by-3 input signal (one offset value
per sample for each channel), the offsets are applied element-wise to the input signal.

Parameters
Frequency offset from port

Selecting this option opens a port on the block through which you can input the
frequency offset information.

Frequency offset
Specifies the frequency offset in hertz.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. For
more information, see Tunable Parameters (Simulink) in the Simulink User's Guide.

Phase offset
Specifies the phase offset in degrees.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. For
more information, see Tunable Parameters (Simulink) in the Simulink User's Guide.

If Frequency offset and Phase offset are both vectors or both matrices, their
dimensions (vector lengths, or number of rows and columns) must be the same.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Phase/Frequency Offset

3-881

See Also
Blocks
Phase Noise

Introduced before R2006a

3 Blocks — Alphabetical List

3-882

Phase-Locked Loop
Implement phase-locked loop to recover phase of input signal

Library
Components sublibrary of Synchronization

Description
The Phase-Locked Loop (PLL) block is a feedback control system that automatically
adjusts the phase of a locally generated signal to match the phase of an input signal. This
block is most appropriate when the input is a narrowband signal.

This PLL has these three components:

• A multiplier used as a phase detector.
• A filter. You specify the filter transfer function using the Lowpass filter numerator

and Lowpass filter denominator parameters. Each is a vector that gives the
respective polynomial's coefficients in order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2 in
Signal Processing Toolbox software. The default filter is a Chebyshev type II filter
whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO using the

VCO quiescent frequency, VCO initial phase, and VCO output amplitude
parameters.

This block accepts a sample-based scalar input signal. The input signal represents the
received signal. The three output ports produce:

 Phase-Locked Loop

3-883

• The output of the filter
• The output of the phase detector
• The output of the VCO

Parameters
Lowpass filter numerator

The numerator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO
quiescent frequency value. The units of VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This should
match the carrier frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

References
For more information about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization”.

3 Blocks — Alphabetical List

3-884

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Baseband PLL | Charge Pump PLL | Linearized Baseband PLL

Introduced before R2006a

 Phase-Locked Loop

3-885

Phase Noise
Apply receiver phase noise to complex baseband signal
Library: Communications Toolbox / RF Impairments

Description
The Phase Noise block adds phase noise to a complex signal. This block emulates
impairments introduced by the local oscillator of a wireless communication transmitter or
receiver. The block generates filtered phase noise according to the specified spectral
mask and adds it to the input signal. For a description of the phase noise modeling, see
“Algorithms” on page 3-889.

Ports
Input
In — Input signal
complex column vector

Input signal, specified as an NS-by-1 vector of complex values. NS represents the number
of samples in the input signal.
Data Types: double
Complex Number Support: Yes

Output
Out — Output signal
complex column vector

Output signal, returned as an NS-by-1 vector of complex values. NS equals the number of
samples in the input signal.

3 Blocks — Alphabetical List

3-886

Data Types: double
Complex Number Support: Yes

Parameters
Phase noise level (dBc/Hz) — Phase noise level
[-60 -80] (default) | vector of negative scalars

Phase noise level in decibels relative to carrier per hertz (dBc/Hz), specified as a vector of
negative scalars. The Phase noise level (dBc/Hz) and Frequency offset (Hz)
parameters must have the same length.

Tunable: Yes

Frequency offset (Hz) — Frequency offset
[20 200] (default) | vector of positive increasing values

Frequency offset in Hz, specified as a vector of positive increasing values. The Phase
noise level (dBc/Hz) and Frequency offset (Hz) parameters must have the same
length.

Tunable: Yes
Data Types: double

Sample rate (Hz) — Sample rate
1024 (default) | positive scalar

Sample rate in samples per second, specified as a positive scalar. To avoid aliasing, the
sample rate must be greater than twice the largest value specified by Frequency offset
(Hz).

Tunable: Yes
Data Types: double

Initial seed — Initial seed of noise generator
2137 (default) | positive scalar

Initial seed of noise generator, specified as a positive scalar.

This block uses the Random Source block to generate noise. The block generates random
numbers using the Ziggurat method (V5 RANDN algorithm). Every time you rerun the

 Phase Noise

3-887

simulation, the block reuses the same initial seed. That way, the block outputs the same
signal each time you run a simulation.

Tunable: Yes
Data Types: double

View Filter Response — Display magnitude response of filter
button

Display magnitude response of filter defined by the Phase Noise block. The block uses the
fvtool function to display the magnitude response.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time speed, but the speed of the subsequent simulations is
slower than Code generation. In this mode, you can debug the source code of the
block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is faster than
Interpreted execution.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

no

3 Blocks — Alphabetical List

3-888

Algorithms
The output signal, yk, is related to input sequence xk by yk=xkejφk, where φk is the phase
noise. The phase noise is filtered Gaussian noise such that φk=f(nk), where nk is the noise
sequence and f represents a filtering operation.

To model the phase noise, define the power spectrum density (PSD) mask characteristic
by specifying scalar or vector values for the frequency offset and phase noise level.

• For a scalar frequency offset and phase noise level specification, an IIR digital filter
computes the spectrum mask. The spectrum mask has a 1/f characteristic that passes
through the specified point.

• For a vector frequency offset and phase noise level specification, an FIR filter
computes the spectrum mask. The spectrum mask is interpolated across log10(f). It is
flat from DC to the lowest frequency offset, and from the highest frequency offset to
half the sample rate.

IIR Digital Filter

For the IIR digital filter, the numerator coefficient is

λ = 2πfof f set10L/10 ,

where foffset is the frequency offset in Hz and L is the phase noise level in dBc/Hz. The
denominator coefficients, γi, are recursively determined as

γi = i− 2.5
γi− 1
i− 1 ,

 Phase Noise

3-889

where γ1 = 1, i = {1, 2,..., Nt}, and Nt is the number of filter coefficients. Nt is a power of
2, from 27 to 219. The value of Nt grows as the phase noise offset decreases towards 0 Hz.

FIR Filter

For the FIR filter, the phase noise level is determined through log10(f) interpolation for
frequency offsets over the range [df, fs / 2], where df is the frequency resolution and fs is
the sample rate. The phase noise is flat from 0 Hz to the smallest frequency offset, and

from the largest frequency offset to fs / 2. The frequency resolution is equal to
fs
2

1
Nt

,

where Nt is the number of coefficients, and is a power of 2 less than or equal to 216. If Nt
< 28, a time domain FIR filter is used. Otherwise, a frequency domain FIR filter is used.

The algorithm increases Nt until these conditions are met:

• The frequency resolution is less than the minimum value of the frequency offset vector.
• The frequency resolution is less than the minimum difference between two

consecutive frequencies in the frequency offset vector.
• The maximum number of FIR filter taps is 216.

References
[1] Kasdin, N. J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/

(f^alpha); Power Law Noise Generation." The Proceedings of the IEEE. Vol. 83,
No. 5, May, 1995, pp 802–827.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Phase/Frequency Offset

3 Blocks — Alphabetical List

3-890

Functions
plotPhaseNoiseFilter

Objects
comm.PhaseNoise

Topics
“View Phase Noise Effects on Signal Spectrum”

Introduced before R2006a

 Phase Noise

3-891

PM Demodulator Passband
Demodulate PM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The PM Demodulator Passband block demodulates a signal that was modulated using
phase modulation. The input is a passband representation of the modulated signal. Both
the input and output signals are real scalar signals.

For best results, use a carrier frequency which is estimated to be larger than 10% of your
input signal's sample rate. This is due to the implementation of the Hilbert transform by
means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second. We
then designate a Hilbert Transform filter of order 100. Below is the response of the
Hilbert Transform filter as returned by fvtool.

3 Blocks — Alphabetical List

3-892

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency
larger than 10% (but less than 90%) of the input signal's sample rate (8000 samples per
second, in this example) or equivalently, a carrier frequency larger than 400Hz, we
ensure that the Hilbert Transform Filter will be operating in the flat section of the filter's
magnitude response (shown in blue), and that our modulated signal will have the desired
magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 PM Demodulator Passband

3-893

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Phase deviation (rad)

The phase deviation of the carrier frequency in radians. Sometimes it is referred to as
the "variation" in the phase.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block
PM Modulator Passband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
PM Modulator Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-894

PM Modulator Passband
Modulate using phase modulation

Library
Analog Passband Modulation, in Modulation

Description
The PM Modulator Passband block modulates using phase modulation. The output is a
passband representation of the modulated signal. The output signal's frequency varies
with the input signal's amplitude. Both the input and output signals are real scalar
signals.

If the input is u(t) as a function of time t, then the output is

cos(2πfct + Kcu(t) + θ)

where

• fc represents the Carrier frequency parameter
• θ represents the Initial phase parameter
• Kc represents the Phase deviation parameter

An appropriate Carrier frequency value is generally much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 PM Modulator Passband

3-895

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Phase deviation (rad)

The phase deviation of the carrier frequency in radians. This is sometimes referred to
as the "variation" in the phase.

Pair Block
PM Demodulator Passband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
PM Demodulator Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-896

PN Sequence Generator
Generate pseudonoise sequence
Library: Communications Toolbox / Comm Sources / Sequence

Generators
Communications Toolbox HDL Support / Comm
Sources

Description
The PN Sequence Generator block generates a sequence of pseudorandom binary
numbers using a linear-feedback shift register (LFSR). Pseudonoise sequences are
typically used for for pseudorandom scrambling, and in direct-sequence spread-spectrum
systems. For more information, see “More About” on page 3-903.

These icons shows the block with all ports enabled.

Ports

Input
Mask — Output mask
binary vector

Output mask to delay the PN sequence from initial time, specified as a binary vector.

Dependencies

To enable this port, set Output mask source to Input port.
Data Types: double | uint8 | ufix1

 PN Sequence Generator

3-897

oSiz — Output size
integer

Output size for variable-size output signals, specified as an integer. For information about
variable-size signals, see “Variable-Size Signal Basics” (Simulink).
Dependencies

To enable this port, select Output variable-size signals and set Maximum output size
source to Dialog parameter.
Data Types: double

Ref — Reference input
column vector

Reference input, specified as a column vector that determines the maximum and current
output sequence length. The Ref input must be a variable-size signal. For information
about variable-size signals, see “Variable-Size Signal Basics” (Simulink).
Dependencies

To enable this port, select Output variable-size signals and set Maximum output size
source to Inherit from reference input.
Data Types: double

Rst — Reset sequence generator
0 | 1

Reset sequence generator, specified as 0 or 1. For more information, see “Resetting a
Signal” on page 3-905.
Dependencies

To enable this port, select Reset on nonzero input.
Data Types: Boolean

Output
Out — Pseudorandom noise sequence
binary vector

PN sequence, returned as a binary vector.

3 Blocks — Alphabetical List

3-898

Parameters
Generator polynomial — Generator polynomial
'z^6 + z + 1' (default) | polynomial character vector | binary row vector

Generator polynomial, specified as one of the following:

• A polynomial character vector that includes the number 1.
• A binary row vector that represents the coefficients of the generator polynomial in

order of descending power. The first and last entries must be 1. The length of this
vector is (N+1), where N is the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For more information, see “Character Representation of Polynomials”.
Example: 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the
same polynomial, p(z) = z 8 + z 2 + 1.

Initial states — Initial shift register states
[0 0 0 0 0 1] (default) | binary row vector

Initial shift register states, specified as a binary row vector of length N, where N is the
degree of the generator polynomial.

Note For the block to generate a nonzero sequence, the Initial states vector must
contain at least one nonzero element.

Output mask source — Output mask source
Dialog parameter (default) | Input port

Output mask source that indicates how the output mask information is given to the block,
specified as:

• Dialog parameter to use the Output mask vector (or scalar shift
value) parameter setting.

• Input port to add and use the Mask input port.

 PN Sequence Generator

3-899

Output mask vector (or scalar shift value) — Output mask vector or
scalar shift value
0 (default) | integer scalar | binary vector

Output mask vector or scalar shift value, specified as an integer scalar or binary row
vector of length N, where N is the degree of the generator polynomial. This parameter
determines the delay of the PN sequence from the initial time. For more information, see
“Shifting PN Sequence Starting Point” on page 3-905.

Dependencies

To enable this parameter, set Output mask source to Dialog parameter.

Output variable-size signals — Output variable-size signals
off (default) | on

Select this parameter to permit variable length output sequences during simulation.
When set to off, fixed-length sequences are output. When set to on, variable-length
sequences can be output. For information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Maximum output size source — Maximum output size source
Dialog parameter (default) | Inherit from reference port

Maximum output size source, which indicates how the maximum sequence output size is
specified.

• Dialog parameter configures the block to use the Maximum output size
parameter setting as the maximum permitted output sequence length.

• Inherit from reference port adds the Ref input port and configures the block
to inherit the sample time and the current output size from the Ref input port to set
the maximum permitted output sequence length.

Dependencies

To enable this parameter, select Output variable-size signals.

Maximum output size — Maximum output size source
[10 1] (default) | two-element row vector

Maximum output size, specified as a two-element row vector that denotes the maximum
output size for the block. The second element of the vector must be 1.

3 Blocks — Alphabetical List

3-900

Example: [10 1] gives a 10-by-1 maximum sized output signal.
Dependencies

To enable this parameter, select Output variable-size signals.

Sample time — Time between each sample
1 (default) | positive scalar

Time between each sample, specified as a positive scalar.
Example: 1 specifies a sample time of 1 second.
Dependencies

To enable this parameter, clear Output variable-size signals.

Samples per frame — Samples per frame
1 (default) | positive integer

Samples per frame in one channel of the output signal, specified as a positive integer.

Note The time between output updates is equal to the product of Samples per frame
and Sample time. For example, if Sample time and Samples per frame equal one, the
block outputs a sample every second. If Samples per frame is increased to 10, then a
10-by-1 vector is output every 10 seconds. This ensures that the equivalent output rate is
not dependent on the Samples per frame parameter.

Dependencies

To enable this parameter, clear Output variable-size signals.

Reset on nonzero input — Reset on nonzero input
off (default) | on

Select this parameter to add the Rst input port. For more information, see “Resetting a
Signal” on page 3-905.

Enable bit-packed outputs — Enable bit-packed outputs
off (default) | on

Select this parameter to make the Number of packed bits and Interpret bit-packed
values as signed parameters available.

 PN Sequence Generator

3-901

Number of packed bits — Number of packed bits
8 (default) | integer

Number of packed bits, specified as an integer in the range [1,32].

Dependencies

To enable this parameter, select Enable bit-packed outputs.

Interpret bit-packed values as signed — Interpret bit-packed values as
signed
off (default) | on

Interpret bit-packed values as signed integer data values when selected or unsigned
integer data values when cleared. When selected, a 1 in the most significant bit (sign bit)
indicates a negative value.

Dependencies

To enable this parameter, select Enable bit-packed outputs.

Output data type — Output data type
double (default) | boolean | Smallest unsigned integer

Output data type, specified as double, boolean, or Smallest unsigned integer.

• When Enable bit-packed outputs is cleared, the output data type can be specified as
a double, boolean, or Smallest unsigned integer. When the Output data type
parameter is set to Smallest unsigned integer, the output data type is selected
based on the settings used in the Hardware Implementation pane of the
Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in the
Hardware Implementation pane, the output data type ufix(1) = ideal minimum
one-bit size. For all other selections, it is an unsigned integer with the smallest
available word length large enough to fit one bit, usually corresponding to the size of a
char (for example, uint8).

• When Enable bit-packed outputs is selected, the output data type can be specified
as double or Smallest unsigned integer. When the Output data type
parameter is set to Smallest unsigned integer, the output data type is selected
based on the Interpret bit-packed values as signed and Number of packed bits
parameters, and the settings used in the Hardware Implementation pane of the
Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in the
Hardware Implementation pane, the output data type is the ideal minimum n-bit

3 Blocks — Alphabetical List

3-902

size, such as sfix(n) or ufix(n), based on the Interpret bit-packed values as
signed parameter. For all other selections, it is a signed or unsigned integer with the
smallest available word length large enough to fit n bits.

Block Characteristics
Data Types Boolean | double | fixed point
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Simple Shift Register Generator
A linear-feedback shift register (LFSR), implemented as a simple shift register generator
(SSRG), is used to generate PN sequences. This type of shift register is also known as a
Fibonacci implementation. For an example, see “Model PN Sequence Generation With
Linear Feedback Shift Register”.

 PN Sequence Generator

3-903

The Generator Polynomial parameter determines the feedback connections of the shift
register. It is a primitive binary polynomial in z, grzr+gr–1zr–1+gr–2zr–2+...+g0. For the
coefficient, gk=0 to r, the coefficient gk is 1 if there is a connection from the kth register to
the adder. The leading term, gr, and the constant term, g0, of the Generator Polynomial
parameter must be 1 because the polynomial must be primitive. The Initial states
parameter specifies the initial values of the registers. For example, the following table
indicates two sets of parameter values that correspond to a generator polynomial of p(z)
= z8 + z2 + 1.

Quantity Example 1 Example 2
Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

At each time step, all r registers in the generator update their values according to the
value of the incoming arrow to the shift register. The adders perform addition modulo 2.
The output of the LFSR reflects the sum of all connections in the m mask vector.

3 Blocks — Alphabetical List

3-904

The Output mask vector (or scalar shift value) parameter, m, determines the shift of
the PN sequence starting point. For more information, see “Shifting PN Sequence
Starting Point” on page 3-905.

Shifting PN Sequence Starting Point
To shift the starting point of the PN sequence, specify the Output mask vector (or
scalar shift value) parameter as:

• An integer representing the length of the shift.

The default Output mask vector (or scalar shift value) setting of 0 corresponds to
no shift. As illustrated in the LFSR shift register diagram in “Simple Shift Register
Generator” on page 3-903, there is no shift when the only connection is along the
arrow labeled m0.

This table shows the shift that occurs when you set Output mask vector (or scalar
shift value) to 0 versus a positive integer d.

T = 0 T = 1 T = 2 ... T = d T = d+1
Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

• A binary vector whose length is equal to the degree of the generator polynomial. The
LFSR shift register diagram in “Simple Shift Register Generator” on page 3-903 shows
Output mask vector (or scalar shift value) specified as a mask vector, m. The
binary vector must have N elements, where N is the degree of the generator
polynomial. To calculate the mask vector, use the shift2mask function.

The binary vector corresponds to a polynomial in z, mr–1zr–1 + mr–2zr–2 + ... + m1z + m0,
of degree at most r–1. The mask vector that correspond to a shift of d is the vector that
represents m(z) = zd modulo g(z), where g(z) is the generator polynomial.

For example, if the degree of the generator polynomial is 4, then the mask vector that
corresponds to d = 2 is [0 1 0 0], which represents the polynomial m(z) = z2.

Resetting a Signal
To reset the PN generator sequence, you must first select Reset on nonzero input to
add the Rst input. Suppose that the PN Sequence Generator block outputs [1 0 0 1 1

 PN Sequence Generator

3-905

0 1 1] when there is no reset. The following table shows the effect on the PN Sequence
Generator block output when the reset signal [0 0 0 1] is input to the Rst port. The
PN sequence is reset at the fourth bit, because the fourth bit of the reset signal is a 1 and
the Sample time is 1.

Reset Signal
Properties

PN Sequence
Generator block

Reset Signal, Output Signal

Sample time = 1 Sample time = 1

Sequences of Maximum Length
To generate a maximum length sequence for a generator polynomial that has the degree
r, set Generator polynomial to a value from the following table. The maximum sequence
length is 2r – 1.

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

2 [2 1 0] 15 [15 14 0] 28 [28 25 0] 41 [41 3 0]
3 [3 2 0] 16 [16 15 13 4

0]
29 [29 27 0] 42 [42 23 22 1

0]
4 [4 3 0] 17 [17 14 0] 30 [30 29 28 7

0]
43 [43 6 4 3 0]

5 [5 3 0] 18 [18 11 0] 31 [31 28 0] 44 [44 6 5 2 0]
6 [6 5 0] 19 [19 18 17 14

0]
32 [32 31 30 10

0]
45 [45 4 3 1 0]

7 [7 6 0] 20 [20 17 0] 33 [33 20 0] 46 [46 21 10 1
0]

8 [8 6 5 4 0] 21 [21 19 0] 34 [34 15 14 1
0]

47 [47 14 0]

9 [9 5 0] 22 [22 21 0] 35 [35 2 0] 48 [48 28 27 1 0]
10 [10 7 0] 23 [23 18 0] 36 [36 11 0] 49 [49 9 0]

3 Blocks — Alphabetical List

3-906

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

11 [11 9 0] 24 [24 23 22 17
0]

37 [37 12 10 2 0] 50 [50 4 3 2 0]

12 [12 11 8 6
0]

25 [25 22 0] 38 [38 6 5 1 0] 51 [51 6 3 1 0]

13 [13 12 10 9
0]

26 [26 25 24 20
0]

39 [39 8 0] 52 [52 3 0]

14 [14 13 8 4
0]

27 [27 26 25 22
0]

40 [40 5 4 3 0] 53 [53 6 2 1 0]

For more information about the shift-register configurations that these polynomials
represent, see Digital Communications by John Proakis.[1].

References
[1] Proakis, John G. Digital Communications. 3rd ed., New York. McGraw Hill, 1995.

[2] Lee, J. S., and L. E. Miller. CDMA Systems Engineering Handbook. Artech House,
1998.

[3] Golomb, S.W. Shift Register Sequences. Aegean Park Press, 1967.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

 PN Sequence Generator

3-907

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

• You can select Input port as the Output mask source on the block. In this case,
the Mask input signal must be a vector of data type ufix1.

• If you select Reset on nonzero input, the input to the Rst port must have data type
Boolean.

• Outputs of type double are not supported for HDL code generation. All other output
types (including bit-packed outputs) are supported.

• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.
• You cannot generate HDL for this block inside a Triggered Subsystem if the Use

trigger signal as clock option is selected. See “Using Triggered Subsystems for HDL
Code Generation” (HDL Coder).

See Also
Blocks
Gold Sequence Generator | Hadamard Code Generator | Kasami Sequence Generator |
Scrambler

3 Blocks — Alphabetical List

3-908

Objects
comm.PNSequence

Topics
“Spreading Sequences”

Introduced before R2006a

 PN Sequence Generator

3-909

Poisson Integer Generator
Generate Poisson-distributed random integers

Library
Random Data Sources sublibrary of Comm Sources

Description
The Poisson Integer Generator block generates random integers using a Poisson
distribution. The probability of generating a nonnegative integer k is

λkexp(− λ)/(k!)

where λ is a positive number known as the Poisson parameter.

You can use the Poisson Integer Generator to generate noise in a binary transmission
channel. In this case, the Poisson parameter Lambda should be less than 1, usually much
less.

Attributes of Output Signal
The output signal can be a column or row vector, a two-dimensional matrix, or a scalar.
The number of rows in the output signal corresponds to the number of samples in one
frame and is determined by the Samples per frame parameter. The number of columns
in the output signal corresponds to the number of channels and is determined by the
number of elements in the Lambda parameter. See “Sources and Sinks” in
Communications Toolbox User's Guide for more details.

3 Blocks — Alphabetical List

3-910

Parameters
Lambda

The Poisson parameter λ. Specify λ as a scalar or row vector whose elements are real
numbers. If Lambda is a scalar, then every element in the output vector shares the
same Poisson parameter. If Lambda is a row vector, then the number of elements
correspond to the number of independent channels output from the block.

Source of initial seed
The source of the initial seed for the random number generator. Specify the source as
either Auto or Parameter. When set to Auto, the block uses the global random
number stream.

Note When Source of initial seed is Auto in Code generation mode, the random
number generator uses an initial seed of zero. Therefore, the block generates the
same random numbers each time it is started. Use Interpreted execution to
ensure that the model uses different initial seeds. If Interpreted execution is run
in Rapid accelerator mode, then it behaves the same as Code generation
mode.

Initial seed
The initial seed value for the random number generator. Specify the seed as a
nonnegative integer scalar. Initial seed is available when the Source of initial seed
parameter is set to Parameter.

Sample time
The time between each sample of a column of the output signal.

Samples per frame
The number of samples per frame in one channel of the output signal. Specify
Samples per frame as a positive integer scalar.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame
equal one, the block outputs an integer every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

 Poisson Integer Generator

3-911

Output data type
The output type of the block can be specified as a boolean, uint8, uint16, uint32,
single, or double. The default is double.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to
the blocks accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times
but can slow subsequent simulation performance.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Random Integer Generator

Functions
poissrnd

Introduced before R2006a

3 Blocks — Alphabetical List

3-912

Preamble Detector
Detect preamble in data packet
Library: Communications Toolbox / Synchronization

Description
The Preamble Detector block detects the end of preambles in data packets. A preamble is
a set of symbols or bits used in packet-based communications systems to indicate the
start of a packet. Packets consist of preamble data and user data. The length of the user
data portion of the packet can vary during a simulation run.

This icon shows the block with all ports enabled:

Input/Output Ports
Input
In — Input data
scalar | column vector

Input data of symbols or bits, specified as a scalar or column vector. The input data can
contain multiple packets. This port is unnamed on the block.
Data Types: single | double | Boolean | int8 | uint8

Output
Idx — Index of last preamble symbol
scalar | column vector

 Preamble Detector

3-913

Index of the last preamble symbol, returned as a scalar or column vector of the same size
and data type as the input data.

• When the Detections parameter is set to All, Idx outputs the index corresponding to
the last element of each detected preamble.

• When the Detections parameter is set to First, Idx outputs the index corresponding
to the last element of the first detected preamble.

This port is unnamed until the DtMt port is enabled.

DtMt — Detection metric
scalar | column vector

Detection metric, returned as a scalar or column vector of the same size and data type as
the input data packet.

• If either the preamble or input data is complex, the detection metric is the absolute
value of the cross-correlation of the preamble and the input data.

• If both the preamble and input data are real, the detection metric is the cross-
correlation of the preamble and the input data.

Dependencies

To enable this port, set the Input parameter to Symbol, and select the Output detection
metric parameter.

Parameters
Input — Input type
Symbol (default) | Bit

Input type, specified as Symbol or Bit.

• For binary inputs, set this parameter to Bit.
• For all other inputs, set this parameter to Symbol.

For information on execution speed, see “Tips” on page 3-916.

Preamble — Preamble sequence
[1 + 1i; 1 - 1i] (default) | column vector

3 Blocks — Alphabetical List

3-914

Preamble sequence, specified as a column vector.

• If the Input parameter is set to Bit, the preamble must be binary.
• If the Input parameter is set to Symbol, the preamble can be any real or complex

sequence.

Detection threshold — Detection threshold
3 (default) | nonnegative scalar

Detection threshold, specified as a nonnegative scalar. When the detection metric is
greater than or equal to the threshold, the block detects the preamble and updates Idx.

Tunable: Yes
Dependencies

To enable this parameter, set the Input parameter to Symbol.

Output detection metric — Option to output detection metric
off (default) | on

Select this parameter to output the detection metric and enable the DtMt output port.
Dependencies

To enable this parameter, set the Input parameter to Symbol.

Detections — Detections returned
All (default) | First

Detections returned, specified as All or First. Specifying All returns all detected
preambles. Specifying First returns only the first detected preamble.

Tunable: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

 Preamble Detector

3-915

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

For information on execution speed, see “Tips” on page 3-916.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

Tips
• For faster execution of the Preamble Detector block, set the Simulate using parameter

to:

• Code generation when the Input parameter is set to Symbol
• Interpreted execution when the Input parameter is set to Bit

Algorithms
Bit Inputs

When the input data is composed of bits, the preamble detector uses an exact pattern
match.

Symbol Inputs

When the input data is composed of symbols, the preamble detector uses a cross-
correlation algorithm. A finite impulse response (FIR) filter, in which the coefficients are
specified from the preamble, computes the cross-correlation between the input data and
the preamble. When a sequence of input samples match the preamble, the filter output

3 Blocks — Alphabetical List

3-916

reaches its peak. The index of the peak corresponds to the end of the preamble sequence
in the input data. See Discrete FIR Filter for further information on the FIR filter
algorithm.

The cross-correlation values that are greater than or equal to the specified threshold are
reported as peaks.

• If the detection threshold is too low, the algorithm will detect false peaks, or, in the
extreme case, detect as many detected peaks as there are input samples.

• If the detection threshold is too high, the algorithm will miss detecting peaks, or, in
the extreme case, detect no peaks.

Consequently, the selection of the detection threshold is critical.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Carrier Synchronizer | Coarse Frequency Compensator | Symbol Synchronizer

Objects
comm.PreambleDetector

Introduced in R2016b

 Preamble Detector

3-917

Puncture
Output elements which correspond to 1s in binary Puncture vector

Library
Sequence Operations

Description
The Puncture block creates an output vector by removing selected elements of the input
vector and preserving others. This block accepts an input signal that is a real or complex
vector of length K. The block determines which elements to remove and preserve by using
the binary Puncture vector parameter.

and mod is the modulus function (mod in MATLAB).

• If Puncture vector(n) = 0, then the block removes the nth element of the input vector
and does not include it as part of the output vector.

• If Puncture vector(n) = 1, then the block preserves the nth element of the input
vector as part of the output vector.

The input length, K, must be an integer multiple of the Puncture vector parameter
length. The block repeats the puncturing pattern, as necessary, to include all input
elements. The preserved elements appear in the output vector in the same order in which
they appear in the input vector.

The input signal and the puncture vector are both column vectors.

The block accepts signals with the following data types: int8, uint8, int16, uint16,
int32, uint32, boolean, single, double, and fixed-point. The output signal inherits
its data type from the input signal.

3 Blocks — Alphabetical List

3-918

Parameters
Puncture vector

A binary vector whose pattern of 0s (1s) indicates which elements of the input the
block should remove (preserve).

Examples
If the Puncture vector parameter is the six-element vector [1;0;1;1;1;0], then the
block:

• Removes the second and sixth elements from the group of six input elements.
• Sends the first, third, fourth, and fifth elements to the output vector.

The diagram below depicts the block's operation on an input vector of [1;2;3;4;5;6],
using this Puncture vector parameter.

1

2

3

4

5

6

1

3

4

5

 Puncture

3-919

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Insert Zero

Introduced before R2006a

3 Blocks — Alphabetical List

3-920

QPSK Demodulator Baseband
Demodulate QPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The QPSK Demodulator Baseband block demodulates a signal that was modulated using
the quadrature phase shift keying method. The input is a baseband representation of the
modulated signal.

The input must be a complex signal. This block accepts a scalar or column vector input
signal. For information about the data types each block port supports, see “Supported
Data Types” on page 3-930.

 QPSK Demodulator Baseband

3-921

Algorithm

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , , , }0 1 2 3

Hard-Decision QPSK Demodulator Signal Diagram for Trivial Phase Offset (odd
multiple of π/4)

3 Blocks — Alphabetical List

3-922

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

u

+

+

-

+

+

+

I input DT

input DT

input DT

input DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Floating-Point Signal Diagram for Nontrivial
Phase Offset

 QPSK Demodulator Baseband

3-923

+

+

-

+

+

+

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Output DT

symbol

index

(integer)

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

Re

Im

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Fixed-Point Signal Diagram for Nontrivial
Phase Offset

The exact LLR and approximate LLR cases (soft-decision) are described in “Exact LLR
Algorithm” and “Approximate LLR Algorithm”.

3 Blocks — Alphabetical List

3-924

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps each integer to a pair of output bits.

Output type
Determines whether the output consists of integers or bits.

If the Output type parameter is set to Integer and Constellation ordering is set
to Binary, then the block maps the point

exp(jθ + jπm/2)

to m, where θ is the Phase offset parameter and m is 0, 1, 2, or 3.

The reference page for the QPSK Modulator Baseband block shows the signal
constellations for the cases when Constellation ordering is set to either Binary or
Gray.

 QPSK Demodulator Baseband

3-925

If the Output type is set to Bit, then the output contains pairs of binary values if
Decision type is set to Hard decision. The most significant bit (i.e. the left-most
bit in the vector), is the first bit the block outputs.

If the Decision type is set to Log-likelihood ratio or Approximate log-
likelihood ratio, then the output contains bitwise LLR or approximate LLR
values, respectively.

Decision type
Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
This parameter appears when you select Bit from the Output type drop-down list.
The output values for Log-likelihood ratio and Approximate log-likelihood ratio
decision types are of the same data type as the input values. For integer output, the
block always performs Hard decision demodulation.

See “Exact LLR Algorithm” and “Approximate LLR Algorithm” for algorithm details.
Noise variance source

This field appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

3 Blocks — Alphabetical List

3-926

Data Types Pane for Hard-Decision

Output
For bit outputs, when Decision type is set to Hard decision, the output data type
can be set to 'Inherit via internal rule', 'Smallest unsigned integer',
double, single, int8, uint8, int16, uint16, int32, uint32, or boolean.

For integer outputs, the output data type can be set to 'Inherit via internal
rule', 'Smallest unsigned integer', double, single, int8, uint8, int16,
uint16, int32, or uint32.

When this parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is a floating-point type (single or
double). If the input data type is fixed-point, the output data type will work as if this
parameter is set to 'Smallest unsigned integer'.

When this parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model.

 QPSK Demodulator Baseband

3-927

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output type
is Bit, the output data type is the ideal minimum one-bit size, i.e., ufix(1). For all
other selections, it is an unsigned integer with the smallest available word length
large enough to fit one bit, usually corresponding to the size of a char (e.g., uint8).

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output type
is Integer, the output data type is the ideal minimum two-bit size, i.e., ufix(2). For
all other selections, it is an unsigned integer with the smallest available word length
large enough to fit two bits, usually corresponding to the size of a char (e.g., uint8).

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not an
even multiple of π/4.

You can select Same word length as input or Specify word length, in which
case you define the word length using an input field.

3 Blocks — Alphabetical List

3-928

Data Types Pane for Soft-Decision

For bit outputs, when Decision type is set to Log-likelihood ratio or Approximate
log-likelihood ratio, the output data type is inherited from the input (e.g., if the
input is of data type double, the output is also of data type double).

Examples

Demodulate Noisy QPSK Signal

Modulate and demodulate a noisy QPSK signal.

Open the QPSK demodulation model.

 QPSK Demodulator Baseband

3-929

Run the simulation. The results are saved to the base workspace, where the variable
ErrorVec is a 1-by-3 row vector. The BER is found in the first element.

Display the error statistics. For the Eb/No provided, 4.3 dB, the resultant BER is
approximately 0.01. Your results may vary slightly.

ans =

 0.0112

Increase the Eb/No to 7 dB. Rerun the simulation, and observe that the BER has
decreased.

ans =

 1.0000e-03

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed-point when:

• Output type is Integer
• Output type is Bit and Decision type is Hard-decision

3 Blocks — Alphabetical List

3-930

Port Supported Data Types
Var • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard-decision
• 8-, 16-, 32- bit signed integers
• 8-, 16-, 32- bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• ufix(2) in ASIC/FPGA when Output type is Integer

Pair Block
QPSK Modulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

 QPSK Demodulator Baseband

3-931

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
Blocks
BPSK Demodulator Baseband | DQPSK Demodulator Baseband | M-PSK Demodulator
Baseband | QPSK Modulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-932

QPSK Modulator Baseband
Modulate using quadrature phase shift keying method

Library
PM in Digital Baseband sublibrary of Modulation

Description
The QPSK Modulator Baseband block modulates using the quadrature phase shift keying
method. The output is a baseband representation of the modulated signal.

Integer-Valued Signals and Binary-Valued Signals
If you set the Input type parameter to Integer, then valid input values are 0, 1, 2, and
3. When you set Constellation ordering to Binary for input m the output symbol is

exp(jθ + jπm/2)

where θ represents the Phase offset parameter (see the following figure for Gray
constellation ordering). In this case, the block accepts a scalar or column vector signal.

If you set the Input type parameter to Bit, then the input contains pairs of binary
values. For this configuration, the block accepts column vectors with even lengths. When
you set the Phase offset parameter to Π4 , then the block uses one of the signal
constellations in the following figure, depending on whether you set the Constellation
ordering parameter to Binary or Gray.

 QPSK Modulator Baseband

3-933

Binary

01 00

10 11

Gray

01 00

11 10

In the previous figure, the most significant bit (i.e. the left-most bit), is the first bit input
to the block. For additional information about Gray mapping, see the M-PSK Modulator
Baseband help page.

Constellation Visualization
The QPSK Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the Constellation Visualization section of the Communications Toolbox User's Guide.

3 Blocks — Alphabetical List

3-934

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps each pair of input bits or input integers to
constellation symbols.

Input type
Indicates whether the input consists of integers or pairs of bits.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

 QPSK Modulator Baseband

3-935

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data type
is a fixed-point data type.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point
data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer. This parameter is only visible when you select User-defined for the
Output data type parameter.

Output fraction length
For fixed-point output data types, specify the number of fractional bits or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

Examples

Plot Noisy QPSK Constellation

Open the QPSK model. The model generates QPSK data, applies white noise, and displays
the resulting constellation diagram.

Run the model.

3 Blocks — Alphabetical List

3-936

Change the Eb/No of the AWGN Channel block from 15 dB to 10 dB.

 QPSK Modulator Baseband

3-937

3 Blocks — Alphabetical List

3-938

The noise level increases as shown by the greater distance between the samples.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) when Input type is Bit
• ufix(2) when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed point

Pair Block
QPSK Demodulator Baseband

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 QPSK Modulator Baseband

3-939

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

See Also
Blocks
BPSK Modulator Baseband | DQPSK Modulator Baseband | M-PSK Modulator Baseband |
QPSK Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-940

Quantizing Decoder
Decode quantization index according to codebook

Library
Source Coding

Description
The Quantizing Decoder block converts quantization indices to the corresponding
codebook values. The Quantization codebook parameter, a vector of length N,
prescribes the possible output values. If the input is an integer k between 0 and N-1, then
the output is the (k+1)st element of Quantization codebook.

The input must be a discrete-time signal. This block processes each vector element
independently. For information about the data types each block port supports, see the
“Supported Data Type” on page 3-942 table on this page.

Note The Quantizing Encoder block also uses a Quantization codebook parameter. The
first output of that block corresponds to the input of Quantizing Decoder, while the
second output of that block corresponds to the output of Quantizing Decoder.

Parameters
Quantization codebook

A real vector that prescribes the output value corresponding to each nonnegative
integer of the input.

Quantized output data type
Select the output data type.

 Quantizing Decoder

3-941

Supported Data Type
Port Supported Data Types
Idx • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point
• Single-precision floating point

Pair Block
Quantizing Encoder

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Quantizing Encoder | Scalar Quantizer Decoder

Introduced before R2006a

3 Blocks — Alphabetical List

3-942

Quantizing Encoder
Quantize signal using partition and codebook

Library
Source Coding

Description
The Quantizing Encoder block quantizes the input signal according to the Partition
vector and encodes the input signal according to the Codebook vector. This block
processes each vector element independently. The input must be a discrete-time signal.
This block processes each vector element independently. For information about the data
types each block port supports, see the “Supported Data Type” on page 3-944 table on
this page.

The first output is the quantization index. The second output is the quantized signal. The
values for the quantized signal are taken from the Codebook vector.

The Quantization partition parameter, P, is a real vector of length n whose entries are
in strictly ascending order. The quantization index (second output signal value)
corresponding to an input value of x is

• 0 if x ≤ P(1)
• m if P(m) < x ≤ P(m+1)
• n if P(n) < x

The Quantization codebook parameter, whose length is n+1, prescribes a value for
each partition in the quantization. The first element of Quantization codebook is the
value for the interval between negative infinity and the first element of P. The second
output signal from this block contains the quantization of the input signal based on the
quantization indices and prescribed values.

 Quantizing Encoder

3-943

Use the lloyds function with a representative sample of your data as training data, to
obtain appropriate partition and codebook parameters.

Parameters
Quantization partition

The vector of endpoints of the partition intervals.
Quantization codebook

The vector of output values assigned to each partition.
Index output data type

Select the output data type.

Supported Data Type
Port Supported Data Types
U • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Idx • Double-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Quantizing Decoder

3 Blocks — Alphabetical List

3-944

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Quantizing Decoder | Scalar Quantizer Encoder

Functions
lloyds

Introduced before R2006a

 Quantizing Encoder

3-945

Raised Cosine Receive Filter
Apply pulse shaping by downsampling signal using raised cosine FIR filter

Library
Comm Filters

Description
The Raised Cosine Receive Filter block filters the input signal using a normal raised
cosine FIR filter or a square root raised cosine FIR filter. It also downsamples the filtered
signal if you set the Output mode parameter to Downsampling. The FIR Decimation
block implements this functionality. The Raised Cosine Receive Filter block's icon shows
the filter's impulse response.

Characteristics of the Filter
Characteristics of the raised cosine filter are the same as in the Raised Cosine Transmit
Filter block, except that the length of the filter's input response has a slightly different
expression: L * Filter span in symbols + 1, where L is the value of the Input samples
per symbol parameter (not the Output samples per symbol parameter, as in the case
of the Raised Cosine Transmit Filter block).

The block normalizes the filter coefficients to unit energy. If you specify a Linear
amplitude filter gain other than 1, then the block scales the normalized filter
coefficients using the gain value you specify.

Decimating the Filtered Signal
To have the block decimate the filtered signal, set the Decimation factor parameter to a
value greater than 1.

3 Blocks — Alphabetical List

3-946

If K represents the Decimation factor parameter value, then the block retains 1/K of the
samples, choosing them as follows:

• If the Decimation offset parameter is zero, then the block selects the samples of the
filtered signal indexed by 1, K+1, 2*K+1, 3*K+1, etc.

• If the Decimation offset parameter is a positive integer less than M, then the block
initially discards that number of samples from the filtered signal and downsamples the
remaining data as in the previous case.

To preserve the entire filtered signal and avoid decimation, set Decimation factor to 1.
This setting is appropriate, for example, when the output from the filter block forms the
input to a timing phase recovery block such as Symbol Synchronizer. The timing phase
recovery block performs the downsampling in that case.

Input Signals and Output Signals
This block accepts a column vector or matrix input signal. For information about the data
types each block port supports, see the “Supported Data Type” on page 3-952 table on
this page.

If you set Decimation factor to 1, then the input and output signals share the same
sampling mode, sample time, and vector length.

If you set Decimation factor to K, which is greater than 1, then K and the input
sampling mode determine characteristics of the output signal:

Single-Rate Processing
When you set the Rate options parameter to Enforce single-rate processing, the
input and output of the block have the same sample rate. To generate the output while
maintaining the input sample rate, the block resamples the data in each column of the
input such that the frame size of the output (Mo) is 1/K times that of the input (Mo =
Mi/K), In this mode, the input frame size, Mi, must be a multiple of K.

Multirate Processing
When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size, but the sample rate of the output is K
times slower than that of the input. When the block is in multirate processing mode, you
must also specify a value for the Input processing parameter:

 Raised Cosine Receive Filter

3-947

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats an M-by-N matrix input as M*N independent
channels, and processes each channel over time. The output sample period (Tso) is K
times longer than the input sample period (Tso = K*Tsi), and the input and output sizes
are identical.

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats an Mi-by-N matrix input as N independent channels. The
block processes each column of the input over time by keeping the frame size constant
(Mi=Mo), and making the output frame period (Tfo) K times longer than the input frame
period (Tfo = K*Tfi).

Exporting Filter Coefficients to the MATLAB Workspace
To examine or manipulate the coefficients of the filter that this block designs, select
Export filter coefficients to workspace. Then set the Coefficient variable name
parameter to the name of a variable that you want the block to create in the MATLAB
workspace. Running the simulation causes the block to create the variable, overwriting
any previous contents in case the variable already exists.

Latency
For information pertaining to the latency of the block, see details in FIR Decimation.

Parameters
Filter shape

Specify the filter shape as Square root or Normal.
Rolloff factor

Specify the rolloff factor of the filter. Use a real number between 0 and 1.
Filter span in symbols

Specify the number of symbols the filter spans as an even, integer-valued positive
scalar. The default is 10. Because the ideal raised cosine filter has an infinite impulse
response, the block truncates the impulse response to the number of symbols that this
parameter specifies.

3 Blocks — Alphabetical List

3-948

Input samples per symbol
An integer greater than 1 representing the number of samples that represent one
symbol in the input signal.

Decimation factor
Specify the decimation factor the block applies to the input signal. The output
samples per symbol equals the value of the input samples per symbol divided by the
decimation factor. If the decimation factor is one, then the block only applies filtering.
There is no decimation.

Decimation offset
Specify the decimation offset in samples. Use a value between 0 and Decimation
factor -1.

Linear amplitude filter gain
Specify a positive scalar value that the block uses to scale the filter coefficients. By
default, the block normalizes filter coefficients to provide unit energy gain. If you
specify a gain other than 1, the block scales the normalized filter coefficients using
the gain value you specify.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Rate options
Specify the method by which the block should filter and downsample the input signal.
You can select one of the following options:

• Enforce single-rate processing — When you select this option, the block
maintains the input sample rate and processes the signal by decreasing the output
frame size by a factor of K. To select this option, you must set the Input
processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block
processes the signal such that the output sample rate is K times slower than the
input sample rate.

 Raised Cosine Receive Filter

3-949

Export filter coefficients to workspace
Select this check box to create a variable in the MATLAB workspace that contains the
filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace. This field appears only
if Export filter coefficients to workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool, fvtool,
to analyze the raised cosine filter whenever you apply any changes to the block's
parameters. If you launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a new fvtool in order
to see the new filter characteristics. Also note that if you have launched fvtool, then
it will remain open even after the model is closed.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding
mode when the result of a fixed-point calculation does not map exactly to a number
representable by the data type and scaling storing the result. The filter coefficients do
not obey this parameter; they always round to Nearest. For more information, see
Rounding Modes (DSP System Toolbox) or “Rounding Mode: Simplest” (Fixed-Point
Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator).

See the Coefficients section of the FIR Decimation help page and “Filter Structure
Diagrams” (DSP System Toolbox) for illustrations depicting the use of the coefficient
data types in this block:

See the Coefficients subsection of the Digital Filter help page for descriptions of
parameter settings.

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that

3 Blocks — Alphabetical List

3-950

provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length of
the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to enter
separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on
integer overflow parameters; they are always saturated and rounded to
Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

 Raised Cosine Receive Filter

3-951

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

3 Blocks — Alphabetical List

3-952

Pair Block
Raised Cosine Transmit Filter

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

This block is a subsystem that contains a FIR Decimation block. You can set HDL
Properties on the subsystem, or you can look under the mask and set HDL Properties
on the filter block. See the "HDL Code Generation" section of the Subsystem and FIR
Decimation block reference pages for a list of properties.

To save setting changes under the mask, you must break the library link. To break the
library link, select the Raised Cosine Receive Filter block and execute this command.

set_param(gcb,'LinkStatus','inactive')

See Also
Blocks
Raised Cosine Transmit Filter | Symbol Synchronizer

Objects
comm.RaisedCosineTransmitFilter

Functions
rcosdesign

 Raised Cosine Receive Filter

3-953

Introduced before R2006a

3 Blocks — Alphabetical List

3-954

Raised Cosine Transmit Filter
Apply pulse shaping by upsampling signal using raised cosine FIR filter

Library
Comm Filters

Description
The Raised Cosine Transmit Filter block upsamples and filters the input signal using a
normal raised cosine FIR filter or a square root raised cosine FIR filter. The block's icon
shows the filter's impulse response.

Characteristics of the Filter
The Filter shape parameter determines which type of filter the block uses; choices are
Normal and Square root.

The impulse response of a normal raised cosine filter with rolloff factor R and symbol
period T is

h(t) = sin(πt/T)
(πt/T) ⋅ cos(πRt/T)

(1− 4R2t2/T2)

The impulse response of a square root raised cosine filter with rolloff factor R is

h(t) = 4R
cos (1 + R)πt/T + sin (1− R)πt/T

(4Rt/T)

π T 1− (4Rt/T)2

The impulse response of a square root raised cosine filter convolved with itself is
approximately equal to the impulse response of a normal raised cosine filter.

 Raised Cosine Transmit Filter

3-955

Because the ideal raised cosine filter has an infinite impulse response, the block truncates
the impulse response to the number of symbols that the Filter span in symbols
parameter specifies. The Filter span in symbols, N, and the Output samples per
symbol, L, determine the length of the filter's impulse response, which is L * Filter span
in symbols + 1.

The Rolloff factor parameter is the filter's rolloff factor. It must be a real number
between 0 and 1. The rolloff factor determines the excess bandwidth of the filter. For
example, a rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the input
sampling frequency.

The block normalizes the filter coefficients to unit energy. If you specify a Linear
amplitude filter gain other than 1, then the block scales the normalized filter
coefficients using the gain value you specify.

Input Signals and Output Signals
The input must be a discrete-time signal. This block accepts a column vector or matrix
input signal. For information about the data types each block port supports, see the
“Supported Data Type” on page 3-961 table on this page.

The Rate options method and the value of the Output samples per symbol, L,
parameter determine the characteristics of the output signal:

Single-Rate Processing
When you set the Rate options parameter to Enforce single-rate processing, the
input and output of the block have the same sample rate. To generate the output while
maintaining the input sample rate, the block resamples the data in each column of the
input such that the frame size of the output (Mo) is L times larger than that of the input
(Mo = Mi*L), where L represents the value of the Output samples per symbol
parameter.

Multirate Processing
When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size. However, the sample rate of the output is
L times faster than that of the input (i.e. the output sample time is 1/L times the input
sample time). When the block is in multirate processing mode, you must also specify a
value for the Input processing parameter:

3 Blocks — Alphabetical List

3-956

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats an M-by-L matrix input as M*N independent
channels, and processes each channel over time. The output sample period (Tso) is L
times shorter than the input sample period (Tso = Tsi/L), while the input and output
sizes remain identical.

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats an Mi-by-N matrix input as N independent channels. The
block processes each column of the input over time by keeping the frame size constant
(Mi=Mo), while making the output frame period (Tfo) L times shorter than the input
frame period (Tfo = Tfi/L).

Exporting Filter Coefficients to the MATLAB Workspace
To examine or manipulate the coefficients of the filter that this block designs, select
Export filter coefficients to workspace. Then set the Coefficient variable name
parameter to the name of a variable that you want the block to create in the MATLAB
workspace. Running the simulation causes the block to create the variable, overwriting
any previous contents in case the variable already exists.

Parameters
Filter shape

Specify the filter shape as Square root or Normal.
Rolloff factor

Specify the rolloff factor of the filter. Use a real number between 0 and 1.
Filter span in symbols

Specify the number of symbols the filter spans as an even, integer-valued positive
scalar. The default is 10. Because the ideal raised cosine filter has an infinite impulse
response, the block truncates the impulse response to the number of symbols that this
parameter specifies.

Output samples per symbol
Specify the number of output samples for each input symbol. The default is 8. This
property accepts an integer-valued, positive scalar. The number of taps for the raised
cosine filter equals the value of this parameter multiplied by the value of the Filter
span in symbols parameter.

 Raised Cosine Transmit Filter

3-957

Linear amplitude filter gain
Specify a positive scalar value that the block uses to scale the filter coefficients. By
default, the block normalizes filter coefficients to provide unit energy gain. If you
specify a gain other than 1, the block scales the normalized filter coefficients using
the gain value you specify.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Rate options
Specify the method by which the block should upsample and filter the input signal.
You can select one of the following options:

• Enforce single-rate processing — When you select this option, the block
maintains the input sample rate, and processes the signal by increasing the output
frame size by a factor of N. To select this option, you must set the Input
processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block
processes the signal such that the output sample rate is N times faster than the
input sample rate.

Export filter coefficients to workspace
Select this check box to create a variable in the MATLAB workspace that contains the
filter coefficients.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool, fvtool,
to analyze the raised cosine filter whenever you apply any changes to the block's
parameters. If you launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a new fvtool in order
to see the new filter characteristics. Also note that if you have launched fvtool, then
it will remain open even after the model is closed.

3 Blocks — Alphabetical List

3-958

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding
mode when the result of a fixed-point calculation does not map exactly to a number
representable by the data type and scaling storing the result. The filter coefficients do
not obey this parameter; they always round to Nearest. For more information, see
Rounding Modes (DSP System Toolbox) or “Rounding Mode: Simplest” (Fixed-Point
Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” (DSP
System Toolbox) for illustrations depicting the use of the coefficient data types in this
block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length of
the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to enter
separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on
integer overflow parameters; they are always saturated and rounded to
Nearest.

 Raised Cosine Transmit Filter

3-959

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

3 Blocks — Alphabetical List

3-960

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Raised Cosine Receive Filter

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Raised Cosine Transmit Filter

3-961

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

This block is a subsystem that contains a FIR Interpolation block. You can set HDL
Properties on the subsystem, or you can look under the mask and set HDL Properties
on the filter block. See the "HDL Code Generation" section of the Subsystem and FIR
Interpolation block reference pages for a list of properties.

To save setting changes under the mask, you must break the library link. To break the
library link, select the Raised Cosine Transmit Filter block and execute this command.

set_param(gcb,'LinkStatus','inactive')

See Also
Blocks
Raised Cosine Receive Filter

Objects
comm.RaisedCosineReceiveFilter

Functions
rcosdesign

Introduced before R2006a

3 Blocks — Alphabetical List

3-962

Random Deinterleaver
Restore ordering of input symbols using random permutation

Library
Block sublibrary of Interleaving

Description
The Random Deinterleaver block rearranges the elements of its input vector using a
random permutation. The Initial seed parameter initializes the random number
generator that the block uses to determine the permutation. If this block and the Random
Interleaver block have the same value for Initial seed, then the two blocks are inverses
of each other.

This block accepts a column vector input signal. The Number of elements parameter
indicates how many numbers are in the input vector.

The block accepts the following data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

Parameters
Number of elements

The number of elements in the input vector.
Initial seed

The initial seed value for the random number generator.

 Random Deinterleaver

3-963

Pair Block
Random Interleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Deinterleaver | Random Interleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-964

Random Integer Generator
Generate integers randomly distributed in specified range
Library: Communications Toolbox / Comm Sources / Random

Data Sources

Description
The Random Integer Generator block generates uniformly distributed random integers in
the range [0, M-1], where M is specified by the Set size parameter. Use this block to
generate random binary-valued or integer-valued data.

To ensure that the model uses different initial seeds, set the Simulate using parameter to
Interpreted execution, and run the simulation in Normal or Accelerator mode. For
more information, see “Limitations” on page 3-965.

Limitations
• In Rapid Accelerator simulation mode, when you set Simulate using to Interpreted

execution and Source of initial seed to Auto, the block generates the same numbers
every time the simulation runs. This behavior is equivalent to setting Source of initial
seed to Parameter and setting Initial seed to 0.

• In all simulation modes (Normal, Accelerator, and Rapid Accelerator), when you set
Simulate using to Code generation and Source of initial seed to Auto, the block
generates the same numbers every time the simulation runs. This behavior is
equivalent to setting Source of initial seed to Parameter and Initial seed to 0.

For more information, see “Choosing a Simulation Mode” (Simulink).

 Random Integer Generator

3-965

Ports

Output
Out — Random integer output
scalar | vector | matrix

Random integer output, returned as a scalar, vector, or matrix. This port is unnamed on
the block. The data type is set using the Output data type parameter.

The number of rows in the output data equals the value of the Samples per frame
parameter and corresponds to the number of samples in one frame. The number of
columns in the output data equals the number of elements in the Set size parameter and
corresponds to the number of channels.

Parameters
Set size — Set size
8 (default) | positive integer | row vector of positive integers

Set size,M, specified as a positive integer or row vector of positive integers. The block
generates integers in the range [0, (M – 1)]. The number of elements in Set size
corresponds to the number of independent channels output from the block.

• If Set size is a scalar, then all output random variables are independent and
identically distributed (i.i.d.).

• If Set size is a vector, then the length of the vector determines the number of output
channels. The channels can have differing output ranges.

Source of initial seed — Source of initial seed
Auto (default) | Parameter

Source of the initial seed for the random number generator, specified as either:

• Auto –– the block uses the global random number stream
• Parameter –– the block sets the random number generator seed to Initial seed

Initial seed — Initial seed value
0 (default) | nonnegative integer

3 Blocks — Alphabetical List

3-966

Initial seed value for the random number generator, specified as a nonnegative integer. If
the Initial seed parameter is a constant, then the resulting sequence is repeatable.

Dependencies

To enable this parameter, set the Source of initial seed parameter to Parameter.

Sample time — Sample time
1 (default) | positive scalar

Sample time in seconds, specified as a positive scalar indicating the time between each
sample in a column of the output data.

Samples per frame — Samples per frame
1 (default) | positive integer

Samples per frame, specified as a positive integer indicating the number of samples per
frame in one channel of the output data.

Note The time between output updates is equal to the product of Samples per frame
and Sample time. For example, if Sample time and Samples per frame equal 1, the
block outputs 1 integer every 1 second. If Samples per frame is increased to 10, then a
10-by-1 vector of integers is output every 10 seconds. The equivalent output rate is not
dependent on the Samples per frame parameter.

Output data type — Output data type
double (default) | single | uint8 | uint16 | uint32 | boolean

Output data type, specified as double, single, uint8, uint16, uint32, or boolean. If
this parameter is set to boolean, you must set the Set size parameter to 2.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time.

 Random Integer Generator

3-967

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time. In Interpreted execution mode, you can debug the
source code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
randi

Topics
“Sources and Sinks”
“Choosing a Simulation Mode” (Simulink)

Introduced before R2006a

3 Blocks — Alphabetical List

3-968

Random Interleaver
Reorder input symbols using random permutation

Library
Block sublibrary of Interleaving

Description
The Random Interleaver block rearranges the elements of its input vector using a random
permutation. This block accepts a column vector input signal. The Number of elements
parameter indicates how many numbers are in the input vector.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

The Initial seed parameter initializes the random number generator that the block uses
to determine the permutation. The block is predictable for a given seed, but different
seeds produce different permutations.

Parameters
Number of elements

The number of elements in the input vector.
Initial seed

The initial seed value for the random number generator.

 Random Interleaver

3-969

Pair Block
Random Deinterleaver

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Interleaver | Random Deinterleaver

Introduced before R2006a

3 Blocks — Alphabetical List

3-970

Rayleigh Noise Generator
(To be removed) Generate Rayleigh distributed noise

Note Rayleigh Noise Generator will be removed in a future release. Use the MATLAB
Function block and randn function instead.

Library
Noise Generators sublibrary of Comm Sources

Description
The Rayleigh Noise Generator block generates Rayleigh distributed noise. The Rayleigh
probability density function is given by

f (x) =
x

σ2exp − x2

2σ2 x ≥ 0

0 x < 0

where σ2 is known as the fading envelope of the Rayleigh distribution.

The block requires you to specify the Initial seed for the random number generator. If it
is a constant, then the resulting noise is repeatable. The sigma parameter can be either a
vector of the same length as the Initial seed, or a scalar. When sigma is a scalar, every
element of the output signal shares that same value.

Initial Seed
The Initial seed parameter initializes the random number generator that the Rayleigh
Noise Generator block uses to add noise to the input signal. When multiple blocks in a
model have the Initial seed parameter, you can choose different initial seeds for each
block to ensure different random streams are used in each block. Set Initial seed to an
integer value for repeatable results or use the randi function to randomize your results.

 Rayleigh Noise Generator

3-971

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column vector, or a
sample-based one-dimensional array. These attributes are controlled by the Frame-based
outputs, Samples per frame, and Interpret vector parameters as 1-D parameters.
See “Sources and Sinks” for more details.

The number of elements in the Initial seed parameter becomes the number of columns in
a frame-based output or the number of elements in a sample-based vector output. Also,
the shape (row or column) of the Initial seed parameter becomes the shape of a sample-
based two-dimensional output signal.

Parameters
Sigma

Specify σ as defined in the Rayleigh probability density function.
Initial seed

The initial seed value for the random number generator.
Sample time

The period of each sample-based vector or each row of a frame-based matrix.
Frame-based outputs

Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs is
unchecked.

Output data type
The output can be set to double or single data types.

3 Blocks — Alphabetical List

3-972

References
[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,

1995.

See Also
Blocks
MATLAB Function | MIMO Fading Channel

Functions
isprime | randi | randn | raylrnd | rng

Introduced before R2006a

 Rayleigh Noise Generator

3-973

Receiver Thermal Noise
Apply receiver thermal noise to complex baseband signal

Library
RF Impairments

Description
The Receiver Thermal Noise block simulates the effects of thermal noise on a complex,
baseband signal. You can specify the amount of thermal noise in three ways, according to
which Specification method you select:

• Noise temperature specifies the noise in degrees K.
• Noise figure specifies the receiver noise in dB for an input noise temperature of

290 K. This is the decibel equivalent of the noise factor.
• Noise factor specifies the receiver noise for an input noise temperature of 290 K.

This is the linear equivalent of the noise figure.

The following scatter plot shows the effect of the Receiver Thermal Noise block, with
Specification method set to Noise figure and Noise figure (dB) set to 3.01, on a
signal modulated by 16-QAM.

3 Blocks — Alphabetical List

3-974

This plot is generated by the model described in “Illustrate RF Impairments That Distort a
Signal” with the following parameter settings:

• Rectangular QAM Modulator Baseband

• Normalization method set to Average Power
• Average power (watts) set to 1e-12

• Receiver Thermal Noise

• Specification method set to Noise figure
• Noise figure (dB) set to 3.01

Parameters
Specification method

The method by which you specify the amount of noise. The choices are Noise
temperature, Noise figure, and Noise factor.

Noise temperature (K)
Scalar specifying the amount of noise in degrees K.

 Receiver Thermal Noise

3-975

Noise figure (dB)
Scalar specifying the amount of noise in dB relative to a noise temperature of 290
degrees K. This parameter specifies the noise contribution of the receiver circuitry
only. To add the effects of antenna noise, select the Add 290K antenna noise check
box.

Noise factor
Scalar specifying the amount of noise relative to a noise temperature of 290 degrees
K. This parameter specifies the noise contribution of the receiver circuitry only. To
add the effects of antenna noise, select the Add 290K antenna noise check box.

Add 290K antenna noise
Select this check box to add 290 K antenna noise to the signal. This parameter is
available when Specification method is Noise figure or Noise factor.

Initial seed
The initial seed value for the random number generator that generates the noise.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Free Space Path Loss

Objects
comm.ThermalNoise

Introduced before R2006a

3 Blocks — Alphabetical List

3-976

Rectangular QAM Demodulator Baseband
Demodulate rectangular-QAM-modulated data

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM Demodulator Baseband block demodulates a signal that was
modulated using quadrature amplitude modulation with a constellation on a rectangular
lattice.

Note All values of power assume a nominal impedance of 1 ohm.

The signal constellation has M points, where M is the M-ary number parameter. M must
have the form 2K for some positive integer K. The block scales the signal constellation
based on how you set the Normalization method parameter. For details, see the
reference page for the Rectangular QAM Modulator Baseband block.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see the “Supported Data Types” on page 3-986 table on
this page.

Hard Decision Algorithm
The demodulator algorithm maps received input signal constellation values to M-ary
integer I and Q symbol indices between 0 and M− 1 and then maps these demodulated
symbol indices to formatted output values.

 Rectangular QAM Demodulator Baseband

3-977

The integer symbol index computation is performed by first derotating and scaling the
complex input signal constellation (possibly with noise) by a derotate factor and
denormalization factor, respectively. These factors are derived from the Phase offset,
Normalization method, and related parameters. These derotated and denormalized
values are added to M− 1 to translate them into an approximate range between 0 and
2 × (M− 1) (plus noise). The resulting values are then rescaled via a divide-by-two (or,
equivalently, a right-shift by one bit for fixed-point operation) to obtain a range
approximately between 0 and M− 1 (plus noise) for I and Q. The noisy index values are
rounded to the nearest integer and clipped, via saturation, and mapped to integer symbol
values in the range [0 M-1]. Finally, based on other block parameters, the integer index is
mapped to a symbol value that is formatted and cast to the selected Output data type.

The following figures contains signal flow diagrams for floating-point and fixed-point
algorithm operation. The floating-point diagrams apply when the input signal data type is
double or single. The fixed-point diagrams apply when the input signal is a signed
fixed-point data type. Note that the diagram is simplified when Phase offset is a multiple
of π/2, and/or the derived denormalization factor is 1.

3 Blocks — Alphabetical List

3-978

Demodulator input

(complex)

Floating Point Fixed Point

+
inDT

Demodulator input

(complex)

Demodulator output

Sum DT

Divide-by-2 with round to nearest
Cast to integer

Cast before sum

int32

outDT (a built-in or

ufix data type)

Format output

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

int32

outDT (a built-in or

ufix data type)

Format output

I idx Q idx I idx Q idx

Clip range to [0 sqrt(M)-1]Clip range to [0 sqrt(M)-1]

inDT

inDT

inDT

sqrt(M)-1 +
inDT

+ sqrt(M)-1 +
Sum DT

Sum DT Sum DT

Cast before sum

inDTI QinDT inDTI Q

Pass through or negate I and Q
(with saturation)

Pass through or negate I and Q
(with saturation)

Signal-Flow Diagrams with Trivial Phase Offset and Denormalization Factor Equal to 1

 Rectangular QAM Demodulator Baseband

3-979

Demodulator input

(complex)

Floating Point Fixed Point

+
inDT

Demodulator input

(complex)

Demodulator output

Derotate

factor DT

Sum DT

Divide-by-2 with round to nearest
Cast to integer

Cast before sum

int32

outDT (a built-in or

ufix data type)

Format output

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

int32

outDT (a built-in or

ufix data type)

Format output

I idx Q idx I idx Q idx

Clip range to [0 sqrt(M)-1]Clip range to [0 sqrt(M)-1]

inDT

Derotate factors
(sin and cos)

Product output DT

inDT

inDT

Derotate factors
(sin and cos)

Denorm

DT

sqrt(M)-1 +
inDT

+ sqrt(M)-1 +
Sum DT

Sum DT Sum DT

Cast before sum

+ +
Denorm
factor

Denorm

DT

inDTI QinDT

+ +
Denorm
factor

inDTI Q

inDT inDT

inDT inDT

Complex fixed-point multiplyComplex floating-point multiply

Signal-Flow Diagrams with Nontrivial Phase Offset and Nonunity Denormalization Factor

3 Blocks — Alphabetical List

3-980

Parameters
M-ary number

The number of points in the signal constellation. It must have the form 2K for some
positive integer K.

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
This parameter appears when Normalization method is set to Min. distance
between symbols.

The distance between two nearest constellation points.
Average power, referenced to 1 ohm (watts)

The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Constellation ordering
Determines how the block assigns binary words to points of the signal constellation.
More details are on the reference page for the Rectangular QAM Modulator Baseband
block.

Selecting User-defined displays the field Constellation mapping, allowing for
user-specified mapping.

Constellation mapping
This parameter appears when User-defined is selected in the pull-down list
Constellation ordering.

This is a row or column vector of size M and must have unique integer values in the
range [0, M-1]. The values must be of data type double.

 Rectangular QAM Demodulator Baseband

3-981

The first element of this vector corresponds to the top-leftmost point of the
constellation, with subsequent elements running down column-wise, from left to right.
The last element corresponds to the bottom-rightmost point.

Output type
Determines whether the block produces integers or binary representations of
integers.

If set to Integer, the block produces integers.

If set to Bit, the block produces a group of K bits, called a binary word, for each
symbol, when Decision type is set to Hard decision. If Decision type is set to
Log-likelihood ratio or Approximate log-likelihood ratio, the block
outputs bitwise LLR and approximate LLR, respectively.

Decision type
This parameter appears when Bit is selected in the pull-down list Output type.

Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
See “Exact LLR Algorithm” and “Approximate LLR Algorithm” in the Communications
Toolbox User's Guide for algorithm details.

Noise variance source
This parameter appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

3 Blocks — Alphabetical List

3-982

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

Output
When the parameter is set to 'Inherit via internal rule' (default setting), the
block will inherit the output data type from the input port. The output data type will
be the same as the input data type if the input is of type single or double.
Otherwise, the output data type will be as if this parameter is set to 'Smallest
unsigned integer'.

 Rectangular QAM Demodulator Baseband

3-983

When the parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is the ideal minimum
size, i.e., ufix(1) for bit outputs, and ufix(ceil(log2(M))) for integer outputs.
For all other selections, it is an unsigned integer with the smallest available word
length large enough to fit the ideal minimum size, usually corresponding to the size of
a char (e.g., uint8).

For integer outputs, this parameter can be set to Smallest unsigned integer,
int8, uint8, int16, uint16, int32, uint32, single, and double. For bit outputs,
the options are Smallest unsigned integer, int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double.

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not a
multiple of π/2.

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input.

Denormalization factor
This parameter only applies when the input is fixed-point and the derived
denormalization factor is nonunity (not equal to 1). This scaling factor is derived from
Normalization method and other parameter values in the block dialog.

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input. A best-precision fraction length is always
used.

Product output
This parameter only applies when the input is a fixed-point signal and there is a
nonunity (not equal to 1) denormalized factor. It can be set to Inherit via
internal rule or Specify word length, which enables a field for user input.

Setting to Inherit via internal rule computes the full-precision product word
length and fraction length. Internal Rule for Product Data Types (DSP System
Toolbox) in DSP System Toolbox User's Guide describes the full-precision Product
output internal rule.

Setting to Specify word length allows you to define the word length. The block
computes a best-precision fraction length based on the word length specified and the

3 Blocks — Alphabetical List

3-984

pre-computed worst-case (min/max) real world value Product output result. The
worst-case Product output result is precomputed by multiplying the denormalized
factor with the worst-case (min/max) input signal range, purely based on the input
signal data type.

The block uses the Rounding mode when the result of a fixed-point calculation does
not map exactly to a number representable by the data type and scaling storing the
result. For more information, see “Rounding Modes” (DSP System Toolbox) or
“Rounding Mode: Simplest” (Fixed-Point Designer).

Sum
This parameter only applies when the input is a fixed-point signal. It can be set to
Inherit via internal rule, Same as product output, or Specify word
length, in which case a field is enabled for user input

Setting to Inherit via internal rule computes the full-precision sum word
length and fraction length, based on the two inputs to the Sum in the fixed-point Hard
Decision Algorithm on page 3-977 signal flow diagram. The rule is the same as the
fixed-point inherit rule of the internal Accumulator data type parameter in the
Simulink Sum block.

Setting to Specify word length allows you to define the word length. A best
precision fraction length is computed based on the word length specified in the pre-
computed maximum range necessary for the demodulated algorithm to produce
accurate results. The signed fixed-point data type that has the best precision fully
contains the values in the range 2 * (M − 1) for the specified word length.

Setting to Same as product output allows the Sum data type to be the same as
the Product output data type (when Product output is used). If the Product
output is not used, then this setting will be ignored and the Inherit via
internal rule Sum setting will be used.

Examples

Demodulate Noisy QAM Signal

Modulate and demodulate a noisy QAM signal.

Open the QAM demodulation model.

 Rectangular QAM Demodulator Baseband

3-985

Run the simulation. The results are saved to the base workspace, where the variable
ErrorVec is a 1-by-3 row vector. The BER is found in the first element.

Display the error statistics. For the Eb/No provided, 2 dB, the resultant BER is
approximately 0.1. Your results may vary slightly.

ans =

 0.0948

Increase the Eb/No to 4 dB. Rerun the simulation, and observe that the BER has
decreased.

ans =

 0.0167

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed–point when M-ary number is an even power of 2 and:

• Output type is Integer
• Output type is Bit and Decision type is Hard-decision

3 Blocks — Alphabetical List

3-986

Port Supported Data Types
Var • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• uf ix log2M in ASIC/FPGA when Output type is Integer

Pair Block
Rectangular QAM Modulator Baseband

References

[1] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on
Communications, Vol. COM-23, March 1975, 385–389.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Rectangular QAM Demodulator Baseband

3-987

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

• The block does not support single or double data types for HDL code generation.
• HDL Coder supports the following Output type options:

• Integer
• Bit is supported only if the Decision Type is Hard decision.

• You must set Normalization Method to Minimum Distance Between Symbols,
with a Minimum distance of 2.

• You must set Phase offset (rad) to a value that is a multiple of pi/4.

See Also
Blocks
General QAM Demodulator Baseband | Rectangular QAM Modulator Baseband

3 Blocks — Alphabetical List

3-988

Introduced before R2006a

 Rectangular QAM Demodulator Baseband

3-989

Rectangular QAM Modulator Baseband
Modulate using rectangular quadrature amplitude modulation

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM Modulator Baseband block modulates using M-ary quadrature
amplitude modulation with a constellation on a rectangular lattice. The output is a
baseband representation of the modulated signal. This block accepts a scalar or column
vector input signal. For information about the data types each block port supports, see
“Supported Data Types” on page 3-996.

Note All values of power assume a nominal impedance of 1 ohm.

Integer-Valued Signals and Binary-Valued Signals
When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

3 Blocks — Alphabetical List

3-990

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

The Constellation ordering parameter indicates how the block assigns binary words to
points of the signal constellation. Such assignments apply independently to the in-phase
and quadrature components of the input:

• If Constellation ordering is set to Binary, the block uses a natural binary-coded
constellation.

• If Constellation ordering is set to Gray and K is even, the block uses a Gray-coded
constellation.

• If Constellation ordering is set to Gray and K is odd, the block codes the
constellation so that pairs of nearest points differ in one or two bits. The constellation
is cross-shaped, and the schematic below indicates which pairs of points differ in two
bits. The schematic uses M = 128, but suggests the general case.

Hollow vertical pairs of adjacent
points differ by two bits

Other pairs of adjacent
points differ by one bit

For details about the Gray coding, see the reference page for the M-PSK Modulator
Baseband block and the paper listed in References on page 3-997. Because the in-phase
and quadrature components are assigned independently, the Gray and binary orderings
coincide when M = 4.

Constellation Size and Scaling
The signal constellation has M points, where M is the M-ary number parameter. M must
have the form 2K for some positive integer K. The block scales the signal constellation
based on how you set the Normalization method parameter. The following table lists
the possible scaling conditions.

 Rectangular QAM Modulator Baseband

3-991

Value of Normalization Method
Parameter

Scaling Condition

Min. distance between symbols The nearest pair of points in the
constellation is separated by the value of
the Minimum distance parameter

Average Power The average power of the symbols in the
constellation is the Average power
parameter

Peak Power The maximum power of the symbols in the
constellation is the Peak power parameter

Constellation Visualization
The Rectangular QAM Modulator Baseband block provides the capability to visualize a
signal constellation from the block mask. This Constellation Visualization feature allows
you to visualize a signal constellation for specific block parameters. For more information,
see the Constellation Visualization section of the Communications Toolbox User's Guide.

Parameters
M-ary number

The number of points in the signal constellation. It must have the form 2K for some
positive integer K.

Input type
Indicates whether the input consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each symbol to a group of output bits or integer.

Selecting User-defined displays the field Constellation mapping, which allows
for user-specified mapping.

Constellation mapping
This parameter is a row or column vector of size M and must have unique integer
values in the range [0, M-1]. The values must be of data type double.

3 Blocks — Alphabetical List

3-992

The first element of this vector corresponds to the top-leftmost point of the
constellation, with subsequent elements running down column-wise, from left to right.
The last element corresponds to the bottom-rightmost point.

This field appears when User-defined is selected in the drop-down list
Constellation ordering.

Normalization method
Determines how the block scales the signal constellation. Choices are
Min. distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point
data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer software. This parameter is only visible when you select User-defined for
the Output data type parameter.

 Rectangular QAM Modulator Baseband

3-993

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data type
is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

Examples

Plot Noisy 16-QAM Constellation

Open the 16-QAM model. The model generates a QAM signal, applies white noise, and
displays the resulting constellation diagram.

Run the model.

3 Blocks — Alphabetical List

3-994

Change the Eb/No of the AWGN Channel block from 20 dB to 10 dB. Observe the increase
in the noise.

 Rectangular QAM Modulator Baseband

3-995

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers

3 Blocks — Alphabetical List

3-996

Port Supported Data Types
• uf ix log2M when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Rectangular QAM Demodulator Baseband

References

[1] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on
Communications, Vol. COM-23, March 1975, 385–389.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

 Rectangular QAM Modulator Baseband

3-997

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

• The block does not support single or double data types for HDL code generation.
• When Input Type is set to Bit, the block does not support HDL code generation for

input types other than boolean or ufix1.

When the input type is set to Bit, but the block input is actually multibit (uint16, for
example), the Rectangular QAM Modulator Baseband block does not support HDL code
generation.

See Also
Blocks
General QAM Modulator Baseband | Rectangular QAM Demodulator Baseband

Introduced before R2006a

3 Blocks — Alphabetical List

3-998

Rectangular QAM TCM Decoder
Decode trellis-coded modulation data, modulated using QAM method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM TCM Decoder block uses the Viterbi algorithm to decode a trellis-
coded modulation (TCM) signal that was previously modulated using a QAM signal
constellation.

The M-ary number parameter represents the number of points in the signal
constellation, which also equals the number of possible output symbols from the
convolutional encoder. (That is, log2(M-ary number) is the number of output bit streams
from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block should match those
in the Rectangular QAM TCM Encoder block, to ensure proper decoding.

Input and Output Signals
This block accepts a column vector input signal containing complex numbers. For
information about the data types each block port supports, see “Supported Data Types”
on page 3-1001.

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the Rectangular QAM TCM Decoder block's output is a binary column vector with a
length of k times the vector length of the input signal.

 Rectangular QAM TCM Decoder

3-999

Operation Modes
The block has three possible methods for transitioning between successive frames. The
Operation mode parameter controls which method the block uses. This parameter also
affects the range of possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning of
the simulation, waits until it accumulates D symbols, and then uses a sequence of D
symbols to compute each of the traceback paths. D can be any positive integer. At the
end of each frame, the block saves its internal state metric for use with the next
frame.

If you select Enable the reset input, the block displays another input port, labeled
Rst. This port receives an integer scalar signal. Whenever the value at the Rst port is
nonzero, the block resets all state metrics to zero and sets the traceback memory to
zero.

• In Truncated mode, the block treats each frame independently. The traceback path
starts at the state with the lowest metric. D must be less than or equal to the vector
length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path
always starts at the all-zeros state. D must be less than or equal to the vector length of
the input. If you know that each frame of data typically ends at the all-zeros state, then
this mode is an appropriate choice.

Decoding Delay
If you set Operation mode to Continuous, then this block introduces a decoding delay
equal to Traceback depth*k bits, for a rate k/n convolutional code. The decoding delay is
the number of zeros that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
M-ary number

The number of points in the signal constellation.

3 Blocks — Alphabetical List

3-1000

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses in
the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous, Truncated,
and Terminated.

Enable the reset input port
When you select this check box, the block has a second input port labeled Rst.
Providing a nonzero input value to this port causes the block to set its internal
memory to the initial state before processing the input data. This option appears only
if you set Operation mode to Continuous.

Output data type
Select the data type for the block output signal as boolean or single. By default,
the block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Boolean
Output • Double-precision floating point

• Boolean

Pair Block
Rectangular QAM TCM Encoder

 Rectangular QAM TCM Decoder

3-1001

References
[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded

Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Decoder | Rectangular QAM TCM Encoder

Functions
poly2trellis

Introduced before R2006a

3 Blocks — Alphabetical List

3-1002

Rectangular QAM TCM Encoder
Convolutionally encode binary data and modulate using QAM method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM TCM Encoder block implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to a QAM signal
constellation.

The M-ary number parameter is the number of points in the signal constellation, which
also equals the number of possible output symbols from the convolutional encoder. (That
is, log2(M-ary number) is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals
If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the Rectangular QAM TCM Encoder block's input must be a binary column vector
with a length of L*k for some positive integer L.

The output from the Rectangular QAM TCM Encoder block is a complex column vector of
length L.

 Rectangular QAM TCM Encoder

3-1003

Specifying the Encoder
To define the convolutional encoder, use the Trellis structure parameter. This parameter
is a MATLAB structure whose format is described in “Trellis Description of a
Convolutional Code”. You can use this parameter field in two ways:

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, then use a poly2trellis command
within the Trellis structure field. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)
• If you have a variable in the MATLAB workspace that contains the trellis structure,

then enter its name as the Trellis structure parameter. This way is faster because it
causes Simulink to spend less time updating the diagram at the beginning of each
simulation, compared to the usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that it
resets its registers to the all-zeros state during the course of the simulation. To do this,
set the Operation mode to Reset on nonzero input via port. The block then opens a
second input port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Signal Constellations
The trellis-coded modulation technique partitions the constellation into subsets called
cosets, so as to maximize the minimum distance between pairs of points in each coset.
This block internally forms a valid partition based on the value you choose for the M-ary
number parameter.

The figures below show the labeled set-partitioned signal constellations that the block
uses when M-ary number is 16, 32, and 64. For constellations of other sizes, see
Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

3 Blocks — Alphabetical List

3-1004

 Rectangular QAM TCM Encoder

3-1005

3 Blocks — Alphabetical List

3-1006

Coding Gains
Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the
presence of AWGN with multiphase trellis codes. For more information, see Biglieri, E., D.
Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded Modulation with
Applications, New York, Macmillan, 1991.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode (default setting), the block retains the encoder states at the end
of each frame, for use with the next frame.

 Rectangular QAM TCM Encoder

3-1007

In Truncated (reset every frame) mode, the block treats each frame
independently. I.e., the encoder states are reset to all-zeros state at the start of each
frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k,
where x is the number of input bits, and s = constraint length− 1 (or, in the case of
multiple constraint lengths, s =sum(ConstraintLength(i)-1)). The block
supports this mode for column vector input signals.

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Pair Block
Rectangular QAM TCM Decoder

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on
Information Theory, Vol IT28, Jan. 1982, pp. 55–67.

3 Blocks — Alphabetical List

3-1008

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Encoder | Rectangular QAM TCM Decoder

Functions
poly2trellis

Introduced before R2006a

 Rectangular QAM TCM Encoder

3-1009

Rician Noise Generator
(To be removed) Generate Rician distributed noise

Note Rician Noise Generator will be removed in a future release. Use the MATLAB
Function block and randn function instead.

Library
Noise Generators sublibrary of Comm Sources

Description
The Rician Noise Generator block generates Rician distributed noise. The Rician
probability density function is given by

f (x) =
x

σ2 I0
mx
σ2 exp − x2 + m2

2σ2 x ≥ 0

0 x < 0

where:

• σ is the standard deviation of the Gaussian distribution that underlies the Rician
distribution noise

• m2 = mI
2+mQ

2, where mI and mQ are the mean values of two independent Gaussian
components

• I0 is the modified 0th-order Bessel function of the first kind given by

I0(y) = 1
2π∫−π

π
eycostdt

Note that m and σ are not the mean value and standard deviation for the Rician noise.

You must specify the Initial seed for the random number generator. When it is a
constant, the resulting noise is repeatable. The vector length of the Initial seed parameter

3 Blocks — Alphabetical List

3-1010

should equal the number of columns in a frame-based output or the number of elements
in a sample-based output. The set of numerical parameters above the Initial seed
parameter in the dialog box can consist of vectors having the same length as the Initial
seed, or scalars.

Initial Seed
The scalar Initial seed parameter initializes the random number generator that the block
uses to generate its Rician-distributed complex random process. When multiple blocks in
a model have the Initial seed parameter, you can choose different initial seeds for each
block to ensure different random streams are used in each block. Set Initial seed to an
integer value for repeatable results or use the randi function to randomize your results.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column vector, or a
sample-based one-dimensional array. These attributes are controlled by the Frame-based
outputs, Samples per frame, and Interpret vector parameters as 1-D parameters.
See “Sources and Sinks” in Communications Toolbox User's Guide for more details.

The number of elements in the Initial seed and Sigma parameters becomes the number
of columns in a frame-based output or the number of elements in a sample-based vector
output. Also, the shape (row or column) of the Initial seed and Sigma parameters
becomes the shape of a sample-based two-dimensional output signal.

Parameters
Specification method

Either K-factor or Quadrature components.
Rician K-factor

K = m2/(2σ2), where m is as in the Rician probability density function. This field
appears only if Specification method is K-factor.

In-phase component (mean), Quadrature component (mean)
The mean values mI and mQ, respectively, of the Gaussian components. These fields
appear only if Specification method is Quadrature components.

 Rician Noise Generator

3-1011

Sigma
The variable σ in the Rician probability density function.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs is
unchecked.

Output data type
The output can be set to double or single data types.

References
[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,

1995.

See Also
Blocks
MATLAB Function | MIMO Fading Channel

Functions
isprime | randi | randn | rng

Introduced before R2006a

3 Blocks — Alphabetical List

3-1012

RLS Decision Feedback Equalizer
(To be removed) Equalize using decision feedback equalizer that updates weights with
RLS algorithm

Library
Equalizers

Note will be removed in a future release. Use Decision Feedback Equalizer instead.

Description
The RLS Decision Feedback Equalizer block uses a decision feedback equalizer and the
RLS algorithm to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the RLS algorithm to update the weights,
once per symbol. When you set the Number of samples per symbol parameter to 1, the
block implements a symbol-spaced equalizer and updates the filter weights once for each
symbol. When you set the Number of samples per symbol parameter to a value greater
than 1, the weights are updated once every Nth sample, for a fractionally spaced
equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

 RLS Decision Feedback Equalizer

3-1013

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

Parameters
Number of forward taps

The number of taps in the forward filter of the decision feedback equalizer.
Number of feedback taps

The number of taps in the feedback filter of the decision feedback equalizer.

3 Blocks — Alphabetical List

3-1014

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Forgetting factor
The forgetting factor of the RLS algorithm, a number between 0 and 1.

Inverse correlation matrix
The initial value for the inverse correlation matrix. The matrix must be N-by-N, where
N is the total number of forward and feedback taps.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

 RLS Decision Feedback Equalizer

3-1015

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

Compatibility Considerations

RLS Decision Feedback Equalizer will be removed
Not recommended starting in R2019a

RLS Decision Feedback Equalizer will be removed in a future release. Use Decision
Feedback Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

3 Blocks — Alphabetical List

3-1016

RLS Linear Equalizer
(To be removed) Equalize using linear equalizer that updates weights using RLS
algorithm

Library
Equalizers

Note will be removed in a future release. Use Linear Equalizer instead.

Description
The RLS Linear Equalizer block uses a linear equalizer and the RLS algorithm to equalize
a linearly modulated baseband signal through a dispersive channel. During the
simulation, the block uses the RLS algorithm to update the weights, once per symbol.
When you set the Number of samples per symbol parameter to 1, then the block
implements a symbol-spaced (i.e. T-spaced) equalizer and updates the filter weights once
for each symbol. When you set the Number of samples per symbol parameter to a
value greater than 1, the block updates the weights once every Nth sample, for a
fractionally spaced (i.e. T/N-spaced) equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

 RLS Linear Equalizer

3-1017

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

Parameters
Number of taps

The number of taps in the filter of the linear equalizer.
Number of samples per symbol

The number of input samples for each symbol.

3 Blocks — Alphabetical List

3-1018

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Forgetting factor
The forgetting factor of the RLS algorithm, a number between 0 and 1.

Inverse correlation matrix
The initial value for the inverse correlation matrix. The matrix must be N-by-N, where
N is the number of taps.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current weights.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

 RLS Linear Equalizer

3-1019

Compatibility Considerations

RLS Linear Equalizer will be removed
Not recommended starting in R2019a

RLS Linear Equalizer will be removed in a future release. Use Linear Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

3 Blocks — Alphabetical List

3-1020

Scrambler
Scramble input signal
Library: Communications Toolbox / Sequence Operations

Description
The Scrambler block scrambles a scalar or column vector input signal.

One purpose of scrambling is to reduce the length of consecutive 0s or 1s in a transmitted
signal. Long sequences of 0s or 1s can cause transmission synchronization problems. This
schematic shows the scrambler operation. All adders perform addition modulo N, where
N is the value specified by the Calculation base parameter.

Input data

Scrambled data

1 2 M-1 M

p11 p2 pm-1 pm

At each time step, the input causes the contents of the registers to shift sequentially.
Using the Scramble polynomial parameter, you specify the on or off state for each switch
in the scrambler.

To achieve repeatable initial scrambler conditions, you can use one of these optional input
ports:

• Select the Reset on nonzero input via port parameter and reset the scrambler with
Rst.

 Scrambler

3-1021

• Set the Initial states source parameter to Input port and provide the initial states
with ISt.

This block can accept input sequences that vary in length during simulation. For more
information about sequences that vary in length, see Variable-Size Signal Basics
(Simulink).

Ports

Input
in — Input data signal
vector

Input data signal, specified as an NS-by-1 vector. NS represents the number of samples in
the input signal. The input values must be integers from 0 to Calculation base – 1.
Data Types: double

Rst — Reset scrambler
scalar

Reset scrambler, specified as a scalar. The scrambler is reset if a nonzero input is applied
to the port.

Dependencies

To enable this port, set Initial states source to Dialog Parameter and select Reset on
nonzero input via port.

ISt — Initial states
vector

Initial states of the scrambler registers when the simulation starts, specified as a
nonnegative integer vector. The length of ISt must equal the order of the Scramble
polynomial parameter. The vector element values must be integers from 0 to Calculation
base – 1.

Dependencies

To enable this port, set Initial states source to Input port.

3 Blocks — Alphabetical List

3-1022

Output
Out1 — Output scrambled data
vector

Output scrambled data, returned as an NS-by-1 vector. NS equals the number of samples
in the input signal.
Data Types: double

Parameters
Calculation base — Calculation base
4 (default) | nonnegative integer

Calculation base used in the scrambler for modulo operations, specified as a nonnegative
integer. The input and output of this block are integers from 0 to Calculation base – 1.

Scramble polynomial — Polynomial that defines connections in scrambler
'1 + z^-1 + z^-2 + z^-4' (default) | character vector | integer vector | binary vector

Polynomial that defines the connections in the scrambler, specified as a character vector,
integer vector, or binary vector. The Scramble polynomial parameter defines if each
switch in the scrambler is on or off. Specify the polynomial as:

• A character vector, such as '1 + z^-6 + z^-8'. For more details on specifying
polynomials in this way, see Character Representation of Polynomials.

• An integer vector, such as [0 -6 -8], listing the descrambler coefficients in order of
descending powers of z-1, where p(z-1) = 1 + p1z-1 + p2z-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of z that appear
in the polynomial that has a coefficient of 1. In this case, the order of the scramble
polynomial is one less than the binary vector length.

Example: '1 + z^-6 + z^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent
this polynomial:

p(z-1) = 1 + z-6 + z-8

Initial states source — Set the source for scrambler initial states
Dialog Parameter (default) | Input port

 Scrambler

3-1023

• Dialog Parameter – Specify scrambler initial states by using the Initial states
parameter.

• Input port – Specify scrambler initial states by using the ISt port.

Initial states — Initial states of scrambler registers
[0 1 2 3] (default) | nonnegative integer vector

Initial states of scrambler registers when the simulation starts, specified as a nonnegative
integer vector. The length of Initial states must equal the order of the Scramble
polynomial parameter. The vector element values must be integers from 0 to Calculation
base – 1.

Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Reset on nonzero input via port — Reset scrambler via input port
off (default) | on

Select this parameter to reset the Scrambler block via input port Rst.

Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Block Characteristics
Data Types Boolean | double | integer
Multidimensional
Signals

no

Variable-Size
Signals

no

3 Blocks — Alphabetical List

3-1024

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Descrambler | PN Sequence Generator

Objects
comm.Scrambler

Introduced before R2006a

 Scrambler

3-1025

Sign LMS Decision Feedback Equalizer
(To be removed) Equalize using decision feedback equalizer that updates weights with
signed LMS algorithm

Library
Equalizers

Note will be removed in a future release. Use Decision Feedback Equalizer instead.

Description
The Sign LMS Decision Feedback Equalizer block uses a decision feedback equalizer and
an algorithm from the family of signed LMS algorithms to equalize a linearly modulated
baseband signal through a dispersive channel.

The supported algorithms, corresponding to the Update algorithm parameter, are

• Sign LMS
• Sign Regressor LMS
• Sign Sign LMS

During the simulation, the block uses the particular signed LMS algorithm to update the
weights, once per symbol. If the Number of samples per symbol parameter is 1, then
the block implements a symbol-spaced equalizer; otherwise, the block implements a
fractionally spaced equalizer.

3 Blocks — Alphabetical List

3-1026

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

 Sign LMS Decision Feedback Equalizer

3-1027

Parameters
Update algorithm

The specific type of signed LMS algorithm that the block uses to update the equalizer
weights.

Number of forward taps
The number of taps in the forward filter of the decision feedback equalizer.

Number of feedback taps
The number of taps in the feedback filter of the decision feedback equalizer.

Number of samples per symbol
The number of input samples for each symbol.

• When you set this parameter to 1, the filter weights are updated once for each
symbol, for a symbol spaced (i.e. T-spaced) equalizer.

• When you set this parameter to a value greater than 1, the weights are updated
once every Nth sample, for a T/N-spaced equalizer.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Step size
The step size of the signed LMS algorithm.

Leakage factor
The leakage factor of the signed LMS algorithm, a number between 0 and 1. A value
of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

3 Blocks — Alphabetical List

3-1028

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

Compatibility Considerations

Sign LMS Decision Feedback Equalizer will be removed
Not recommended starting in R2019a

Sign LMS Decision Feedback Equalizer will be removed in a future release. Use Decision
Feedback Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

 Sign LMS Decision Feedback Equalizer

3-1029

Topics
“Equalization”

Introduced before R2006a

3 Blocks — Alphabetical List

3-1030

Sign LMS Linear Equalizer
(To be removed) Equalize using linear equalizer that updates weights with signed LMS
algorithm

Library
Equalizers

Note will be removed in a future release. Use Linear Equalizer instead.

Description
The Sign LMS Linear Equalizer block uses a linear equalizer and an algorithm from the
family of signed LMS algorithms to equalize a linearly modulated baseband signal
through a dispersive channel. The supported algorithms, corresponding to the Update
algorithm parameter, are

• Sign LMS
• Sign Regressor LMS
• Sign Sign LMS

During the simulation, the block uses the particular signed LMS algorithm to update the
weights, once per symbol. When you set the Number of samples per symbol parameter
to 1, then the block implements a symbol-spaced equalizer and updates the filter weights
once for each symbol. When you set the Number of samples per symbol parameter to a
value greater than 1, the weights are updated once every Nth sample, for a T/N-spaced
equalizer.

 Sign LMS Linear Equalizer

3-1031

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of taps parameter.

The Equalized port outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol) (3-1)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

3 Blocks — Alphabetical List

3-1032

Parameters
Update algorithm

The specific type of signed LMS algorithm that the block uses to update the equalizer
weights.

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Step size
The step size of the signed LMS algorithm.

Leakage factor
The leakage factor of the signed LMS algorithm, a number between 0 and 1. A value
of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current weights.

 Sign LMS Linear Equalizer

3-1033

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,
Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

Compatibility Considerations

Sign LMS Linear Equalizer will be removed
Not recommended starting in R2019a

Sign LMS Linear Equalizer will be removed in a future release. Use Linear Equalizer
instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

3 Blocks — Alphabetical List

3-1034

SISO Fading Channel
Filter input signal through SISO multipath fading channel
Library: Communications Toolbox / Channels

Description
The SISO Fading Channel block filters an input signal using a single-input/single-output
(SISO) multipath fading channel. This block models both Rayleigh and Rician fading. For
processing details, see the Algorithms on page 3-1041 section.

Ports

Input
in — Input data signal
vector

Input data signal, specified as an NS-by-1 vector. NS represents the number of samples in
the input signal.
Data Types: double | single
Complex Number Support: Yes

Output
Out1 — Output data signal for fading channel
vector

Output data signal for the fading channel, returned as an NS-by-1 vector. NS represents
the number of samples in the input signal.

 SISO Fading Channel

3-1035

Gain — Discrete path gains
matrix

Discrete path gains of the underlying fading process, returned as an NS-by-NP matrix.

• NS represents the number of samples in the input signal.
• NP represents the number of channel paths.

Dependencies

To enable this port, on the Main tab, select Output channel path gains.

Delay — Channel filter delay
scalar

Channel filter delay, returned as a scalar.
Dependencies

To enable this port, on the Main tab, select Output channel filter delay.

Parameters

Main Tab
Multipath parameters (frequency selectivity)

Inherit sample rate from input — Option to inherit the sample rate from
input
on (default) | off

Select this parameter to use the sample rate of the input signal when processing. When
Inherit sample rate from input is selected, the sample rate is NS/TS, where NS is
the number of input samples, and TS is the model sample time.

Sample rate (Hz) — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar. To match the model
settings, set the sample rate to NS/TS, where NS is the number of input samples, and TS is
the model sample time.

3 Blocks — Alphabetical List

3-1036

Dependencies

This parameter appears when Inherit sample rate from input is not selected.
Data Types: double

Discrete path delays (s) — Delays for each discrete path
0 (default) | nonnegative scalar | row vector

Delays for each discrete path in seconds, specified as a nonnegative scalar or row vector.

• When you set Discrete path delays (s) to a scalar, the SISO channel is frequency flat.
• When you set Discrete path delays (s) to a vector, the SISO channel is frequency

selective.

Data Types: double

Average path gains (dB) — Average gain for each discrete path
0 (default) | scalar | row vector

Average gain for each discrete path in decibels, specified as a scalar or row vector.
Average path gains (dB) must have the same size as Discrete path delays (s).
Data Types: double

Normalize average path gains to 0 dB — Option to normalize average path
gains to 0 dB
on (default) | off

Select this parameter to normalize the fading processes so that the total power of the
path gains, averaged over time, is 0 dB.

Fading distribution — Fading distribution of channel
Rayleigh (default) | Rician

Select the fading distribution of the channel, either Rayleigh or Rician.

K-factors — K-factor of Rician fading channel
3 (default) | positive scalar | row vector

K-factor of a Rician fading channel, specified as a positive scalar or a 1-by-NP vector of
positive-valued elements. NP equals the value of the Discrete path delays (s) parameter.

 SISO Fading Channel

3-1037

• If you set K-factors to a scalar, the first discrete path is a Rician fading process with a
Rician K-factor of K-factors. Any remaining discrete paths are independent Rayleigh
fading processes.

• If you set K-factors to a row vector, the discrete path corresponding to a positive
element of the K-factors vector is a Rician fading process with a Rician K-factor
specified by that element. The discrete path corresponding to a zero-valued element of
the K-factors vector is a Rayleigh fading process.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path Doppler shifts (Hz) — Doppler shifts for line-of-sight components
0 (default) | scalar | row vector

Doppler shifts for the line-of-sight components of the Rician fading channel in hertz,
specified as a scalar or row vector. This parameter must have the same size as K-factors.

• If you set LOS path Doppler shifts (Hz) to a scalar, it represents the line-of-sight
component Doppler shift of the first discrete path that is a Rician fading process.

• If you set LOS path Doppler shifts (Hz) to a row vector, the discrete path that is a
Rician fading process has its line-of-sight component Doppler shift specified by the
elements of LOS path Doppler shifts (Hz) that correspond to positive elements in
the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path initial phases (rad) — Initial phases for line-of-sight components
0 (default) | scalar | row vector

Initial phases for the line-of-sight component of the Rician fading channel in radians,
specified as a scalar or row vector. This parameter must have the same size as K-factors.

• If you set LOS path initial phases (rad) to a scalar, it is the line-of-sight component
initial phase of the first discrete path that is a Rician fading process.

• If you set LOS path initial phases (rad) to a row vector, the discrete path that is a
Rician fading process has its line-of-sight component initial phase specified by the

3 Blocks — Alphabetical List

3-1038

elements of LOS path initial phases (rad) that correspond to positive elements in
the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

Doppler parameters (time dispersion)

Maximum Doppler shift (Hz) — Maximum Doppler shift for all channel paths
0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths in hertz, specified as a nonnegative scalar.

Maximum Doppler shift (Hz) must be smaller than (fs/10)/fc for each path. fs is the
sampling rate at the input to the SISO Fading Channel block. fc is the cutoff frequency
factor of the path. For more information, see Cutoff Frequency Factor on page 3-712.
Data Types: double

Doppler spectrum — Doppler spectrum shape for all channel paths
doppler('Jakes') (default) | doppler('Flat') | doppler('Rounded', ...) |
doppler('Bell', ...) | doppler('Asymmetric Jakes', ...) |
doppler('Restricted Jakes', ...) | doppler('Gaussian', ...) |
doppler('BiGaussian', ...)

Doppler spectrum shape for all channel paths, specified as a single Doppler spectrum
structure returned from the doppler function or a 1-by-NP cell array of such structures.
The default value of this parameter is the Jakes Doppler spectrum (doppler('Jakes')).

• If you assign a single call to doppler, all paths have the same specified Doppler
spectrum.

• If you assign a 1-by-NP cell array of calls to doppler using any of the specified
syntaxes, each path has the Doppler spectrum specified by the corresponding Doppler
spectrum structure in the array. In this case, NP equals the value of the Discrete path
delays (s) parameter.

Dependencies

This parameter applies when Maximum Doppler shift (Hz) is greater than zero.

 SISO Fading Channel

3-1039

Other parameters

Initial seed — Random number generator initial seed
73 (default) | nonnegative integer

Random number generator initial seed for this block, specified as a nonnegative integer.

Output channel path gains — Option to output channel path gains
off (default) | on

Select this parameter to add the Gain output port to the block and output the channel
path gains of the underlying fading process.

Output channel filter delay — Option to output channel filter delay
off (default) | on

Select this parameter to add the Delay output port to the block and output the channel
filter delay of the underlying fading process.

Simulate using — Compilation type
Interpreted execution (default) | Code generation

Compilation type, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate model using the MATLAB interpreter. This
option shortens startup time but has slower simulation speed than Code
generation.

• Code generation — Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but provides faster simulation speed than Interpreted
execution.

Visualization Tab
Channel visualization — Select the channel visualization
Off (default) | Impulse response | Frequency response | Doppler spectrum |
Impulse and frequency responses

Select the channel visualization: Off, Impulse response, Frequency response,
Doppler spectrum, or Impulse and frequency responses. When visualization is

3 Blocks — Alphabetical List

3-1040

on, the selected channel characteristics, such as impulse response or Doppler spectrum,
display in a separate window. For more information, see Channel Visualization.

Percentage of samples to display — Percentage of samples to display
25% (default) | 10% | 50% | 100%

Select the percentage of samples to display: 10%, 25%, 50%, or 100%. Increasing the
percentage improves display accuracy at the expense of simulation speed.

Dependencies

This parameter appears when Channel visualization is Impulse response, Frequency
response, or Impulse and frequency responses.

Path for Doppler spectrum display — Path for which Doppler spectrum is
displayed
1 (default) | positive integer

Path for which the Doppler spectrum is displayed, specified as a positive integer from 1 to
NP, where NP equals the value of the Discrete path delays (s) parameter.

Dependencies

This parameter appears when Channel visualization is Doppler spectrum.

Block Characteristics
Data Types double | single
Multidimensional
Signals

yes

Variable-Size
Signals

yes

Algorithms
The fading process for the SISO channel is described in Methodology for Simulating
Multipath Fading Channels.

 SISO Fading Channel

3-1041

Cutoff Frequency Factor
The following information explains how the cutoff frequency factor, fc, is determined for
different Doppler spectrum types:

• For any Doppler spectrum type other than Gaussian and BiGaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals

NormalizedStandardDeviation∙sqrt(2∙log(2)).
• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are
both 0, then fc equals NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are
both 0, then fc equals NormalizedStandardDeviation(2)∙sqrt(2∙log(2)).

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• In all other cases, fc equals 1.

References
[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World

Propagation to Space-Time Code Design. Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G. Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. "A
stochastic MIMO radio channel model with experimental validation." IEEE Journal
on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp. 1211–1226.

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems. Second Edition. New York: Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. "Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms." IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

3 Blocks — Alphabetical List

3-1042

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
AWGN Channel | MIMO Fading Channel

Functions
doppler

Objects
comm.MIMOChannel

Topics
Channel Visualization

Introduced in R2017b

 SISO Fading Channel

3-1043

Sphere Decoder
Decode input using a sphere decoder

Library
MIMO

Description
This block decodes the symbols sent over Nt antennas using the sphere decoding
algorithm.

Data Type
For information about the data types each block port supports, see the “Supported Data
Type” on page 3-1045 table on this page. The output signal inherits the data type from
the inputs.

Algorithm
This block implements the algorithm, inputs, and outputs described on the
comm.SphereDecoder System object block reference page. The object properties
correspond to the block parameters.

Parameters
Signal constellation

Specify the number of points in the signal constellation to which the bits are mapped.
This value must be a complex column vector. The length of the vector must be a

3 Blocks — Alphabetical List

3-1044

power of two. The block uses the same constellation for each transmit antenna. The
default setting is a QPSK constellation with an average power of 1.

Bit mapping per constellation point
Specify the bit mapping that the block uses for each constellation point. This value
must be a numerical matrix. he matrix size must be [ConstellationLength
bitsPerSymbol], where ConstellationLength represents the length of the Signal
constellation parameter value and bitsPerSymbol represents the number of bits that
each symbol encodes. The default matrix size is [0 0; 0 1; 1 0; 1 1], which matches the
default value of the Signal constellation property.

Initial search radius
Specify the initial search radius for the decoding algorithm as Infinity or ZF
solution.

When you select Infinity, the block sets the initial search radius to Inf. When you
select ZF solution, the block 'sets the initial search radius to the zero-forcing
solution. The zero-forcing solution is calculated by the pseudo-inverse of the input
channel when decoding. Large constellations and/or antenna counts can benefit from
the initial reduction in the search radius. In most cases, however, the extra
computation of the ZF Solution will not provide a benefit.

Decision method
Specify the decoding decision method as Soft or Hard. When you select Soft the
block outputs log-likelihood ratios (LLRs), or soft bits. When you select set to Hard,
the block converts the soft LLRs to bits. The hard decision output logical array follows
the mapping of a 0 for a negative LLR and 1 for all other values.

Simulation using
Specify if the block simulates using Code generation or Interpreted
execution. The default is Interpreted execution.

Supported Data Type
Port Supported Data Types
Rx • Double-precision floating point
cEst • Double-precision floating point

 Sphere Decoder

3-1045

Port Supported Data Types
Output • Double-precision floating point

• Boolean (Hard-decision method)

Limitations
• The output LLR values are not scaled by the noise variance. For coded links employing

iterative coding (LDPC or turbo) or MIMO OFDM with Viterbi decoding, the output
LLR values should be scaled by the channel state information to achieve better
performance.

Algorithms
This block implements the algorithm, inputs, and outputs described on the Sphere
Decoder System object reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OSTBC Combiner | OSTBC Encoder

Objects
comm.SphereDecoder

Introduced in R2013b

3 Blocks — Alphabetical List

3-1046

SSB AM Demodulator Passband
Demodulate SSB-AM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The SSB AM Demodulator Passband block demodulates a signal that was modulated using
single-sideband amplitude modulation. The input is a passband representation of the
modulated signal. Both the input and output signals are real scalar signals.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

Parameters
Carrier frequency (Hz)

The carrier frequency in the corresponding SSB AM Modulator Passband block.
Initial phase (rad)

The phase offset, θ, of the modulated signal.
Lowpass filter design method

The method used to generate the filter. Available methods are Butterworth,
Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design method
field .

 SSB AM Demodulator Passband

3-1047

Cutoff frequency
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter
design method field in Hertz.

Passband ripple
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in the
passband in dB.

Stopband ripple
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple in
the stopband in dB.

Pair Block
SSB AM Modulator Passband

See Also
Blocks
DSB AM Demodulator Passband | DSBSC AM Demodulator Passband | SSB AM Modulator
Passband

Introduced before R2006a

3 Blocks — Alphabetical List

3-1048

SSB AM Modulator Passband
Modulate using single-sideband amplitude modulation

Library
Analog Passband Modulation, in Modulation

Description
The SSB AM Modulator Passband block modulates using single-sideband amplitude
modulation with a Hilbert transform filter. The output is a passband representation of the
modulated signal. Both the input and output signals are real scalar signals.

SSB AM Modulator Passband transmits either the lower or upper sideband signal, but not
both. To control which sideband it transmits, use the Sideband to modulate parameter.

If the input is u(t) as a function of time t, then the output is

u(t)cos(fct + θ)∓ u (t)sin(fct + θ)

where:

• fc is the Carrier frequency parameter.
• θ is the Initial phase parameter.
• û(t)is the Hilbert transform of the input u(t).
• The minus sign indicates the upper sideband and the plus sign indicates the lower

sideband.

 SSB AM Modulator Passband

3-1049

Hilbert Transform Filter
This block uses the Analytic Signal block from the DSP System Toolbox Transforms block
library.

The Analytic Signal block computes the complex analytic signal corresponding to each
channel of the real M-by-N input, u

y = u + jΗ u

where j = −1 and Η denotes the Hilbert transform. The real part of the output in each
channel is a replica of the real input in that channel; the imaginary part is the Hilbert
transform of the input. In the frequency domain, the analytic signal retains the positive
frequency content of the original signal while zeroing-out negative frequencies and
doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR filter with the order
specified by the Filter order parameter, n. The linear phase filter is designed using the
Remez exchange algorithm, and imposes a delay of n/2 on the input samples.

For best results, use a carrier frequency which is estimated to be larger than 10% of your
input signal's sample rate. This is due to the implementation of the Hilbert transform by
means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second. We
then designate a Hilbert Transform filter of order 100. Below is the response of the
Hilbert Transform filter as returned by fvtool.

3 Blocks — Alphabetical List

3-1050

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency
larger than 10% (but less than 90%) of the input signal's sample time (8000 samples per
second, in this example) or equivalently, a carrier frequency larger than 400Hz, we
ensure that the Hilbert Transform Filter will be operating in the flat section of the filter's
magnitude response (shown in blue), and that our modulated signal will have the desired
magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of the
model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 SSB AM Modulator Passband

3-1051

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The phase offset, θ, of the modulated signal.
Sideband to modulate

This parameter specifies whether to transmit the upper or lower sideband.
Hilbert Transform filter order

The length of the FIR filter used to compute the Hilbert transform.

Pair Block
SSB AM Demodulator Passband

References
[1] Peebles, Peyton Z, Jr. Communication System Principles. Reading, Mass.: Addison-

Wesley, 1976.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DSB AM Modulator Passband | DSBSC AM Modulator Passband | SSB AM Demodulator
Passband

3 Blocks — Alphabetical List

3-1052

Functions
hilbiir

Introduced before R2006a

 SSB AM Modulator Passband

3-1053

Symbol Synchronizer
Correct symbol timing clock skew
Library: Communications Toolbox / Synchronization

Description
The Symbol Synchronizer block corrects symbol timing clock skew for PAM, PSK, QAM, or
OQPSK modulation schemes between a single-carrier transmitter and receiver. For more
information, see “Symbol Synchronization Overview” on page 3-1057.

Note The input signal operates on a sample rate basis, while the output signal operates
on a symbol rate basis.

Ports

Input
samples — Input samples
scalar (default) | column vector

Input samples, specified as a scalar or column vector of a PAM, PSK, QAM, or OQPSK
modulated single-carrier signal. This port in unnamed on the block.
Data Types: double | single
Complex Number Support: Yes

Output
Sym — Output signal symbols
scalar | column vector

3 Blocks — Alphabetical List

3-1054

Output signal symbols, returned as a variable-size scalar or column vector that has the
same data type as the input. For an input with dimensions of Nsamp-by-1, the output at
Sym has dimensions of Nsym-by-1. Nsym is approximately equal to Nsamp divided by the Nsps.
Nsps is equal to the Samples per symbol parameter. If the output exceeds the maximum

output size of
Nsamp
Nsps

× 1.1 , it is truncated.

This port is unnamed when Normalized timing error output port is not selected.

Err — Estimated timing error
scalar | column vector

Estimated timing error for each input sample, returned as a scalar or column vector with
values in the range [0, 1]. The estimated timing error is normalized by the input sample
time. Err has the same data type and size as the input signal.

Dependencies

To enable this port, select Normalized timing error output port.

Parameters
Modulation type — Modulation type
PAM/PSK/QAM (default) | OQPSK

Modulation type, specified as PAM/PSK/QAM, or OQPSK.

Timing error detector — Type of timing error detector
Zero-Crossing (decision-directed) (default) | Gardner (non-data-aided) |
Early-Late (non-data-aided) | Mueller-Muller (decision-directed)

Type of timing error detector, specified as Zero-Crossing (decision-directed),
Gardner (non-data-aided), Early-Late (non-data-aided), or Mueller-
Muller (decision-directed). This parameter assigns the timing error detection
scheme used in the synchronizer.

For more information, see “Timing Error Detection (TED)” on page 3-1058.

Samples per symbol — Samples per symbol
2 (default) | positive integer greater than 1

 Symbol Synchronizer

3-1055

Samples per symbol, specified as a positive integer greater than 1.
Data Types: double

Damping factor — Damping factor of the loop filter
1 (default) | positive scalar

Damping factor of the loop filter, specified as a positive scalar. For more information, see
“Loop Filter” on page 3-1062.

Tunable: Yes
Data Types: double | single

Normalized loop bandwidth — Normalized bandwidth of loop filter
0.01 (default) | positive scalar less than 1

Normalized bandwidth of the loop filter, specified as a positive scalar less than 1. The loop
bandwidth is normalized by the sample rate of the input signal. For more information, see
“Loop Filter” on page 3-1062.

Note To ensure that the symbol synchronizer locks, set the Normalized loop
bandwidth parameter to a value less than 0.1.

Tunable: Yes
Data Types: double | single

Detector gain — Phase detector gain
2.7 (default) | positive scalar

Phase detector gain, specified as a positive scalar.

Tunable: Yes
Data Types: double | single

Normalized timing error output port — Enable normalized timing error
output port
on (default) | off

Select this parameter to output normalized timing error data at the output port Err.

3 Blocks — Alphabetical List

3-1056

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size
Signals

yes

More About

Symbol Synchronization Overview
The symbol timing synchronizer algorithm is based on a phased lock loop (PLL) algorithm
that consists of four components:

• A timing error detector (TED)
• An interpolator
• An interpolation controller
• A loop filter

 Symbol Synchronizer

3-1057

For OQPSK modulation, the in-phase and quadrature signal components are first aligned
(as in QPSK modulation) using a state buffer to cache the last half symbol of the previous
input. After initial alignment, the remaining synchronization process is the same as for
QPSK modulation.

This block diagram shows an example of a timing synchronizer. In the figure, the symbol
timing PLL operates on x(t), the received sample signal after matched filtering. The
symbol timing PLL outputs the symbol signal, x(kTs + τ), after correcting for the clock
skew between the transmitter and receiver.

Timing Error Detection (TED)
The symbol timing synchronizer supports non-data-aided TED and decision-directed TED
methods. This table shows the timing estimate expressions for the TED method options.

TED
Method

Expression

Zero-
crossing
(decision-
directed)

e(k) = x (k− 1/2)Ts + τ a 0(k− 1)− a 0(k) + y (k− 1/2)Ts + τ a 1(k− 1)− a 1(k)

3 Blocks — Alphabetical List

3-1058

TED
Method

Expression

Gardner
(non-
data-
aided)

e(k) = x (k− 1/2)Ts + τ x (k− 1)Ts + τ − x(kTs + τ)
+ y (k− 1/2)Ts + τ y (k− 1)Ts + τ − y(kTs + τ)

Early-late
(non-
data-
aided)

e(k) = x(kTs + τ) x (k + 1/2)Ts + τ − x (k− 1/2)Ts + τ + y(kTs + τ
) y (k + 1/2)Ts + τ − y (k− 1/2)Ts + τ

Mueller-
Muller
(decision-
directed)

e(k) = a 0(k− 1)x(kTs + τ)− a 0(k)x (k− 1)Ts + τ + a 1(k− 1)y(kTs + τ)− a 1(k
)y (k− 1)Ts + τ

Non-data-aided TED uses received samples without any knowledge of the transmitted
signal or the results of the channel estimation. Non-data-aided TED is used to estimate
the timing error for signals with modulation schemes that have constellation points
aligned with the in-phase or quadrature axis. Examples of signals suitable for the Gardner
or early-late methods include QPSK-modulated signals with a zero phase offset that has
points at {1+0i, 0+1i, -1+0i, 0−1i} and BPSK-modulated signals with a zero phase offset.

• Gardner method — The Gardner method is a non-data-aided feedback method that is
independent of carrier phase recovery. It is used for baseband systems and modulated
carrier systems. More specifically, this method is used for systems that use a linear
modulation type with Nyquist pulses that have an excess bandwidth between
approximately 40% and 100%. Examples include systems that use PAM, PSK, QAM, or
OQPSK modulation and that shape the signal using raised cosine filters whose rolloff
factor is between 0.4 and 1. In the presence of noise, the performance of this timing
recovery method improves as the excess bandwidth increases (or rolloff factor
increases in the case of a raised cosine filter). The Gardner method is similar to the
early-late gate method.

• Early-late method — The early-late method is a non-data-aided feedback method. It
is used for systems that use a linear modulation type such as PAM, PSK, QAM, or
OQPSK modulation. For example, systems using a raised cosine filter with Nyquist
pulses. In the presence of noise, the performance of this timing recovery method
improves as the excess bandwidth of the pulse increases (or rolloff factor increases in
the case of a raised cosine filter).

 Symbol Synchronizer

3-1059

The early-late method is similar to the Gardner method. The Gardner method performs
better in systems with high SNR values because it has lower self noise than the early-late
method.

Decision-directed TED uses the sign function to estimate the in-phase and quadrature
components of received samples, which result in lower computational complexity than
non-data-aided TED.

• Zero-crossing method — The zero-crossing method is a decision-directed technique
that requires 2 samples per symbol at the input to the synchronizer. It is used in low-
SNR conditions for all values of excess bandwidth and in moderate-SNR conditions for
moderate excess bandwidth factors in the approximate range [0.4, 0.6].

• Mueller-Muller method — The Mueller-Muller method is a decision-directed
feedback method that requires prior recovery of the carrier phase. When the input
signal has Nyquist pulses (for example, when using a raised cosine filter), the Mueller-
Muller method has no self noise. For narrowband signaling in the presence of noise,
the performance of the Mueller-Muller method improves as the excess bandwidth
factor of the pulse decreases.

Because the decision-directed methods (zero-crossing and Mueller-Muller) estimate
timing error based on the sign of the in-phase and quadrature components of signals
passed to the synchronizer, they are not recommended for constellations that have points
with either a zero in-phase or a quadrature component. x(kTs + τ) and y(kTs + τ) are the
in-phase and quadrature components of the input signals to the timing error detector,
where τ is the estimated timing error. The Mueller-Muller method coefficients a 0(k) and
a 1(k) are the estimates of x(kTs + τ) and y(kTs + τ). The timing estimates are made by
applying the sign function to the in-phase and quadrature components and are used for
only the decision-directed TED methods.

Interpolator
The time delay is estimated from the fixed-rate samples of the matched filter, which are
asynchronous with the symbol rate. Because the resulting samples are not aligned with
the symbol boundaries, an interpolator is used to "move" the samples. Because the time
delay is unknown, the interpolator must be adaptive. Moreover, because the interpolant is
a linear combination of the available samples, it can be thought of as the output of a filter.

3 Blocks — Alphabetical List

3-1060

The interpolator uses a piecewise parabolic interpolator with a Farrow structure and
coefficient α set to 1/2 (see Rice, Michael, Digital Communications: A Discrete-Time
Approach).

Interpolation Control
Interpolation control provides the interpolator with the basepoint index and fractional
interval. The basepoint index is the sample index nearest to the interpolant. The fractional
interval is the ratio of the time between the interpolant and its basepoint index and the
interpolation interval.

 Symbol Synchronizer

3-1061

Interpolation is performed for every sample, and a strobe signal is used to determine if
the interpolant is output. The synchronizer uses a modulo-1 counter interpolation control
to provide the strobe and the fractional interval for use with the interpolator.

Loop Filter
The synchronizer uses a proportional-plus integrator (PI) loop filter. The proportional
gain, K1, and the integrator gain, K2, are calculated by

K1 = −4ζθ
1 + 2ζθ + θ2 Kp

and

3 Blocks — Alphabetical List

3-1062

K2 = −4θ2

1 + 2ζθ + θ2 Kp
.

The interim term, θ, is given by

θ =
BnTs

N
ζ + 1

4ζ
,

where:

• N is the number of samples per symbol.
• ζ is the damping factor.
• BnTs is the normalized loop bandwidth.
• Kp is the detector gain.

K
1

K
2 +

z-1

+

Loop Filter

References
[1] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle

River, NJ: Prentice Hall, 2008.

 Symbol Synchronizer

3-1063

[2] Mengali, Umberto and Aldo N. D’Andrea. Synchronization Techniques for Digital
Receivers. New York: Plenum Press, 1997.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.SymbolSynchronizer

Blocks
Carrier Synchronizer

Introduced in R2015a

3 Blocks — Alphabetical List

3-1064

TPC Decoder
Turbo product code (TPC) decoder
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The TPC Decoder block performs 2-D turbo product code (TPC) decoding of the soft input
LLRs corresponding to the product code iteratively, using Chase-Pyndiah algorithm. The
product code is a 2-D concatenation of linear block codes. The linear block code can be a
parity check code, a Hamming code, or a BCH code capable of correcting two errors.
Extended and shortened codes can be applied independently on each dimension. For a
description of 2-D TPC decoding, see “Algorithms” on page 3-1071.

For information about valid code pairs and the error-correcting capability for each valid
code pair, see “Component Code Pairs” on page 3-1070.

Ports

Input
In — Log likelihood ratios
column vector

Log likelihood ratios, specified as a column vector.

• For full-length input messages, the length of the column vector is the product of
Number of rows in code, Nr and Number of columns in code, Nc.

• For shortened input messages, the length of the column vector is the product of (NR–
KR+SR) and (NC–KC+SC), where:

• NR is the value of Number of rows in code, Nr.

 TPC Decoder

3-1065

• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.
• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Data Types: double | single

Output
Out — TPC decoded message
column vector

TPC decoded message, returned as a column vector of binary values.

• For full-length input messages, the length of the column vector is the product of
Number of rows in message, Kr and Number of columns in message, Kc.

• For shortened input messages, the length of the column vector is the product of
Number of rows in shortened message, Sr and Number of columns in shortened
message, Sc.

Data Types: Boolean

Iter — Actual number of decoding iterations
positive integer

Actual number of decoding iterations, returned as a positive integer.
Dependencies

To enable this port, select Output number of itereations executed.
Data Types: double

Parameters
Row TPC parameters

Extended codes — Extended codes indicator for TPC row parameters
on (default) | off

3 Blocks — Alphabetical List

3-1066

• When Extended codes is selected, the lists for Number of rows in code, Nr and
Number of rows in message, Kr contain the valid values for extended individual code
pairs (NR,KR).

• When Extended codes is cleared, the lists for Number of rows in code, Nr and Number
of rows in message, Kr contain the valid values for nonextended individual code pairs
(NR,KR).

Number of rows in code, Nr — Number of rows in product code matrix
16 (default) | integer

Number of rows in the product code matrix, NR. The list of integer values varies
depending on the setting for Extended codes.

Number of rows in message, Kr — Number of rows in message matrix
11 (default) | integer

Number of rows in the message matrix, KR. The list of integer values varies depending on
the setting for Extended codes and Number of rows in code, Nr.

Specify shortened message length — Specify shortened message length for
rows
off (default) | on

Select Specify shortened message length to specify a value for Number of rows in
shortened message, Sr.

Number of rows in shortened message, Sr — Number of rows in shortened
message matrix
9 (default) | integer

Number of rows in the shortened message matrix, SR, specified as an integer less than or
equal to KR. When you specify this parameter, provide full-length NR and KR values to
specify the (NR,KR) code pair. This code pair is then shortened to the (NR–KR+SR,SR) code
pair, where:

• NR is the value of Number of rows in code, Nr.
• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.

Dependencies

To enable this parameter, select Specify shortened message length.

 TPC Decoder

3-1067

Data Types: double

Column TPC parameters

Extended codes — Extended codes indicator for TPC column parameters
on (default) | off

• When Extended codes is selected, the lists for Number of columns in code, Nc and
Number of columns in message, Kc contain the valid values for extended individual
code pairs (NC,KC).

• When Extended codes is cleared, the lists for Number of columns in code, Nc and
Number of columns in message, Kc contain the valid values for nonextended individual
code pairs (NC,KC).

Number of columns in code, Nc — Number of columns in product code matrix
32 (default) | integer

Number of columns in the product code matrix, NC. The list of integer values varies
depending on the setting for Extended codes.

Number of columns in message, Kc — Number of columns in message matrix
26 (default) | integer

Number of columns in the message matrix, KC. The list of integer values varies depending
on the setting for Extended codes and Number of columns in code, Nc.

Specify shortened message length — Specify shortened message length for
columns
off (default) | on

Select Specify shortened message length to specify a value for Number of columns in
shortened message, Sc.

Number of columns in shortened message, Sc — Number of columns in
shortened message matrix
22 (default) | integer

Number of columns in the shortened message matrix, SC, specified as an integer. When
you specify this parameter, provide full-length NC and KC values to specify the (NC,KC)
code pair. This code pair is then shortened to the (NC–KC+SC, SC) code pair, where:

• NC is the value of Number of columns in code, Nc.

3 Blocks — Alphabetical List

3-1068

• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Dependencies

To enable this parameter, select Specify shortened message length.
Data Types: double

Maximum number of iterations — Maximum number of decoding iterations
4 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

Stop iterating when code converges — Stop decoding based on the
calculated syndrome or parity-check of the component code
on (default) | off

Select Stop iterating when code converges to terminate decoding early if the
calculated syndrome or parity-check of the component code evaluates to zero before
Maximum number of iterations.

Output number of iterations executed — Output number of iterations
executed
off (default) | on

Select this parameter to add the Iter output port and output the actual number of TPC
decoding iterations performed.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the

 TPC Decoder

3-1069

speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types Boolean | double | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Component Code Pairs
This table lists the supported component code pairs for the row (NR,KR) and column
(NC,KC) parameters.

• NR and KR represent the number of rows in the product code matrix and message
matrix, respectively.

• NC and KC represent the number of columns in the product code matrix and message
matrix, respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table
also includes the error-correction capability for each code pair.

Code type Component Code
Pairs(NR,KR) and (NC,KC)

Error-Correction
Capability (T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1

3 Blocks — Alphabetical List

3-1070

(7,4) 1
Extended Hamming code (256,247) 1

(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Algorithms
Turbo product codes (TPC) are a form of concatenated codes used as forward error
correcting (FEC) codes. Two or more component block codes, such as systematic linear
block codes, are used to construct TPCs. The TPC decoder achieves near-optimum

 TPC Decoder

3-1071

decoding of product codes using Chase decoding and the Pyndiah algorithm to perform
iterative soft input, soft output decoding. For a detailed description, see [1] and [2]. This
decoder implements an iterative soft input, soft output 2-D product code decoding, as
described in [2], using two “Linear Block Codes”. The decoder expects the soft bit log
likelihood ratios (LLRs) obtained from digital demodulation as the input signal.

TPC Decoding Full-Length Messages

TPC encoded full-length input messages are decoded using specified 2-D TPC code pairs.
Row-wise decoding uses the (NC,KC) code pair and column-wise decoding uses the (NR,KR)
code pair. The input vector length must be NR × NC. To perform the 2-D TPC decoding,
the column vector of the input LLRs, composed of the message and parity bits, is
arranged into an NR-by-NC matrix.

The TPC decoder achieves near-optimum decoding of product codes using Chase
decoding and the Pyndiah algorithm to perform iterative soft input, soft output decoding.
Chase decoding forms a set of possible codewords for each row or column. The Pyndiah
algorithm calculates soft information required for the next decoding step.

Iterative Soft Input, Soft Output Decoder

The iterative soft input, soft output decoding, as shown in the block diagram, carries out
two decoding steps for each iteration.

3 Blocks — Alphabetical List

3-1072

The soft inputs for decoding are R(m) = R + α(m)W(m).

• Iteration loop counter i increments from i = 1 to the specified number of iterations.
• m = 2i – 1 is the decoding step index.
• R is the received LLR matrix.
• R(m) is the soft input for the mth decoding step.
• W(m) is the input extrinsic information for the mth decoding step.
• α(m) = [0,0.2,0.3,0.5,0.7,0.9,1,1, ...], where α is a weighting factor applied based on

the decoding step index. For higher decoding steps, α = 1.
• β(m) = [0.2,0.4,0.6,0.8,1,1, ...], where β is a reliability factor applied based on the

decoding step index. For higher decoding steps, β = 1.
• D contains the decoded message bits. The output message bits are formed from D by

mapping –1 to 0 and +1 to 1, then reshaping the message block into a column vector.

The output message bits are formed after iterating through the specified number of
iterations, or, if early termination is enabled, after code convergence.

Early Termination of TPC Decoding

If early termination is enabled, a code convergence check is performed on the hard
decision of the soft input in each row-wise and column-wise decoding step. Early

 TPC Decoder

3-1073

termination can be triggered after either the row-wise decoding or column-wise decoding
converges.

The code is converged if, for all rows or all columns,

• The syndrome evaluates to zero in the codes (Hamming codes, Extended Hamming
codes, BCH codes, or Extended BCH codes).

• The parity check is evaluated to zero in parity check codes.

The reported number of iterations evaluates to the iteration value that is currently in
progress. For example, if the code convergence check is satisfied after row-wise decoding
in the third iteration (after 2.5 decoding steps), then the number of iteration returned is
3.

TPC Decoding Shortened Messages

TPC encoded shortened input messages are decoded using specified 2-D TPC code pairs.
Row-wise decoding uses the (NC – KC + SC, SC) code pair and column-wise decoding uses
the (NR – KR + SR, SR) code pair. The input vector length must be (NR – KR + SR) × (NC– KC
+ SC). To perform the 2-D TPC decoding of shortened messages, the column vector of the
input LLRs, composed of the shortened message and parity bits, is arranged into an (NR –
KR + SR)-by-(NC – KC + SC) matrix.

3 Blocks — Alphabetical List

3-1074

The TPC decoder processes the received shortened message LLRs similar to full length
codes, with these exceptions:

• The shortened bit positions in the received codeword are set to –1.
• The Chase algorithm does not consider the shortened bit positions while choosing the

least reliable bits.

References
[1] Chase, D. "Class of Algorithms for Decoding Block Codes with Channel Measurement

Information." IEEE Transactions on Information Theory, Volume 18, Number 1,
January 1972, pp. 170–182.

[2] Pyndiah, R. M. "Near-Optimum Decoding of Product Codes: Block Turbo Codes." IEEE
Transactions on Communications. Vol. 46, Number 8, August 1998, pp. 1003–
1010.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 TPC Decoder

3-1075

See Also
Blocks
BCH Decoder | TPC Encoder

Functions
tpcdec

Introduced in R2018b

3 Blocks — Alphabetical List

3-1076

TPC Encoder
Turbo product code (TPC) encoder
Library: Communications Toolbox / Error Detection and

Correction / Block

Description
The TPC Encoder block performs 2-D turbo product code (TPC) encoding of an input
message. The product code is a 2-D concatenation of linear block codes. The linear block
codes can be a parity check code, a Hamming code, or a BCH code capable of correcting
two errors. Extended and shortened codes can be applied independently on each
dimension. For a description of 2-D TPC encoding, see “Algorithms” on page 3-1083.

For information about valid code pairs and the error-correcting capability for each valid
code pair, see “Component Code Pairs” on page 3-1081.

Ports
Input
In — Message to encode
column vector

Input message bits to encode, specified as a column vector.

• For full-length input messages, the length of the column vector must be the product of
Number of rows in message, Kr and Number of columns in message, Kc.

• For shortened input messages, the length of the column vector must be the product of
Number of rows in shortened message, Sr and Number of columns in shortened
message, Sc.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

 TPC Encoder

3-1077

Output
Out — TPC-encoded message
column vector

TPC-encoded message, returned as a column vector with the same data type as the input
signal.

• For full-length input messages, the length of the column vector is the product of
Number of rows in code, Nr and Number of columns in code, Nc.

• For shortened input messages, the length of the column vector is the product of (NR–
KR+SR) and (NC–KC+SC), where:

• NR is the value of Number of rows in code, Nr.
• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.
• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Parameters
Row TPC parameters

Extended codes — Extended codes indicator for TPC row parameters
on (default) | off

• When Extended codes is selected, the lists for Number of rows in code, Nr and
Number of rows in message, Kr contain the valid values for extended individual code
pairs (NR,KR).

• When Extended codes is cleared, the lists for Number of rows in code, Nr and Number
of rows in message, Kr contain the valid values for nonextended individual code pairs
(NR,KR).

Number of rows in code, Nr — Number of rows in product code matrix
16 (default) | integer

Number of rows in the product code matrix, NR. The list of integer values varies
depending on the setting for Extended codes.

3 Blocks — Alphabetical List

3-1078

Number of rows in message, Kr — Number of rows in message matrix
11 (default) | integer

Number of rows in the message matrix, KR. The list of integer values varies depending on
the setting for Extended codes and Number of rows in code, Nr.

Specify shortened message length — Specify shortened message length for
rows
off (default) | on

Select Specify shortened message length to specify a value for Number of rows in
shortened message, Sr.

Number of rows in shortened message, Sr — Number of rows in shortened
message matrix
9 (default) | integer

Number of rows in the shortened message matrix, SR, specified as an integer less than or
equal to KR. When you specify this parameter, provide full-length NR and KR values to
specify the (NR,KR) code pair. This code pair is then shortened to the (NR–KR+SR,SR) code
pair, where:

• NR is the value of Number of rows in code, Nr.
• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.

Dependencies

To enable this parameter, select Specify shortened message length.
Data Types: double

Column TPC parameters

Extended codes — Extended codes indicator for TPC column parameters
on (default) | off

• When Extended codes is selected, the lists for Number of columns in code, Nc and
Number of columns in message, Kc contain the valid values for extended individual
code pairs (NC,KC).

• When Extended codes is cleared, the lists for Number of columns in code, Nc and
Number of columns in message, Kc contain the valid values for nonextended individual
code pairs (NC,KC).

 TPC Encoder

3-1079

Number of columns in code, Nc — Number of columns in product code matrix
32 (default) | integer

Number of columns in the product code matrix, NC. The list of integer values varies
depending on the setting for Extended codes.

Number of columns in message, Kc — Number of columns in message matrix
26 (default) | integer

Number of columns in the message matrix, KC. The list of integer values varies depending
on the setting for Extended codes and Number of columns in code, Nc.

Specify shortened message length — Specify shortened message length for
columns
off (default) | on

Select Specify shortened message length to specify a value for Number of columns in
shortened message, Sc.

Number of columns in shortened message, Sc — Number of columns in
shortened message matrix
22 (default) | integer

Number of columns in the shortened message matrix, SC, specified as an integer. When
you specify this parameter, provide full-length NC and KC values to specify the (NC,KC)
code pair. This code pair is then shortened to the (NC–KC+SC, SC) code pair, where:

• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Dependencies

To enable this parameter, select Specify shortened message length.
Data Types: double

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

3 Blocks — Alphabetical List

3-1080

• Code generation –– Simulate the model by using generated C code. The first time
you run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations unless the model changes. This option requires additional
startup time, but the speed of the subsequent simulations is faster than Interpreted
execution.

• Interpreted execution –– Simulate the model by using the MATLAB interpreter.
This option requires less startup time than the Code generation method, but the
speed of subsequent simulations is slower. In this mode, you can debug the source
code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size
Signals

no

More About

Component Code Pairs
This table lists the supported component code pairs for the row (NR,KR) and column
(NC,KC) parameters.

• NR and KR represent the number of rows in the product code matrix and message
matrix, respectively.

• NC and KC represent the number of columns in the product code matrix and message
matrix, respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table
also includes the error-correction capability for each code pair.

 TPC Encoder

3-1081

Code type Component Code
Pairs(NR,KR) and (NC,KC)

Error-Correction
Capability (T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1

Extended Hamming code (256,247) 1
(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -

3 Blocks — Alphabetical List

3-1082

(8,7) -
(4,3) -

Algorithms
Turbo product codes (TPC) are a form of concatenated codes used as forward error-
correcting (FEC) codes. Two or more component block codes, such as systematic linear
block codes, are used to construct TPCs. This encoder implements 2-D product code
encoding, as described in [1], using two “Linear Block Codes”.

Construction of Full-Length Message Product Codes

Full-length input messages are encoded using specified 2-D TPC code pairs. Row-wise
encoding uses the (NC,KC) code pair and column-wise encoding uses the (NR,KR) code pair.
The input vector length must be KR · KC. The input message bits vector is arranged into a
KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row.
The row-wise encoding results in a KR-by-NC matrix that includes parity bits added to
each row.

 TPC Encoder

3-1083

Next, column-wise encoding uses an (NR,KR) systematic linear block encoder on each of
the NC columns. Applying this 2-D TPC encoding to the initial KR-by-KC matrix results in
an NR-by-NC matrix that includes parity bits added to each row and column.

The 2-D TPC full-code matrix is reshaped into a column vector of length NR · NC and
returned as the TPC-encoded output.

3 Blocks — Alphabetical List

3-1084

Construction of Shortened Message Product Codes

Shortened input messages are encoded using specified 2-D TPC code pairs. Row-wise
encoding uses the (NC,KC) code pair and column-wise encoding uses an (NR,KR) code pair.
The input vector length must be SR · SC. The input shortened message bits vector is
arranged into an SR-by-SC matrix. The shortened message matrix prepends two
dimensions by padding the beginning of the message matrix with zeros. The resulting
matrix is a KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row.
The row-wise encoding results in a KR-by-NC matrix that includes parity bits added to
each row.

 TPC Encoder

3-1085

Next, the column-wise encoding uses an (NR,KR) systematic linear block encoder on each
of the NC columns.

Applying this 2-D TPC encoding to the initial KR-by-KC matrix and excluding the zero-
padded bits from the output results in an (NR–KR+SR)-by-(NC–KC+SC) matrix. This matrix
includes parity bits added to each row and column.

3 Blocks — Alphabetical List

3-1086

The 2-D TPC shortened-code matrix is reshaped into a column vector of length (NR–KR
+SR) · (NC–KC+SC) and returned as the TPC-encoded output.

References
[1] Pyndiah, R. M. "Near-Optimum Decoding of Product Codes: Block Turbo Codes." IEEE

Transactions on Communications. Vol. 46, Number 8, August 1998, pp. 1003–
1010.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BCH Encoder | TPC Decoder

Functions
tpcenc

Introduced in R2018b

 TPC Encoder

3-1087

Turbo Decoder
Decode input signal using parallel concatenated decoding scheme

Library
Convolutional sublibrary of Error Detection and Correction

Description
The Turbo Decoder block decodes the input signal using a parallel concatenated decoding
scheme. The iterative decoding scheme uses the a posteriori probability (APP) decoder as
the constituent decoder, an interleaver, and a deinterleaver.

The two constituent decoders use the same trellis structure and decoding algorithm.

Block Diagram of Iterative Turbo Decoding

The previous block diagram illustrates that the APP decoders (labeled as SISO modules in
the previous image) output an updated sequence of log-likelihoods of the encoder input
bits, π(u;O). This sequence is based on the received sequence of log-likelihoods of the
channel (coded) bits, π(c;I), and code parameters.

The decoder block iteratively updates these likelihoods for a fixed number of decoding
iterations and then outputs the decision bits. The interleaver (π) that the decoder uses is
identical to the one the encoder uses. The deinterleaver (π-1) performs the inverse
permutation with respect to the interleaver. The decoder does not assume knowledge of
the tail bits and excludes these bits from the iterations.

3 Blocks — Alphabetical List

3-1088

Dimensions
This block accepts an M-by-1 column vector input signal and outputs an L-by-1 column
vector signal. For a given trellis, L and M are related by:

L = (M − 2 ⋅ numTails)
(2 ⋅ n− 1)

and

M = L ⋅ (2 ⋅ n− 1) + 2 ⋅ numTails

where

M = decoder input length

L = decoder output length

n = log2(trellis.NumOutputSymbols), for a rate 1/2 trellis, n = 2

numTails = log2(trellis.numStates) * n

Bit Stream Ordering
The bit ordering subsystem reorganizes the incoming data into the two log likelihood
ratio (LLR) streams input to the constituent decoders. This subsystem reconstructs the
second systematic stream and reorders the bits so that they match the two constituent
encoder outputs at the transmitter. This ordering subsystem is the inverse of the
reordering subsystem at the turbo encoder.

Parameters
Trellis structure

Trellis structure of constituent convolutional code.

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Alternatively, use the poly2trellis function to create a
custom trellis using the constraint length, code generator (octal), and feedback
connection (octal).

 Turbo Decoder

3-1089

The default structure is the result of poly2trellis(4, [13 15], 13).
Source of interleaver indices

Specify the source of the interleaver indices as Property or Input port.

When you set this parameter to Property, the block uses the Interleaver indices
parameter to specify the interleaver indices.

When you set this parameter to Input port, the block uses the secondary input
port, IntrInd, to specify the interleaver indices.

Interleaver indices
Specify the mapping that the Turbo encoder block uses to permute the input bits as a
column vector of integers. The default is (64:-1:1).'. This mapping is a vector with
the number of elements equal to L, the length of the output signal. Each element must
be an integer between 1 and L, with no repeated values.

Decoding algorithm
Specify the decoding algorithm that the constituent APP decoders use to decode the
input signal as True APP, Max*, Max. When you set this parameter to:

• True APP – the block implements true a posteriori probability decoding
• Max* or Max – the block uses approximations to increase the speed of the

computations.

Number of scaling bits
Specify the number of bits which the constituent APP decoders must use to scale the
input data to avoid losing precision during computations. The decoder multiplies the
input by 2^Number of scaling bits and divides the pre-output by the same factor.
The value for this parameter must be a scalar integer between 0 and 8. This
parameter only applies when you set Decoding algorithm to Max*. The default is 3.

Number of decoding iterations
Specify the number of decoding iterations the block uses. The default is 6. The block
iterates and provides updates to the log-likelihood ratios (LLR) of the uncoded output
bits. The output of the block is the hard-decision output of the final LLR update.

Simulate using
Specify if the block simulates using Code generation or Interpreted
execution. The default is Interpreted execution.

3 Blocks — Alphabetical List

3-1090

Supported Data Type
Port Supported Data Types
In • Double

• Single
Out • Double

Examples
For an example that uses the Turbo Encoder and Turbo Decoder blocks, see the Parallel
Concatenated Convolutional Coding: Turbo Codes example.

Pair Block
Turbo Encoder

References

[1] Berrou, C., A. Glavieux, and P. Thitimajshima. "Near Shannon limit error correcting
coding and decoding: turbo codes,” Proceedings of the IEEE International
Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064–1070.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. “ Soft-Input Soft-Output
Maximum A Posterior (MAP) Module to Decode Parallel and Serial Concatenated
Codes,”Jet Propulsion Lab TDA Progress Report, Vol. 42–27, Nov. 1996.

[3] Schlegel, Christian B. and Lance C. Perez. Trellis and Turbo Coding, IEEE Press, 2004.

[4] 3GPP TS 36.212 v9.0.0, 3rd Generation partnership project; Technical specification
group radio access network; Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding (release 9), 2009-12.

 Turbo Decoder

3-1091

matlab:showdemo commpccc
matlab:showdemo commpccc

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
APP Decoder | General Block Deinterleaver | General Block Interleaver | Turbo Encoder

Objects
comm.TurboDecoder

Introduced in R2011b

3 Blocks — Alphabetical List

3-1092

Turbo Encoder
Encode binary data using parallel concatenated encoding scheme

Library
Convolutional sublibrary of Error Detection and Correction

Description
The Turbo Encoder block encodes a binary input signal using a parallel concatenated
coding scheme. This coding scheme employs two identical convolutional encoders and
one internal interleaver. Each constituent encoder is independently terminated by tail
bits.

Block Diagram of Parallel Concatenated Convolutional Code

The previous block diagram illustrates that the output of the Turbo Encoder block
consists of the systematic and parity bits streams of the first encoder, and only the parity
bit streams of the second encoder.

For a rate one-half constituent encoder, the block interlaces the three streams and
multiplexes the tail bits to the end of the encoded data streams.

For more information about tail bits, see the terminate Operation mode on the
Convolutional Encoder block reference page.

Dimensions
This block accepts an L-by-1 column vector input signal and outputs an M-by-1 column
vector signal. For a given trellis, M and L are related by:

 Turbo Encoder

3-1093

M = L ⋅ (2 ⋅ n− 1) + 2 ⋅ numTails

and

L = (M − 2 ⋅ numTails)
(2 ⋅ n− 1)

where

L = encoder input length

M = encoder output length

n = log2(trellis.NumOutputSymbols), for a rate 1/2 trellis, n = 2

numTails = log2(trellis.numStates) * n

3 Blocks — Alphabetical List

3-1094

Encoder Schematic for Rate 1/3 Turbo Code Example

Turbo code

internal interleaver

Input

Output

First constituent encoder

Second constituent encoder

Xk

Z
k

Zk
‘

Xk
‘

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Input

The previous schematic shows the encoder configuration for a trellis specified by the
default value of the Trellis structure parameter, poly2trellis(4, [13 15], 13).
For an input vector length of 64 bits, the output of the encoder block is 204 bits. The first
192 bits correspond to the three 64 bit streams (systematic (Xk) and parity (Zk) bit
streams from the first encoder and the parity (Z’

k) bit stream of the second encoder),
interlaced as per Xk, Zk, Z’

k. The last 12 bits correspond to the tail bits from the two
encoders, when the switches are in the lower position corresponding to the dashed lines.
The first group of six bits (three systematic bits and three parity bits) are the output tail
bits from the first constituent encoder. The second group of six bits (three systematic bits
and three parity bits) are the output tail bits from the second constituent encoder.

Due to the tail bits, the encoder output code rate is slightly less than 1/3.

 Turbo Encoder

3-1095

Parameters
Trellis structure

Trellis structure of constituent convolutional code.

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Alternatively, use the poly2trellis function to
create a custom trellis using the constraint length, code generator (octal), and
feedback connections (octal).

This block supports only rate 1-by-N trellises where N is an integer.

The default structure is the result of poly2trellis(4, [13 15], 13).
Source of interleaver indices

Specify the source of the interleaver indices as Property or Input port.

When you set this parameter to Property, the block uses the Interleaver indices
parameter to specify the interleaver indices.

When you set this parameter to Input port, the block uses the secondary input
port, IntrInd, to specify the interleaver indices.

Interleaver indices
Specify the mapping that the block uses to permute the input bits as a column vector
of integers. The default is (64:-1:1).'. This mapping is a vector with the number of
elements equal to the length, L, of the input signal. Each element must be an integer
between 1 and L, with no repeated values.

Simulate using
Specify if the block simulates using Code generation or Interpreted
execution. The default is Interpreted execution.

3 Blocks — Alphabetical List

3-1096

Supported Data Type
Port Supported Data Types
In • Double

• Single
• Fixed-point

Out • Double
• Single
• Fixed-point

Examples
For an example that uses the Turbo Encoder and Turbo Decoder blocks, see the Parallel
Concatenated Convolutional Coding: Turbo Codes example.

Pair Block
Turbo Decoder

References
[1] Berrou, C., A. Glavieux, and P. Thitimajshima. "Near Shannon limit error correcting

coding and decoding: turbo codes,” Proceedings of the IEEE International
Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064–1070.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. “ Soft-Input Soft-Output
Maximum A Posterior (MAP) Module to Decode Parallel and Serial Concatenated
Codes,”Jet Propulsion Lab TDA Progress Report, Vol. 42–27, Nov. 1996.

[3] Schlegel, Christian B. and Lance C. Perez. Trellis and Turbo Coding, IEEE Press, 2004.

[4] 3GPP TS 36.212 v9.0.0, 3rd Generation partnership project; Technical specification
group radio access network; Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding (release 9), 2009-12.

 Turbo Encoder

3-1097

matlab:showdemo commpccc
matlab:showdemo commpccc

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Convolutional Encoder | General Block Interleaver | Turbo Decoder

Objects
comm.TurboEncoder

Introduced in R2011b

3 Blocks — Alphabetical List

3-1098

Uniform Noise Generator
(To be removed) Generate uniformly distributed noise between upper and lower bounds

Note Uniform Noise Generator will be removed in a future release. Use the MATLAB
Function block and rand function instead.

Library
Noise Generators sublibrary of Comm Sources

Description
The Uniform Noise Generator block generates uniformly distributed noise. The output
data of this block is uniformly distributed between the specified lower and upper bounds.
The upper bound must be greater than or equal to the lower bound.

You must specify the Initial seed in the simulation. When it is a constant, the resulting
noise is repeatable.

If all the elements of the output vector are to be independent and identically distributed
(i.i.d.), then you can use a scalar for the Noise lower bound and Noise upper bound
parameters. Alternatively, you can specify the range for each element of the output vector
individually, by using vectors for the Noise lower bound and Noise upper bound
parameters. If the bounds are vectors, then their length must equal the length of the
Initial seed parameter.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column vector, or a
sample-based one-dimensional array. These attributes are controlled by the Frame-based
outputs, Samples per frame, and Interpret vector parameters as 1-D parameters.

The number of elements in the Initial seed parameter becomes the number of columns in
a frame-based output or the number of elements in a sample-based vector output. Also,

 Uniform Noise Generator

3-1099

the shape (row or column) of the Initial seed parameter becomes the shape of a sample-
based two-dimensional output signal.

Parameters
Noise lower bound, Noise upper bound

The lower and upper bounds of the interval over which noise is uniformly distributed.
Initial seed

The initial seed value for the random number generator.
Sample time

The period of each sample-based vector or each row of a frame-based matrix.
Frame-based outputs

Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs is
unchecked.

Output data type
The output can be set to double or single data types.

See Also
Random Source (DSP System Toolbox documentation); rand (built-in MATLAB function)

Introduced before R2006a

3 Blocks — Alphabetical List

3-1100

Unipolar to Bipolar Converter
Map unipolar signal in range [0, M-1] into bipolar signal

Library
Utility Blocks

Description
The Unipolar to Bipolar Converter block maps the unipolar input signal to a bipolar
output signal. If the input consists of integers between 0 and M-1, where M is the M-ary
number parameter, then the output consists of integers between -(M-1) and M-1. If M is
even, then the output is odd. If M is odd, then the output is even. This block is only
designed to work when the input value is within the set {0,1,2...(M-1)}, where M is the
M-ary number parameter. If the input value is outside of this set of integers the output
may not be valid.

The table below shows how the block's mapping depends on the Polarity parameter.

Polarity Parameter Value Output Corresponding to Input Value of
k

Positive 2k-(M-1)
Negative -2k+(M-1)

Parameters
M-ary number

The number of symbols in the bipolar or unipolar alphabet.

 Unipolar to Bipolar Converter

3-1101

Polarity
A value of Positive causes the block to maintain the relative ordering of symbols in
the alphabets. A value of Negative causes the block to reverse the relative ordering
of symbols in the alphabets.

Output Data Type
The type of bipolar signal produced at the block's output.

The block supports the following output data types:

• Inherit via internal rule
• Same as input
• double
• int8
• int16
• int32

When the parameter is set to its default setting, Inherit via internal rule, the
block determines the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data
type is the same as the input data type.

• If the input data type is not floating-point:

• Based on the M-ary number parameter, an ideal signed integer output word
length required to contain the range [-(M-1)M-1] is computed as follows:

ideal word length = ceil(log2(M))+1

Note The +1 is associated with the need for the sign bit.
• The block sets the output data type to be a signed integer, based on the

smallest word length (in bits) that can fit best the computed ideal word length.

Note The selections in the “Hardware Implementation Pane” (Simulink) pertaining to
word length constraints do not affect how this block determines output data types.

3 Blocks — Alphabetical List

3-1102

Examples
If the input is [0; 1; 2; 3], the M-ary number parameter is 4, and the Polarity parameter
is Positive, then the output is [-3; -1; 1; 3]. Changing the Polarity parameter to
Negative changes the output to [3; 1; -1; -3].

If the value for the M-ary number is 27 the block gives an output of int8.

If the value for the M-ary number is 27+1 the block gives an output of int16.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bipolar to Unipolar Converter

Introduced before R2006a

 Unipolar to Bipolar Converter

3-1103

Variable Step LMS Decision Feedback
Equalizer
(To be removed) Equalize using decision feedback equalizer that updates weights with
variable-step-size LMS algorithm

Library
Equalizers

Note will be removed in a future release. Use Decision Feedback Equalizer instead.

Description
The Variable Step LMS Decision Feedback Equalizer block uses a decision feedback
equalizer and the variable-step-size LMS algorithm to equalize a linearly modulated
baseband signal through a dispersive channel. During the simulation, the block uses the
variable-step-size LMS algorithm to update the weights, once per symbol. When you set
the Number of samples per symbol parameter to 1, then the block implements a
symbol-spaced equalizer and updates the filter weights once for each symbol. When you
set the Number of samples per symbol parameter to a value greater than 1, the
weights are updated once every Nth sample, for a T/N-spaced equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the

3 Blocks — Alphabetical List

3-1104

Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

Parameters
Number of forward taps

The number of taps in the forward filter of the decision feedback equalizer.

 Variable Step LMS Decision Feedback Equalizer

3-1105

Number of feedback taps
The number of taps in the feedback filter of the decision feedback equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Initial step size
The step size that the variable-step-size LMS algorithm uses at the beginning of the
simulation.

Increment step size
The increment by which the step size changes from iteration to iteration

Minimum step size
The smallest value that the step size can assume.

Maximum step size
The largest value that the step size can assume.

Leakage factor
The leakage factor of the variable-step-size LMS algorithm, a number between 0 and
1. A value of 1 corresponds to a conventional weight update algorithm, and a value of
0 corresponds to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
When you select this check box, the block has an input port that enables you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. The equalizer will train for the length of
the Desired signal. If the mode input is not present, the equalizer will train at the
beginning of every frame for the length of the Desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

3 Blocks — Alphabetical List

3-1106

Output weights
When you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,

Wiley, 1998.

Compatibility Considerations

Variable Step LMS Decision Feedback Equalizer will be
removed
Not recommended starting in R2019a

Variable Step LMS Decision Feedback Equalizer will be removed in a future release. Use
Decision Feedback Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

 Variable Step LMS Decision Feedback Equalizer

3-1107

Introduced before R2006a

3 Blocks — Alphabetical List

3-1108

Variable Step LMS Linear Equalizer
(To be removed) Equalize using linear equalizer that updates weights with variable-step-
size LMS algorithm

Library
Equalizers

Note will be removed in a future release. Use Linear Equalizer instead.

Description
The Variable Step LMS Linear Equalizer block uses a linear equalizer and the variable-
step-size LMS algorithm to equalize a linearly modulated baseband signal through a
dispersive channel. During the simulation, the block uses the variable-step-size LMS
algorithm to update the weights, once per symbol. When you set the Number of samples
per symbol parameter to 1, then the block implements a symbol-spaced equalizer and
updates the filter weights once for each symbol. When you set the Number of samples
per symbol parameter to a value greater than 1, the weights are updated once every Nth

sample, for a T/N-spaced equalizer.

Input and Output Signals
The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols in the
Input signal. Valid training symbols are those symbols listed in the Signal constellation
vector.

 Variable Step LMS Linear Equalizer

3-1109

Set the Reference tap parameter so it is greater than zero and less than the value for the
Number of taps parameter.

The Equalized port outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input.
• Err output for the error signal, which is the difference between the Equalized

output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output.

Decision-Directed Mode and Training Mode
To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Equalization”.

Equalizer Delay
For proper equalization, you should set the Reference tap parameter so that it exceeds
the delay, in symbols, between the transmitter's modulator output and the equalizer input.
When this condition is satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Since the channel delay is typically unknown, a common practice is to set the reference
tap to the center tap.

Parameters
Number of taps

The number of taps in the filter of the linear equalizer.
Number of samples per symbol

The number of input samples for each symbol.

3 Blocks — Alphabetical List

3-1110

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Initial step size
The step size that the variable-step-size LMS algorithm uses at the beginning of the
simulation.

Increment step size
The increment by which the step size changes from iteration to iteration

Minimum step size
The smallest value that the step size can assume.

Maximum step size
The largest value that the step size can assume.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0 corresponds
to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current weights.

 Variable Step LMS Linear Equalizer

3-1111

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England,
Wiley, 1998.

Compatibility Considerations

Variable Step LMS Linear Equalizer will be removed
Not recommended starting in R2019a

Variable Step LMS Linear Equalizer will be removed in a future release. Use Linear
Equalizer instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer | MLSE Equalizer

Topics
“Equalization”

Introduced before R2006a

3 Blocks — Alphabetical List

3-1112

Viterbi Decoder
Decode convolutionally encoded data using Viterbi algorithm

Library
Convolutional sublibrary of Error Detection and Correction

Description
The Viterbi Decoder block decodes input symbols to produce binary output symbols. This
block can process several symbols at a time for faster performance.

This block can output sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” (Simulink).

Input and Output Sizes
If the convolutional code uses an alphabet of 2n possible symbols, this block's input vector
length is L*n for some positive integer L. Similarly, if the decoded data uses an alphabet
of 2k possible output symbols, this block's output vector length is L*k.

This block accepts a column vector input signal with any positive integer value for L. For
variable-sized inputs, the L can vary during simulation. The operation of the block is
governed by the operation mode parameter.

For information about the data types each block port supports, see the “Supported Data
Types” on page 3-1126 table on this page.

 Viterbi Decoder

3-1113

Input Values and Decision Types
The entries of the input vector are either bipolar, binary, or integer data, depending on
the Decision type parameter.

Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of
Values

Branch metric
calculation

Unquantized Real numbers Positive real: logical
zero

Negative real: logical
one

Euclidean distance

Hard Decision 0, 1 0: logical zero

1: logical one

Hamming distance

Soft Decision Integers between 0
and 2b-1, where b is
the Number of soft
decision bits
parameter.

0: most confident
decision for logical
zero

2b-1: most confident
decision for logical
one

Other values
represent less
confident decisions.

Hamming distance

To illustrate the soft decision situation more explicitly, the following table lists
interpretations of values for 3-bit soft decisions.

Input Value Interpretation
0 Most confident zero
1 Second most confident zero
2 Third most confident zero
3 Least confident zero
4 Least confident one
5 Third most confident one

3 Blocks — Alphabetical List

3-1114

Input Value Interpretation
6 Second most confident one
7 Most confident one

Operation Modes for Inputs
The Viterbi decoder block has three possible methods for transitioning between
successive input frames. The Operation mode parameter controls which method the
block uses:

• In Continuous mode, the block saves its internal state metric at the end of each
input, for use with the next frame. Each traceback path is treated independently.

• In Truncated mode, the block treats each input independently. The traceback path
starts at the state with the best metric and always ends in the all-zeros state. This
mode is appropriate when the corresponding Convolutional Encoder block has its
Operation mode set to Truncated (reset every frame).

• In Terminated mode, the block treats each input independently, and the traceback
path always starts and ends in the all-zeros state. This mode is appropriate when the
uncoded message signal (that is, the input to the corresponding Convolutional
Encoder block) has enough zeros at the end of each input to fill all memory registers
of the feed-forward encoder. If the encoder has k input streams and constraint length
vector constr (using the polynomial description), “enough” means
k*max(constr-1). For feedback encoders, this mode is appropriate if the
corresponding Convolutional Encoder block has Operation mode set to Terminate
trellis by appending bits.

Note When this block outputs sequences that vary in length during simulation and you
set the Operation mode to Truncated or Terminated, the block's state resets at every
input time step.

Use the Continuous mode when the input signal contains only one symbol.

Traceback Depth and Decoding Delay
The Traceback depth parameter, D, influences the decoding delay. The decoding delay is
the number of zero symbols that precede the first decoded symbol in the output.

 Viterbi Decoder

3-1115

• If you set the Operation mode to Continuous, the decoding delay consists of D zero
symbols

• If the Operation mode parameter is set to Truncated or Terminated, there is no
output delay and the Traceback depth parameter must be less than or equal to the
number of symbols in each input.

As a general estimate, the Traceback depth value is approximately two to three times (k
– 1)/(1 – r), where k is the constraint length of the code and r is the code rate [7]. For
example:

• A rate 1/2 code has a Traceback depth of 5(k – 1).
• A rate 2/3 code has a Traceback depth of 7.5(k – 1).
• A rate 3/4 code has a Traceback depth of 10(k – 1).
• A rate 5/6 code has a Traceback depth of 15(k – 1).

Reset Port
The reset port is usable only when the Operation mode parameter is set to
Continuous. Selecting Enable reset input port gives the block an additional input
port, labeled Rst. When the Rst input is nonzero, the decoder returns to its initial state
by configuring its internal memory as follows:

• Sets the all-zeros state metric to zero.
• Sets all other state metrics to the maximum value.
• Sets the traceback memory to zero.

Using a reset port on this block is analogous to setting Operation mode in the
Convolutional Encoder block to Reset on nonzero input via port.

The reset port supports double or boolean typed signals.

Fixed-Point Signal Flow Diagram
There are three main components to the Viterbi decoding algorithm. They are branch
metric computation (BMC), add-compare and select (ACS), and traceback decoding
(TBD). The following diagram illustrates the signal flow for a k/n rate code.

3 Blocks — Alphabetical List

3-1116

code(n) bit(k)

inNT bMetNT

stMetNT

uint32 outNT
ACS

StateMet

BMC TBD

As an example of a BMC diagram, a 1/2 rate, nsdec = 3 signal flow would be as follows.

inNT

castBeforeSum: true

+

+

+

+

+

+

+

+

+

-

+

-

code(2)

inNT

bMet(4)

bMetNT,

bMetFIMATH

bMetNT(0, WL, 0)

bMetFIMATH(�floor�, �saturate�)

Parallel

to Serial

Serial

to

Parallel

7

inNT

inNT

7

WL = nsdec + n− 1
n = 2 WL = 4

The ACS component is generally illustrated as shown in the following diagram.

 Viterbi Decoder

3-1117

stMetNT
castBeforeSum: true

stMetNT

an ACS cycle

bMetNT

stMetNT

+bMet

stateMet

Compare
Select

Add

Z
-1

stMetNT(0, WL2, 0)

stMetFIMATH(�floor�, �saturate�)

<

Where WL2 is specified on the mask by the user.

In the flow diagrams above, inNT, bMetNT , stMetNT, and outNT are numerictype
objects, and bMetFIMATH and stMetFIMATH, are fimath objects.

Puncture Pattern Examples
For some commonly used puncture patterns for specific rates and polynomials, see the
last three references.

Fixed-Point Viterbi Decoding Examples
The following two example models showcase the fixed-point Viterbi decoder block used
for both hard- and soft-decision convolutional decoding.

If you are reading this reference page in the MATLAB Help Browser, click Fixed-point
Hard-Decision Viterbi Decoding and Fixed-point Soft-Decision Viterbi Decoding to open

3 Blocks — Alphabetical List

3-1118

matlab:doc_fixpt_vitharddec
matlab:doc_fixpt_vitharddec
matlab:doc_fixpt_vitsoftdec

the models. These can also be found as doc_fixpt_vitharddec.mdl and
doc_fixpt_vitsoftdec.mdl under help\toolbox\comm\examples.

The layout of the soft decision model example is also similar to the existing doc example
on Soft-Decision Decoding, which can be found at help\toolbox\comm\examples
\doc_softdecision.mdl

 Viterbi Decoder

3-1119

matlab:doc_softdecision

The purpose of this model is to highlight the fixed-point modeling attributes of the Viterbi
decoder, using a familiar layout.

Overview of the Simulations
The two simulations have a similar structure and have most parameters in common. A
data source produces a random binary sequence that is convolutionally encoded, BPSK
modulated, and passed through an AWGN channel.

The Convolutional encoder is configured as a rate 1/2 encoder. For every 2 bits, the
encoder adds another 2 redundant bits. To accommodate this, and add the correct amount
of noise, the Eb/No (dB) parameter of the AWGN block is in effect halved by subtracting
10*log10(2).

For the hard-decision case, the BPSK demodulator produces hard decisions, at the
receiver, which are passed onto the decoder.

For the soft-decision case, the BPSK demodulator produces soft decisions, at the receiver,
using the log-likelihood ratio. These soft outputs are 3-bit quantized and passed onto the
decoder.

After the decoding, the simulation compares the received decoded symbols with the
original transmitted symbols in order to compute the bit error rate. The simulation ends
after processing 100 bit errors or 1e6 bits, whichever comes first.

Fixed-Point Modeling
Fixed-point modeling enables bit-true simulations which take into account hardware
implementation considerations and the dynamic range of the data/parameters. For
example, if the target hardware is a DSP microprocessor, some of the possible word
lengths are 8, 16, or 32 bits, whereas if the target hardware is an ASIC or FPGA, there
may be more flexibility in the word length selection.

To enable fixed-point Viterbi decoding, the block input must be of type ufix1 (unsigned
integer of word length 1) for hard decisions. Based on this input (either a 0 or a 1), the
internal branch metrics are calculated using an unsigned integer of word length =
(number of output bits), as specified by the trellis structure (which equals 2 for the hard-
decision example).

For soft decisions, the block input must be of type ufixN (unsigned integer of word length
N), where N is the number of soft-decision bits, to enable fixed-point decoding. The block

3 Blocks — Alphabetical List

3-1120

inputs must be integers in the range 0 to 2N-1. The internal branch metrics are calculated
using an unsigned integer of word length = (N + number of output bits - 1), as specified
by the trellis structure (which equals 4 for the soft-decision example).

The State metric word length is specified by the user and usually must be greater than
the branch metric word length already calculated. You can tune this to be the most
suitable value (based on hardware and/or data considerations) by reviewing the logged
data for the system.

Enable the logging by selecting Analysis > Fixed-Point Tool. In the Fixed-Point Setting
GUI, set the Fixed-point instruments mode to Minimums, maximums and
overflows, and rerun the simulation. If you see overflows, it implies the data did not fit
in the selected container. You could either increase the size of the word length (if your
hardware allows it) or try scaling the data prior to processing it. Based on the minimum
and maximum values of the data, you are also able to determine whether the selected
container is of the appropriate size.

Try running simulations with different values of State metric word length to get an idea
of its effect on the algorithm. You should be able to narrow down the parameter to a
suitable value that has no adverse effect on the BER results.

Comparisons with Double-Precision Data
To run the same model with double precision data, Select Analysis > Fixed-Point Tool.
In the Fixed-Point Tool GUI, select the Data type override to be Double. This selection
overrides all data type settings in all the blocks to use double precision. For the Viterbi
Decoder block, as Output type was set to Boolean, this parameter should also be set to
double.

Upon simulating the model, note that the double-precision and fixed-point BER results are
the same. They are the same because the fixed-point parameters for the model have been
selected to avoid any loss of precision while still being most efficient.

Comparisons Between Hard and Soft-Decision Decoding
The two models are set up to run from within BERTool to generate a simulation curve that
compares the BER performance for hard-decision versus soft-decision decoding.

To generate simulation results for doc_fixpt_vitharddec.mdl, do the following:

 Viterbi Decoder

3-1121

1 Type bertool at the MATLAB command prompt.
2 Go to the Monte Carlo pane.
3 Set the Eb/No range to 2:5.
4 Set the Simulation model to doc_fixpt_vitharddec.mdl. Make sure that the

model is on path.
5 Set the BER variable name to BER.
6 Set the Number of errors to 100, and the Number of bits to 1e6.
7 Press Run and a plot is generated.

To generate simulation results for doc_fixpt_vitsoftdec.mdl, just change the
Simulation model in step 4 and press Run.

3 Blocks — Alphabetical List

3-1122

Notice that, as expected, 3-bit soft-decision decoding is better than hard-decision
decoding, roughly to the tune of 1.7 dB, and not 2 dB as commonly cited. The difference
in the expected results could be attributed to the imperfect quantization of the soft
outputs from the demodulator.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Use the same value here and in the corresponding Convolutional Encoder block.

Punctured code
Select this check box to specify a punctured input code. The field, Punctured code,
appears.

Puncture vector
Constant puncture pattern vector used at the transmitter (encoder). The puncture
vector is a pattern of 1s and 0s. The 0s indicate the punctured bits. When you select
Punctured code, the Punctured vector field appears.

Enable erasures input port
When you check this box, the decoder opens an input port labeled Era. Through this
port, you can specify an erasure vector pattern of 1s and 0s, where the 1s indicate the
erased bits.

For these erasures in the incoming data stream, the decoder does not update the
branch metric. The widths and the sample times of the erasure and the input data
ports must be the same. The erasure input port can be of data type double or
Boolean.

Decision type
Specifies the use of Unquantized, Hard Decision, or Soft Decision for the
branch metric calculation.

• Unquantized decision uses the Euclidean distance to calculate the branch
metrics.

• Soft Decision and Hard Decision use the Hamming distance to calculate the
branch metrics, where Number of soft decision bits equals 1.

 Viterbi Decoder

3-1123

Number of soft decision bits
The number of soft decision bits to represent each input. This field is active only when
Decision type is set to Soft Decision.

Error if quantized input values are out of range
Select this check box to throw an error when quantized input values are out of range.
This check box is active only when Decision type is set to Soft Decision or Hard
Decision.

Traceback depth
The number of trellis branches to construct each traceback path.

Operation mode
Method for transitioning between successive input frames: Continuous,
Terminated, and Truncated.

Note When this block outputs sequences that vary in length during simulation and
you set the Operation mode to Truncated or Terminated, the block's state resets
at every input time step.

Enable reset input port
When you check this box, the decoder opens an input port labeled Rst. Providing a
nonzero input value to this port causes the block to set its internal memory to the
initial state before processing the input data.

Delay reset action to next time step
When you select this option, the Viterbi Decoder block resets after decoding the
encoded data. This option is available only when you set Operation mode to
Continuous and select Enable reset input port. You must enable this option for
HDL support.

3 Blocks — Alphabetical List

3-1124

Output data type

The output signal's data type can be double, single, boolean, int8, uint8,
int16, uint16, int32, uint32, or set to 'Inherit via internal rule' or
'Smallest unsigned integer'.

When set to 'Smallest unsigned integer', the output data type is selected
based on the settings used in the Hardware Implementation pane of the
Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in the
Hardware Implementation pane, the output data type is ufix(1). For all other
selections, it is an unsigned integer with the smallest specified wordlength
corresponding to the char value (e.g., uint8).

 Viterbi Decoder

3-1125

When set to 'Inherit via internal rule' (the default setting), the block selects
double-typed outputs for double inputs, single-typed outputs for single inputs, and
behaves similarly to the 'Smallest unsigned integer' option for all other typed
inputs.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean for Hard decision mode
• 8-, 16-, and 32-bit signed integers (for Hard decision and Soft

decision modes)
• 8-, 16-, and 32-bit unsigned integers (for Hard decision and Soft

decision modes)
• ufix(n), where n represents the Number of soft decision bits

Output • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) for ASIC/FPGA mode

References
[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications,

New York, Plenum Press, 1981.

[2] Gitlin, R. D., J. F. Hayes, and S. B. Weinstein, Data Communications Principles, New
York, Plenum, 1992.

[3] Heller, J. A. and I. M. Jacobs, “Viterbi Decoding for Satellite and Space
Communication,” IEEE Transactions on Communication Technology, Vol. COM-19,
October 1971, pp 835–848.

3 Blocks — Alphabetical List

3-1126

[4] Yasuda, Y., et. al., “High-rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, Vol. COM-32, No. 3, pp 315–
319, March 1984.

[5] Haccoun, D., and Begin, G., “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, Vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[6] Begin, G., et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, Vol. 38,
No. 11, pp 1922–1928, Nov. 1990.

[7] Moision, B., “A Truncation Depth Rule of Thumb for Convolutional Codes,” Information
Theory and Applications Workshop, pp. 555–557, 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and
synthesized logic.

Note For decoding data encoded with truncated or terminated modes, or punctured
codes, use the Viterbi Decoder block from LTE HDL Toolbox™.

HDL Coder supports the following features of the Viterbi Decoder block:

• Non-recursive encoder/decoder with feed-forward trellis and simple shift register
generation configuration

• Continuous mode

 Viterbi Decoder

3-1127

• Sample-based input
• Decoder rates from 1/2 to 1/7
• Constraint length from 3 to 9

When Decision type is set to Soft decision, the HDL implementation of the Viterbi
Decoder block supports fixed-point inputs and output. For input, the fixed-point data type
must be ufixN. N is the number of soft-decision bits. Signed built-in data types (int8,
int16, int32) are not supported. For output, the HDL implementation of the Viterbi
Decoder block supports block-supported output data types.

When Decision type is set to Hard decision, the block supports input with data types
ufix1 and Boolean. For output, the HDL implementation of the Viterbi Decoder block
supports block-supported output data types. The HDL implementation of the Viterbi
Decoder block does not support double and single input data types. The block does not
support floating point output for fixed-point inputs.

The Viterbi Decoder block decodes every bit by tracing back through a traceback depth
that you define for the block. The block implements a complete traceback for each
decision bit, using registers to store the minimum state index and branch decision in the
traceback decoding unit. There are two methods to optimize the traceback logic: a
pipelined register-based implementation or a RAM-based architecture. See the “HDL
Code Generation for Viterbi Decoder” example.

Register-Based Traceback

You can specify that the traceback decoding unit be pipelined to improve the speed of the
generated circuit. You can add pipeline registers to the traceback unit by specifying the
number of traceback stages per pipeline register.

Using the TracebackStagesPerPipeline implementation parameter, you can balance
the circuit performance based on system requirements. A smaller parameter value
indicates the requirement to add more registers to increase the speed of the traceback
circuit. Increasing the parameter value results in fewer registers along with a decrease in
the circuit speed.

RAM-Based Traceback

Instead of using registers, you can choose to use RAMs to save the survivor branch
information. The coder does not support Enable reset input port when using RAM-
based traceback.

3 Blocks — Alphabetical List

3-1128

1 Right-click the block and open HDL Code > HDL Block Properties. Set the
Architecture property to RAM-based Traceback.

2 Double-click the block and set the Traceback depth on the Viterbi Decoder block
mask.

RAM-based traceback and register-based traceback differ in the following ways:

• The RAM-based implementation traces back through one set of data to find the initial
state to decode the previous set of data. The register-based implementation combines
the traceback and decode operations into one step. It uses the best state found from
the minimum operation as the decoding initial state.

• RAM-based implementation traces back through M samples, decodes the previous M
bits in reverse order, and releases one bit in order at each clock cycle. The register-
based implementation decodes one bit after a complete traceback.

Because of the differences in the two traceback algorithms, the RAM-based
implementation produces different numerical results than the register-based traceback. A
longer traceback depth, for example, 10 times the constraint length, is recommended in
the RAM-based traceback. This depth achieves a similar bit error rate (BER) as the
register-based implementation. The size of RAM required for the implementation depends
on the trellis and the traceback depth.

HDL Block Properties

ConstrainedOutput
Pipeline

Number of registers to place at the outputs by moving existing
delays within your design. Distributed pipelining does not
redistribute these registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move
these registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

TracebackStagesPe
rPipeline

See “Register-Based Traceback” on page 3-1128.

 Viterbi Decoder

3-1129

Restrictions

• Punctured code: Do not select this option. Punctured code requires frame-based
input, which HDL Coder does not support.

• Decision type: The coder does not support the Unquantized decision type.
• Error if quantized input values are out of range: The coder does not support this

option.
• Operation mode: The coder supports only the Continuous mode.
• Enable reset input port: When you enable both Enable reset input port and Delay

reset action to next time step, HDL support is provided. You must select
Continuous operation mode, and use register-based traceback.

• You cannot use the Viterbi Decoder block inside a Resettable Synchronous Subsystem.

See Also
Blocks
APP Decoder | Convolutional Encoder

Topics
“HDL Code Generation for Viterbi Decoder”

Introduced before R2006a

3 Blocks — Alphabetical List

3-1130

Walsh Code Generator
Generate Walsh code from orthogonal set of codes

Library
Sequence Generators sublibrary of Comm Sources

Description
Walsh codes are defined as a set of N codes, denoted Wj, for j = 0, 1, ... , N - 1, which have
the following properties:

• Wj takes on the values +1 and -1.
• Wj[0] = 1 for all j.
• Wj has exactly j zero crossings, for j = 0, 1, ... , N - 1.
•

W jWk
T =

0 j ≠ k
N j = k

• Each code Wj is either even or odd with respect to its midpoint.

Walsh codes are defined using a Hadamard matrix of order N. The Walsh Code Generator
block outputs a row of the Hadamard matrix specified by the Walsh code index, which
must be an integer in the range [0, ..., N - 1]. If you set Walsh code index equal to an
integer j, the output code has exactly j zero crossings, for j = 0, 1, ... , N - 1.

Note, however, that the indexing in the Walsh Code Generator block is different than the
indexing in the Hadamard Code Generator block. If you set the Walsh code index in the
Walsh Code Generator block and the Code index parameter in the Hadamard Code
Generator block, the two blocks output different codes.

 Walsh Code Generator

3-1131

Parameters
Code length

Integer scalar that is a power of 2 specifying the length of the output code.
Code index

Integer scalar in the range [0, 1, ... , N - 1], where N is the Code length, specifying
the number of zero crossings in the output code.

Sample time
The time between each sample of the output signal. Specify as a nonnegative real
scalar.

Samples per frame
The number of samples in one column of the output signal. If Samples per frame is
greater than the Code length, the code is cyclically repeated. Specify as a positive
integer scalar.

Note The time between output updates is equal to the product of Samples per
frame and Sample time. For example, if Sample time and Samples per frame
equal one, the block outputs a sample every second. If Samples per frame is
increased to 10, then a 10-by-1 vector is output every 10 seconds. This ensures that
the equivalent output rate is not dependent on the Samples per frame parameter.

Output data type
The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

3 Blocks — Alphabetical List

3-1132

See Also
Blocks
Hadamard Code Generator | OVSF Code Generator

Introduced before R2006a

 Walsh Code Generator

3-1133

Windowed Integrator
Integrate over time window of fixed length

Library
Comm Filters

Description
The Windowed Integrator block creates cumulative sums of the input signal values over a
sliding time window of fixed length. If the Integration period parameter is N and the
input samples are denoted by x(1), x(2), x(3),..., then the nth output sample is the sum of
the x(k) values for k between n-N+1 and n. In cases where n-N+1 is less than 1, the block
uses an initial condition of 0 to represent those samples.

Input and Output Signals
This block accepts scalar, column vector, and M-by-N matrix input signals. The block
filters an M-by-N input matrix as follows:

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats each column as a separate channel. In this mode, the block
creates N instances of the same filter, each with its own independent state buffer. Each
of the N filters process M input samples at every Simulink time step.

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats each element as a separate channel. In this mode,
the block creates M*N instances of the same filter, each with its own independent
state buffer. Each filter processes one input sample at every Simulink time step.

3 Blocks — Alphabetical List

3-1134

The output dimensions always equal those of the input signal. For information about the
data types each block port supports, see the “Supported Data Type” on page 3-1137 table
on this page.

Parameters
Integration period

The length of the interval of integration, measured in samples.
Input processing

Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding
mode when the result of a fixed-point calculation does not map exactly to a number
representable by the data type and scaling storing the result. The filter coefficients do
not obey this parameter; they always round to Nearest. For more information, see
“Rounding Modes” (DSP System Toolbox) or “Rounding Mode: Simplest” (Fixed-Point
Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
The block implementation uses a Direct-Form FIR filter with all tap weights set to
one. The Coefficients parameter controls which data type represents the taps (i.e.
ones) when the input data is a fixed-point signal.

Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” (DSP
System Toolbox) for illustrations depicting the use of the coefficient data types in this
block:

 Windowed Integrator

3-1135

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length of
the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to enter
separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on
integer overflow parameters; they are always saturated and rounded to
Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” (DSP System Toolbox) and
“Multiplication Data Types” (DSP System Toolbox) for illustrations depicting the use
of the accumulator data type in this block:

3 Blocks — Alphabetical List

3-1136

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

 Windowed Integrator

3-1137

Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Examples
If Integration period is 3 and the input signal is a ramp (1, 2, 3, 4,...), then some of the
sums that form the output of this block are as follows:

• 0+0+1 = 1
• 0+1+2 = 3
• 1+2+3 = 6
• 2+3+4 = 9
• 3+4+5 = 12
• 4+5+6 = 15
• etc.

The zeros in the first few sums represent initial conditions. With the Input processing
parameter set to Elements as channels, then the values 1, 3, 6,... are successive
values of the scalar output signal. With the Input processing parameter set to Columns
as channels, the values 1, 3, 6,... are organized into output frames that have the same
vector length as the input signal.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

3 Blocks — Alphabetical List

3-1138

See Also
Blocks
Discrete-Time Integrator | Integrate and Dump

Functions

Introduced before R2006a

 Windowed Integrator

3-1139

System Objects — Alphabetical List

4

comm.ACPR
Package: comm

Adjacent Channel Power Ratio measurements

Description
The ACPR System object measures adjacent channel power ratio (ACPR) of an input
signal.

To measure adjacent channel power:

1 Define and set up your adjacent channel power object. See “Construction” on page 4-
2.

2 Call step to measure the adjacent channel power ratio according to the properties of
comm.ACPR. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.ACPR creates a System object, H, that measures adjacent channel power ratio
(ACPR) of an input signal.

H = comm.ACPR(Name,Value) creates object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-2

Properties
NormalizedFrequency

Assume normalized frequency values

Specify whether the frequency values are normalized. If you set this property to true, the
object assumes that frequency values are normalized (in the [-1 1] range). The default is
false. If you set this property to false, the object assumes that frequency values are
measured in Hertz.

SampleRate

Sample rate of input signal

Specify the sample rate of the input signal, in samples per second, as a double-precision,
positive scalar. The default is 1e6 samples per second. This property applies when you set
the NormalizedFrequency property to false.

MainChannelFrequency

Main channel center frequency

Specify the main channel center frequency as a double-precision scalar. The default is 0
Hz.

When you set the NormalizedFrequency property to true, you must specify the center
frequency as a normalized value between -1 and 1.

When you set the NormalizedFrequency property to false, you must specify the center
frequency in Hertz. The object measures the main channel power in the bandwidth that
you specify in the MainMeasurementBandwidth property. This measurement is taken at
the center of the frequency that you specify in the MainMeasurementBandwidth
property.

MainMeasurementBandwidth

Main channel measurement bandwidth

Specify the main channel measurement bandwidth as a double-precision, positive scalar.
The default is 50e3 Hz.

 comm.ACPR

4-3

When you set the NormalizedFrequency property to true, you must specify the
measurement bandwidth as a normalized value between 0 and 1.

When you set the NormalizedFrequency property to false, you must specify the
measurement bandwidth in Hertz. The object measures the main channel power in the
bandwidth that you specify in the MainMeasurementBandwidth property. This
measurement is taken at the center of the frequency that you specify in the
MainChannelFrequency property.

AdjacentChannelOffset

Adjacent channel frequency offsets

Specify the adjacent channel offsets as a double-precision scalar or as a row vector
comprising frequencies that define the location of adjacent channels of interest. The
default is [-100e3 100e3] Hz.

When you set the NormalizedFrequency property to true, you must specify normalized
frequency offset values between -1 and 1. When you set the NormalizedFrequency
property to false, you must specify frequency offset values in Hertz. The offset values
indicate the distance between the main channel center frequency and adjacent channel
center frequencies. Positive offsets indicate adjacent channels to the right of the main
channel center frequency. Negative offsets indicate adjacent channels to the left of the
main channel center frequency.

AdjacentMeasurementBandwidth

Adjacent channel measurement bandwidths

Specify the measurement bandwidth for each adjacent channel. The default is the scalar,
50e3. The object assumes that each adjacent bandwidth is centered at the frequency
defined by the corresponding frequency offset. You define this offset in the
AdjacentChannelOffset property. Set this property to a double-precision scalar or row
vector of length equal to the number of specified offsets in the AdjacentChannelOffset
property.

When you set this property to a scalar, the object obtains all adjacent channel power
measurements within equal measurement bandwidths. When you set the
NormalizedFrequency property to true, you must specify normalized bandwidth values
between 0 and 1. When you set the NormalizedFrequency property to false, you must
specify the adjacent channel bandwidth values in Hertz.

4 System Objects — Alphabetical List

4-4

MeasurementFilterSource

Source of the measurement filter

Specify the measurement filter source as one of None | Property. The default is None.
When you set this property to None the object does not apply filtering to obtain ACPR
measurements. When you set this property to Property, the object applies a
measurement filter to the main channel before measuring the average power. Each of the
adjacent channel bands also receives a measurement filter . In this case, you specify the
measurement filter coefficients in the MeasurementFilter property.

MeasurementFilter

Measurement filter coefficients

Specify the measurement filter coefficients as a double-precision row vector containing
the coefficients of an FIR filter in descending order of powers of z. Center the response of
the filter at DC. The ACPR object automatically shifts and applies the filter response at
each of the main and adjacent channel center frequencies before obtaining the average
power measurements. The internal filter states persist and clear only when you call the
reset method. This property applies when you set the MeasurementFilterSource property
to Property. The default is 1, which is an all-pass filter that has no effect on the
measurements.

SpectralEstimation

Spectral estimation control

Specify the spectral estimation control as one of Auto | Specify frequency
resolution | Specify window parameters. The default is Auto.

When you set this property to Auto, the object obtains power measurements with a Welch
spectral estimator with zero-percent overlap, a Hamming window, and a segment length
equal to the length of the input data vector. In this setting, the spectral estimator set
should achieve the maximum frequency resolution attainable with the input data length.

When you set this property to Specify frequency resolution, you specify the
desired spectral frequency resolution, in normalized units or in Hertz, using the
FrequencyResolution property. In this setting, the object uses the value in the
FrequencyResolution property to automatically compute the size of the spectral
estimator data window.

 comm.ACPR

4-5

When you set this property to Specify window parameters, several spectral estimator
properties become available so that you can control the Welch spectral estimation
settings. These properties are: SegmentLength, OverlapPercentage, Window, and
SidelobeAttenuation. Sidelobe attenuation applies only when you set the Window property
to Chebyshev.

When you set this property to Specify window parameters, the
FrequencyResolution property does not apply, and you control the resolution using the
above properties.

SegmentLength

Segment length

Specify the segment length, in samples, for the spectral estimator as a numeric, positive,
integer scalar. The default is 64. The length of the segment allows you to make tradeoffs
between frequency resolution and variance in the spectral estimates. A long segment
length results in better resolution. A short segment length results in more averaging and
a decrease in variance. This property applies when you set the SpectralEstimation
property to Specify window parameters.

OverlapPercentage

Overlap percentage

Specify the percentage of overlap between each segment in the spectral estimator as a
double-precision scalar in the [0 100] interval. This property applies when you set the
SpectralEstimation property to Specify window parameters. The default is 0 percent.

Window

Window function

Specify a window function for the spectral estimator as one of Bartlett | Bartlett-
Hanning | Blackman | Blackman-Harris | Bohman | Chebyshev | Flat Top | Hamming
| Hann | Nuttall | Parzen | Rectangular | Triangular. The default is Hamming. A
Hamming window has 42.5dB of sidelobe attenuation. This attenuation may mask
spectral content below this value, relative to the peak spectral content. Choosing different
windows allows you to make tradeoffs between resolution and sidelobe attenuation. This
property applies when you set the SpectralEstimation property to Specify window
parameters.

4 System Objects — Alphabetical List

4-6

SidelobeAttenuation

Sidelobe attenuation for Chebyshev window

Specify the sidelobe attenuation, in decibels, for the Chebyshev window function as a
double-precision, nonnegative scalar. The default is 100 dB. This property applies when
you set the SpectralEstimation property to Specify window parameters and the
Window property to Chebyshev.

FrequencyResolution

Frequency resolution

Specify the frequency resolution of the spectral estimator as a double-precision scalar.
The default is 10625 Hz.

When you set the NormalizedFrequency property to true, you must specify the frequency
resolution as a normalized value between 0 and 1. When you set the
NormalizedFrequency property to false, you must specify the frequency resolution in
Hertz. The object uses the value in the FrequencyResolution property to calculate the size
of the data window used by the spectral estimator. This property applies when you set the
SpectralEstimation property to Specify frequency resolution.

FFTLength

FFT length

Specify the FFT length that the Welch spectral estimator uses as one of Next power of
2 | Same as segment length | Custom. The default is Next power of 2.

When you set this property to Custom, the CustomFFTLength property becomes available
to specify the desired FFT length.

When you set this property to Next power of 2, the object sets the length of the FFT to
the next power of 2. This length is greater than the spectral estimator segment length or
256, whichever is greater.

When you set this property to Same as segment length, the object sets the length of
the FFT. This length equals the spectral estimator segment length or 256, whichever is
greater.

 comm.ACPR

4-7

CustomFFTLength

Custom FFT length

Specify the number of FFT points that the spectral estimator uses as a numeric, positive,
integer scalar. This property applies when you set the FFTLength property to Custom.
The default is 256.

MaxHold

Max-hold setting control

Specify the maximum hold setting. The default is false.

When you set this property to true, the object compares two vectors. One vector
compared is the current estimated power spectral density vector (obtained with the
current input data frame). The object checks this vector against the previous maximum-
hold accumulated power spectral density vector, (obtained at the previous call to the
step method). The object stores the maximum values at each frequency bin and uses
them to compute average power measurements. You clear the maximum-hold spectrum by
calling the reset method on the object. When you set this property to false, the object
obtains power measurements using instantaneous power spectral density estimates. This
property is tunable.

PowerUnits

Power units

Specify power measurement units as one of dBm | dBW | Watts. The default is dBm.

When you set this property to dBm, or dBW, the step method outputs ACPR
measurements in a dBc scale (adjacent channel power referenced to main channels
power). If you set this property to Watts, the step method outputs ACPR measurements
in a linear scale.

MainChannelPowerOutputPort

Enable main channel power measurement output

When you set this property to true, the step method outputs the main channel power
measurement. The default is false. The main channel power is the power of the input
signal measured in the band that you define with the MainChannelFrequency and

4 System Objects — Alphabetical List

4-8

MainMeasurementBandwidth properties. The step method returns power measurements
in the units that you specify in the PowerUnits property.

AdjacentChannelPowerOutputPort

Enable adjacent channel power measurements output

When you set this property to true, the step method outputs a vector of adjacent
channel power measurements. The default is false. The adjacent channel powers
correspond to the input signal's power measured in the bands that you define with the
AdjacentChannelOffset and AdjacentMeasurementBandwidth properties. The step
method returns power measurements in the units that you specify in the PowerUnits
property.

Methods
reset Reset states of ACPR measurement object
step Adjacent Channel Power Ratio measurements

Common to All System Objects
release Allow System object property value changes

Examples

Measure ACPR of a 16-QAM signal with symbol rate of 3.84 Msps

Generate data with an alphabet size of 16 and modulate the data

x = randi([0 15],5000,1);
y = qammod(x,16);

Upsample the data by L = 8 using a rectangular pulse shape

L = 8;
yPulse = rectpulse(y,L);

Create an ACPR measurement object and measure the modulated signal

 comm.ACPR

4-9

acpr = comm.ACPR(...
 'SampleRate', 3.84e6*8,...
 'MainChannelFrequency', 0,...
 'MainMeasurementBandwidth', 3.84e6,...
 'AdjacentChannelOffset', [-5e6 5e6],...
 'AdjacentMeasurementBandwidth', 3.84e6,...
 'MainChannelPowerOutputPort', true,...
 'AdjacentChannelPowerOutputPort', true);
[ACPR,mainChnlPwr,adjChnlPwr] = acpr(yPulse)

ACPR = 1×2

 -14.3659 -14.3681

mainChnlPwr = 38.8668

adjChnlPwr = 1×2

 24.5010 24.4988

Algorithms

Note The following conditions must be true, otherwise power measurements fall out of
the Nyquist interval.

MainChannelFreq ± MainChannelMeasBW
2 < Fmax

(MainChannelFreq + Ad jChannelOf f set) ± Ad jChannelMeasBW
2 < Fmax

Fmax = Fs/2 if NormalizedFrequency = false

Fmax = 1 if NormalizedFrequency = true

4 System Objects — Alphabetical List

4-10

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation. Does not support code generation for standalone
applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CCDF | comm.EVM | comm.MER

Introduced in R2012a

 comm.ACPR

4-11

reset
System object: comm.ACPR
Package: comm

Reset states of ACPR measurement object

Syntax
reset(H)

Description
reset(H) resets the states of the ACPR object, H.

4 System Objects — Alphabetical List

4-12

step
System object: comm.ACPR
Package: comm

Adjacent Channel Power Ratio measurements

Syntax
A = step(H,X)
[A,MAINPOW] = step(H,X)
[A,ADJPOW] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

A = step(H,X) returns a vector of the adjacent channel power ratio, A, measured in the
input data, X. The measurements are at the frequency bands that you specify with the
MainChannelFrequency, MainMeasurementBandwidth, AdjacentChannelOffset,
and AdjacentMeasurementBandwidth properties. Input X must be a double precision
column vector. The length of the output vector, A, equals the number of adjacent channels
that you specify in the AdjacentChannelOffset property.

[A,MAINPOW] = step(H,X) returns the measured main channel power, MAINPOW, when
you set the MainChannelPowerOutputPort property to true. The step method outputs
the main channel power measured within the main channel frequency band of interest
that you specify with the MainChannelFrequency and MainMeasurementBandwidth
properties.

[A,ADJPOW] = step(H,X) returns a vector of the measured adjacent channel powers,
ADJPOW, when you set the AdjacentChannelPowerOutputPort property to true. The

 step

4-13

adjacent channel powers are measured at the adjacent frequency bands of interest that
you specify with the AdjacentChannelOffset and AdjacentMeasurementBandwidth
properties. The length of the output vector, ADJPOW, equals the length of the vector that
you specify in the AdjacentChannelOffset property. You can combine optional output
arguments when you set their enabling properties. Optional outputs must be listed in the
same order as the order of the enabling properties. For example,

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-14

comm.AGC
Package: comm

Adaptively adjust gain for constant signal-level output

Description
The comm.AGC System object creates an automatic gain controller (AGC) that adaptively
adjusts its gain to achieve a constant signal level at the output.

To adaptively adjust gain for constant signal-level output:

1 Define and set up your automatic gain controller object. See “Construction” on page
4-15.

2 Call step to adaptively adjust gain and achieve a constant signal level at the output
according to the properties of comm.AGC. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.AGC creates an AGC System object, H, that adaptively adjusts its gain to
achieve a constant signal level at the output.

H = comm.AGC(Name,Value) creates an AGC object, H, with the specified property
Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

 comm.AGC

4-15

Properties
AdaptationStepSize

Step size for gain updates

Specify the step size as a real positive scalar. The default is 0.01. Increasing the step size
permits the AGC to respond more quickly to changes in the input signal level but
increases variation in the output signal level during steady-state operation.

DesiredOutputPower

Target output power level

Specify the desired output power level as a real positive scalar. The power is measured in
Watts referenced to 1 ohm. The default is 1.

AveragingLength

Length of the averaging window

Specify the length of the averaging window in samples as a positive integer scalar. The
default is 100.

Note If you use the AGC with higher-order QAM signals, inspect the scatter plot at the
output of the AGC during steady-state operation and increase the averaging length if you
see frequent gain adjustments. An increase in AveragingLength reduces execution
speed.

MaxPowerGain

Maximum power gain in decibels

Specify the maximum gain of the AGC in decibels as a positive scalar. The default is 60.

Large gain adjustments can cause clipping when a small input signal power suddenly
increases. Use MaxPowerGain to avoid large gain adjustments by limiting the gain that
the AGC applies to the input signal.

4 System Objects — Alphabetical List

4-16

Methods
reset Reset internal states of automatic gain controller
step Apply adaptive gain to input signal

Common to All System Objects
release Allow System object property value changes

Examples
Vary AGC Averaging Length

Apply different AGC averaging lengths to QAM modulated signals. Compare the variance
and plot of the signals after AGC is applied.

Initialize three AGC System objects with average window length set to 10, 100, and 1000
samples.

agc1 = comm.AGC('AveragingLength',10);
agc2 = comm.AGC('AveragingLength',100);
agc3 = comm.AGC('AveragingLength',1000);

Generate M-QAM modulated and raised cosine pulse shaped packetized data.

M = 16;
d = randi([0 M-1],1000,1);
s = qammod(d,M);
x = 0.1*s;
pulseShaper = comm.RaisedCosineTransmitFilter;
y = awgn(pulseShaper(x),inf);

Apply AGC.

r1 = agc1(y);
r2 = agc2(y);
r3 = agc3(y);

Plot and compare the signals.

figure(1)
subplot(4,1,1)

 comm.AGC

4-17

plot(abs(y))
title('AGC input')
subplot(4,1,2)
plot(abs(r1))
axis([0 8000 0 10])
title('AGC output (AveragingLength = 10 samples)')
text(4000, 5, sprintf('Variance = %f',var(r1(3000:end))))
subplot(4,1,3)
plot(abs(r2))
axis([0 8000 0 10])
title('AGC output (AveragingLength = 100 sample)')
text(4000, 5, sprintf('Variance = %f',var(r2(3000:end))))
subplot(4,1,4)
plot(abs(r3))
axis([0 8000 0 10])
title('AGC output (AveragingLength = 1000 samples)')
text(4000, 5, sprintf('Variance = %f',var(r3(3000:end))))

4 System Objects — Alphabetical List

4-18

As the averaging length increases the variance at the output of the AGC decreases.

Vary AGC Maximum Gain

Apply different AGC maximum gain level to QPSK modulated signals. With the maximum
gain too small the signal after AGC will not reach desired amplitude. With the maximum
gain too large the signal after AGC will overshoot and can saturate resulting in signal loss
at the start of received packets. With the maximum gain at the optimal level, the signal
after AGC reaches the desired amplitude without signal loss due to saturation. Compare
the plot of the signals after AGC is applied.

Initialize three AGC System objects with maximum gain values set to 10 dB, 20 dB, and
30 dB.

 comm.AGC

4-19

agc1 = comm.AGC('MaxPowerGain', 10);
agc2 = comm.AGC('MaxPowerGain', 20);
agc3 = comm.AGC('MaxPowerGain', 30);

Generate QPSK modulated and raised cosine pulse shaped packetized data.

M = 4;
pktLen = 10000;
d = randi([0 M-1],pktLen,1);
s = pskmod(d,M,pi/4);
x = repmat([zeros(pktLen,1); 0.3*s],3,1);
pulseShaper = comm.RaisedCosineTransmitFilter;
y = awgn(pulseShaper(x),50);

Apply AGC and plot.

r1 = agc1(y);
r2 = agc2(y);
r3 = agc3(y);

Plot and compare the signals.

figure(1)
subplot(4,1,1)
plot(abs(y))
title('AGC input')
subplot(4,1,2)
plot(abs(r1))
title('AGC output (MaxPowerGain = 10 dB)')
subplot(4,1,3)
plot(abs(r2))
title('AGC output (MaxPowerGain = 20 dB)')
subplot(4,1,4)
plot(abs(r3))
title('AGC output (MaxPowerGain = 30 dB)')

4 System Objects — Alphabetical List

4-20

This plot compares the signal input to AGC and output from AGC with various maximum
gain levels. With the maximum gain set to 10dB, the AGC output cannot reach the desired
output power level. With the maximum gain set to 20dB, the AGC output reaches the
desired level without saturating. With the maximum gain set to 30dB, the AGC output
overshoots risking signal saturation and data loss. Between packets there is only noise in
the input signal.

As shown in the plots, with packet transmissions there may be extended periods when no
data is received. This results in AGC increasing to the maximum gain setting. If a packet
arrives when the AGC gain is too high, the output power overshoots until the AGC can
respond to the change in the input power level and reduce its gain.

 comm.AGC

4-21

Vary AGC Step Size

Apply different AGC step sizes to QPSK modulated signals. Compare the signals after AGC
is applied.

Initialize three AGC System objects with step sizes set to 1e-1, 1e-3, and 1e-4.

agc1 = comm.AGC('AdaptationStepSize',1e-1);
agc2 = comm.AGC('AdaptationStepSize',1e-3);
agc3 = comm.AGC('AdaptationStepSize',1e-4);

Generate QPSK modulated data with raised cosine pulse shaping.

d = randi([0 3],500,1);
s = pskmod(d,4,pi/4);
x = 0.1*s;
pulseShaper = comm.RaisedCosineTransmitFilter;
y = pulseShaper(x);

Apply AGC.

r1 = agc1(y);
r2 = agc2(y);
r3 = agc3(y);

Plot the signal input to AGC and output after various AGC step sizes.

figure
subplot(4,1,1)
plot(abs(y))
title('AGC input')
subplot(4,1,2)
plot(abs(r1))
title('AGC output (AdaptionStepSize = 1e-1)')
subplot(4,1,3)
plot(abs(r2))
title('AGC output (AdaptionStepSize = 1e-3)')
subplot(4,1,4)
plot(abs(r3))
title('AGC output (AdaptionStepSize = 1e-4)')

4 System Objects — Alphabetical List

4-22

With the step size set to 1e-1, the AGC output overshoot but converges very quickly. With
the step size set to 1e-3, the AGC output overshoot disappears and the AGC converges
smoothly but more slowly. With the maximum gain set to 1e-4, the AGC takes a very long
time to converge.

Adaptively Adjust Received Signal Amplitude Using AGC

Modulate and amplify a QPSK signal. Set the received signal amplitude to approximately
1 volt using an AGC. Then plot the output.

Create a QPSK modulated signal using the QPSK System object.

 comm.AGC

4-23

data = randi([0 3],1000,1);
qpsk = comm.QPSKModulator;
modData = qpsk(data);

Attenuate the modulated signal.

txSig = 0.1*modData;

Create an AGC System object™ and pass the transmitted signal through it using the step
function. The AGC adjusts the received signal power to approximately 1 W.

agc = comm.AGC;
rxSig = agc(txSig);

Plot the signal constellations of the transmit and received signals after the AGC reaches
steady-state.

h = scatterplot(txSig(200:end),1,0,'*');
hold on
scatterplot(rxSig(200:end),1,0,'or',h);
legend('Input of AGC', 'Output of AGC')

4 System Objects — Alphabetical List

4-24

Measure and compare the power of the transmitted and received signals after the AGC
reaches a steady state. The power of the transmitted signal is 100 times smaller than the
power of the received signal.

txPower = var(txSig(200:end));
rxPower = var(rxSig(200:end));
[txPower rxPower]

ans = 1×2

 0.0100 0.9970

 comm.AGC

4-25

Plot Effect of Step Size on AGC Performance

Create two AGC System objects™ to adjust the level of the received signal using two
different step sizes with identical update periods.

Generate an 8-PSK signal having power equal to 10 W.

data = randi([0 7],200,1);
modData = sqrt(10)*pskmod(data,8,pi/8,'gray');

Create a pair of raised cosine matched filters with their Gain property set so that they
have unity output power.

txfilter = comm.RaisedCosineTransmitFilter('Gain',sqrt(8));
rxfilter = comm.RaisedCosineReceiveFilter('Gain',sqrt(1/8));

Filter the modulated signal through the raised cosine transmit filter object.

txSig = txfilter(modData);

Create two AGC objects to adjust the received signal level. Select a step size of 0.01 and
0.1, respectively. Set the update period to 10.

agc1 = comm.AGC('AdaptationStepSize',0.01);
agc2 = comm.AGC('AdaptationStepSize',0.1);

Pass the modulated signal through the two AGC objects.

agcOut1 = agc1(txSig);
agcOut2 = agc2(txSig);

Filter the AGC output signals by using the raised cosine receive filter object.

rxSig1 = rxfilter(agcOut1);
rxSig2 = rxfilter(agcOut2);

Plot the power of the filtered AGC responses while accounting for the 10 symbol delay
through the transmit-receive filter pair.

plot([abs(rxSig1(11:110)).^2 abs(rxSig2(11:110)).^2])
grid on
xlabel('Symbols')
ylabel('Power (W)')
legend('Step Size 0.01','Step Size 0.1')

4 System Objects — Alphabetical List

4-26

The signal with the larger step size converges faster to the AGC target power level of 1 W.

Plot the power of the steady-state filtered AGC signals by including only the last 100
symbols.

plot((101:200),[abs(rxSig1(101:200)).^2 abs(rxSig2(101:200)).^2])
grid on
xlabel('Symbols')
ylabel('Power (W)')
legend('Step Size 0.01','Step Size 0.1')

 comm.AGC

4-27

The larger AGC step size results in less accurate gain correction.

The reduced accuracy suggests a trade off with the AdaptationStepSize property.
Larger values result in faster convergence at the expense of less accurate gain control.

Demonstrate Effect of Maximum AGC Gain on Packet Data

Pass attenuated QPSK packet data to two AGCs having different maximum gains. Then
display the results.

4 System Objects — Alphabetical List

4-28

Create two, 200-symbol QSPK data packets. Transmit the packets over a 1200-symbol
frame.

modData1 = pskmod(randi([0 3],200,1),4,pi/4);
modData2 = pskmod(randi([0 3],200,1),4,pi/4);
txSig = [modData1; zeros(400,1); modData2; zeros(400,1)];

Attenuate the transmitted burst signal by 20 dB and plot its power.

rxSig = 0.1*txSig;
rxSigPwr = abs(rxSig).^2;
plot(rxSigPwr)
grid
xlabel('Symbols')
ylabel('Power (W)')

 comm.AGC

4-29

Create two AGCs, where agc1 has a maximum power gain of 30 dB and agc2 has a
maximum power gain of 24 dB.

agc1 = comm.AGC('MaxPowerGain',30, ...
 'AdaptationStepSize',0.02);

agc2 = comm.AGC('MaxPowerGain',24, ...
 'AdaptationStepSize',0.02);

Pass the attenuated signal through the AGCs and calculate the output power.

rxAGC1 = agc1(rxSig);
rxAGC2 = agc2(rxSig);

4 System Objects — Alphabetical List

4-30

pwrAGC1 = abs(rxAGC1).^2;
pwrAGC2 = abs(rxAGC2).^2;

Plot the output power.

plot([pwrAGC1 pwrAGC2])
legend('AGC1','AGC2')
grid
xlabel('Symbols')
ylabel('Power (W)')

Initially, for the second packet, the agc1 output signal power is too high because the AGC
applied its maximum gain during the period when no data was transmitted. The
corresponding agc2 output signal power does not overshoot the target power level of 1 W

 comm.AGC

4-31

by the same amount. It converges to the correct power more quickly due to its smaller
maximum gain.

Algorithms
Logarithmic Loop AGC
For the logarithmic loop AGC, the output signal is the product of the input signal and the
exponential of the loop gain. The error signal is the difference between the reference
level and the product of the logarithm of the detector output and the exponential of the
loop gain. After multiplying by the step size, the AGC passes the error signal to an
integrator.

The logarithmic loop AGC provides good performance for a variety of signal types,
including amplitude modulation. Unlike the previous AGC (R2015a and earlier), the
detector is applied to the input signal, which results in faster convergence times and
increased signal power variation at the detector input. The larger variation is not a
problem for floating point systems. A block diagram of the algorithm is shown.

4 System Objects — Alphabetical List

4-32

Mathematically, the algorithm is summarized as

y(n) = x(n) ⋅ exp(g(n− 1))
z(n) = D(x(n)) ⋅ exp(2g(n− 1))
e(n) = A− ln(z(n))
g(n) = g(n− 1) + K ⋅ e(n),

where

• x represents the input signal.
• y represents the output signal.
• g represents the loop gain.
• D(•) represents the detector function.
• z represents the detector output.
• A represents the reference value.
• e represents the error signal.
• K represents the step size.

AGC Detector
The AGC detector output, z, computes a square law detector:

z(m) = 1
N∑n = mN

(m + 1)N − 1 y(n) 2 ,

where N represents the update period.

AGC Performance Criteria
• Attack time — The duration it takes the AGC to respond to an increase in the input

amplitude.
• Decay time — The duration it takes the AGC to respond to a decrease in the input

amplitude.
• Gain pumping — The variation in the gain value during steady-state operation.

Increasing the step size decreases the attack time and decay times, but it also increases
gain pumping.

 comm.AGC

4-33

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
AGC

Introduced in R2013a

4 System Objects — Alphabetical List

4-34

reset
System object: comm.AGC
Package: comm

Reset internal states of automatic gain controller

Syntax
reset(H)

Description
reset(H) resets the filter states of the automatic gain controller filter object, H, to their
initial values.

 reset

4-35

step
System object: comm.AGC
Package: comm

Apply adaptive gain to input signal

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) applies an adaptive gain to the input signal X, to achieve a reference
signal level at the output, Y. You must specify X as a double-precision or single-precision
column vector. The AGC object uses a square law detector to determine the output signal
level.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-36

comm.AlgebraicDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols using algebraically derived permutation
vector

Compatibility
comm.AlgebraicDeinterleaver will be removed in a future release. Use algdeintrlv
instead. For more information, see “Compatibility Considerations” on page 4-41.

Description
The AlgebraicDeinterleaver object restores the original ordering of a sequence that
was interleaved using the AlgebraicInterleaver object. In typical usage, the
properties of the two objects have the same values.

To deinterleave input symbols using an algebraically derived permutation vector:

1 Define and set up your algebraic deinterleaver object. See “Construction” on page 4-
38.

2 Call step to deinterleave the input symbols according to the properties of
comm.AlgebraicDeinterleaver. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

 comm.AlgebraicDeinterleaver

4-37

Construction
H = comm.AlgebraicDeinterleaver creates a deinterleaver System object, H. This
object restores the original ordering of a sequence from the corresponding algebraic
interleaver object.

H = comm.AlgebraicDeinterleaver(Name,Value) creates an Algebraic
deinterleaver System object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
Method

Algebraic method to generate permutation vector

Specify the algebraic method as one of Takeshita-Costello| Welch-Costas. The
default is Takeshita-Costello. The algebraic interleaver performs all computations in
modulo N, where N equals the length you set in the Length property.

For the Welch-Costas method, the value of (N+1) must be a prime number, where N
equals the value you specify in the Length property. You must set the PrimitiveElement
property to an integer, A, between 1 and N. This integer represents a primitive element of
the finite field GF(N+1).

For the Takeshita-Costello method, you must set the Length property to a value
equal to 2m, for any integer m. You must also set the MultiplicativeFactor property to an
odd integer that is less than the value of the Length property. The CyclicShift property
requires a nonnegative integer which is less than the value of the Length property. The
Takeshita-Costello interleaver method uses a cycle vector of length N, which you
specify in the Length property. The cycle vector calculation uses the equation,
mod(k × (n− 1) × n

2, N)+1, for any integer n, between 1 and N. The object creates an
intermediate permutation function using the relationship, P(c(n)) = c(n+1). You can shift
the elements of the intermediate permutation vector to the left by the amount specified by
the CyclicShift property. Doing so produces the interleaver's actual permutation
vector.

4 System Objects — Alphabetical List

4-38

Length

Number of elements in input vector

Specify the number of elements in the input as a positive, integer, scalar. When you set
the Method property to Welch-Costas, then the value of Length+1 must equal a prime
number. When you set the Method property to Takeshita-Costello, then the value of
the Length property requires a power of two. The default is 256.

MultiplicativeFactor

Cycle vector computation factor

Specify the factor the object uses to compute the interleaver's cycle vector as a positive,
integer, scalar. This property applies when you set the Method property to Takeshita-
Costello. The default is 13.

CyclicShift

Amount of cyclic shift

Specify the amount by which the object shifts indices, when the object creates the final
permutation vector, as a nonnegative, integer, scalar. The default is 0. This property
applies when you set the Method property to Takeshita-Costello.

PrimitiveElement

Primitive element

Specify the primitive element as an element of order N in the finite field GF(N+1). N is
the value you specify in the Length on page 4-0 property. You can express every
nonzero element of GF(N+1) as the value of the PrimitiveElement property raised to
some integer power. In a Welch-Costas interleaver, the permutation maps the integer k to
mod(Ak,N+1)‐1, where A represents the value of the PrimitiveElement property. This
property applies when you set the Method property to Welch-Costas. The default is 6.

Methods
step (To be removed) Deinterleave input symbols using algebraically derived

permutation vector

 comm.AlgebraicDeinterleaver

4-39

Common to All System Objects
release Allow System object property value changes

Examples

Algebraic Interleaving and Deinterleaving

Create algebraic interleaver and deinterleaver objects having a length of 16.

interleaver = comm.AlgebraicInterleaver('Length',16);

Warning: COMM.ALGEBRAICINTERLEAVER will be removed in a future release. Use ALGINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.AlgebraicDeinterleaver('Length',16);

Warning: COMM.ALGEBRAICDEINTERLEAVER will be removed in a future release. Use ALGDEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Generate 8-ary data. Interleave and deinterleave the data.

data = randi([0 7],16,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Compare the original, interleaved, and deinterleaved data.

[data,intData,deIntData]

ans = 16×3

 6 3 6
 7 7 7
 1 7 1
 7 7 7
 5 7 5
 0 7 0
 2 1 2
 4 6 4
 7 6 7
 7 7 7
 ⋮

4 System Objects — Alphabetical List

4-40

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Algebraic
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.AlgebraicDeinterleaver will be removed
Not recommended starting in R2019b

comm.AlgebraicDeinterleaver will be removed in a future release. Use algdeintrlv
instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.AlgebraicDeinterleaver

4-41

See Also
Functions
algdeintrlv | algintrlv | deintrlv | intrlv

Introduced in R2012a

4 System Objects — Alphabetical List

4-42

step
System object: comm.AlgebraicDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols using algebraically derived permutation
vector

Compatibility
step will be removed in a future release. Use algdeintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using an algebraic interleaver. An algebraically derived permutation vector based on the
algebraic method you specify in the Method property forms the base of the output, Y. X
must be a column vector of length specified by the Length property. X can be numeric,
logical, or fixed-point (fi objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-43

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-44

comm.AlgebraicInterleaver
Package: comm

(To be removed) Permute input symbols using algebraically derived permutation vector

Compatibility
comm.AlgebraicInterleaver will be removed in a future release. Use algintrlv instead.
For more information, see “Compatibility Considerations” on page 4-49.

Description
The AlgebraicInterleaver object rearranges the elements of its input vector using an
algebraically derived permutation.

To interleave input symbols using an algebraically derived permutation vector:

1 Define and set up your algebraic interleaver object. See “Construction” on page 4-
45.

2 Call step to interleave the input symbols according to the properties of
comm.AlgebraicInterleaver. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.AlgebraicInterleaver creates an interleaver System object, H, that
permutes the symbols in the input signal. This permutation is based on an algebraically
derived permutation vector.

 comm.AlgebraicInterleaver

4-45

H = comm.AlgebraicInterleaver(Name,Value) creates an algebraic interleaver
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Method

Algebraic method to generate permutation vector

Algebraic method to generate permutation vector

Specify the algebraic method as one of Takeshita-Costello| Welch-Costas. The
default is Takeshita-Costello. The algebraic interleaver performs all computations in
modulo N, where N is the length you set in the Length property.

For the Welch-Costas method, the value of (N+1) must be a prime number, where N is
the value you specify in the Length property. You must set the PrimitiveElement property
to an integer, A, between 1 and N. This integer represents a primitive element of the finite
field GF(N+1).

For the Takeshita-Costello method, you must set the Length property to a value
equal to 2m, for any integer m. You must also set the MultiplicativeFactor property
to an odd integer which is less than the value of the Length property. In addition, you
must set the CyclicShift property to a nonnegative integer which is less than the value of
the Length property. The Takeshita-Costello interleaver method uses a cycle vector
of length N, which you specify in the Length property. The cycle vector calculation uses
the equation, mod(k × (n− 1) × n

2, N)+1, for any integer n, between 1 and N. The object
creates an intermediate permutation function using the relationship, P(c(n)) = c(n+1).
You can shift the elements of the intermediate permutation vector to the left by the
amount specified by the CyclicShift property. Doing so produces the actual
permutation vector of the interleaver.

Length

Number of elements in input vector

Specify the number of elements in the input as a positive, integer, scalar. When you set
the Method property to Welch-Costas, then the value of Length+1 must equal a prime

4 System Objects — Alphabetical List

4-46

number. When you set the Method property to Takeshita-Costello, then the value of
the Length property requires a power of two. The default is 256.

MultiplicativeFactor

Cycle vector computation method

Specify the factor the object uses to compute the cycle vector for the interleaver as a
positive, integer, scalar. This property applies when you set the Method on page 4-0
property to Takeshita-Costello. The default is 13.

CyclicShift

Amount of cyclic shift

Specify the amount by which the object shifts indices, when it creates the final
permutation vector, as a nonnegative, integer, scalar. This property applies when you set
the Method on page 4-0 property to Takeshita-Costello. The default is 0.

PrimitiveElement

Primitive element

Specify the primitive element as an element of order N in the finite field GF(N+1). N is
the value you specify in the Length property. You can express every nonzero element of
GF(N+1) as the value of the PrimitiveElement property raised to an integer power. In
a Welch-Costas interleaver, the permutation maps the integer k to mod(Ak,N+1)‐1, where
A represents the value of the PrimitiveElement property. This property applies when
you set the Method property to Welch-Costas. The default is 6.

Methods

step (To be removed) Permute input symbols using an algebraically derived permutation
vector

Common to All System Objects
release Allow System object property value changes

 comm.AlgebraicInterleaver

4-47

Examples

Algebraic Interleaving and Deinterleaving

Create algebraic interleaver and deinterleaver objects having a length of 16.

interleaver = comm.AlgebraicInterleaver('Length',16);

Warning: COMM.ALGEBRAICINTERLEAVER will be removed in a future release. Use ALGINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.AlgebraicDeinterleaver('Length',16);

Warning: COMM.ALGEBRAICDEINTERLEAVER will be removed in a future release. Use ALGDEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Generate 8-ary data. Interleave and deinterleave the data.

data = randi([0 7],16,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Compare the original, interleaved, and deinterleaved data.

[data,intData,deIntData]

ans = 16×3

 6 3 6
 7 7 7
 1 7 1
 7 7 7
 5 7 5
 0 7 0
 2 1 2
 4 6 4
 7 6 7
 7 7 7
 ⋮

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

4 System Objects — Alphabetical List

4-48

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Algebraic
Interleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.AlgebraicInterleaver will be removed
Not recommended starting in R2019b

comm.AlgebraicInterleaver will be removed in a future release. Use algintrlv instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
algdeintrlv | algintrlv | deintrlv | intrlv

 comm.AlgebraicInterleaver

4-49

Introduced in R2012a

4 System Objects — Alphabetical List

4-50

step
System object: comm.AlgebraicInterleaver
Package: comm

(To be removed) Permute input symbols using an algebraically derived permutation vector

Compatibility
step will be removed in a future release. Use algintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
object uses an algebraically derived permutation vector, based on the algebraic method
you specify in the Method property, to form the output. The input X must be a column
vector of length specified by the Length property. X can be numeric, logical, or fixed-point
(fi objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

 step

4-51

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-52

comm.APPDecoder
Package: comm

Decode convolutional code using the a posteriori probability method

Description
The APPDecoder object performs a posteriori probability (APP) decoding of a
convolutional code.

To perform a posteriori probability (APP) decoding of a convolutional code:

1 Define and set up your a posteriori probability decoder object. See “Construction” on
page 4-53.

2 Call step to perform APP decoding according to the properties of
comm.APPDecoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.APPDecoder creates an a posteriori probability (APP) decoder System object,
H, that decodes a convolutional code using the APP method.

H = comm.APPDecoder(Name,Value) creates an APP decoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.APPDecoder(TRELLIS,Name,Value) creates an APP decoder object, H,
with the TrellisStructure property set to TRELLIS, and the other specified properties
set to the specified values.

 comm.APPDecoder

4-53

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. The default is the result of poly2trellis(7, [171 133], 171).
Use the istrellis function to check if a structure is a valid trellis structure.

TerminationMethod

Termination method of encoded frame

Specify how the encoded frame is terminated as one of Truncated | Terminated. The
default is Truncated. When you set this property to Truncated, the object assumes that
the encoder stops after encoding the last symbol in the input frame. When you set this
property to Terminated the object assumes that the encoder forces the trellis to end
each frame in the all-zeros state by encoding additional symbols. If you use the
comm.ConvolutionalEncoder System object to generate the encoded frame, the
TerminationMethod values of both encoder and decoder objects must match.

Algorithm

Decoding algorithm

Specify the decoding algorithm that the object uses as one of True APP | Max* | Max. The
default is Max*. When you set this property to True APP, the object implements true a
posteriori probability decoding. When you set the property to any other value, the object
uses approximations to increase the speed of the computations.

NumScalingBits

Number of scaling bits

Specify the number of bits the decoder uses to scale the input data to avoid losing
precision during the computations. The default is 3. The decoder multiplies the input by
2NumScalingBits and divides the pre-output by the same factor. This property must be a scalar
integer between 0 and 8. This property applies when you set the Algorithm property to
Max*.

4 System Objects — Alphabetical List

4-54

CodedBitLLROutputPort

Enable coded-bit LLR output

Set this property to false to disable the second output of the decoding step method. The
default is true.

Methods
reset Reset states of APP decoder object
step Decode convolutional code using the a posteriori probability method

Common to All System Objects
release Allow System object property value changes

Examples

Decode Convolutional Code Using the APP Decoder

This example shows how to use the APP decoder on a convolutionally encoded 8-PSK-
modulated bit stream transmitted through an AWGN channel.

Create convolutional encoder, PSK modulator, and AWGN channel System objects.

noiseVar = 2e-1;
frameLength = 300;
hConEnc = comm.ConvolutionalEncoder('TerminationMethod','Truncated');
hMod = comm.PSKModulator('BitInput',true,'PhaseOffset',0);
hChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'Variance',noiseVar);

Create convolutional decoder, PSK demodulator, and error rate System objects.

hAPPDec = comm.APPDecoder(...
 'TrellisStructure',poly2trellis(7,[171 133]), ...
 'Algorithm','True APP','CodedBitLLROutputPort',false);
hDemod = comm.PSKDemodulator('BitOutput',true,'PhaseOffset',0, ...
 'DecisionMethod','Approximate log-likelihood ratio', ...

 comm.APPDecoder

4-55

 'Variance',noiseVar);
hError = comm.ErrorRate;

Transmit a convolutionally encoded 8-PSK-modulated bit stream through an AWGN
channel. Demodulate the received signal using soft-decision. Decode the demodulated
signal using the APP decoder.

for counter = 1:5
 data = randi([0 1],frameLength,1);
 encodedData = step(hConEnc,data);
 modSignal = step(hMod,encodedData);
 receivedSignal = step(hChan,modSignal);
 demodSignal = step(hDemod,receivedSignal);
 % The APP decoder assumes a polarization of the soft inputs that is
 % inverse to that of the demodulator soft outputs. Change the sign of
 % demodulated signal.
 receivedSoftBits = step(hAPPDec,zeros(frameLength,1),-demodSignal);
 % Convert from soft-decision to hard-decision.
 receivedBits = double(receivedSoftBits > 0);
 % Count errors
 errorStats = step(hError,data,receivedBits);
end

Display the error rate information.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000000
Number of errors = 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the APP Decoder
block reference page. The object properties correspond to the block parameters.

4 System Objects — Alphabetical List

4-56

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalEncoder | comm.ViterbiDecoder | poly2trellis

Introduced in R2012a

 comm.APPDecoder

4-57

reset
System object: comm.APPDecoder
Package: comm

Reset states of APP decoder object

Syntax
reset(H)

Description
reset(H) resets the states of the APPDecoder object, H.

4 System Objects — Alphabetical List

4-58

step
System object: comm.APPDecoder
Package: comm

Decode convolutional code using the a posteriori probability method

Syntax
[LUD,LCD] = step(H,LU,LC)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[LUD,LCD] = step(H,LU,LC) performs APP decoding. The input LU is the sequence of
log-likelihoods of encoder input data bits. The input LC is the sequence of log-likelihoods
of encoded bits. Negative soft inputs are considered to be zeros and positive soft inputs
are considered to be ones. The outputs, LUD and LCD, are updated versions of the input
LU and LC sequences and are obtained based on information about the encoder. The
inputs must be of the same data type, which can be double or single precision. The output
data type is the same as the input data type. If the convolutional code uses an alphabet of
2^N symbols, the LC and LCD vector lengths are multiples of N. If the decoded data uses
an alphabet of 2^K output symbols, the LU and LUD vector lengths are multiples of K.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

4-59

nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-60

comm.AWGNChannel
Package: comm

Add white Gaussian noise to input signal

Description
comm.AWGNChannel adds white Gaussian noise to the input signal.

When applicable, if inputs to the object have a variable number of channels, the EbNo,
EsNo, SNR, BitsPerSymbol, SignalPower, SamplesPerSymbol, and Variance properties
must be scalars.

To add white Gaussian noise to an input signal:

1 Create the comm.AWGNChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
awgnchan = comm.AWGNChannel
awgnchan = comm.AWGNChannel(Name,Value)

Description
awgnchan = comm.AWGNChannel creates an additive white Gaussian noise (AWGN)
channel System object, awgnchan. This object then adds white Gaussian noise to a real or
complex input signal.

 comm.AWGNChannel

4-61

awgnchan = comm.AWGNChannel(Name,Value) creates a AWGN channel object,
awgnchan, with the specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

NoiseMethod — Noise level method
'Signal to noise ratio (Eb/No)' (default) | 'Signal to noise ratio (Es/
No)' | 'Signal to noise ratio (SNR)' | 'Variance'

Noise level method, specified as 'Signal to noise ratio (Eb/No)', 'Signal to
noise ratio (Es/No)', 'Signal to noise ratio (SNR)', or 'Variance'. For
more information, see Specifying the Variance Directly or Indirectly on page 4-82.
Data Types: char

EbNo — Ratio of energy per bit to noise power spectral density
10 (default) | scalar | row vector

Ratio of energy per bit to noise power spectral density (Eb/No) in decibels, specified as a
scalar or 1-by-NC vector. NC is the number of channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/
No)'.
Data Types: double

EsNo — Ratio of energy per symbol to noise power spectral density
10 (default) | scalar | row vector

4 System Objects — Alphabetical List

4-62

Ratio of energy per symbol to noise power spectral density (Es/No) in decibels, specified
as a scalar or 1-by-NC vector. NC is the number of channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Es/
No)'.
Data Types: double

SNR — Ratio of signal power to noise power
10 (default) | scalar | row vector

Ratio of signal power to noise power in decibels, specified as a scalar or 1-by-NC vector.
NC is the number of channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (SNR)'.
Data Types: double

BitsPerSymbol — Number of bits per symbol
1 (default) | positive integer

Number of bits per symbol, specified as a positive integer.

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/
No)'.
Data Types: double

SignalPower — Input signal power
1 (default) | positive scalar | row vector

Input signal power in watts, specified as a positive scalar or 1-by-NC vector. NC is the
number of channels. The object assumes a nominal impedance of 1 Ω.

Tunable: Yes

 comm.AWGNChannel

4-63

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/
No)', 'Signal to noise ratio (Es/No)', or 'Signal to noise ratio (SNR)'.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
1 (default) | positive integer | row vector

Number of samples per symbol, specified as a positive integer or 1-by-NC vector. NC is the
number of channels.
Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/
No)' or 'Signal to noise ratio (Es/No)'.
Data Types: double

VarianceSource — Source of noise variance
'Property' (default) | 'Input port'

Source of noise variance, specified as 'Property' or 'Input port'.

• Set VarianceSource to 'Property' to specify the noise variance value using the
Variance property.

• Set VarianceSource to 'Input port' to specify the noise variance value using an
input to the object, when you call it as a function.

For more information, see Specifying the Variance Directly or Indirectly on page 4-82.
Dependencies

This property applies when NoiseMethod is 'Variance'.
Data Types: char

Variance — White Gaussian noise variance
1 (default) | positive scalar | row vector

White Gaussian noise variance, specified as a positive scalar or 1-by-NC vector. NC is the
number of channels.

Tunable: Yes

4 System Objects — Alphabetical List

4-64

Dependencies

This property applies when NoiseMethod is set to 'Variance' and VarianceSource is set
to 'Property'.
Data Types: double

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

• When you set RandomStream to 'Global stream', the object uses the MATLAB
default random stream to generate random numbers. To generate reproducible
numbers using this object, you can reset the MATLAB default random stream. For
example reset(RandStream.getGlobalStream). For more information, see
RandStream.

• When you set RandomStream to 'mt19937ar with seed', the object uses the
mt19937ar algorithm for normally distributed random number generation. In this
scenario, when you call the reset function, the object reinitializes the random
number stream to the value of the Seed property. You can generate reproducible
numbers by resetting the object.

For a complex input signal, the object creates the random data as follows:

noise = randn(NS,NC)+1i(randn(NS,NC))

NS is the number of samples and NC is the number of channels.

Dependencies

This property applies when NoiseMethod is set to 'Variance'.
Data Types: char

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream, specified as a nonnegative integer.
For each call to the reset function, the object reinitializes the mt19937ar random
number stream to the Seed value.

 comm.AWGNChannel

4-65

Dependencies

This property applies when RandomStream is set to 'mt19937ar with seed'.
Data Types: double

Usage

Syntax
outsignal = awgnchan(insignal)
outsignal = awgnchan(insignal,var)

Description
outsignal = awgnchan(insignal) adds white Gaussian noise, as specified by
awgnchan, to the input signal. The result is returned in outsignal.

outsignal = awgnchan(insignal,var) specifies the variance of the white Gaussian
noise. This syntax applies when you set the NoiseMethod to 'Variance' and
VarianceSource to 'Input port'.

For example:

awgnchan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');
var = 12;
...
outsignal = awgnchan(insignal,var);

Input Arguments
insignal — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS-element vector, or an NS-by-NC matrix. NS is the
number of samples and NC is the number of channels.
Data Types: double
Complex Number Support: Yes

4 System Objects — Alphabetical List

4-66

var — Variance of additive white Gaussian noise
positive scalar | row vector

Variance of additive white Gaussian noise, specified as a positive scalar or 1-by-NC vector.
NC is the number of channels, as determined by the number of columns in the input signal
matrix.

Output Arguments
outsignal — Output signal
matrix

Output signal, returned with the same dimensions as insignal.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Create Default AWGN Channel System Object

Create an AWGN channel System object with the default configuration. Pass signal data
through this channel.

Create an AWGN channel object and signal data.

 comm.AWGNChannel

4-67

awgnchan = comm.AWGNChannel;
insignal = randi([0 1],100,1);

Send the input signal through the channel.

outsignal = awgnchan(insignal);

Add White Gaussian Noise to 8-PSK Signal

Modulate an 8-PSK signal, add white Gaussian noise, and plot the signal to observe the
effects of noise.

Create a PSK modulator System object™. The default modulation order for the PSK
modulator object is 8.

pskModulator = comm.PSKModulator;

Modulate the signal.

modData = pskModulator(randi([0 7],2000,1));

Add white Gaussian noise to the modulated signal by passing the signal through an
AWGN channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',3);

Transmit the signal through the AWGN channel.

channelOutput = channel(modData);

Plot the noiseless and noisy data using scatter plots to observe the effects of noise.

scatterplot(modData)

4 System Objects — Alphabetical List

4-68

scatterplot(channelOutput)

 comm.AWGNChannel

4-69

Change the EbNo property to 10 dB to increase the noise.

channel.EbNo = 10;

Pass the modulated data through the AWGN channel.

channelOutput = channel(modData);

Plot the channel output. You can see the effects of increased noise.

scatterplot(channelOutput)

4 System Objects — Alphabetical List

4-70

Process Signals When Number of Channels Changes

Pass a single-channel and multichannel signal through an AWGN channel System
object™.

Create an AWGN channel System object with the Eb/No ratio set for a single channel
input. In this case, the EbNo property is a scalar.

channel = comm.AWGNChannel('EbNo',15);

Generate random data and apply QPSK modulation.

 comm.AWGNChannel

4-71

data = randi([0 3],1000,1);
modData = pskmod(data,4,pi/4);

Pass the modulated data through the AWGN channel.

rxSig = channel(modData);

Plot the noisy constellation.

scatterplot(rxSig)

Generate two-channel input data and apply QPSK modulation.

data = randi([0 3],2000,2);
modData = pskmod(data,4,pi/4);

4 System Objects — Alphabetical List

4-72

Pass the modulated data through the AWGN channel.

rxSig = channel(modData);

Plot the noisy constellations. Each channel is represented as a single column in rxSig.
The plots are nearly identical, because the same Eb/No value is applied to both channels.

scatterplot(rxSig(:,1))
title('First Channel')

scatterplot(rxSig(:,2))
title('Second Channel')

 comm.AWGNChannel

4-73

Modify the AWGN channel object to apply a different Eb/No value to each channel. To
apply different values, set the EbNo property to a 1-by-2 vector. When changing the
dimension of the EbNo property, you must release the AWGN channel object.

release(channel)
channel.EbNo = [10 20];

Pass the data through the AWGN channel.

rxSig = channel(modData);

Plot the noisy constellations. The first channel has significantly more noise due to its
lower Eb/No value.

4 System Objects — Alphabetical List

4-74

scatterplot(rxSig(:,1))
title('First Channel')

scatterplot(rxSig(:,2))
title('Second Channel')

 comm.AWGNChannel

4-75

Add AWGN Using Noise Variance Input Port

Apply the noise variance input as a scalar or a row vector, with a length equal to the
number of channels of the current signal input.

Create an AWGN channel System object™ with the NoiseMethod property set to
'Variance' and the VarianceSource property set to 'Input port'.

channel = comm.AWGNChannel('NoiseMethod','Variance', ...
'VarianceSource','Input port');

Generate random data for two channels and apply 16-QAM modulation.

4 System Objects — Alphabetical List

4-76

data = randi([0 15],10000,2);
txSig = qammod(data,16);

Pass the modulated data through the AWGN channel. The AWGN channel object
processes data from two channels. The variance input is a 1-by-2 vector.

rxSig = channel(txSig,[0.01 0.1]);

Plot the constellation diagrams for the two channels. The second signal is noisier because
its variance is ten times larger.

scatterplot(rxSig(:,1))

scatterplot(rxSig(:,2))

 comm.AWGNChannel

4-77

Repeat the process where the noise variance input is a scalar. The same variance is
applied to both channels. The constellation diagrams are nearly identical.

rxSig = channel(txSig,0.2);
scatterplot(rxSig(:,1))

4 System Objects — Alphabetical List

4-78

scatterplot(rxSig(:,2))

 comm.AWGNChannel

4-79

Set Random Number Seed for Repeatability

Specify a seed to produce the same outputs when using a random stream in which you
specify the seed.

Create an AWGN channel System object™. Set the NoiseMethod property to
'Variance', the RandomStream property to 'mt19937ar with seed', and the Seed
property to 99.

channel = comm.AWGNChannel(...
 'NoiseMethod','Variance', ...

4 System Objects — Alphabetical List

4-80

 'RandomStream','mt19937ar with seed', ...
 'Seed',99);

Pass data through the AWGN channel.

y1 = channel(zeros(8,1));

Pass another all-zeros vector through the channel.

y2 = channel(zeros(8,1));

Because the seed changes between function calls, the output is different.

isequal(y1,y2)

ans = logical
 0

Reset the AWGN channel object by calling the reset function. The random data stream is
reset to the initial seed of 99.

reset(channel);

Pass the all-zeros vector through the AWGN channel.

y3 = channel(zeros(8,1));

Confirm that the two signals are identical.

isequal(y1,y3)

ans = logical
 1

Algorithms

Relationship Among Eb/No, Es/No, and SNR Modes
For uncoded complex input signals, comm.AWGNChannel relates Eb/N0, Es/N0, and SNR
according to these equations:

 comm.AWGNChannel

4-81

Es/N0 = Nsps × SNR
Es/N0 = Eb/N0 + 10log10(k) in dB

where

• Es represents the signal energy in joules.
• Eb represents the bit energy in joules.
• N0 represents the noise power spectral density in watts/Hz.
• Nsps represents the number of samples per symbol, SamplesPerSymbol.
• k represents the number of information bits per input symbol, BitsPerSymbol.

For real signal inputs, the comm.AWGNChannel relates Es/N0 and SNR according to this
equation:

Es/N0 = 0.5 (Nsps) × SNR

Note

• All values of power assume a nominal impedance of 1 ohm.
• The equation for the real case differs from the corresponding equation for the complex

case by a factor of 2. Specifically, the object uses a noise power spectral density of
N0/2 watts/Hz for real input signals, versus N0 watts/Hz for complex signals.

For more information, see AWGN Channel Noise Level.

Specifying the Variance Directly or Indirectly
To directly specify the variance of the noise generated by comm.AWGNChannel, specify
VarianceSource as:

• 'Property', then set NoiseMethod to 'Variance' and specify the variance with the
Variance property.

• 'Input port' then specify the variance level for the object as an input with an input
argument, var.

To specify variance indirectly, that is, to have it calculated by comm.AWGNChannel,
specify VarianceSource as 'Property' and the NoiseMethod as:

4 System Objects — Alphabetical List

4-82

• 'Signal to noise ratio (Eb/No)', where the object uses these properties to
calculate the variance:

• EbNo, the ratio of bit energy to noise power spectral density
• BitsPerSymbol
• SignalPower, the actual power of the input signal samples
• SamplesPerSymbol

• 'Signal to noise ratio (Es/No)', where the object uses these properties to
calculate the variance:

• EsNo, the ratio of signal energy to noise power spectral density
• SignalPower, the actual power of the input signal samples
• SamplesPerSymbol

• 'Signal to noise ratio (SNR)', where the object uses these properties to
calculate the variance:

• SNR, the ratio of signal power to noise power
• SignalPower, the actual power of the input signal samples

Changing the number of samples per symbol (SamplesPerSymbol) affects the variance of
the noise added per sample, which also causes a change in the final error rate.

NoiseVariance = SignalPower × SamplesPerSymbol / 10(EsNo)/10

Tip Select the number of samples per symbol based on what constitutes a symbol and the
oversampling applied to it. For example, a symbol could have 3 bits and be oversampled
by 4. For more information, see AWGN Channel Noise Level.

References
[1] Proakis, John G. Digital Communications. 4th Ed. McGraw-Hill, 2001.

 comm.AWGNChannel

4-83

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
AWGN Channel | MIMO Fading Channel

Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel

Functions
bsc

Topics
AWGN Channel

Introduced in R2012a

4 System Objects — Alphabetical List

4-84

comm.BarkerCode
Package: comm

Generate bipolar Barker code

Description
The comm.BarkerCode System object generates a bipolar Barker code. Barker codes
have low autocorrelation properties. The short length and low correlation sidelobes make
Barker codes useful for frame synchronization in digital communications systems. For
more information, see “Barker Codes” on page 4-90.

To generate a Barker code:

1 Create the comm.BarkerCode object and set its properties.
2 Call the object, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
barkerCode = comm.BarkerCode
barkerCode = comm.BarkerCode(Name,Value)

Description
barkerCode = comm.BarkerCode creates a bipolar Barker code generator System
object to generate a Barker code.

barkerCode = comm.BarkerCode(Name,Value) sets properties using one or more
name-value pairs. For example,
comm.BarkerCode('Length',11,'SamplesPerFrame','11') configures a bipolar

 comm.BarkerCode

4-85

Barker code generator System object to output a length 11 Barker code in an 11-sample
frame. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Length — Length of generated code
7 (default) | 123451113

Length of the generated code, specified as 1, 2, 3, 4, 5, 7, 11, or 13. For more
information, see “Barker Codes” on page 4-90.
Example: 'Length',2 outputs the Barker code [–1;1].
Data Types: double

SamplesPerFrame — Samples per output frame
1 (default) | positive integer

Samples per output frame, specified as a positive integer. If SamplesPerFrame is M, the
object outputs a frame containing M samples comprised of length N Barker code
sequences. If necessary, the object repeats the code sequence to reach M samples. N is
the length of the generated code, which is set by the Length property.
Data Types: double

OutputDataType — Output data type
double (default) | int8

Output data type, specified as double or int8.
Data Types: char | string

4 System Objects — Alphabetical List

4-86

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
y = barkerCode

Description
y = barkerCode outputs a Barker code frame, as a column vector. If the frame length
exceeds the Barker code length, the object fills the frame by repeating the Barker code.

Set the data type of the output with the OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.BarkerCode
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

 comm.BarkerCode

4-87

Examples

Generate Barker Code Sequence

Create a Barker code System object with 10 samples per frame.

 barker = comm.BarkerCode('SamplesPerFrame',10)

barker =
 comm.BarkerCode with properties:

 Length: 7
 SamplesPerFrame: 10
 OutputDataType: 'double'

Generate mulitple frames by using the default Barker code sequence of length 7. The
code wraps within the frame and continues in the next frame.

 for ii = 1:2
 seq = barker()
 end

seq = 10×1

 -1
 -1
 -1
 1
 1
 -1
 1
 -1
 -1
 -1

seq = 10×1

 1
 1
 -1
 1

4 System Objects — Alphabetical List

4-88

 -1
 -1
 -1
 1
 1
 -1

Compute Barker Code Sidelobe Level

Compute the peak sidelobe level for each Barker code.

CodeLength = [1 2 3 4 5 7 11 13]';
psl = zeros(length(CodeLength),1);
ac = dsp.Autocorrelator;
barker = comm.BarkerCode;
for ii=1:length(CodeLength)
 spf = CodeLength(ii);
 barker.Length = CodeLength(ii);
 barker.SamplesPerFrame = spf;
 seq = barker();
 sll_dB = 20*log10(abs(ac(seq)));
 psl(ii) = -(max(sll_dB));
 release(barker);
 release(ac);
end
Sidelobe_dB = psl;
T = table(CodeLength,Sidelobe_dB)

T=8×2 table
 CodeLength Sidelobe_dB
 __________ ___________

 1 0
 2 -6.0206
 3 -9.5424
 4 -12.041
 5 -13.979
 7 -16.902
 11 -20.828
 13 -22.279

 comm.BarkerCode

4-89

More About

Barker Codes
Barker codes have a maximum autocorrelation sequence, which has off-peak
autocorrelations no larger than 1.

A correlation sidelobe is the correlation of a codeword with a time-shifted version of itself.
The correlation sidelobe, Ck, for a k-symbol shift of an N-bit code sequence, {Xj}, is

C X Xk j j k

j

N k

= +

=

-

Â
1

For j=1, 2, 3,..., N, Xj is an individual code symbol that is equal to +1 or –1. The adjacent
symbols are assumed to be 0.

The output code is in a bipolar format with 0 and 1 mapped to 1 and –1. The maximum
known Barker code length is 13. The short length and low correlation sidelobes make
Barker codes useful for frame synchronization in digital communications systems. The
Barker code generator outputs the Barker codes listed in this table.

Barker
Code
Length

Barker Code Sidelode Level

1 [–1] 0 dB
2 [–1; 1] –6 dB
3 [–1; –1; 1] –9.5 dB
4 [–1; –1; 1; –1] –12 dB
5 [–1; –1; –1; 1; –1] –14 dB
7 [–1; –1; –1; 1; 1; –1; 1] –16.9 dB
11 [–1; –1; –1; 1; 1; 1; –1; 1; 1; –1; 1] –20.8 dB
13 [–1; –1; –1; –1; –1; 1; 1; –1; –1; 1; –1; 1; –1] –22.3 dB

4 System Objects — Alphabetical List

4-90

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.HadamardCode | comm.OVSFCode | comm.WalshCode

Blocks
Barker Code Generator

Topics
“Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine
Synchronization”

Introduced in R2012a

 comm.BarkerCode

4-91

comm.BasebandFileReader
Package: comm

Read baseband signals from file

Description
The comm.BasebandFileReader object reads a baseband signal from a specific type of
binary file written by comm.BasebandFileWriter. Baseband signals are typically
downconverted from a nonzero center frequency to 0 Hz. The SampleRate and
CenterFrequency properties are saved when the file is created. The
comm.BasebandFileReader object automatically reads the sample rate, center
frequency, number of channels, and any descriptive data and saves them to its read-only
properties.

To create an input signal from a saved baseband file:

1 Create a comm.BasebandFileReader object and set the properties of the object.
2 Call step to generate a baseband signal from saved data.
3 Call release to close the file.

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj) and y = obj() perform equivalent operations.

Construction
bbr = comm.BasebandFileReader returns a baseband reader object, bbr, using the
default properties.

bbr = comm.BasebandFileReader(fname) returns a baseband reader object and sets
fname as the Filename property.

bbr = comm.BasebandFileReader(fname,spf) also sets spf as the
SamplesPerFrame property.

4 System Objects — Alphabetical List

4-92

bbr = comm.BasebandFileReader(___ ,Name,Value) specifies additional
properties using Name,Value pairs. Unspecified properties have default values.

Example:

bbr = comm.BasebandFileReader('recorded_data',100);

Properties
Filename — Name of the baseband file to read
'example.bb' (default) | character vector

Name of the baseband file to read, specified as a character vector. Specify the absolute
path only if the file is not on the MATLAB path. Only the absolute path is saved and
displayed.

SampleRate — Sample rate of the saved baseband signal
1 (default) | positive scalar

This property is read-only.

Sample rate of the saved baseband signal in Hz.

CenterFrequency — Center frequency of the saved baseband signal
100000000 (default) | positive scalar | row vector

This property is read-only.

Center frequency of the saved baseband signal in Hz. When this property is a row vector,
each element represents the center frequency of a channel in a multichannel signal.

NumChannels — Number of channels of the saved baseband signal
1 (default) | positive integer

This property is read-only.

Number of channels of the saved baseband signal.

Metadata — Data describing the baseband signal
struct() (default) | structure

This property is read-only.

 comm.BasebandFileReader

4-93

Data describing the baseband signal. If the file has no descriptive data, this property is an
empty structure.

SamplesPerFrame — Number of samples per output frame
100 (default) | positive integer

Number of samples per output frame, specified as a positive integer.
Data Types: double

CyclicRepetition — Flag to repeatedly read baseband file
false (default) | true

Flag to repeatedly read baseband file, specified as a logical scalar. To repeatedly read the
baseband file specified by Filename, set this property to true.

Methods
info Characteristic information about baseband file reader

Common to All System Objects
release Allow System object property value changes
step Generate baseband signal from file
reset Reset states of baseband file reader object
isDone Read status of baseband file samples

Examples

Read Baseband Data from File

Create a baseband file reader object.

bbr = comm.BasebandFileReader

bbr =
 comm.BasebandFileReader with properties:

4 System Objects — Alphabetical List

4-94

 Filename: 'B:\matlab\toolbox\comm\comm\example.bb'
 SampleRate: 1
 CenterFrequency: 100000000
 NumChannels: 1
 Metadata: [1x1 struct]
 SamplesPerFrame: 100
 CyclicRepetition: false

Use the info method to gain additional information about bbr. The file contains 10000
samples of type 'double'. No samples have been read.

info(bbr)

ans = struct with fields:
 NumSamplesInData: 10000
 DataType: 'double'
 NumSamplesRead: 0

Read the entire contents of the example.bb file by using the isDone method to
terminate the loop.

y = [];

while ~isDone(bbr)
 x = bbr();
 y = cat(1,y,x);
end

Plot the absolute magnitude of the baseband data.

plot(abs(y))

 comm.BasebandFileReader

4-95

Confirm that all the samples have been read.

info(bbr)

ans = struct with fields:
 NumSamplesInData: 10000
 DataType: 'double'
 NumSamplesRead: 10000

The total number of samples and the number of samples read are the same.

Release the baseband file reader resources.

release(bbr)

4 System Objects — Alphabetical List

4-96

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BasebandFileWriter

Introduced in R2016b

 comm.BasebandFileReader

4-97

info
System object: comm.BasebandFileReader
Package: comm

Characteristic information about baseband file reader

Syntax
s = info(bbr)

Description
s = info(bbr) returns a structure, s, containing characteristic information for the
BasebandFileReader System object, bbr. s has these fields:

• NumSamplesInData is the total number of baseband data samples in the file,
returned as a positive integer.

• DataType is the data type of the baseband signal in the file.
• NumSamplesRead is the number of samples that have been read from the file,

returned as a positive integer. It cannot exceed the NumSamplesInData property
when CyclicRepetition is false.

Introduced in R2016b

4 System Objects — Alphabetical List

4-98

comm.BasebandFileWriter
Package: comm

Write baseband signals to file

Description
A baseband file is a specific type of binary file written by comm.BasebandFileWriter.
Baseband signals are typically downconverted from a nonzero center frequency to 0 Hz.
The SampleRate and CenterFrequency properties are saved when the file is created.

To save a baseband signal to a file:

1 Create a comm.BasebandFileWriter object and set the properties of the object.
2 Call step to save a baseband signal to a file.
3 Call release to save the baseband signal to a file and to close the file.

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction
bbw = comm.BasebandFileWriter returns a baseband writer object, bbw, using the
default properties.

bbw = comm.BasebandFileWriter(fname) returns bbw and sets fname as the
Filename property.

bbw = comm.BasebandFileWriter(fname,fs) also sets fs as the SampleRate
property.

bbw = comm.BasebandFileWriter(fname,fs,fc) also sets fc as the
CenterFrequency property.

 comm.BasebandFileWriter

4-99

bbw = comm.BasebandFileWriter(fname,fs,fc,md) also sets structure md as the
MetaData property.

bbw = comm.BasebandFileWriter(___ ,Name,Value) specifies additional
properties using Name,Value pairs. Unspecified properties have default values.

Example:

bbw = comm.BasebandFileWriter('qpsk_data.bb',10e6,2e9);

Properties
Filename — Name of saved file
'untitled.bb' (default) | character vector

Name of saved file, specified as a character vector. The filename can include a relative or
an absolute path.

SampleRate — Sample rate of output signal
1 (default) | positive scalar

Sample rate of the output signal, specified in Hz as a positive scalar.

CenterFrequency — Center frequency of the baseband signal
100000000 (default) | positive integer scalar | row vector

Center frequency of the baseband signal, specified in Hz as a positive integer scalar or
row vector. If CenterFrequency is a row vector, each element corresponds to a channel.

Metadata — Data describing the baseband signal
empty structure (default) | structure

Data describing the baseband signal, specified as a structure. The structure can have any
number of fields and any field name. The field values can be of any numeric, logical, or
character data type and have any number of dimensions.

NumSamplesToWrite — Number of samples to save
Inf (default) | positive integer

Number of samples to save, specified as a positive integer.

4 System Objects — Alphabetical List

4-100

• To write all the baseband signal samples to a file, set NumSamplesToWrite to Inf.
• To write only the last NumSamplesToWrite samples to a file, set

NumSamplesToWrite to a finite number.

Data Types: double

Methods
info Characteristic information about baseband file writer
reset Reset states of baseband file writer object
step Write baseband signal to file

Common to All System Objects
release Allow System object property value changes

Examples

Write Baseband Signal to File

Create a baseband file writer object having a sample rate of 1 kHz and a 0 Hz center
frequency.

bbw = comm.BasebandFileWriter('baseband_data.bb',1000,0);

Save today's date in the Metadata structure.

bbw.Metadata = struct('Date',date);

Generate two channels of QPSK-modulated data.

d = randi([0 3],1000,2);
x = pskmod(d,4,pi/4,'gray');

Write the baseband data to file 'baseband_data.bb'.

bbw(x)

Display information about bbw. Release the object.

 comm.BasebandFileWriter

4-101

info(bbw)

ans = struct with fields:
 Filename: 'C:\TEMP\Bdoc19b_1192687_11188\ib6635F1\3\tp2864cdb7\comm-ex66490302\baseband_data.bb'
 SamplesPerFrame: 1000
 NumChannels: 2
 DataType: 'double'
 NumSamplesWritten: 1000

release(bbw)

Create a baseband file reader object to read the saved data. Read the metadata from the
file.

bbr = comm.BasebandFileReader('baseband_data.bb','SamplesPerFrame',100);
bbr.Metadata

ans = struct with fields:
 Date: '28-Aug-2019'

Read the data from the file.

z = [];

while ~isDone(bbr)
 y = bbr();
 z = cat(1,z,y);
end

Display information about bbr. Release bbr.

info(bbr)

ans = struct with fields:
 NumSamplesInData: 1000
 DataType: 'double'
 NumSamplesRead: 1000

release(bbr)

Confirm the original modulated data, x, matches the data read from file
'baseband_data.bb', z.

4 System Objects — Alphabetical List

4-102

isequal(x,z)

ans = logical
 1

Tips
• comm.BasebandFileWriter writes baseband signals to uncompressed binary files.

To share these files, you can compress them to a zip file using the zip function. For
more information, see “Create and Extract from Zip Archives” (MATLAB).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BasebandFileReader

Introduced in R2016b

 comm.BasebandFileWriter

4-103

info
Characteristic information about baseband file writer

Syntax
s = info(bbw)

Description
s = info(bbw) returns a structure, s, containing characteristic information for the
BasebandFileWriter System object, bbw. s has these fields:

• Filename is the name of the baseband data file, returned as a character vector. The
filename shows the absolute path.

• SamplesPerFrame is the number of samples in each frame, returned as a positive
integer.

• NumChannels is the number of channels, returned as a positive integer greater than
or equal to 1.

• DataType is the input data type.
• NumSamplesWritten is the number of samples written to the file, returned as a

positive integer. This field returns the smaller of the total number of samples
processed by the object and the NumSamplesWritten property.

Note All fields are available when the object is locked. When the object is unlocked, only
the Filename and NumSamplesWritten fields are available.

4 System Objects — Alphabetical List

4-104

reset
System object: comm.BasebandFileWriter
Package: comm

Reset states of baseband file writer object

Syntax
reset(bbw)

Description
reset(bbw) resets the states of the BasebandFileWriter object, bbw.

Introduced in R2016b

 reset

4-105

step
System object: comm.BasebandFileWriter
Package: comm

Write baseband signal to file

Syntax
step(bbw,x)
bbw(x)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

step(bbw,x) writes a baseband signal, x, to the file specified by the Filename property
of the BasebandFileWriter object, bbw. The number of samples written to the file is
determined by the NumSamplesToWrite property of bbw.

bbw(x) is equivalent to the first syntax.

Note bbw specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-106

Introduced in R2016b

 step

4-107

comm.BCHDecoder
Package: comm

Decode data using BCH decoder

Description
The BCHDecoder object recovers a binary message vector from a binary BCH codeword
vector. For proper decoding, the codeword and message length values in this object must
match the properties in the corresponding comm.BCHEncoder System object.

To decode a binary message from a BCH codeword:

1 Define and set up your BCH decoder object. See “Construction” on page 4-108.
2 Call step to recover a binary message vector from a binary BCH codeword vector

according to the properties of comm.BCHDecoder. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
dec = comm.BCHDecoder creates a BCH decoder System object, dec, that performs
BCH decoding.

dec = comm.BCHDecoder(N,K) creates a BCH decoder object, dec, with the
CodewordLength property set to N and the MessageLength property set to K.

dec = comm.BCHDecoder(N,K,GP) creates a BCH decoder object, dec, with the
CodewordLength property set to N, the MessageLength property set to K, and the
GeneratorPolynomial property set to GP.

4 System Objects — Alphabetical List

4-108

dec = comm.BCHDecoder(N,K,GP,S) creates a BCH decoder object, dec, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and the ShortMessageLength property set
to S.

dec = comm.BCHDecoder(N,K,GP,S,Name,Value) creates a BCH decoder object,
dec, with the CodewordLength property set to N, the MessageLength property set to K,
the GeneratorPolynomial property set to GP, the ShortMessageLength property set
to S, and each specified property Name set to the specified Value.

dec = comm.BCHDecoder(Name,Value) creates a BCH decoder object, dec, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
CodewordLength

Codeword length

Specify the codeword length of the BCH code as a double-precision positive integer
scalar. The default is 15. The values of the CodewordLength and MessageLength on
page 4-0 properties must produce a valid narrow-sense BCH code. For a full-length
BCH code, the value of this property must take the form 2M − 1, where M is an integer
such that 3 ≤ M ≤ 16. The default is 15.

MessageLength

Message length

Specify the message length as a double-precision positive integer scalar. The values of the
CodewordLength on page 4-0 and MessageLength properties must produce a valid
narrow-sense BCH code. The default is 5.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as either Auto or Property. When this
property is set to Auto, the BCH code is defined by the CodewordLength on page 4-0 ,

 comm.BCHDecoder

4-109

MessageLength on page 4-0 , GeneratorPolynomial on page 4-0 , and
PrimitivePolynomial on page 4-0 properties. When ShortMessageLengthSource
is set to Property, you must specify the ShortMessageLength on page 4-0 property,
which is used with the other properties to define the BCH code. The default is Auto.

ShortMessageLength

Shortened message length

Specify the length of the shortened message as a double-precision positive integer scalar
whose value must be less than or equal to MessageLength on page 4-0 . When
ShortMessageLength < MessageLength, the BCH code is shortened. The default is 5.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as either Auto or Property. Set this
property to Auto to create the generator polynomial automatically. Set
GeneratorPolynomialSource to Property to specify a generator polynomial using
the GeneratorPolynomial on page 4-0 property. The default is Auto.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial as a binary double-precision row vector, a binary Galois
field row vector that represents the coefficients of the generator polynomial in order of
descending powers, or as a polynomial character vector. The length of the generator
polynomial requires a value of CodewordLength on page 4-0 –MessageLength on
page 4-0 +1. This property applies when you set GeneratorPolynomialSource on
page 4-0 to Property. The default is 'X^10 + X^8 + X^5 + X^4 + X^2 + X +
1', which is the result of bchgenpoly(15,5,[],'double') and corresponds to a 15,5
code.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check the first time you call
the step method. The default is true. This check verifies that the specified generator
polynomial is valid. For larger codes, disabling the check reduces processing time. As a

4 System Objects — Alphabetical List

4-110

best practice, perform the check at least once before setting this property to false. This
property applies when you set GeneratorPolynomialSource on page 4-0 to
Property. The default is true.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto or Property. Set this property to
Auto to create a primitive polynomial of degree M=ceil(log2(CodewordLength on
page 4-0 +1)). Set PrimitivePolynomialSource to Property to specify a
polynomial using the PrimitivePolynomial on page 4-0 property. The default is
Auto.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial of order M, that defines the finite Galois field GF(2). Use
a double-precision, binary row vector with the coefficients of the polynomial in order of
descending powers or a polynomial character vector. This property applies when you set
the PrimitivePolynomialSource on page 4-0 property to Property. The default is
'X^4 + X + 1', which is the result of fliplr(de2bi(primpoly(4))).

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None or Property. Set this property to
None to disable puncturing. Set it to Property to decode punctured codewords. This
decoding is based on a puncture pattern vector you specify in the PuncturePattern on
page 4-0 property. The default is None.

PuncturePattern

Puncture pattern vector

Specify the pattern that the object uses to puncture the encoded data. Use a double-
precision binary column vector of length CodewordLength on page 4-0 –
MessageLength on page 4-0 . Zeros in the puncture pattern vector indicate the
position of the parity bits that the object punctures or excludes from each codeword. This
property applies when you set PuncturePatternSource on page 4-0 to Property.
The default is [ones(8,1); zeros(2,1)].

 comm.BCHDecoder

4-111

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as a step method input. The
erasures vector is a double-precision or logical binary column vector that indicates which
bits of the input codewords to erase or ignore. Values of 1 in the erasures vector
correspond to erased bits in the same position of the (possibly punctured) input
codewords. Set this property to false to disable erasures. The default is false.

NumCorrectedErrorsOutputPort

Output number of corrected errors

Set this property to true so that the step method outputs the number of corrected
errors. The default is true.

Input and Output Signal Lengths in BCH and RS
System Objects
The notation y = c * x denotes that y is an integer multiple of x.

The number of punctures equals the number of zeros in the puncture vector.

M is the degree of the primitive polynomial. Each group of M bits represents an integer
between 0 and 2M–1 that belongs to the finite Galois field GF(2M).

4 System Objects — Alphabetical List

4-112

ShortMessageL
engthSource

comm.BCHEncod
er

comm.RSEncode
r (BitInput =
false)

comm.BCHDecod
er

comm.RSDecode
r (BitInput =
false)

comm.RSEncode
r (BitInput =
true)

comm.RSDecode
r (BitInput =
true)

Auto Input Length:

c *
MessageLength

Output
Length:

c *
(CodewordLen
gth – number
of punctures)

Input Length:

c *
(CodewordLeng
th – number
of punctures)

Output
Length:

c *
MessageLength

Erasures
Length:

c *
(CodewordLen
gth – number
of punctures)

Input Length:

c *
(MessageLengt
h * M)

Output
Length:

c *
((CodewordLe
ngth – number
of punctures)
* M)

Input Length:

c *
((CodewordLe
ngth – number
of punctures)
* M)

Output
Length:

c *
(MessageLengt
h * M)

Erasures
Length:

c *
(CodewordLengt
h – number of
punctures)

 comm.BCHDecoder

4-113

ShortMessageL
engthSource

comm.BCHEncod
er

comm.RSEncode
r (BitInput =
false)

comm.BCHDecod
er

comm.RSDecode
r (BitInput =
false)

comm.RSEncode
r (BitInput =
true)

comm.RSDecode
r (BitInput =
true)

Property Input Length:

c *
ShortMessageL
ength

Output
Length:

c *
(CodewordLeng
th -
MessageLength
+
ShortMessageL
ength -
number of
punctures)

Input Length:

c *
(CodewordLeng
th -
MessageLength
+
ShortMessageL
ength -
number of
punctures)

Output
Length:

c *
ShortMessageL
ength

Erasures
Length:

c *
(CodewordLeng
th -
MessageLength
+
ShortMessageL
ength -
number of
punctures)

Input Length:

c *
(ShortMessage
Length * M)

Output
Length:

c *
((CodewordLe
ngth -
MessageLength
+
ShortMessageL
ength -
number of
punctures) *
M)

Input Length:

c *
((CodewordLen
gth -
MessageLength
+
ShortMessageL
ength -
number of
punctures) *
M)

Output
Length:

c *
(ShortMessage
Length * M)

Erasures
Length:

c *
(CodewordLeng
th -
MessageLength
+
ShortMessageL
ength -
number of
punctures)

4 System Objects — Alphabetical List

4-114

Methods
step Decode data using a BCH decoder

Common to All System Objects
release Allow System object property value changes

Examples

Transmit and decode an 8-DPSK-modulated signal, then count errors

% The following code transmits a BCH-encoded, 8-DPSK-modulated bit stream
% through an AWGN channel. Then, the example demodulates, decodes, and counts errors.

enc = comm.BCHEncoder;
mod = comm.DPSKModulator('BitInput',true);
chan = comm.AWGNChannel(...
 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
demod = comm.DPSKDemodulator('BitOutput',true);
dec = comm.BCHDecoder;
errorRate = comm.ErrorRate('ComputationDelay',3);

for counter = 1:20
 data = randi([0 1], 30, 1);
 encodedData = step(enc, data);
 modSignal = step(mod, encodedData);
 receivedSignal = step(chan, modSignal);
 demodSignal = step(demod, receivedSignal);
 receivedBits = step(dec, demodSignal);
 errorStats = step(errorRate, data, receivedBits);
end

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.015075
Number of errors = 9

 comm.BCHDecoder

4-115

Transmit and receive a BPSK-modulated signal

Transmit and receive a BPSK-modulated signal encoded with a shortened BCH code, then
count errors.

Specify the codeword, message, and shortened message lengths.

N = 255;
K = 239;
S = 63;

Create a BCH (255,239) generator polynomial. Use the generator polynomial to create a
BCH encoder and decoder pair. The BCH code is based on the AMR standard.

gp = bchgenpoly(255,239);
bchEncoder = comm.BCHEncoder(N,K,gp,S);
bchDecoder = comm.BCHDecoder(N,K,gp,S);

Create an error rate counter.

errorRate = comm.ErrorRate('ComputationDelay',3);

Main processing loop.

for counter = 1:20
 data = randi([0 1],630,1); % Generate binary data
 encodedData = bchEncoder(data); % BCH encode data
 modSignal = pskmod(encodedData,2); % BPSK modulate
 receivedSignal = awgn(modSignal,5); % Pass through AWGN channel
 demodSignal = pskdemod(receivedSignal,2); % BSPK demodulate
 receivedBits = bchDecoder(demodSignal); % BCH decode data
 errorStats = errorRate(data,receivedBits); % Compute error statistics
end

Display the error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000318
Number of errors = 4

4 System Objects — Alphabetical List

4-116

Shorten a BCH Code

Shorten a (31,26) BCH code to an (11,6) BCH code and use it to encode and decode
random binary data.

Create a BCH encoder and decoder pair for a (31,26) code. Specify the generator
polynomial, x5 + x2 + 1, and a shortened message length of 6.

enc = comm.BCHEncoder(31,26,'x5+x2+1',6);
dec = comm.BCHDecoder(31,26,'x5+x2+1',6);

Encode and decode random binary data and verify that the decoded bit stream matches
the original data.

x = randi([0 1],60,1);
y = step(enc,x);
z = step(dec,y);
isequal(x,z)

ans = logical
 1

Selected Bibliography

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications. New York, Plenum Press, 1981.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage
Upper Saddle River, NJ, Prentice Hall, 1995.

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

 comm.BCHDecoder

4-117

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
bchdec | bchgenpoly | comm.BCHEncoder | comm.RSDecoder | primpoly

4 System Objects — Alphabetical List

4-118

step
System object: comm.BCHDecoder
Package: comm

Decode data using a BCH decoder

Syntax
Y = step(H,X)
[Y,ERR] = step(H,X)
Y = step(H,X,ERASURES)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) decodes input binary codewords in X using a
(CodewordLength,MessageLength) BCH decoder with the corresponding narrow-sense
generator polynomial. The step method returns the estimated message in Y. This syntax
applies when you set the NumCorrectedErrorsOutputPort property to false. The input
and output length of the step function equal the values listed in the table in “Input and
Output Signal Lengths in BCH and RS System Objects” on page 4-112.

[Y,ERR] = step(H,X) returns the number of corrected errors in output ERR when you
set the NumCorrectedErrorsOutputPort property to true. A non- negative value in
the i-th element of the ERR output vector denotes the number of corrected errors in the i-
th input codeword. A value of -1 in the i-th element of the ERR output indicates that a
decoding error occurred for the i-th input codeword. A decoding error occurs when an
input codeword has more errors than the error correction capability of the BCH code.

Y = step(H,X,ERASURES) uses ERASURES as the erasures pattern input when you set
the ErasuresInputPort property to true. The object decodes the binary encoded data

 step

4-119

input, X, and treats as erasures the bits of the input codewords specified by the binary
column vector, ERASURES. The length of ERASURES must equal the length of X, and its
elements must be of data type double or logical. Values of 1 in the erasures vector
correspond to erased bits in the same position of the (possibly punctured) input
codewords.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-120

comm.BCHEncoder
Package: comm

Encode data using BCH encoder

Description
The BCHEncoder object creates a BCH code with specified message and codeword
lengths.

To encode data using a BCH coding scheme:

1 Define and set up your BCH encoder object. See “Construction” on page 4-121.
2 Call step to create a BCH code with message and codeword lengths specified

according to the properties of comm.BCHEncoder. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
enc = comm.BCHEncoder creates a BCH encoder System object, enc, that performs
BCH encoding.

enc = comm.BCHEncoder(N,K) creates a BCH encoder object, enc, with the
CodewordLength property set to N and the MessageLength property set to K.

enc = comm.BCHEncoder(N,K,GP) creates a BCH encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K and the
GeneratorPolynomial property set to GP.

enc = comm.BCHEncoder(N,K,GP,S) creates a BCH encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, the

 comm.BCHEncoder

4-121

GeneratorPolynomial property set to GP and the ShortMessageLength property set
to S.

enc = comm.BCHEncoder(N,K,GP,S,Name,Value) creates a BCH encoder object,
enc, with the CodewordLength property set to N, the MessageLength property set to K,
the GeneratorPolynomial property set to GP, the ShortMessageLength property set
to S, and each specified property Name set to the specified Value.

enc = comm.BCHEncoder(Name,Value) creates a BCH encoder object, enc, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Note The input and output signal lengths are listed in “Input and Output Signal Lengths
in BCH and RS System Objects” on page 4-112 on the comm.BCHDecoder reference
page.

CodewordLength

Codeword length

Specify the codeword length of the BCH code as a double-precision positive integer
scalar. The default is 15. The values of the CodewordLength and MessageLength on
page 4-0 properties must produce a valid narrow-sense BCH code. For a full-length
BCH code, the value of the property must use the form 2M − 1, where M is an integer
such that 3 ≤ M ≤ 16. The default is 15.

MessageLength

Message length

Specify the message length as a double-precision positive integer scalar. The values of the
CodewordLength on page 4-0 and MessageLength properties must produce a valid
narrow-sense BCH code. The default is 5.

ShortMessageLengthSource

Short message length source

4 System Objects — Alphabetical List

4-122

Specify the source of the shortened message as either Auto or Property. When this
property is set to Auto, the BCH code is defined by the CodewordLength on page 4-0 ,
MessageLength on page 4-0 , GeneratorPolynomial on page 4-0 , and
PrimitivePolynomial on page 4-0 properties. When ShortMessageLengthSource
is set to Property, you must specify the ShortMessageLength on page 4-0 property
that is used with the other properties to define the RS code. The default is Auto.

ShortMessageLength

Shortened message length

Specify the length of the shortened message as a double-precision positive integer scalar
whose value must be less than or equal to MessageLength on page 4-0 . When
ShortMessageLength < MessageLength, the BCH code is shortened. The default is 5.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as either Auto or Property. Set this
property to Auto to create the generator polynomial automatically. Set it to Property to
specify a generator polynomial using the GeneratorPolynomial on page 4-0
 property. The default is Auto.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial as a binary double-precision row vector, a binary Galois
row vector that represents the coefficients of the generator polynomial in order of
descending powers, or as a polynomial character vector. The length of the generator
polynomial requires a value of CodewordLength on page 4-0 -MessageLength on page
4-0 +1. This property applies when you set GeneratorPolynomialSource on page 4-
0 to Property. The default is 'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1', which
is the result of bchgenpoly(15,5,[],'double') and corresponds to a (15,5) code.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check the first time you call
the step method. This check verifies that the specified generator polynomial is valid. For

 comm.BCHEncoder

4-123

larger codes, disabling the check reduces processing time. As a best practice, perform the
check at least once before setting this property to false. This property applies when you
set GeneratorPolynomialSource on page 4-0 to Property. The default is true.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as one of Auto or Property. Set this
property to Auto to create a primitive polynomial of degree
M=ceil(log2(CodewordLength on page 4-0 +1)). Set it to Property to specify
a polynomial using the PrimitivePolynomial on page 4-0 property. The default is
Auto

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial of order M, that defines the finite Galois field GF(2). Use
a double-precision, binary row vector with the coefficients of the polynomial in order of
descending powers or as a polynomial character vector. This property applies when you
set the PrimitivePolynomialSource on page 4-0 property to Property. The
default is 'X^4 + X + 1', which is the result of fliplr(de2bi(primpoly(4))).

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None or Property. Set this property
to None to disable puncturing. Set it to Property to decode punctured codewords. This
decoding is based on a puncture pattern vector you specify in the PuncturePattern on
page 4-0 property. The default is None.

PuncturePattern

Puncture pattern vector

Specify the pattern that the object uses to puncture the encoded data. Use a double-
precision binary column vector of length CodewordLength on page 4-0 -
MessageLength on page 4-0 . Zeros in the puncture pattern vector indicate the
position of the parity bits that the object punctures or excludes from each codeword. This
property applies when you set PuncturePatternSource on page 4-0 to Property.
The default is [ones(8,1); zeros(2,1)].

4 System Objects — Alphabetical List

4-124

Methods
step Encode data using a BCH encoder

Common to All System Objects
release Allow System object property value changes

Examples

Transmit and decode an 8-DPSK-modulated signal, then count errors

% The following code transmits a BCH-encoded, 8-DPSK-modulated bit stream
% through an AWGN channel. Then, the example demodulates, decodes, and counts errors.

enc = comm.BCHEncoder;
mod = comm.DPSKModulator('BitInput',true);
chan = comm.AWGNChannel(...
 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
demod = comm.DPSKDemodulator('BitOutput',true);
dec = comm.BCHDecoder;
errorRate = comm.ErrorRate('ComputationDelay',3);

for counter = 1:20
 data = randi([0 1], 30, 1);
 encodedData = step(enc, data);
 modSignal = step(mod, encodedData);
 receivedSignal = step(chan, modSignal);
 demodSignal = step(demod, receivedSignal);
 receivedBits = step(dec, demodSignal);
 errorStats = step(errorRate, data, receivedBits);
end

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.015075
Number of errors = 9

 comm.BCHEncoder

4-125

Transmit and receive a BPSK-modulated signal

Transmit and receive a BPSK-modulated signal encoded with a shortened BCH code, then
count errors.

Specify the codeword, message, and shortened message lengths.

N = 255;
K = 239;
S = 63;

Create a BCH (255,239) generator polynomial. Use the generator polynomial to create a
BCH encoder and decoder pair. The BCH code is based on the AMR standard.

gp = bchgenpoly(255,239);
bchEncoder = comm.BCHEncoder(N,K,gp,S);
bchDecoder = comm.BCHDecoder(N,K,gp,S);

Create an error rate counter.

errorRate = comm.ErrorRate('ComputationDelay',3);

Main processing loop.

for counter = 1:20
 data = randi([0 1],630,1); % Generate binary data
 encodedData = bchEncoder(data); % BCH encode data
 modSignal = pskmod(encodedData,2); % BPSK modulate
 receivedSignal = awgn(modSignal,5); % Pass through AWGN channel
 demodSignal = pskdemod(receivedSignal,2); % BSPK demodulate
 receivedBits = bchDecoder(demodSignal); % BCH decode data
 errorStats = errorRate(data,receivedBits); % Compute error statistics
end

Display the error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000318
Number of errors = 4

4 System Objects — Alphabetical List

4-126

Shorten a BCH Code

Shorten a (31,26) BCH code to an (11,6) BCH code and use it to encode and decode
random binary data.

Create a BCH encoder and decoder pair for a (31,26) code. Specify the generator
polynomial, x5 + x2 + 1, and a shortened message length of 6.

enc = comm.BCHEncoder(31,26,'x5+x2+1',6);
dec = comm.BCHDecoder(31,26,'x5+x2+1',6);

Encode and decode random binary data and verify that the decoded bit stream matches
the original data.

x = randi([0 1],60,1);
y = step(enc,x);
z = step(dec,y);
isequal(x,z)

ans = logical
 1

Selected Bibliography

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications. New York, Plenum Press, 1981.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage
Upper Saddle River, NJ, Prentice Hall, 1995.

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

 comm.BCHEncoder

4-127

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
bchenc | bchgenpoly | comm.BCHDecoder | comm.RSEncoder | primpoly

4 System Objects — Alphabetical List

4-128

step
System object: comm.BCHEncoder
Package: comm

Encode data using a BCH encoder

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes input binary data, X, using a
(CodewordLength,MessageLength) BCH encoder with the corresponding narrow-sense
generator polynomial and returns the result in vector Y. The input and output length of
the step function equal the values listed in the table in “Input and Output Signal Lengths
in BCH and RS System Objects” on page 4-112.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-129

comm.BitToInteger
Package: comm

(To be removed) Convert vector of bits to vector of integers

Note will be removed in a future release. Use bi2de instead. For more information, see
“Compatibility Considerations”.

Description
The BitToInteger object maps groups of bits in the input vector to integers in the
output vector.

To map bits to integers:

1 Define and set up your bit to integer object. See “Construction” on page 4-130.
2 Call step to map groups of bits in the input vector to integers in the output vector

according to the properties of comm.BitToInteger. The behavior of step is specific
to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.BitToInteger creates a bit-to-integer converter System object, H, that maps
a vector of bits to a corresponding vector of integer values.

H = comm.BitToInteger(Name,Value) creates a bit-to-integer converter object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-130

H = comm.BitToInteger(NUMBITS,Name,Value) creates a bit-to-integer converter
System object, H This object has the BitsPerInteger on page 4-0 property set to
NUMBITS and the other specified properties set to the specified values.

Properties
BitsPerInteger

Number of bits per integer

Specify the number of input bits that the object maps to each output integer. You can set
this property to a scalar integer between 1 and 32. The default is 3.

MSBFirst

Assume first bit of input bit words is most significant bit

Set this property to true to indicate that the first bit of the input bit words is the most
significant bit (MSB). The default is true. You can set this property to false to indicate
that the first bit of the input bit words is the least significant bit (LSB).

SignedIntegerOutput

Output signed integers

Set this property to true to generate signed integer outputs. The default is false. You
can set this property to false to generate unsigned integer outputs.

When you set this property to false, the output values are integers between 0 and (2N) –
1. In this case, N is the value you specified in the BitsPerInteger on page 4-0
property.

When you set this property to true, the output values are integers between -(2(N-1)) and
(2(N –1)) –1.

OutputDataType

Data type of output

Specify the output data type. The default is Full precision.

 comm.BitToInteger

4-131

When you set the SignedIntegerOutput on page 4-0 property to false, set this
property as one of Full precision | Smallest integer | Same as input | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32.

When you set this property to Same as input, and the input data type is numeric or
fixed-point (fi object), the output data has the same type as the input data.

When the input signal is an integer data type, you must have a Fixed-Point Designer user
license to use this property in Smallest unsigned integer or Full precision
mode.

When you set the SignedIntegerOutput property to true, specify the output data type
as one of Full precision | Smallest integer | double | single | int8 | int16 |
int32.

When you set this property to Full precision, the object determines the output data
type based on the input data type. If the input data type is double or single precision, the
output data has the same type as the input data. Otherwise, the property determines the
output data type in the same way as when you set this property to Smallest unsigned
integer.

Methods
step (To be removed) Convert vector of bits to vector of integers

Common to All System Objects
release Allow System object property value changes

Examples

Convert random 4-bit words to integers

 hBitToInt = comm.BitToInteger(4);
% Generate three 4-bit words
 bitData = randi([0 1],3*hBitToInt.BitsPerInteger,1);
 intData = step(hBitToInt,bitData)

4 System Objects — Alphabetical List

4-132

intData = 3×1

 13
 9
 13

Algorithms
This object implements the algorithm, inputs, and outputs described on the Bit To Integer
Converter block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations
comm.BitToInteger will be removed in a future release. Use
bi2de instead.
Not recommended starting in R2019b

Data types as supported by comm.BitToInteger are not inherently supported by functions.
This code shows binary to decimal conversion for various data types using this function.

Examples Using bi2de for Various Data Types
function compbi2de

% Number of integers
n = randi([1 100]);

% Default
h1 = comm.BitToInteger;
bpi = h1.BitsPerInteger;
x = randi([0,1],n*bpi,1);
y1 = h1(x);
y2 = bi2de(reshape(x,bpi,[])','left-msb');
isequal(y1,y2)

% Right MSB, logical input
h2 = comm.BitToInteger(...
 'BitsPerInteger',5, ...
 'MSBFirst',false);
bpi = h2.BitsPerInteger;
x = logical(randi([0,1],n*bpi,1));
y1 = h2(x);
y2 = bi2de(reshape(x,bpi,[])','right-msb');

 comm.BitToInteger

4-133

isequal(y1,y2)

% Right MSB, signed output, single input
h3 = comm.BitToInteger(...
 'BitsPerInteger',8, ...
 'MSBFirst',false, ...
 'SignedIntegerOutput',true);
bpi = h3.BitsPerInteger;
x = randi([0,1],n*bpi,1,'single');
y1 = h3(x);
y2 = bi2de(reshape(x,bpi,[])','right-msb');
N = 2^bpi;
y2 = y2 - (y2>=N/2)*N;
isequal(y1,y2)
end

See Also
bin2dec | de2bi

Introduced in R2012a

4 System Objects — Alphabetical List

4-134

step
System object: comm.BitToInteger
Package: comm

(To be removed) Convert vector of bits to vector of integers

Note comm.BitToInteger will be removed in a future release. Use bi2de instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) converts binary input, X, to corresponding integers, Y. The input must
be a scalar or a column vector and the data type can be numeric, numerictype(0,1), or
logical. The length of input X must be an integer multiple of the value you specify in the
BitsPerInteger property. The object outputs a column vector with a length equal to
length(X)/BitsPerInteger. When you set the SignedIntegerOutput property to false,
the object maps each group of bits to an integer between 0 and (2BitsPerInteger)-1. A group of
bits contains N bits, where N is the value of the BitsPerInteger property. If you set the
SignedIntegerOutput property to true, the object maps each group of BitsPerInteger
bits to an integer between -(2(BitsPerInteger-1)) and (2(BitsPerInteger-1))-1.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-135

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-136

comm.BinarySymmetricChannel
Package: comm

(To be removed) Introduce binary errors

Note comm.BinarySymmetricChannel will be removed in a future release. Use bsc
instead.

Description
The BinarySymmetricChannel object introduces binary errors to the signal transmitted
through this channel.

To introduce binary errors into the transmitted signal:

1 Define and set up your binary symmetric channel object. See “Construction” on page
4-137.

2 Call step to introduces binary errors into the signal transmitted through this channel
according to the properties of comm.ACPR. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.BinarySymmetricChannel creates a binary symmetric channel System
object, H, that introduces binary errors to the input signal with a prescribed probability.

H = comm.BinarySymmetricChannel(Name,Value) creates a binary symmetric
channel object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.BinarySymmetricChannel

4-137

Properties
ErrorProbability

Probability of binary error

Specify the probability of a binary error as a scalar with a value between 0 and 1. The
default is 0.05.

ErrorVectorOutputPort

Enable error vector output

When you set this property to true, the step method outputs an error signal, ERR. This
error signal, in vector form, indicates where errors were introduced in the input signal, X.
A value of 1 at the i-th element of ERR indicates that an error was introduced at the i-th
element of X. Set the property to false if you do not want the ERR vector at the output of
the step method. The default is true.

OutputDataType

Data type of output

Specify output data type as one of double | logical. The default is double.

Methods
step (To be removed) Introduce binary errors

Common to All System Objects
release Allow System object property value changes

Examples

Add Errors to Binary Input Signal
% Add binary errors with a probability of 0.2 to a binary input signal.
p = 0.2;

4 System Objects — Alphabetical List

4-138

binSymChan = comm.BinarySymmetricChannel('ErrorProbability',p);
data = randi([0 1],1000,1);
[~,err1] = binSymChan(data);

% Confirm that the number errors is approximately
% equal to the probability value multiplied by the number of symbols.
[sum(err1) p*length(data)];

% Perform using the bsc function
[~,err2] = bsc(data,p);
[sum(err2) p*length(data)];

ans =

 192 200

Algorithms
This object implements the algorithm, inputs, and outputs described on the Binary
Symmetric Channel block reference page. The object properties correspond to the block
parameters, except:This object uses the MATLAB default random stream to generate
random numbers. The block uses a random number generator based on the V5 RANDN
(Ziggurat) algorithm. An initial seed, set with the Initial seed parameter initializes the
random number generator. For every system run that contains the block, the block
generates the same sequence of random numbers. To generate reproducible numbers
using this object, you can reset the MATLAB default random stream using the following
code.

reset(RandStream.getGlobalStream)

For more information, see help for RandStream.

Compatibility Considerations

comm.BinarySymmetricChannel will be removed
Warns starting in R2019b

comm.BinarySymmetricChannel will be removed in a future release. Use bsc instead.

% This code provides examples using various syntaxes
% for the comm.BinarySymmetricChannel object versus the |bsc| function.

%% Simulate BSC with default comm.BinarySymmetricChannel object

 comm.BinarySymmetricChannel

4-139

data = randi([0 1],1000,2); % generate binary data
% Using comm.BinarySymmetricChannel object
bscObj = comm.BinarySymmetricChannel;
s = rng; % Save default MATLAB random number generator state
outOld = bscObj(data);
% Using bsc function
rng(s) % Restore saved random number generator state
outNew = bsc(data,0.05);

%% Simulate BSC with object and set ErrorProbability property
data = randi([0 1],1000,2); % generate binary data
p = 0.3; % probability
% Using comm.BinarySymmetricChannel object
bscObj = comm.BinarySymmetricChannel('ErrorProbability',p);
s = rng; % Save default MATLAB random number generator state
outOld = bscObj(data);
% Using bsc function
rng(s) % Restore saved random number generator state
outNew = bsc(data,p);

%% Simulate BSC with object and set ErrorVectorOutputPort property
data = randi([0 1],1000,2); % generate binary data
% Using comm.BinarySymmetricChannel object
bscObj = comm.BinarySymmetricChannel('ErrorVectorOutputPort', true)
s = rng; % Save default MATLAB random number generator state
[outOld,errOld] = bscObj(data);
% Using bsc function
rng(s) % Restore saved random number generator state
[outNew,errNew] = bsc(data,0.05);

%% Simulate BSC with object and set OutputDataType property to logical
data = randi([0 1],1000,2); % generate binary data
% Using comm.BinarySymmetricChannel object
bscObj = comm.BinarySymmetricChannel('OutputDataType','logical');
s = rng; % Save default MATLAB random number generator state
outOld = bscObj(data);
% Using bsc function
rng(s) % Restore saved random number generator state
outNew = logical(bsc(data,0.05));

%% Simulate BSC with object and input is logical
data = logical(randi([0 1],1000,2)); % generate logical data
% Using comm.BinarySymmetricChannel object
bscObj = comm.BinarySymmetricChannel;

4 System Objects — Alphabetical List

4-140

s = rng; % Save default MATLAB random number generator state.
outOld = bscObj(data);
% Using bsc function
rng(s) % Restore saved random number generator state
outNew = bsc(double(data),0.05);

%% Simulate BSC with object and input is integer, 'int8'
% Integer datatype options: int8, uint8, int16, uint16, int32, uint32
data = randi([0 1],1000,2,'int8'); % generate integer data
% Using comm.BinarySymmetricChannel object
bscObj = comm.BinarySymmetricChannel;
s = rng; % Save default MATLAB random number generator state
outOld = bscObj(int8(data));
% Using bsc function
rng(s) % Restore saved random number generator state
outNew = bsc(double(data),0.05);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
bsc | comm.AWGNChannel

Introduced in R2012a

 comm.BinarySymmetricChannel

4-141

step
System object: comm.BinarySymmetricChannel
Package: comm

(To be removed) Introduce binary errors

Note comm.BinarySymmetricChannel will be removed in a future release. Use bsc
instead.

Syntax
Y = step(H,X)
[Y,ERR] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) adds binary errors to the input signal X and returns the modified signal,
Y. The input signal can be a vector or matrix with numeric, logical, or fixed-point (fi
objects) data type elements. The step method output, Y, has the same dimensions as the
input, X. If X input contains a non-binary value, V, the object considers it to be 1 when
abs(V) > 0. This syntax applies when you set the ErrorVectorOutputPort property to
false.

[Y,ERR] = step(H,X) returns the error signal vector, ERR. A value of 1 at the i-th
element of ERR indicates that an error was introduced at the i-th element of X. The
outputs, Y and ERR, have the same dimensions as the input, X. This syntax applies when
you set the ErrorVectorOutputPort property to true.

4 System Objects — Alphabetical List

4-142

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-143

bleATTPDUConfig
Create configuration object for BLE ATT PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleATTPDUConfig creates a configuration object for a Bluetooth low energy (BLE)
attribute protocol data unit (ATT PDU). You can configure a BLE ATT PDU using the
applicable properties of bleATTPDUConfig.

Creation

Syntax
cfgATT = bleATTPDUConfig
cfgATT = bleATTPDUConfig(Name,Value)

Description
cfgATT = bleATTPDUConfig creates a bleATTPDUConfig configuration object,
cfgATT, for a BLE ATT PDU with default values.

cfgATT = bleATTPDUConfig(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example,
bleATTPDUConfig('Opcode','Error response') sets the Opcode property of
cfgATT to 'Error response'.

4 System Objects — Alphabetical List

4-144

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Properties

Note For more information about BLE ATT PDU properties and their respective values,
see volume 3, part F, sections 3.3 and 3.4 of the Bluetooth Core Specification [2].

Opcode — BLE ATT PDU operation code
'Read request' (default) | 'MTU request' | 'Information request' | ...

BLE ATT PDU operation code, specified as one of the values in this list. Each valid value
describes a BLE ATT PDU operation code.

• 'MTU request'
• 'Error response'
• 'Information request'
• 'Find by type value request'
• 'Read by type request'
• 'Read request'
• 'Read response'
• 'Read blob request'
• 'Read blob response'
• 'Read by group type request'
• 'Write request'
• 'Write response'
• 'Write command'
• 'Prepare write request'
• 'Prepare write response'
• 'Execute write request'
• 'Execute write response'
• 'Handle value notification'
• 'Handle value indication'
• 'Handle value confirmation'

 bleATTPDUConfig

4-145

• 'Information response'
• 'Find by type value response'
• 'Read by type response'
• 'Read by group type response'

Data Types: char | string

RequestedOpcode — Opcode of request BLE ATT PDU
'Read request' (default) | character vector | string scalar

Opcode of request BLE ATT PDU, specified as one of the values in this list. Each valid
value describes a request BLE ATT PDU (from a peer device) that caused an error.

• 'MTU request'
• 'Information request'
• 'Find by type value request'
• 'Read by type request'
• 'Read request'
• 'Read blob request'
• 'Read by group type request'
• 'Write request'
• 'Prepare to write request'
• 'Execute write request'

Data Types: char | string

Format — Format of information data field
'16 bit' (default) | '128 bit'

Format of information data field, specified as '16 bit' or '128 bit'. This value
specifies the format of information data element in the PDU with opcode 'Information
Response'.
Data Types: char | string

AttributeHandle — Handle value of attribute
'0001' (default) | character vector of two-octet hexadecimal

4 System Objects — Alphabetical List

4-146

Handle value of attribute, specified as the character vector of a two-octet hexadecimal
value in the range [0x0001, 0xFFFF]. This value is a unique identifier. The server
dynamically assigns this value.
Data Types: char | string

ErrorMessage — Error message corresponding to request BLE ATT PDU
'Invalid handle' (default) | 'Invalid handle' | 'Read not permitted' | ...

Error message corresponding to request BLE ATT PDU, specified as one of the values in
this list. Each value indicates the cause of an error corresponding to the request PDU
from a peer device.

• 'Invalid handle'
• 'Read not permitted'
• 'Write not permitted'
• 'Invalid PDU'
• 'Insufficient authentication'
• 'Request not supported'
• 'Invalid offset'
• 'Insufficient authorization'
• 'Prepare queue full'
• 'Attribute not found'
• 'Attribute not long'
• 'Insufficient encryption key size'
• 'Invalid attribute value length'
• 'Unlikely error'
• 'Insufficient encryption'
• 'Unsupported group type'
• 'Insufficient resources'

Data Types: char | string

MaxTransmissionUnit — Maximum size of BLE ATT PDU
23 (default) | positive integer

 bleATTPDUConfig

4-147

Maximum size of BLE ATT PDU, specified as a positive integer in the range [23,65535].
This value sets the maximum size of the BLE ATT PDU in bytes that a client or server can
receive.
Data Types: uint8

StartHandle — Starting handle of handle range
'0001' (default) | character vector of two-octet hexadecimal value

Starting handle of handle range, specified as a two-octet hexadecimal value in the range
[0x0001,0xFFFF]. This value indicates the handle value of a service or characteristic
declaration or the starting handle of a handle range. This value must be less than the
EndHandle.
Data Types: char | string

EndHandle — Ending handle of handle range
'FFFF' (default) | character vector of two-octet hexadecimal value

Ending handle of handle range, specified as a two-octet hexadecimal value in the range
[0x0001,0xFFFF]. This value sets the end handle value of a service declaration or a
characteristic declaration or the ending handle of a handle range. This value must be
greater than the StartHandle.
Data Types: char | string

AttributeType — Type of attribute
'2800' (Primary service) (default) | four-element or 32-element character vector |
2-octet or 16-octet string scalar

Type of attribute, specified as a four-element or 32-element character vector or a string
scalar denoting a two-octet or16-octet hexadecimal value.
Data Types: char | string

AttributeValue — Value of attribute
' ' (default) | character vector | string scalar | numeric vector of elements in the range
[0,255] | n-by-2 character array of maximum length 131068

Value of attribute, specified as one of these values:

• Character vector — This vector represent octets in hexadecimal format.
• String scalar — This scalar represent octets in hexadecimal format.

4 System Objects — Alphabetical List

4-148

• Numeric vector of elements in the range [0,255] — This vector represent octets in
decimal format. The maximum length of the numeric vector is 65534.

• n-by-2 character array — Each row represent an octet in hexadecimal format. The
maximum length of the character array is 131068.

AttributeValue indicates the value of an attribute to be stored in or read from the
attribute database. Specify this value in LSB first format.
Data Types: char | string | double

Offset — Offset of next octet to be read
0 (default) | integer in the range [0, 65565]

Offset of next octet to be read, specified as an integer in the range [0, 65535]. You can
use this value in the BLE ATT PDUs with opcodes 'Read blob request', 'Prepare
write request', and 'Prepare write response' to identify an attribute value
offset in the attribute database.
Data Types: double

ExecuteWrite — Execute write flag
'Cancel all prepared writes' (default) | 'Write all pending requests'

Execute write flag, specified as 'Cancel all prepared writes' or 'Write all
pending requests'. You can determine the action (discard or write) to be performed
when this property is used.
Data Types: char | string

Object Functions

Specific to This Object
bleATTPDU Generate BLE ATT PDU
bleATTPDUDecode Decode BLE ATT PDU

Examples

 bleATTPDUConfig

4-149

Create BLE ATT PDU Configuration Objects

Create two unique BLE ATT PDU configuration objects: one of type 'Read by type
request' and the other of type 'Error response' using default settings and name-
value pairs respectively.

Create a BLE ATT PDU configuration object with default settings.

cfgATT = bleATTPDUConfig;

Set the BLE ATT PDU opcode as 'Read by type request'. View the applicable
properties of the opcode 'Read by type request'.

cfgATT.Opcode = 'Read by type request'

cfgATT =
 bleATTPDUConfig with properties:

 Opcode: 'Read by type request'
 StartHandle: '0001'
 EndHandle: 'FFFF'
 AttributeType: '2800'

Create another BLE ATT PDU configuration object, this time using the name-value pairs.
Change the BLE ATT PDU opcode to 'Error response'. View the applicable properties
of the opcode 'Error response'.

cfgATT = bleATTPDUConfig('Opcode','Error response')

cfgATT =
 bleATTPDUConfig with properties:

 Opcode: 'Error response'
 RequestedOpcode: 'Read request'
 AttributeHandle: '0001'
 ErrorMessage: 'Invalid handle'

4 System Objects — Alphabetical List

4-150

End-to-End Workflow of BLE ATT PDU

Create a BLE ATT PDU configuration object. Change the value of opcode to 'Read by
type request'. View the applicable properties of the specified value of opcode.

cfgTx = bleATTPDUConfig;
cfgTx.Opcode = 'Read by type request'

cfgTx =
 bleATTPDUConfig with properties:

 Opcode: 'Read by type request'
 StartHandle: '0001'
 EndHandle: 'FFFF'
 AttributeType: '2800'

Generate a BLE ATT PDU from the corresponding configuration object.

attPDU = bleATTPDU(cfgTx);

Decode the generated BLE ATT PDU. The returned status indicates decoding is
successful. View the applicable properties of the opcode 'Error response'.

[status, cfgRx] = bleATTPDUDecode(attPDU)

status =
Success

cfgRx =
 bleATTPDUConfig with properties:

 Opcode: 'Read by type request'
 StartHandle: '0001'
 EndHandle: 'FFFF'
 AttributeType: '2800'

References
[1] Bluetooth Hompage. https://www.bluetooth.com/.

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

 bleATTPDUConfig

4-151

https://www.bluetooth.com/

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleATTPDU | bleATTPDUDecode

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

4 System Objects — Alphabetical List

4-152

bleChannelSelection

Select BLE channel index for connection events

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleChannelSelection System object selects a Bluetooth low energy (BLE) channel
index based on the selected algorithm. For more information, see Algorithm in property.

To select a BLE channel index:

1 Create the bleChannelSelection object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
csa = bleChannelSelection
csa = bleChannelSelection(Name,Value)

Description
csa = bleChannelSelection creates a blechannelselection System object, csa,
to select a BLE channel index for connection events or periodic advertising events.

 bleChannelSelection

4-153

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

csa = bleChannelSelection(Name,Value)sets properties using one or more name-
value pairs. For example, bleChannelSelection('Algorithm','2') configures the
System object, csa, to select a BLE channel index based on 'Algorithm #2'. Enclose
each property name in quotes.

Properties

Note For more information about BLE channel selection properties and their respective
values, see volume 6, part B, section 4.5.8 of the Bluetooth Core Specification [2].

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Algorithm — Type of BLE channel selection algorithm
1 (default) | 2

Type of BLE channel selection algorithm, specified as 1 or 2 representing 'Algorithm
#1' or 'Algorithm #2' respectively. The property uses this algorithm to select the
channel index.
Data Types: double

HopIncrement — Hop increment count
5 (default) | integer in the range [5, 16]

Hop increment count, specified as an integer in the range [5,16]. This property indicates
the hop increment count to be used for hopping between data channels. 'Algorithm
#1' uses this value as an input.
Data Types: double

AccessAddress — Unique connection address
'8E89BED6' (default) | eigh-element character vector | string scalar denoting a four-
octet hexadecimal value

4 System Objects — Alphabetical List

4-154

Unique connection address, specified as an eight-element character vector or a string
scalar denoting a four-octet hexadecimal value. This value indicates a unique 32-bit
address for the link layer connection between two devices. 'Algorithm #2' uses this
value as an input.
Data Types: char | string

UsedChannels — List of used (good) data channels
row vector containing all the channel indices [0, 36] (default) | vector of integers in the
range [0, 36]

List of used (good) data channels, specified as an integer vector with element values in
the range [0, 36]. The vector length must be greater than 1. At least two channels must
be set as used (good) channels. This value indicates the set of good channels classified by
the master.
Data Types: double

Usage

Syntax
channelIndex = csa()

Description
channelIndex = csa() selects a channel index based on the algorithm specified by the
Algorithm property, the list of used data channels specified by the UsedChannels
property, and other applicable properties dependant on the selected algorithm. The
returned channel index, channelIndex, is of data type double.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

 bleChannelSelection

4-155

Specific to bleChannelSelection
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Select BLE Channel Indices Based on Type of Channel Selection Algorithm

Create a blechannelselection System object, 'csa', to select a BLE channel index
based on the channel selection algorithm, 'Algorithm #1'. View the corresponding
applicable properties.

csa = bleChannelSelection

csa =
 bleChannelSelection with properties:

 Algorithm: 1
 HopIncrement: 5
 UsedChannels: [1x37 double]
 ChannelIndex: 0
 EventCounter: 0

Set the values of 'HopIncrement' to 7 and 'UsedChannels' to
[0,2,24,6,10,14,26,30,34,36]. View the corresponding properties.

csa.HopIncrement = 7;
csa.UsedChannels = [0, 2, 24, 6, 10, 14, 26, 30, 34, 36]

csa =
 bleChannelSelection with properties:

 Algorithm: 1

4 System Objects — Alphabetical List

4-156

 HopIncrement: 7
 UsedChannels: [0 2 6 10 14 24 26 30 34 36]
 ChannelIndex: 0
 EventCounter: 0

Select a BLE channel index from the corresponding system object using 'Algorithm
#1'.

channelIndex = csa()

channelIndex = 30

Create another blechannelselection System object, 'csa', this time to select a BLE
channel index by specifying the type of channel selection algorithm as 'Algorithm #2'.
View the corresponding applicable properties.

csa2 = bleChannelSelection("Algorithm",2);

Change the values of 'AccessAddress' to '8E89BED6' and 'UsedChannels' to
[9,10,21,22,23,33,34,35,36]. View the corresponding properties.

csa2.AccessAddress = '8E89BED6';
csa2.UsedChannels = [9, 10, 21, 22, 23, 33, 34, 35, 36]

csa2 =
 bleChannelSelection with properties:

 Algorithm: 2
 AccessAddress: '8E89BED6'
 UsedChannels: [9 10 21 22 23 33 34 35 36]
 ChannelIndex: 0
 EventCounter: 0

Select a BLE channel index from the corresponding system object using 'Algorithm
#2'.

channelIndex2 = csa2()

channelIndex2 = 9

 bleChannelSelection

4-157

References
[1] Bluetooth Homepage. https://www.bluetooth.com/.

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
bleLLDataChannelPDU | bleLLDataChannelPDUDecode

Objects
bleLLDataChannelPDUConfig | bleLLControlPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

4 System Objects — Alphabetical List

4-158

https://www.bluetooth.com/

bleLLControlPDUConfig
Create configuration object for BLE LL control PDU payload configuration

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleLLControlPDUConfig creates a configuration object for Bluetooth low energy
(BLE) link layer (LL) control protocol data unit (PDU) payload configuration by using the
default and specified values. You can configure a BLE LL control PDU payload
configuration using the applicable properties of bleLLControlPDUConfig.

Creation

Syntax
cfgControl = bleLLControlPDUConfig
cfgControl = bleLLControlPDUConfig(Name,Value)

Description
cfgControl = bleLLControlPDUConfig creates a configuration object, cfgControl,
for a BLE LL control PDU payload configuration using default values.

cfgControl = bleLLControlPDUConfig(Name,Value)sets the properties using one
or more name-value pairs. Enclose each property name in quotes. For example,
bleLLControlPDUConfig('Opcode','Version indication') configures
cfgControl with the operation code as 'Version indication'

 bleLLControlPDUConfig

4-159

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Properties

Note For more information about BLE LL control PDU properties and their respective
values, see volume 6, part B, section 2.4 of the Bluetooth Core Specification [2].

Opcode — BLE LL control PDU payload configuration operation code
'Connection update indication' (default) | 'Channel map indication' |
'Terminate indication' | 'Unknown response' | 'Version indication' |
'Reject indication'

BLE LL control PDU payload configuration operation code, specified as one of the values
in this list. Each valid value describes a BLE LL control PDU operation code.

• 'Connection update indication'
• 'Channel map indication'
• 'Terminate indication'
• 'Unknown response'
• 'Version indication'
• 'Reject indication'

Data Types: char | string

WindowSize — Transmit window size
1 (default) | nonnegative integer

Transmit window size, specified as a nonnegative integer in the range [1, Mws], where
Mws is the lesser of 8 and (ConnectionInterval-1). This property indicates the window
size within which the master transmits a data packet and the slave listens for a data
packet after the connection is established. Each unit is taken as 1.25 ms so that the
window size (WindowSize×1.25) is in the range of 1.25 ms to the minimum of (10 ms,
((ConnectionInterval×1.25) - 1.25) ms).
Data Types: double

ConnectionInterval — Connection interval
6 (7.5 ms) (default) | integer in the range [6, 3200]

Connection interval, specified as an integer in the range [6, 3200]. This property indicates
the interval between the start of two consecutive connection events. Each unit is taken as

4 System Objects — Alphabetical List

4-160

1.25 ms so that the connection interval (ConnectionInterval×1.25) is in the range of
7.5 ms to 4.0 s.
Data Types: double

SlaveLatency — Slave latency
0 (default) | nonnegative integer

Slave latency, specified as a nonnegative integer in the range [0, Msl], where Msl is the
lesser of 499 and ((ConnectionTimeout×10)/((ConnectionInterval×1.25)×2))-1.
This property indicates the number of connection events that a slave can ignore.
Data Types: double

ConnectionTimeout — Connection supervision timeout
10 (default) | nonnegative integer

Connection supervision timeout, specified as a nonnegative integer in the range [Mct,
3200], where Mct is the larger of 10 and
((1+SlaveLatency)*(ConnectionInterval×1.25)×2)/10. If the slave does not receive
a valid packet within this time, this property indicates the connection timeout. Each unit
is taken as 10 ms so that the connection timeout (ConnectionInterval×10) is in the
range of 100 ms to 32.0 s.
Data Types: double

Instant — Connection event instant
0 (default) | integer in the range [0, 65535]

Connection event instant, specified as an integer in the range [0, 65535]. This property
indicates the event count at which specific action must occur, for instance, using updated
connection parameters.
Data Types: double

UsedChannels — List of used data channels
row vector containing the channel indices between [0:36] (default) |
integer vector with element values in the range [0, 36]

List of used data channels, specified as an integer vector with element values in the range
[0, 36]. The vector length must be greater than 1. At least two channels must be set as
used (good) channels. This property indicates the set of good channels classified by the
master.

 bleLLControlPDUConfig

4-161

Data Types: double

ErrorCode — Connection termination error code
'Success' (default) | 'Unknown connection identifier' | 'Hardware failure'
| ...

Connection termination error code, specified as one of the values in this list. Each valid
value describes the error description informing the remote device why the connection is
about to be terminated.

• 'Success'
• 'Unknown connection identifier'
• 'Hardware failure'
• 'Memory capacity exceeded'
• 'Connection timeout'
• 'Connection limit exceeded'
• 'Connection already exists'
• 'Command disallowed'
• 'Connection accept timeout exceeded'
• 'Connection rejected due to limited resources'
• 'Invalid LL parameters'
• 'Connection rejected due to unacceptable BD_ADDR'
• 'Unspecified error'
• 'Unsupported LL parameter value'
• 'Role change not allowed'
• 'LL response timeout'
• 'LL procedure collision'
• 'Instant passed'
• 'Channel classification not supported'
• 'Extended inquiry response too large'
• 'Connection rejected due to no suitable channel found'
• 'Advertising timeout'
• 'Controller busy'

4 System Objects — Alphabetical List

4-162

• 'Unacceptable connection parameters'
• 'Connection failed to be established'
• 'Unknown advertising identifier'
• 'Limit reached'
• 'Operation cancelled by host'

Data Types: char | string

UnknownOpcode — Unrecognized or unsupported operation code
'00' (default) | two-element character vector | string scalar denoting one-octet
hexadecimal value

Unrecognized or unsupported operation code, specified as the comma-separated pair
consisting of 'UnknownOpcode' and a two-element character vector or string scalar
denoting a one-octet hexadecimal value. This property indicates the type of BLE LL
control PDU that is not recognized or supported.
Data Types: char | string

VersionNumber — Version number of Bluetooth specification
'5.0' (default) | string scalar denoting a one-octet hexadecimal value

Version number of Bluetooth specification, specified as a string scalar denoting a one-
octet hexadecimal value. You can specify the 'VersionNumber' as '4.0', '4.1',
'4.2' or '4.3'. This property indicates the version number of the Bluetooth core
specification.
Data Types: string

CompanyIdentifier — Manufacturer ID of Bluetooth controller
'FFFF' (default) | four-element character vector | string scalar denoting a two-octet
hexadecimal value

Manufacturer ID of Bluetooth controller, specified as a four-element character vector or a
string scalar denoting a two-octet hexadecimal value. This property indicates the unique
identifier assigned to your organization by Bluetooth Special Interest Group (SIG) [2].
Data Types: char | string

SubVersionNumber — Subversion number of the Bluetooth controller
'0000' (default) | four-element character vector | string scalar denoting a two-octet
hexadecimal value

 bleLLControlPDUConfig

4-163

Subversion number of the Bluetooth controller, specified as a four-element character
vector or string scalar denoting a two-octet hexadecimal value. This property indicates
the unique value for each implementation or revision of a Bluetooth controller
implementation.
Data Types: char | string

Object Functions
Specific to This Object
bleLLDataChannelPDU Generate BLE LL data channel PDU
bleLLDataChannelPDUDecode Decode BLE LL data channel PDU
bleLLDataChannelPDUConfig Create configuration object for BLE LL data channel

PDU

Examples

Create BLE LL Control PDU Configuration Object Using Default Settings

Create a BLE LL control PDU configuration object, 'cfgControl', using default
settings. View the corresponding applicable properties.

cfgControl = bleLLControlPDUConfig

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Connection update indication'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 6
 SlaveLatency: 0
 ConnectionTimeout: 10
 Instant: 0

Change the value of the connection interval to 64. View the configured properties.

cfgControl.ConnectionInterval = 64

4 System Objects — Alphabetical List

4-164

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Connection update indication'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 64
 SlaveLatency: 0
 ConnectionTimeout: 10
 Instant: 0

Create BLE LL Control PDU Configuration Object Using Name-Value Pairs

Create two unique BLE LL control PDU configuration objects using name-value pairs: first
one of the type 'Terminate indication' and error code 'Connection timeout'
and second one of the type 'Channel map indication' with used set of data
channels.

Create a BLE LL control PDU configuration object, 'cfgControl', by specifying opcode
as 'Terminate indication' and the error code as 'Connection timeout'. View
the applicable properties corresponding to the specified opcode.

cfgControl = bleLLControlPDUConfig('Opcode','Terminate indication', ...
 'ErrorCode','Connection Timeout')

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Terminate indication'
 ErrorCode: 'Connection timeout'

Create another BLE LL control PDU payload configuration object, 'cfgControl', this
time by setting the value of opcode as 'Channel map indication'. Specify the list of
used data channels. View the configured properties corresponding to the specified
opcode.

cfgControl = bleLLControlPDUConfig('Opcode','Channel map indication');
cfgControl.UsedChannels = [0 3 12 16 18 24]

cfgControl =
 bleLLControlPDUConfig with properties:

 bleLLControlPDUConfig

4-165

 Opcode: 'Channel map indication'
 Instant: 0
 UsedChannels: [0 3 12 16 18 24]

Create a BLE LL data channel configuration object, 'cfgLLData', by specifying the
values of 'LLID' as 'Control' and 'ControlConfig' as 'cfgControl'. View the
properties of the configuration object 'cfgLLData'.

cfgLLData = bleLLDataChannelPDUConfig('LLID','Control');
cfgLLData.ControlConfig = cfgControl

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0
 ControlConfig: [1x1 bleLLControlPDUConfig]

End-to-End Workflow of BLE LL Control PDU

Create a BLE LL data channel PDU configuration object for a control PDU by using
default configuration. View the corresponding default properties.

cfgControl = bleLLControlPDUConfig

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Connection update indication'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 6
 SlaveLatency: 0
 ConnectionTimeout: 10
 Instant: 0

4 System Objects — Alphabetical List

4-166

Generate a BLE LL data channel PDU using 'cfgTx' by specifying the value of link layer
identifier, 'LLID', as 'Control' and 'ControlConfig' as 'cfgControl'. Specify the
cyclic redundancy check (CRC) value for the configuration object 'cfgTx'. View the
properties of 'cfgTx'.

cfgTx = bleLLDataChannelPDUConfig('LLID', 'Control', ...
 'ControlConfig',cfgControl);
cfgTx.CRCInitialization = 'E23456'

cfgTx =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0
 ControlConfig: [1x1 bleLLControlPDUConfig]

Generate a BLE LL control PDU from 'cfgTx'.

pdu = bleLLDataChannelPDU(cfgTx);

Decode the generated BLE LL control PDU by initializing the CRC value. The returned
status indicates decoding is successful. View the values of 'status', 'cfgRx' and
'llPayload'.

crcInit = 'E23456'; % Received during associaton
[status, cfgRx, llPayload] = bleLLDataChannelPDUDecode(pdu, crcInit)

status =
Success

cfgRx =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0
 ControlConfig: [1x1 bleLLControlPDUConfig]

llPayload =

 1x0 empty char array

 bleLLControlPDUConfig

4-167

References
[1] Bluetooth Homepage. https://www.bluetooth.com/.

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleLLDataChannelPDU | bleLLDataChannelPDUDecode

Objects
bleLLDataChannelPDUConfig

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

4 System Objects — Alphabetical List

4-168

https://www.bluetooth.com/

bleL2CAPFrameConfig
Create configuration object for BLE L2CAP frame

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleL2CAPFrameConfig creates a configuration object for Bluetooth low energy
(BLE) logical link control and adaptation protocol (L2CAP) signaling frame or data frame
using the default and specified values. You can configure a BLE L2CAP signaling frame or
data frame using the applicable properties of bleL2CAPFrameConfig.

Creation

Syntax
cfgL2CAP = bleL2CAPFrameConfig
cfgL2CAP = bleL2CAPFrameConfig(Name,Value)

Description
cfgL2CAP = bleL2CAPFrameConfig creates a configuration object, cfgL2CAP, for a
BLE L2CAP signaling command frame or data frame with default values.

cfgL2CAP = bleL2CAPFrameConfig(Name,Value) specifies properties using one or
more name-value pairs. Enclose each property name in quotes. For example,
bleL2CAPFrameConfig('CommandType','Command reject') configures cfgL2CAP
with the type of signaling command frame as 'Command reject'.

 bleL2CAPFrameConfig

4-169

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Properties

Note For more information about BLE L2CAP frame properties and their respective
values, see volume 3, part A, section 3 of the Bluetooth Core Specification [2].

ChannelIdentifier — Identifier for logical channel endpoint
'0005' (default) | four-element character vector | string scalar denoting a two-octet
hexadecimal value

Identifier for a logical channel endpoint, specified as a four-element character vector or a
string scalar denoting a two-octet hexadecimal value. The 'ChannelIdentifier'
denotes the local name representing a logical channel endpoint. This property is used to
identify the command and data frames. Command frames use '0005' as the
'ChannelIdentifier'. L2CAP B-frames use fixed 'ChannelIdentifier', '0004' for
attribute protocol (ATT) and '0006' for security manager protocol (SMP).
Data Types: char | string

CommandType — Signaling command type
'Credit Based Connection request' (default) | 'Command reject' |
'Disconnection request' | ...

Signaling command type, specified as a character vector or a string scalar. You can
specify CommandType as one of these values:

• 'Command reject'
• 'Disconnection request'
• 'Disconnection response'
• 'Connection Parameter Update request'
• 'Connection Parameter Update response'
• 'Credit Based Connection request'
• 'Credit Based Connection response'
• 'Flow Control Credit'

This property is applicable only when the value of ChannelIdentifier is set to '0005'
(signaling channel identifier).
Data Types: char | string

4 System Objects — Alphabetical List

4-170

SignalIdentifier — Identifier for request-response frame exchange
'01' (default) | two-element character vector | string scalar denoting one-octet
hexadecimal value

Identifier for a request-response frame exchange, specified as a two-element character
vector or string scalar denoting a one-octet hexadecimal value. The requesting device sets
the value of this property and the responding device uses the same value in its response.
The value of this property cannot be set to '00'.
Data Types: char | string

CommandRejectReason — Reason for rejecting received signaling command
frame
'Command not understood' (default) | 'Signaling MTU exceeded' | 'Invalid
CID in request'

Reason for rejecting the received signaling command frame, specified as a character
vector or a string scalar. You can specify CommandRejectReason as one of these values:

• 'Command not understood'
• 'Signaling MTU exceeded'
• 'Invalid CID in request'

This property specifies the reason for rejecting a signaling command frame.
Data Types: char | string

SourceChannelIdentifier — Source logical channel endpoint
'0040' (default) | four-element character vector | string scalar denoting two-octet
hexadecimal value

Source logical channel endpoint, specified as a four-element character vector or string
scalar denoting a two-octet hexadecimal value. This property specifies the source channel
endpoint from which the request is sent or a response is received. When the channel is
created using credit-based connection procedure, data packets flowing to the sender of
the request are sent to the SourceChannelIdentifier.
Data Types: char | string

DestinationChannelIdentifier — Destination logical channel endpoint
'0040' (default) | four-element character vector | string scalar denoting two-octet
hexadecimal value

 bleL2CAPFrameConfig

4-171

Destination logical channel endpoint, specified as a four-element character vector or
string scalar denoting a two-octet hexadecimal value. This property specifies the
destination channel endpoint from which the request is sent or a response is received.
When the channel is created using credit-based connection procedure, data packets
flowing to the destination of the request are sent to the
DestinationChannelIdentifier.
Data Types: char | string

ConnectionIntervalRange — Connection interval range
[6,3200] (default) | two-element numeric vector specified as [MIN, MAX]

Connection interval range, specified as a two-element numeric vector in the form of [MIN,
MAX]. MIN and MAX specify the minimum and the maximum value of the
ConnectionIntervalRange respectively. You can specify the value of MIN and MAX in
the range [6, 3200]. MIN must be less than or equal to MAX. Each unit for MIN or MAX is
taken as 1.25 ms so the resultant value is in the range [7.5 ms, 4.0 s].
Data Types: double

ConnectionTimeout — Connection supervision timeout
10 (100 ms) (default) | integer in the range [Mct, 3200]

Connection supervision timeout, specified as an integer in the range [Mct, 3200], where
Mct is the larger of 10 and ((1+SlaveLatency)×(ConnectionInterval×1.25)×2)/10.
This property indicates the timeout for a connection if no valid packet is received within
this time. Each unit is taken as 10 ms so that the resultant connection timeout,
(ConnectionInterval×10), is in the range [100 ms, 32.0s].
Data Types: double

SlaveLatency — Number of link layer connection events a slave can ignore
0 (default) | integer in the range [0, Msl]

Number of link layer connection events a slave can ignore, specified as an integer in the
range [0, Msl], where Msl is the lesser of 499 and ((ConnectionTimeout×10)/
((ConnectionInterval×1.25)×2))-1. This property indicates the number of connection
events that a slave can ignore.
Data Types: double

ParameterUpdateResult — Result of connection parameters update
'Accepted' (default) | 'Rejected'

4 System Objects — Alphabetical List

4-172

Result of the connection parameters update, specified as 'Accepted' or 'Rejected'.
This property indicates the response to the 'Connection Parameter Update
Request' value of the property CommandType and specifies the result after updating the
connection parameters.
Data Types: char | string

LEPSM — LE protocol or service multiplexer
'001F' (default) | four-element character vector | string scalar denoting two-octet
hexadecimal value

LE protocol or service multiplexer, specified as a four-element character vector or a string
scalar denoting a two-octet hexadecimal value. The value of this property is a unique
number specified by the Special Interest Group (SIG) for each protocol. The SIG assigns
the value of this property within the range [0x0001, 0x007F] for a set of existing
protocols. The SIG dynamically assigns the value of this property in the range [0x0080,
0x00FF] to the implemented protocols.
Data Types: char | string

MaxTransmissionUnit — Maximum service data unit (SDU) size
23 (default) | integer in the range of [23, 65,535]

Maximum service data unit (SDU) size, specified as an integer in the range of [23, 65,535]
octets. This property specifies the maximum acceptable SDU size for the upper-layer
entity.
Data Types: double

MaxPDUPayloadSize — Maximum protocol data unit (PDU) payload size
23 (default) | integer in the range of [23, 65,535]

Maximum protocol data unit (PDU) payload size, specified as an integer in the range of
[23, 65,535] octets. This property specifies the maximum acceptable payload data for the
L2CAP layer entity.
Data Types: double

Credits — Number of LE-frames peer device can send or receive
1 (default) | integer in the range of [0, 65,535]

Number of LE-frames peer device can send or receive, specified as an integer in the
range of [0, 65,535] octets. This property indicates the number of LE-frames that the peer

 bleL2CAPFrameConfig

4-173

device can send or receive. If the value of CommandType property is set to 'Flow
control credit', then this property cannot be set to 0.
Data Types: double

ConnectionResult — Result of credit-based connection procedure
'Successful' (default) | 'LEPSM not supported' | 'No resources available'
| ...

Result of the credit-based connection procedure, specified as a character vector or a
string scalar. You can specify ConnectionResult as one of these values:

• 'Successful'
• 'LEPSM not supported'
• 'No resources available'
• 'Insufficient authentication'
• 'Insufficient authorization'
• 'Insufficient encryption key size'
• 'Insufficient encryption'
• 'Invalid Source CID'
• 'Source CID already allocated'
• 'Unacceptable parameters'

This property indicates the outcome of the connection request.
Data Types: char | string

Object Functions

Specific to This Object
bleL2CAPFrame Generate BLE L2CAP frame
bleL2CAPFrameDecode Decode BLE L2CAP frame

Examples

4 System Objects — Alphabetical List

4-174

Create BLE L2CAP Frame Configuration Object Using Default Settings

Create a BLE L2CAP frame configuration object, 'cfgL2CAP', using default properties.
View the corresponding applicable properties. This configuration object generates a BLE
L2CAP signaling frame of type 'Credit based connection request'.

cfgL2CAP = bleL2CAPFrameConfig

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0005'
 CommandType: 'Credit based connection request'
 SignalIdentifier: '01'
 SourceChannelIdentifier: '0040'
 LEPSM: '001F'
 MaxTransmissionUnit: 23
 MaxPDUPayloadSize: 23
 Credits: 1

Set the value of credits to 10. View the corresponding properties of 'cfgL2CAP'.

cfgL2CAP.Credits = 10

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0005'
 CommandType: 'Credit based connection request'
 SignalIdentifier: '01'
 SourceChannelIdentifier: '0040'
 LEPSM: '001F'
 MaxTransmissionUnit: 23
 MaxPDUPayloadSize: 23
 Credits: 10

 bleL2CAPFrameConfig

4-175

Create BLE L2CAP Configuration Object Using Name-Value pairs

Create a BLE L2CAP frame configuration object, 'cfgL2CAP', by setting the value of
channel identifier as '0004'using name-value pairs. View the corresponding applicable
properties. This configuration object generates a BLE L2CAP data frame (B-frame).

cfgL2CAP = bleL2CAPFrameConfig('ChannelIdentifier','0004')

cfgL2CAP =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0004'

End-to-End Workflow of BLE L2CAP Frames

Create a BLE L2CAP configuration object, 'bleL2CAPFrameConfig', to generate a BLE
L2CAP data frame (B-frame). Set the value of channel identifier as'0004' and view the
corresponding applicable properties.

cfgTx = bleL2CAPFrameConfig('ChannelIdentifier','0004')

cfgTx =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0004'

Generate a BLE L2CAP data frame (B-frame) with service data unit (SDU) from ATT
specified as '0A0100'.

l2capFrame = bleL2CAPFrame(cfgTx,"0A0100")

l2capFrame = 7x2 char array
 '03'
 '00'
 '04'
 '00'
 '0A'
 '01'
 '00'

4 System Objects — Alphabetical List

4-176

Decode the generated BLE L2CAP data frame (B-frame). The returned status indicates
decoding was successful. View the output of 'status', 'cfgRx' and 'SDU'.

[status, cfgRx, SDU] = bleL2CAPFrameDecode(l2capFrame)

status =
Success

cfgRx =
 bleL2CAPFrameConfig with properties:

 ChannelIdentifier: '0004'

SDU = 3x2 char array
 '0A'
 '01'
 '00'

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleL2CAPFrame | bleL2CAPFrameDecode

 bleL2CAPFrameConfig

4-177

https://www.bluetooth.com/

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

4 System Objects — Alphabetical List

4-178

bleLLDataChannelPDUConfig
Create configuration object for BLE LL data channel PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleLLDataChannelPDUConfig creates a configuration object for a Bluetooth low
energy (BLE) link layer (LL) data channel protocol data unit (PDU) using the default and
specified values. You can configure a BLE LL data PDU and a BLE LL control PDU using
the applicable properties of bleLLDataChannelPDUConfig.

Creation

Syntax
cfgLLData = bleLLDataChannelPDUConfig
cfgLLData = bleLLDataChannelPDUConfig(Name,Value)

Description
cfgLLData = bleLLDataChannelPDUConfig creates a configuration object,
cfgLLData, for a BLE LL data channel PDU with default values.

cfgLLData = bleLLDataChannelPDUConfig(Name,Value) sets properties by using
one or more name-value pairs. Enclose each property name in quotes. For example,
bleLLDataChannelPDUConfig('LLID','Data (start fragment/complete)')
configures cfgLLData with the type of BLE LL data channel PDU as a data PDU.

 bleLLDataChannelPDUConfig

4-179

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Properties

Note For more information about BLE LL data channel PDU properties and their
respective values, see volume 6, part B, section 2.4 of the Bluetooth Core Specification
[2].

LLID — Link layer identifier
'Data (continuation fragment/empty)' (default) | 'Data (continuation
fragment/empty)' | 'Control'

Link layer identifier, specified as a character vector or a string scalar to describe the type
of a BLE LL data channel PDU. You can specify 'LLID' as one of these values:

• 'Data (continuation fragment/empty)'
• 'Data (start fragment/complete)'
• 'Control'

Data Types: char | string

NESN — Next expected sequence number
0 (default) | 1

Next expected sequence number, specified as 0 or 1. This value indicates either an
acknowledgment for the last received packet or a request for resending the last
transmitted packet from the peer.
Data Types: scalar | logical | double

SequenceNumber — Transmitting packet sequence number
0 (default) | scalar | 1

Transmitting packet sequence number, specified as 0 or 1. This property indicates the
sequence number of the packet being transmitted.
Data Types: scalar | logical | double

MoreData — Indication for more data
false or 0 (default) | true or 1

Indication for more data, specified as a numeric or a logical value of 1 (true) or 0
(false). A true or 1 value indicates that the sender has more data to send.

4 System Objects — Alphabetical List

4-180

Data Types: logical

CRCInitialization — Cyclic redundancy check initialization value
'012345' (default) | six-element character vector | string scalar denoting three-octet
hexadecimal value

Cyclic redundancy check initialization value, specified as a six-element character vector
or a string scalar denoting a three-octet hexadecimal value.
Data Types: char | string

ControlConfig — BLE LL control PDU payload configuration object
bleLLControlPDUConfig object

BLE LL control PDU payload configuration object, specified as a
bleLLControlPDUConfig object. The different fields of this value are configured using
the settings of bleLLControlPDUConfig. The default value of this poperty is an object
of type bleLLControlPDUConfig with all properties set to their default values. This
property is applicable for generating and decoding a BLE LL control PDU.

Object Functions
Specific to This Object
bleLLDataChannelPDU Generate BLE LL data channel PDU
bleLLDataChannelPDUDecode Decode BLE LL data channel PDU
bleLLControlPDUConfig Create configuration object for BLE LL control PDU

payload configuration

Examples

Create BLE LL Data Channel PDU Configuration Object for Data PDU

Create a BLE LL data channel PDU configuration object for a data PDU and view the
corresponding default properties.

cfgLLData = bleLLDataChannelPDUConfig

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 bleLLDataChannelPDUConfig

4-181

 LLID: 'Data (continuation fragment/empty)'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

Specify the value of LLID as 'Data (start fragment/complete)' and view the
corresponding properties.

cfgLLData.LLID = 'Data (start fragment/complete)'

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Data (start fragment/complete)'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

Create BLE LL Data Channel PDU Configuration Object for Control PDU

Create two unique BLE LL data channel PDU configuration objects for a control PDU of
type 'Channel map indication' and 'Version indication' using name-value
pairs.

Create a BLE LL control PDU payload configuration object, 'cfgControl', for a control
PDU with opcode 'Channel map indication'. View the applicable properties
corresponding to the specified opcode.

cfgControl = bleLLControlPDUConfig('Opcode','Channel map indication')

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Channel map indication'
 Instant: 0
 UsedChannels: [1x37 double]

4 System Objects — Alphabetical List

4-182

Create a BLE LL data channel configuration object by specifying the values of 'LLID' as
'Control' and 'ControlConfig' as 'cfgControl'. View the properties of
'cfgLLData'.

 cfgLLData = bleLLDataChannelPDUConfig('LLID','Control', ...
 'ControlConfig',cfgControl)

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0
 ControlConfig: [1x1 bleLLControlPDUConfig]

Create another BLE LL data channel configuration object, 'cfgControl' for a control
PDU, this time specifying the opcode as 'Version indication'. View the applicable
properties of 'cfgControl' corresponding to the specified opcode.

cfgControl.Opcode = 'Version indication';
cfgControl.SubVersionNumber = '008E'

cfgControl =
 bleLLControlPDUConfig with properties:

 Opcode: 'Version indication'
 VersionNumber: '5.0'
 CompanyIdentifier: 'FFFF'
 SubVersionNumber: '008E'

Create a BLE LL data channel configuration object, 'cfgLLData', by specifying the
values of 'ControlConfig' as 'cfgControl' and view the applicable properties.

cfgLLData.ControlConfig = cfgControl

cfgLLData =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Control'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

 bleLLDataChannelPDUConfig

4-183

 ControlConfig: [1x1 bleLLControlPDUConfig]

End-to-End Workflow of BLE LL Data Channel PDU

Create a BLE LL data channel PDU configuration object, 'cfgTx', for a data PDU using
default configuration. View the corresponding default properties.

cfgTx = bleLLDataChannelPDUConfig

cfgTx =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Data (continuation fragment/empty)'
 NESN: 0
 SequenceNumber: 0
 MoreData: 0

Initialize the CRC value corresponding to the configuration object 'cfgTx'.

cfgTx.CRCInitialization = '123456';

Generate a BLE LL data channel PDU by using the data PDU configuration object,
'cfgTx' and the upper-layer payload '030004000A0100'.

pdu = bleLLDataChannelPDU(cfgTx,'030004000A0100');

Decode the generated BLE LL data channel PDU by initializing the CRC value. The
returned status indicates decoding is successful. View the values of 'status', 'cfgRx'
and 'llPayload'.

crcInit = '123456';
[status, cfgRx, llPayload] = bleLLDataChannelPDUDecode(pdu, crcInit)

status =
Success

cfgRx =
 bleLLDataChannelPDUConfig with properties:

 LLID: 'Data (continuation fragment/empty)'

4 System Objects — Alphabetical List

4-184

 NESN: 0
 SequenceNumber: 0
 MoreData: 0

llPayload = 7x2 char array
 '03'
 '00'
 '04'
 '00'
 '0A'
 '01'
 '00'

References
[1] Bluetooth Homepage. https://www.bluetooth.com/.

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleLLDataChannelPDU | bleLLDataChannelPDUDecode

Objects
bleLLControlPDUConfig

Topics
“Bluetooth Protocol Stack”

 bleLLDataChannelPDUConfig

4-185

https://www.bluetooth.com/

Introduced in R2019b

4 System Objects — Alphabetical List

4-186

bleLLAdvertisingChannelPDUConfig
Create configuration object for BLE LL advertising channel PDU

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleLLAdvertisingChannelPDUConfig creates a configuration object for
Bluetooth low energy (BLE) link layer (LL) advertising channel protocol data unit (PDU)
using the default and specified values. You can configure a BLE LL advertising channel
PDU using the applicable properties of bleLLAdvertisingChannelPDUConfig.

Creation

Syntax
cfgLLAdv = bleLLAdvertisingChannelPDUConfig
cfgLLAdv = bleLLAdvertisingChannelPDUConfig(Name,Value)

Description
cfgLLAdv = bleLLAdvertisingChannelPDUConfig creates a configuration object,
cfgLLAdv, for a BLE LL advertising channel PDU with default values.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig(Name,Value) creates a BLE LL
advertising channel PDU configuration object by specifying properties using one or more
name-value pairs. Enclose each property name in quotation marks. For example,
bleLLAdvertisingChannelPDUConfig('PDUType','Scan response') configures
cfgLLAdv with the type of BLE LL advertising channel PDU as 'Scan response'.

 bleLLAdvertisingChannelPDUConfig

4-187

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Properties

Note For more information about BLE LL advertising channel PDU properties and their
respective values, see volume 6, part B, section 2.3 of the Bluetooth Core Specification
[2].

PDUType — BLE LL advertising channel PDU type
'Advertising indication' (default) | 'Advertising direct indication' |
'Advertising non connectable indication' | ...

BLE LL advertising channel PDU type, specified as a character vector or a string scalar to
describe the type of a BLE LL advertising channel PDU. You can specify 'PDUType' as
one of these values:

• 'Advertising indication'
• 'Advertising direct indication'
• 'Advertising non connectable indication'
• 'Scan request'
• 'Scan response'
• 'Connection indication'
• 'Advertising scannable indication'

Data Types: char | string

ChannelSelection — Channel selection algorithm
'Algorithm1' (default) | 'Algorithm2'

Channel selection algorithm, specified as 'Algorithm1' or 'Algorithm2' to indicate
the type of algorithm used for hopping between channels.
Data Types: char | string

AdvertiserAddressType — Advertiser device address type
'Random' (default) | 'Public'

Advertiser device address type, specified as 'Random' or 'Public' to indicate the type
of advertiser address in the packet.
Data Types: char | string

4 System Objects — Alphabetical List

4-188

AdvertiserAddress — Advertiser device address
'0123456789AB' (default) | 12-element character vector | string scalar denoting a six-
octet hexadecimal value

Advertiser device address, specified as a 12-element character vector or a string scalar
denoting a six-octet hexadecimal value to indicate the advertiser device address.
Data Types: char | string

TargetAddressType — Target device address type
'Random' (default) | 'Public'

Target device address type, specified as 'Random' or 'Public' to indicate the type of
target device address when a directed advertisement packet is transmitted.
Data Types: char | string

TargetAddress — Target device address
'0123456789CD' (default) | 12-element character vector | string scalar denoting a six-
octet hexadecimal value

Target device address, specified as a 12-element character vector or a string scalar
denoting a six-octet hexadecimal value to indicate the target device address when a
directed advertisement packet is transmitted.
Data Types: char | string

ScannerAddressType — Scanner device address type
'Random' (default) | 'Public'

Scanner device address type, specified as 'Random' or 'Public' to indicate the type of
scanner device address when a scan request packet is transmitted.
Data Types: char | string

ScannerAddress — Scanner device address
'0123456789CD' (default) | 12-element character vector | string scalar denoting a six-
octet hexadecimal value

Scanner device address, specified as a 12-element character vector or a string scalar
denoting a six-octet hexadecimal value to indicate the scanner device address when a
scan request packet is transmitted.
Data Types: char | string

 bleLLAdvertisingChannelPDUConfig

4-189

InitiatorAddressType — Initiator device address type
'Random' (default) | 'Public'

Scanner device address type, specified as 'Random' or 'Public' to indicate the type of
initiator device address when a connection indication packet is transmitted.
Data Types: char | string

InitiatorAddress — Initiator device address
'0123456789CD' (default) | 12-element character vector | string scalar denoting a six-
octet hexadecimal value

Initiator device address, specified as a 12-element character vector or a string scalar
denoting a six-octet hexadecimal value to indicate the initiator device address when a
connection indication packet is transmitted.
Data Types: char | string

AdvertisingData — Advertising data
'020106' (default) | character vector | string scalar | numeric vector of elements in the
range [0,31] | n-by-2 character array

Advertising data, specified as one of these values:

• Character vector — This vector represent octets in hexadecimal format.
• String scalar — This scalar represent octets in hexadecimal format.
• Numeric vector of elements in the range [0,31] — This vector represent octets in

decimal format.
• n-by-2 character array — Each row represent an octet in hexadecimal format.

This property indicates the advertising data that the device sends out in an advertisement
packet.
Data Types: char | string | double

ScanResponseData — Scan response data
'020106' (default) | character vector | string scalar | numeric vector of elements in the
range [0,31] | n-by-2 character array

Scan response data, specified as one of these values:

• Character vector — This vector represent octets in hexadecimal format.

4 System Objects — Alphabetical List

4-190

• String scalar — This scalar represent octets in hexadecimal format.
• Numeric vector of elements in the range [0,31] — This vector represent octets in

decimal format.
• n-by-2 character array — Each row represent an octet in hexadecimal format.

This property indicates the scan response data that the device sends out in a scan
response packet (when scan request is received).
Data Types: char | string | double

AccessAddress — Unique connection address
'01234567' (default) | eight-element character vector or a string scalar

Unique connection address, specified as an eight-element character vector or a string
scalar. This property indicates a unique 32-bit address generated by the LL for the new
connection or for a periodic advertisement between two devices.
Data Types: char | string

CRCInitialization — CRC initialization value
'012345' (default) | six-element character vector | three-octet hexadecimal value

CRC initialization value, specified as a six-element character vector or a string scalar
denoting a three-octet hexadecimal value. This property is used as initialization value for
the CRC calculation.
Data Types: char | string

WindowSize — Transmit window size
1 (default) | nonnegative integer

Transmit window size, specified as a nonnegative integer in the range [1, Mws], where
Mws is the lesser of 8 and ConnectionInterval-1. This property indicates the window
size within which the master transmits the data packet and slave listens for the data
packet after connection establishment. Each unit is taken as 1.25 ms so that the window
size (WindowSize×1.25) is in the range of 1.25 ms to the minimum of (10 ms,
((ConnectionInterval×1.25) - 1.25) ms).
Data Types: double

WindowOffset — Transmit window offset
0 (default) | nonnegative integer

 bleLLAdvertisingChannelPDUConfig

4-191

Transmit window size, specified as a nonnegative integer in the range [0, Mwo], where
Mwo is the lesser of 3200 and ConnectionInterval. This property indicates the
window offset after which the transmit window starts. Each unit is taken as 1.25 ms so
that the resultant window offset (WindowOffset×1.25) is in the range of 0 ms to
(ConnectionInterval×1.25) ms.
Data Types: double

ConnectionInterval — Connection interval
6 (7.5 ms) (default) | positive integer

Connection interval, specified as a positive integer in the range [6, 3200]. This property
indicates the interval between the start of two consecutive connection events. Each unit is
taken as 1.25 ms so that the resultant connection interval (ConnectionInterval×1.25)
is in the range of 7.5 ms to 4.0 s.
Data Types: double

SlaveLatency — Slave latency
0 (default) | nonnegative integer

Slave latency, specified as a nonnegative integer in the range [0, Msl], where Msl is the
lesser of 499 and ((ConnectionInterval×10)/((ConnectionInterval×1.25)×2))-1.
This property indicates the number of connection events that a slave can skip listening for
packets from the master.
Data Types: double

ConnectionTimeout — Connection supervision timeout
10 (default) | positive integer

Connection supervision timeout, specified as a positive integer in the range [Mct, 3200],
where Mct is the larger of 10 and ((1+SlaveLatency)×(ConnectionInterval×1.25)
×2)/10. This property indicates the timeout for a connection if no valid packet is received
within this time. Each unit is taken as 10 ms so that the resultant connection timeout
(ConnectionInterval×10) is in the range of 100 ms to 32.0 s.
Data Types: double

UsedChannels — List of used data channels
row vector containing the channel indices between [0:36] (default) |
integer vector with element values in the range [0, 36]

4 System Objects — Alphabetical List

4-192

List of used data channels, specified as an integer vector with element values in the range
[0, 36]. The vector length must be greater than 1. At least two channels must be set as
used (good) channels. This property indicates the set of good channels classified by the
master.
Data Types: double

HopIncrement — Hop increment count
5 (default) | positive integer

Hop increment count, specified as an integer in the range [5, 16]. This property indicates
the hop increment count to be used for hopping between data channels.
Data Types: double

SleepClockAccuracy — Master sleep clock accuracy
'251 to 500 ppm' (default) | '151 to 250 ppm' | '101 to 150 ppm' | ...

Master sleep clock accuracy, specified as a character vector or a string scalar indicating
the worst case master sleep clock accuracy. You can specify SleepClockAccuracy as
one of these values:

• '251 to 500 ppm'
• '151 to 250 ppm'
• '101 to 150 ppm'
• '76 to 100 ppm'
• '51 to 75 ppm'
• '31 to 50 ppm'
• '21 to 30 ppm'
• '0 to 20 ppm'

Data Types: char | string

Object Functions

Specific to This Object
bleLLAdvertisingChannelPDU Generate BLE LL advertising channel PDU

 bleLLAdvertisingChannelPDUConfig

4-193

bleLLAdvertisingChannelPDUDecode Decode BLE LL advertising channel PDU

Examples

Create BLE LL Advertising Channel PDU Configuration Object Using Default
Settings

Create a BLE LL advertising channel configuration object and view the corresponding
default properties.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Advertising indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 AdvertisingData: [3x2 char]

Create BLE LL Advertising Channel PDU Configuration Object Using Name-Value
Pairs

Create two unique BLE LL advertising channel configuration objects of type 'Scan
response' and 'Connection indication' using name-value pairs.

Create a BLE LL advertising channel PDU configuration object, 'cfgLLAdv', by setting
the values of PDU type as 'Scan response', advertiser address as '1234567890AB',
and scan response data as '020106020AD3' using name-value pairs. View the
corresponding properties.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig(...
 'PDUType','Scan response', ...
 'AdvertiserAddress','1234567890AB', ...
 'ScanResponseData','020106020AD3')

4 System Objects — Alphabetical List

4-194

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Scan response'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '1234567890AB'
 ScanResponseData: [6x2 char]

Create another BLE LL advertising channel PDU configuration object, 'cfgLLAdv', and
change the type of PDU to 'Connection indication'. Set the values of the
connection interval as 64 and the set of data channels as [0 4 12 16 18 24 25]. View
the corresponding properties.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig('PDUType', ...
 'Connection indication');
cfgLLAdv.ConnectionInterval = 64;
cfgLLAdv.UsedChannels = [0 4 12 16 18 24 25]

cfgLLAdv =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Connection indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 InitiatorAddressType: 'Random'
 InitiatorAddress: '0123456789CD'
 AccessAddress: '01234567'
 CRCInitialization: '012345'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 64
 SlaveLatency: 0
 ConnectionTimeout: 10
 UsedChannels: [0 4 12 16 18 24 25]
 HopIncrement: 5
 SleepClockAccuracy: '251 to 500 ppm'

 bleLLAdvertisingChannelPDUConfig

4-195

End-to-End Workflow of BLE LL Advertising Channel PDU

Create a BLE LL advertising channel PDU configuration object, 'cfgTx'. Set the values
of PDU type as 'Connection indication', the connection interval as 8, and the set of
data channels as [0 4 12 16 18 24 25].

cfgTx = bleLLAdvertisingChannelPDUConfig('PDUType', ...
 'Connection indication');
cfgTx.ConnectionInterval = 8;
cfgTx.UsedChannels = [0 4 12 16 18 24 25]

cfgTx =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Connection indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 InitiatorAddressType: 'Random'
 InitiatorAddress: '0123456789CD'
 AccessAddress: '01234567'
 CRCInitialization: '012345'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 8
 SlaveLatency: 0
 ConnectionTimeout: 10
 UsedChannels: [0 4 12 16 18 24 25]
 HopIncrement: 5
 SleepClockAccuracy: '251 to 500 ppm'

Generate a BLE LL advertising channel PDU by using the corresponding configuration
object.

pdu = bleLLAdvertisingChannelPDU(cfgTx);

Decode the generated BLE LL advertising channel PDU. The returned status indicates
decoding is successful. View the output of 'status' and 'cfgRx'.

[status, cfgRx] = bleLLAdvertisingChannelPDUDecode(pdu)

status =
Success

4 System Objects — Alphabetical List

4-196

cfgRx =
 bleLLAdvertisingChannelPDUConfig with properties:

 PDUType: 'Connection indication'
 ChannelSelection: 'Algorithm1'
 AdvertiserAddressType: 'Random'
 AdvertiserAddress: '0123456789AB'
 InitiatorAddressType: 'Random'
 InitiatorAddress: '0123456789CD'
 AccessAddress: '01234567'
 CRCInitialization: '012345'
 WindowSize: 1
 WindowOffset: 0
 ConnectionInterval: 8
 SlaveLatency: 0
 ConnectionTimeout: 10
 UsedChannels: [0 4 12 16 18 24 25]
 HopIncrement: 5
 SleepClockAccuracy: '251 to 500 ppm'

References
[1] Bluetooth Homepage. https://www.bluetooth.com/.

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

See Also
Functions
bleLLAdvertisingChannelPDU | bleLLAdvertisingChannelPDUDecode

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleLLAdvertisingChannelPDUConfig

4-197

https://www.bluetooth.com/

bleGAPDataBlockConfig
Create configuration object for BLE GAP data block

Note Download Required: To use , first download Communications Toolbox™ Library
for the Bluetooth® Protocol. For more information, see “Get and Manage Add-Ons”
(MATLAB). Alternatively, see Communications Toolbox Library for the Bluetooth Protocol
File Exchange.

Description
The bleGAPDataBlockConfig creates a configuration object for a Bluetooth low energy
(BLE) generic access profile (GAP) data block of the type advertising data (AD) or scan
response data (SRD). You can configure a BLE GAP data block using the applicable
properties of bleGAPDataBlockConfig.

Creation

Syntax
cfgGAP = bleGAPDataBlockConfig
cfgGAP = bleGAPDataBlockConfig(Name,Value)

Description
cfgGAP = bleGAPDataBlockConfig creates a configuration object, cfgGAP, for a BLE
GAP data block of the type AD or SRD with default values.

cfgGAP = bleGAPDataBlockConfig(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example,
bleGAPDataBlockConfig('AdvertisingDataTypes','Tx power level')
configures cfgGAP with block data advertising data type as 'Tx power level'.

4 System Objects — Alphabetical List

4-198

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol

Properties

Note For more information about BLE GAP data block properties and their respective
values, see vol 3, part C, section 4 of the Bluetooth Core Specification [2].

AdvertisingDataTypes — Block data advertising data types
'Flags' (default) | 'UUIDs' | 'Local name' | 'Tx power level' | 'Connection
interval range' | 'Advertising interval'

Block data advertising data types, specified as a character vector or a string scalar or a
cell array, containing the list of advertising data types for BLE GAP data block. You can
specify AdvertisingDataTypes as one of these values:

• 'Flags'
• 'UUIDs'
• 'Local name'
• 'Tx power level'
• 'Connection interval range'
• 'Advertising interval'

Data Types: char | string | cell

LEDiscoverability — LE discoverable mode
'General' (default) | 'None' | 'Limited' | 'Limited and general'

LE discoverable mode, specified as a character vector or a string scalar, describing the LE
discoverable mode of the device. You can specify LEDiscoverability as one of these
values:

• 'None'
• 'General'
• 'Limited'
• 'Limited and general'

Data Types: char | string

BREDR — Basic rate (BR) or enhanced data rate (EDR) support
false (default) | true

 bleGAPDataBlockConfig

4-199

Basic rate (BR) or enhanced data rate (EDR) support, specified as true or false. A
true value indicates that BR or EDR is supported. This is used when
AdvertisingDataTypes is set to 'Flags'.
Data Types: logical

LE — Simultaneous LE and BR or EDR support
'None' (default) | 'Host' | 'Controller' | 'Host and controller'

Simultaneous LE and BR/EDR support, specified as a character vector or a string scalar.
You can specify 'LE' as one of these values:

• 'None'
• 'Host'
• 'Controller'
• 'Host and controller'

This property is applicable only when BREDR is set to true. Set this property to 'Host'
or 'Controller' to specify simultaneous LE and BR or EDR support at the host or the
controller respectively. Set this property to 'Host and Controller' for simultaneous
LE and BR or EDR support at the host and the controller.
Data Types: char | string

LocalNameShortening — Enable shortening of local name
false (default) | true

Local name shortened used, specified as a scalar logical value of false or true. Set this
value to true value indicates that the name of the device is shortened.
Data Types: logical

LocalName — UTF-8 encoded user-friendly descriptive name
'Bluetooth' (default) | character vector or a string scalar consisting of UTF-8
characters

UTF-8 encoded user-friendly descriptive name, specified as a character vector or a string
scalar consisting of UTF-8 characters. This property specifies the local name assigned to
the device.
Data Types: char | string

4 System Objects — Alphabetical List

4-200

IdentifierType — Type of 16-bit service or service class identifiers
'Incomplete' (default) | 'Complete'

Type of 16-bit service or service class identifiers, specified as 'Incomplete' or
'Complete'. If this value is 'Incomplete', then the list of 16-bit service or service
class identifiers list is incomplete.
Data Types: char | string

Identifiers — List of 16-bit service or service class identifiers
'' (empty) (default) | n-by-4 character array

List of 16-bit service or service class identifiers, specified as an n-by-4 character array.
The value of n must be in the range [0, 127]. Each row in the n-by-4 character array is
represented as a four-element character vector or string scalar denoting a two-octet (16-
bit) hexadecimal value of a service or service class universally unique identifier (UUID).
These UUIDs are assigned by the Bluetooth Special Interest Group (SIG).
Data Types: char

AdvertisingInterval — Advertising interval
32 (default) | integer in the range [32, 65,535]

Advertising interval, specified as an integer in the range [32, 65,535]. This property
denotes the interval between the start of two consecutive advertising events. Incremental
units are 0.625 ms steps, so the resultant range for [32, 65,535] is [20, 40.959375].
Data Types: double

TxPowerLevel — Packet transmit power level
0 (dBm) (default) | integer in the range [–127, 127]

Packet transmit power level, in dBm, specified as an integer in the range [–127, 127]. This
property calculates the pathloss as pathloss = Tx Power Level – RSSI, where RSSI is the
received signal strength indicator.
Data Types: double

ConnectionIntervalRange — Connection interval range
[6,3200] (default) | two-element numeric vector [MIN, MAX]

Connection interval range, specified as a two-element numeric vector [MIN, MAX], where
MIN and MAX must be in the range [6,3200]. MIN and MAX specify the minimum and
maximum value for the connection interval respectively. MIN must be less than or equal

 bleGAPDataBlockConfig

4-201

to MAX. Incremental units are 1.25 ms steps, so that the resultant range for [6, 3200] is
[7.5, 4.0].
Data Types: double

Object Functions
Specific to This Object
bleGAPDataBlock Generate BLE GAP data block
bleGAPDataBlockDecode Decode BLE GAP data block

Examples

Create BLE GAP AD Block Configuration Object Using Default Settings

Create two unique BLE GAP AD configuration objects: one with AD types 'Flags' and
'Tx power level' and the other with AD type 'Flags' and simultaneous LE and BR
or EDR support at the host.

Create a BLE GAP AD block configuration object using default settings. Set the values of
AD types as 'Flags' and 'Tx power level', LE discoverability as 'Limited' and Tx
power level as 45. View the properties of the corresponding configuration object.

cfgGAP = bleGAPDataBlockConfig;
cfgGAP.AdvertisingDataTypes = {'Flags';'Tx power level'};
cfgGAP.LEDiscoverability = 'Limited';
cfgGAP.TxPowerLevel = 45

cfgGAP =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LEDiscoverability: 'Limited'
 BREDR: 0
 TxPowerLevel: 45

Create another BLE GAP AD block configuration object using default settings, this time
with AD type 'Flags' and having simultaneous support for LE and BR/EDR. Set the

4 System Objects — Alphabetical List

4-202

values of LE discoverability as 'Limited', enable BR or EDR support as true and
enable simultaneous support for LE and BR or EDR as 'Host'. View the properties of the
corresponding configuration object.

cfgGAP = bleGAPDataBlockConfig;
cfgGAP.LEDiscoverability = 'Limited and general';
cfgGAP.BREDR = true;
cfgGAP.LE = 'Host'

cfgGAP =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {'Flags'}
 LEDiscoverability: 'Limited and general'
 BREDR: 1
 LE: 'Host'

Create BLE GAP AD Block Configuration Object Using Name-Value Pairs

Create a configuration object for a BLE GAP AD block using name-value pairs. Set the
values of AD types as 'Advertising interval' and 'Local name', advertising
interval as 48, local name as 'MathWorks' and local name shortening as true. View the
properties of the corresponding configuration object.

cfgGAP = bleGAPDataBlockConfig('AdvertisingDataTypes', ...
 {'Advertising interval', ...
 'Local name'});
cfgGAP.AdvertisingInterval = 48;
cfgGAP.LocalName = 'MathWorks';
cfgGAP.LocalNameShortening = true

cfgGAP =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LocalName: 'MathWorks'
 LocalNameShortening: 1
 AdvertisingInterval: 48

 bleGAPDataBlockConfig

4-203

End-to-End Workflow of BLE GAP AD Blocks

Create a configuration object for a BLE GAP AD block using name-value pairs. Set the
values of AD types as 'Advertising interval' and 'Local name', advertising
interval as 48, local name as 'MathWorks', and local name shortening as true. View the
properties of the corresponding configuration object.

cfgTx = bleGAPDataBlockConfig('AdvertisingDataTypes',{'Advertising interval','Local name'});
cfgTx.AdvertisingInterval = 48;
cfgTx.LocalName = 'MathWorks';
cfgTx.LocalNameShortening = true

cfgTx =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LocalName: 'MathWorks'
 LocalNameShortening: 1
 AdvertisingInterval: 48

Create a BLE GAP AD block using the configuration object 'cfgTx'.

dataBlock = bleGAPDataBlock(cfgTx);

Decode the generated BLE GAP AD block. The returned status indicates decoding was
successful. View the output of 'status' and 'cfgRx'.

[status, cfgRx] = bleGAPDataBlockDecode(dataBlock)

status =
Success

cfgRx =
 bleGAPDataBlockConfig with properties:

 AdvertisingDataTypes: {2x1 cell}
 LocalName: 'MathWorks'
 LocalNameShortening: 1
 AdvertisingInterval: 48

4 System Objects — Alphabetical List

4-204

References
[1] Bluetooth Homepage. https://www.bluetooth.com/ .

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.0.

[3] Bluetooth Special Interest Group (SIG). "Supplement to the Bluetooth Core
Specification." CSS Version 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bleGAPDataBlock | bleGAPDataBlockDecode

Topics
“Bluetooth Protocol Stack”

Introduced in R2019b

 bleGAPDataBlockConfig

4-205

https://www.bluetooth.com/

comm.BlockDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols using permutation vector

Compatibility
comm.BlockDeinterleaver will be removed in a future release. Use deintrlv instead. For
more information, see “Compatibility Considerations” on page 4-209.

Description
The BlockDeinterleaver object, which can process variable-sized signals, rearranges
the elements of its input vector without repeating or omitting any elements. The input can
be real or complex.

To deinterleave the input vector:

1 Define and set up your block deinterleaver object. See “Construction” on page 4-206.
2 Call step to rearrange the elements of the input vector according to the properties

of comm.BlockDeinterleaver. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.BlockDeinterleaver creates a block deinterleaver System object, H. This
object restores the original ordering of a sequence that was interleaved using the block
interleaver System object.

4 System Objects — Alphabetical List

4-206

H = comm.BlockDeinterleaver(Name,Value) creates object, H, with the specified
property set to the specified value.

Properties
PermutationVectorSource

Permutation vector source

Specify the source of the permutation vector as either Property or Input port. The
default value is Property.

PermutationVector

Permutation vector

Specify the mapping used to permute the input symbol as a column vector of integers.
The default is [5;4;3;2;1]. The mapping is a column vector of integers where the
number of elements is equal to the length, N, of the input to the step method. Each
element must be an integer, between 1 and N, with no repeated values. The
PermutationVector property is available only when the PermutationVectorSource
property is set to Property.

Methods
step (To be removed) Deinterleave input symbols using permutation vector

Common to All System Objects
release Allow System object property value changes

Examples

Block Interleaving and Deinterleaving

Create interleaver and deinterleaver objects.

 comm.BlockDeinterleaver

4-207

interleaver = comm.BlockInterleaver([3 4 1 2]');

Warning: COMM.BLOCKINTERLEAVER will be removed in a future release. Use INTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.BlockDeinterleaver([3 4 1 2]');

Warning: COMM.BLOCKDEINTERLEAVER will be removed in a future release. Use DEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Pass random data through the interleaver and deinterleaver.

data = randi(7,4,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data, intData, deIntData]

ans = 4×3

 6 1 6
 7 7 7
 1 6 1
 7 7 7

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Generate a random vector of unique integers as a permutation vector.

permVec = randperm(7)';

Specify permVec as the permutation vector for the interleaver and deinterleaver objects.

interleaver = comm.BlockInterleaver(permVec);

Warning: COMM.BLOCKINTERLEAVER will be removed in a future release. Use INTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.BlockDeinterleaver(permVec);

Warning: COMM.BLOCKDEINTERLEAVER will be removed in a future release. Use DEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

4 System Objects — Alphabetical List

4-208

Pass random data through the interleaver and deinterleaver.

data = randi(10,7,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the General Block
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations
comm.BlockDeinterleaver will be removed
Not recommended starting in R2019b

comm.BlockDeinterleaver will be removed in a future release. Use deintrlv instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.BlockDeinterleaver

4-209

See Also
Functions
deintrlv | intrlv

Introduced in R2012a

4 System Objects — Alphabetical List

4-210

step
System object: comm.BlockDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols using permutation vector

Compatibility
step will be removed in a future release. Use deintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a block interleaver. The step method forms the output, Y, based on the mapping
specified by the PermutationVector property as
Output(PermutationVector(k))=Input(k), for k = 1:N, where N is the length of the
permutation vector. The input X must be a column vector of the same length, N. The data
type of X can be numeric, logical, or fixed-point (fi objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-211

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-212

comm.BlockInterleaver
Package: comm

(To be removed) Permute input symbols using permutation vector

Compatibility
comm.BlockInterleaver will be removed in a future release. Use intrlv instead. For
more information, see “Compatibility Considerations” on page 4-216.

Description
The BlockInterleaver object permutes the symbols in the input signal. Internally, it
uses a set of shift registers, each with its own delay value. This object processes variable-
size signals.

To interleave the input signal:

1 Define and set up your block interleaver object. See “Construction” on page 4-213.
2 Call step to reorder the input symbols according to the properties of

comm.BlockInterleaver. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.BlockInterleaver creates a block interleaver System object, H This object
permutes the symbols in the input signal based on a permutation vector.

 comm.BlockInterleaver

4-213

H = comm.BlockInterleaver(Name,Value) creates object, H, with specified property
set to the specified value.

Properties
PermutationVectorSource

Permutation vector source

Specify the source of the permutation vector as either Property or Input port. The
default value is Property.

PermutationVector

Permutation vector

Specify the mapping used to permute the input symbols as an integer column vector. The
default is [5;4;3;2;1]. The number of elements of the permutation vector property
must equal the length of the input vector. The PermutationVector property indicates
the indices, in order, of the input elements that form the output vector. The relationship
Output(k)=Input(PermutationVector(k)) describes this order. Each integer, k, must
be between 1 and N, where N is the number of elements in the permutation vector. The
elements in the PermutationVector property must be integers between 1 and N with
no repetitions. The PermutationVector property is available only when the
PermutationVectorSource property is set to Property.

Methods
step (To be removed) Permute input symbols using a permutation vector

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-214

Block Interleaving and Deinterleaving

Create interleaver and deinterleaver objects.

interleaver = comm.BlockInterleaver([3 4 1 2]');

Warning: COMM.BLOCKINTERLEAVER will be removed in a future release. Use INTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.BlockDeinterleaver([3 4 1 2]');

Warning: COMM.BLOCKDEINTERLEAVER will be removed in a future release. Use DEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Pass random data through the interleaver and deinterleaver.

data = randi(7,4,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data, intData, deIntData]

ans = 4×3

 6 1 6
 7 7 7
 1 6 1
 7 7 7

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Generate a random vector of unique integers as a permutation vector.

permVec = randperm(7)';

Specify permVec as the permutation vector for the interleaver and deinterleaver objects.

interleaver = comm.BlockInterleaver(permVec);

Warning: COMM.BLOCKINTERLEAVER will be removed in a future release. Use INTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

 comm.BlockInterleaver

4-215

deinterleaver = comm.BlockDeinterleaver(permVec);

Warning: COMM.BLOCKDEINTERLEAVER will be removed in a future release. Use DEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Pass random data through the interleaver and deinterleaver.

data = randi(10,7,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the General Block
Interleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.BlockInterleaver will be removed
Not recommended starting in R2019b

comm.BlockInterleaver will be removed in a future release. Use intrlv instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 System Objects — Alphabetical List

4-216

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
deintrlv | intrlv

Introduced in R2012a

 comm.BlockInterleaver

4-217

step
System object: comm.BlockInterleaver
Package: comm

(To be removed) Permute input symbols using a permutation vector

Compatibility
step will be removed in a future release. Use intrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
step method forms the output Y, based on the mapping defined by the PermutationVector
property as Output(k)=Input(PermutationVector(k)), for k = 1:N, where N is the
length of the PermutationVector property. The input X must be a column vector of
length N. The data type of X can be numeric, logical, or fixed-point (fi objects). Y has the
same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

4 System Objects — Alphabetical List

4-218

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-219

comm.BPSKDemodulator
Package: comm

Demodulate using BPSK method

Description
The BPSKDemodulator object demodulates a signal that was modulated using the binary
phase shift keying method. The input is a baseband representation of the modulated
signal.

To demodulate a binary phase shift signal:

1 Define and set up your BPSK demodulator object. See “Construction” on page 4-220.
2 Call step to demodulate a signal according to the properties of

comm.BPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.BPSKDemodulator creates a demodulator System object, H, that
demodulates the input signal using the binary phase shift keying (BPSK) method.

H = comm.BPSKDemodulator(Name,Value) creates a BPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.BPSKDemodulator(PHASE,Name,Value) creates a BPSK demodulator
object, H, with the PhaseOffset property set to PHASE, and the other specified
properties set to the specified values.

4 System Objects — Alphabetical List

4-220

Properties
PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a finite, real
scalar. The default is 0.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as one of Hard decision | Log-
likelihood ratio | Approximate log-likelihood ratio. The default is Hard
decision.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the DecisionMethod on page 4-0
property to Log-likelihood ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a nonzero, real scalar. The default is 1. If this value is
very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations can yield Inf
or -Inf. This variance occurs because the LLR algorithm computes the exponential of
very large or very small numbers using finite precision arithmetic. As a best practice in
such cases, use approximate LLR because this option's algorithm does not compute
exponentials. This property applies when you set the VarianceSource on page 4-0
property to Property. This property is tunable.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | logical.

 comm.BPSKDemodulator

4-221

The default is Full precision. This property applies only when you set the
DecisionMethod on page 4-0 property to Hard decision. Thus, when you set the
OutputDataType on page 4-0 property to Full precision, and the input data type
is single or double precision, the output data has the same data type as the input. If the
input data is of a fixed-point type, then the output data type behaves as if you had set the
OutputDataType property to Smallest unsigned integer. If you set the
DecisionMethod property to Log-likelihood ratio or Approximate log-
likelihood ratio, the output data type is the same as that of the input. In this case,
that data type can only be single or double precision.

When the input signal is an integer data type, you must have a Fixed-Point Designer user
license to use this property in Smallest unsigned integer or Full precision
mode.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as one of Same word length as input | Custom.
The default is Same word length as input. This property applies when you set the
DecisionMethod on page 4-0 property to Hard decision. The object uses the
derotate factor in the computations only when certain conditions exist. The step method
input must be of a fixed-point type, and the PhaseOffset on page 4-0 property must
have a value that is not a multiple of π 2.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled, numerictype object with a
Signedness of Auto. The default is numerictype([],16). This property applies when
you set the DecisionMethod on page 4-0 property to Hard decision and the
DerotateFactorDataType on page 4-0 property to Custom.

4 System Objects — Alphabetical List

4-222

Methods
constellation Calculate or plot ideal signal constellation
step Demodulate using BPSK method

Common to All System Objects
release Allow System object property value changes

Examples

Demodulate BPSK Signal and Calculate Errors

Generate a BPSK signal, pass it through an AWGN channel, demodulate the signal, and
compute the error statistics.

Create BPSK modulator and demodulator System objects.

bpskModulator = comm.BPSKModulator;
bpskDemodulator = comm.BPSKDemodulator;

Create an error rate calculator System object.

errorRate = comm.ErrorRate;

Generate 50-bit random data frames, apply BPSK modulation, pass the signal through an
AWGN channel, demodulate the received data, and compile the error statistics.

for counter = 1:100
 % Transmit a 50-symbol frame
 txData = randi([0 1],50,1); % Generate data
 modSig = bpskModulator(txData); % Modulate
 rxSig = awgn(modSig,5); % Pass through AWGN
 rxData = bpskDemodulator(rxSig); % Demodulate
 errorStats = errorRate(txData,rxData); % Collect error stats
end

Display the cumulative error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

 comm.BPSKDemodulator

4-223

Error rate = 0.005600
Number of errors = 28

Algorithms
This object implements the algorithm, inputs, and outputs described on the BPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BPSKModulator | comm.PSKDemodulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-224

constellation
System object: comm.BPSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Reference Signal Constellation for BPSK
Demodulator
Create BPSK Demodulator System object™ and calculate its reference constellation.

Create a comm.BPSKDemodulator System object.

h = comm.BPSKDemodulator;

Calculate and display the reference signal constellation by calling the constellation
function.

refC = constellation(h)

refC = 2×1 complex

 constellation

4-225

 1.0000 + 0.0000i
 -1.0000 + 0.0000i

Plot BPSK Demodulator Reference Signal Constellation
Create a BPSK Demodulator System object™ and then plot the reference signal
constellation.

Create a comm.BPSKDemodulator System object.

h = comm.BPSKDemodulator;

Plot the reference constellation by calling the constellation function.

constellation(h)

4 System Objects — Alphabetical List

4-226

 constellation

4-227

step
System object: comm.BPSKDemodulator
Package: comm

Demodulate using BPSK method

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the BPSK demodulator System object,
H, and returns Y. Input X must be a scalar or a column vector with double or single
precision data type. When you set the DecisionMethod property to Hard decision,
the data type of the input can also be signed integer, or signed fixed point (fi objects).

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the DecisionMethod property to Log-likelihood ratio
or Approximate log-likelihood ratio and the VarianceSource property to
Input port. The data type of input VAR must be double or single precision.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

4 System Objects — Alphabetical List

4-228

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-229

comm.IQImbalanceCompensator
Package: comm

Compensate for I/Q imbalance

Description
The IQImbalanceCompensator System object compensates for the imbalance between
the in-phase and quadrature components of a modulated signal.

To compensate for I/Q imbalance:

1 Define and set up the IQImbalanceCompensator object. See “Construction” on
page 4-231.

2 Call step to compensate for the I/Q imbalance according to the properties of
comm.IQImbalanceCompensator. The behavior of step is specific to each object in
the toolbox.

The adaptive algorithm inherent to the I/Q imbalance compensator is compatible with M-
PSK, M-QAM, and OFDM modulation schemes, where M>2.

Note The output of the compensator might be scaled and rotated, that is, multiplied by a
complex number, relative to the reference constellation. In practice, this is not an issue as
receivers correct for this prior to demodulation through the use of channel estimation.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

4 System Objects — Alphabetical List

4-230

Construction
H = comm.IQImbalanceCompensator creates a compensator System object, H, that
compensates for the imbalance between the in-phase and quadrature components of the
input signal.

H = comm.IQImbalanceCompensator(Name,Value) creates an I/Q imbalance
compensator object, H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
CoefficientSource

Source of compensator coefficients

Specify either Estimated from input signal or Input port. If the
CoefficientSource property is set to Estimated from input signal, the
compensator uses an adaptive algorithm to estimate the compensator coefficient from the
input signal. If the CoefficientSource property is set to Input port, all other
properties are disabled and the compensator coefficients must be provided to the step
function as an input argument. The default value is Estimated from input signal.
This property is nontunable.

InitialCoefficent

Initial coefficient used to compensate for I/Q imbalance

The initial coefficient is a complex scalar that can be either single or double precision.
The default value is 0+0i. This property is nontunable.

StepSizeSource

Source of step size for coefficient adaptation

Specify either Property or Input port. If StepSizeSource is set to Property, you
specify the step size through the StepSize property. Otherwise, the step size is provided
to the step function as an input argument. The default value is Property. This property
is nontunable.

 comm.IQImbalanceCompensator

4-231

StepSize

Adaptation step size

Specifies the step size used by the algorithm in estimating the I/Q imbalance. This
property is accessible only when StepSizeSource is set to Property. The default value
is 1e-5. This property is tunable.

AdaptInputPort

Creates input port to control compensator coefficient adaptation

When this logical property is true, an input port is created to enable or disable
coefficient adaptation. If AdaptInputPort is false, the coefficients update after each
output sample. The default value is false. This property is nontunable.

CoefficientOutputPort

Create port to output compensator coefficients

When this logical property is true, the I/Q imbalance compensator coefficients are made
available through an output argument of the step function. The default value is false.
This property is nontunable.

Methods

step Compensate I/Q Imbalance
reset Reset states of the IQImbalanceCompensator System object

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-232

Remove I/Q Imbalance from a QPSK Signal

Mitigate the impacts of amplitude and phase imbalance on a QPSK modulated signal by
using the comm.IQImbalanceCompensator System object?.

Create a constellation diagram object. Specify name-value pairs to ensure that the
constellation diagram displays only the last 100 data symbols.

constDiagram = comm.ConstellationDiagram(...
 'SymbolsToDisplaySource','Property', ...
 'SymbolsToDisplay',100);

Create an I/Q imbalance compensator.

iqImbComp = comm.IQImbalanceCompensator;

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],1e7,1);
txSig = pskmod(data,4,pi/4);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB
phImb = 15; % deg
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Plot the constellation diagram of the received signal. Observe that the received signal
experienced an amplitude and phase shift.

constDiagram(rxSig)

 comm.IQImbalanceCompensator

4-233

Apply the I/Q compensation algorithm and view the constellation. The compensated signal
constellation is nearly aligned with the reference constellation.

compSig = iqImbComp(rxSig);
constDiagram(compSig)

4 System Objects — Alphabetical List

4-234

 comm.IQImbalanceCompensator

4-235

Remove I/Q Imbalance from an 8-PSK Signal using External Coefficients

Compensate for an amplitude and phase imbalance on an 8-PSK signal by using the
comm.IQImbalanceCompensator System object™ with external coefficients.

Create 8-PSK modulator and constellation diagram System objects. Use name-value pairs
to ensure that the constellation diagram displays only the last 100 data symbols and to
provide the reference constellation.

hMod = comm.PSKModulator(8);
refC = constellation(hMod);
hScope = comm.ConstellationDiagram(...
 'SymbolsToDisplaySource','Property', ...
 'SymbolsToDisplay',100, ...
 'ReferenceConstellation',refC);

Create an I/Q imbalance compensator object with an input port for the algorithm
coefficients.

hIQComp = comm.IQImbalanceCompensator('CoefficientSource','Input port');

Generate random data symbols and apply 8-PSK modulation.

data = randi([0 7],1000,1);
txSig = step(hMod,data);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB
phImb = 15; % deg
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Plot the constellation diagram of the received signal. Observe that the received signal
experienced an amplitude and phase shift.

step(hScope,rxSig);

4 System Objects — Alphabetical List

4-236

Use the iqimbal2coef function to determine the compensation coefficient given the
amplitude and phase imbalance.

compCoef = iqimbal2coef(ampImb,phImb);

 comm.IQImbalanceCompensator

4-237

Apply the compensation coefficient to the received signal using the step function of the
comm.IQImbalanceCompensator object and view the resultant constellation. You can
see that the compensated signal constellation is now nearly aligned with the reference
constellation.

compSig = step(hIQComp,rxSig,compCoef);
step(hScope,compSig)

4 System Objects — Alphabetical List

4-238

 comm.IQImbalanceCompensator

4-239

Remove I/Q Imbalance from a QAM Signal

Remove an I/Q imbalance from a 64-QAM signal and to make the estimated coefficients
externally available while setting the algorithm step size from an input port.

Create a constellation diagram object. Use name-value pairs to ensure that the
constellation diagram displays only the last 256 data symbols, set the axes limits, and
specify the reference constellation.

M = 64;
refC = qammod(0:M-1,M);
constDiagram = comm.ConstellationDiagram(...
 'SymbolsToDisplaySource','Property', ...
 'SymbolsToDisplay',256, ...
 'XLimits',[-10 10],'YLimits',[-10 10], ...
 'ReferenceConstellation',refC);

Create an I/Q imbalance compensator System object in which the step size is specified as
an input argument and the estimated coefficients are made available through an output
port.

iqImbComp = comm.IQImbalanceCompensator('StepSizeSource','Input port', ...
 'CoefficientOutputPort',true);

Generate random data symbols and apply 64-QAM modulation.

nSym = 25000;
data = randi([0 M-1],nSym,1);
txSig = qammod(data,M);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 2; % dB
phImb = 10; % deg
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Plot the constellation diagram of the received signal.

constDiagram(rxSig);

4 System Objects — Alphabetical List

4-240

Specify the step size parameter for the I/Q imbalance compensator.

stepSize = 1e-5;

 comm.IQImbalanceCompensator

4-241

Compensate for the I/Q imbalance while setting the step size via an input argument. You
can see that the compensated signal constellation is now nearly aligned with the
reference constellation.

[compSig,estCoef] = iqImbComp(rxSig,stepSize);
constDiagram(compSig)

4 System Objects — Alphabetical List

4-242

Plot the real and imaginary values of the estimated coefficients. You can see that they
reach a steady-state solution.

plot((1:nSym)'/1000,[real(estCoef),imag(estCoef)])
grid

 comm.IQImbalanceCompensator

4-243

xlabel('Symbols (thousands)')
ylabel('Coefficient Value')
legend('Real','Imag','location','best')

Control Adaptation Algorithm for I/Q Imbalance Compensator

Control the adaptation algorithm of the I/Q imbalance compensator using an external
argument.

Apply QPSK modulation to random data symbols.

data = randi([0 3],600,1);
txSig = pskmod(data,4,pi/4,'gray');

4 System Objects — Alphabetical List

4-244

Create an I/Q imbalance compensator in which the adaptation algorithm is controlled
through an input port, the step size is specified through the StepSize property, and the
estimated coefficients are made available through an output port.

iqImbComp = comm.IQImbalanceCompensator('AdaptInputPort',true, ...
 'StepSize',0.001,'CoefficientOutputPort',true);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB
phImb = 15; % deg
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Break the compensation operation into three segments in which the compensator is
enabled for the first 200 symbols, disabled for the next 200 symbols, and enabled for the
last 200 symbols. Save the coefficient data in three vectors.

[~,estCoef1] = iqImbComp(rxSig(1:200),true);
[~,estCoef2] = iqImbComp(rxSig(201:400),false);
[~,estCoef3] = iqImbComp(rxSig(401:600),true);

Concatenate the complex algorithm coefficients and plot their real and imaginary parts.

estCoef = [estCoef1; estCoef2; estCoef3];
plot((1:600)',[real(estCoef) imag(estCoef)])
grid
xlabel('Symbols')
ylabel('Coefficient Value')
legend('Real','Imaginary','location','best')

 comm.IQImbalanceCompensator

4-245

Observe that the coefficients do not adapt during the time in which the compensator is
disabled.

Algorithms
One of the major impairments affecting direct conversion receivers is the imbalance
between the received signal’s in-phase and quadrature components. Rather than
improving the front-end, analog hardware, it is more cost effective to tolerate a certain
level of I/Q imbalance and then implement compensation methods. A circularity-based
blind compensation algorithm is used as the basis for the I/Q Imbalance Compensator.

4 System Objects — Alphabetical List

4-246

A generalized I/Q imbalance model is shown, where g is the amplitude imbalance and ϕ is
the phase imbalance (ideally, g = 1 and ϕ = 0). In the figure, H(f) is the nominal frequency
response of the branches due to, for example, lowpass filters. HI(f) and HQ(f) represent
the portions of the in-phase and quadrature amplitude and phase responses that differ
from the nominal response. With perfect matching, HI(f) = HQ(f) = 1.

Let z(t) be the ideal baseband equivalent signal of the received signal, r(t), where its
Fourier transform is denoted as Z(f). Given the generalized I/Q imbalance model, the
Fourier transform of the imbalanced signal, x(t) = xI(t) + xQ(t), is

X(f) = G1(f)Z(f) + G2(f)Z*(− f)

where G1(f) and G2(f) are the direct and conjugate components of the I/Q imbalance.
These components are defined as

G1(f) = HI(f) + HQ(f)gexp(− jϕ) /2
G2(f) = HI(f) + HQ(f)gexp(jϕ) /2

Applying the inverse Fourier transform to X(f), the signal model becomes x(t) = g1(t) * z(t)
+ g2(t) * z*(t).

This suggests the compensator structure as shown in which discrete-time notation is used
to express the variables. The compensated signal is expressed as y(n) = x(n) + wx*(n).

 comm.IQImbalanceCompensator

4-247

A simple algorithm of the form

y(n) = x(n) + w(n)x*(n)
w(n + 1) = w(n)−My2(n)

is used to determine the weights, because it ensures that the output is “proper”, that is,
E[y2(n)] = 0 [1]. The initial value of w is determined by the InitialCoefficient
property, which has a default value of 0 + 0i. M is the step size, as specified in the
StepSize property.

Selected Bibliography

[1] Anttila, L., M. Valkama, and M. Renfors. “Blind compensation of frequency-selective
I/Q imbalances in quadrature radio receivers: Circularity-based approach”, Proc.
IEEE ICASSP, pp.III-245–248, 2007.

[2] Kiayani, A., L. Anttila, Y. Zou, and M. Valkama, “Advanced Receiver Design for
Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF
Measurements”, Journal of Electrical and Computer Engineering, Vol. 2012.

4 System Objects — Alphabetical List

4-248

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
I/Q Imbalance Compensator | iqcoef2imbal | iqimbal2coef

Introduced in R2014b

 comm.IQImbalanceCompensator

4-249

step
System object: comm.IQImbalanceCompensator
Package: comm

Compensate I/Q Imbalance

Syntax
Y = step(H,X)
Y = step(H,X,COEF)
Y = step(H,X,STEPSIZE)
Y = step(H,...,ADAPT)
[Y,ESTCOEF] = step(H,X)
[Y,ESTCOEF] = step(H,X,STEPSIZE)
[Y,ESTCOEF] = step(H,X,STEPSIZE,ADAPT)
[Y,ESTCOEF] = step(H,X,ADAPT)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) estimates the I/Q imbalance in the input signal, X, and returns a
compensated signal, Y. The input X can take real or complex values and can be either a
scalar or a column vector. Double- and single-precision data types are supported. The
output Y has the same properties as X.

Y = step(H,X,COEF) accepts input coefficients, COEF, instead of generating them
internally. This syntax applies when the CoefficientSource property of H is set to Input
port. The input coefficients, COEF, are complex and can be either double or single
precision. COEF has the same dimensions as X. At each time instant, COEF is a complex
scalar.

4 System Objects — Alphabetical List

4-250

Y = step(H,X,STEPSIZE) accepts a step size input, STEPSIZE. This syntax applies
when the StepSizeSource property of H is set to Input port. The step size is a real
scalar supporting either double or single precision.

Y = step(H,...,ADAPT) accepts a control signal, ADAPT, to enable or disable
coefficient updates. This syntax applies when the AdaptInputPort property of H is true.
The adaptation control signal is a logical scalar.

[Y,ESTCOEF] = step(H,X) outputs the estimated coefficients, ESTCOEF, when the
CoefficientOutputPort property of H is true. ESTCOEF has the same data properties and
dimensionality as the input signal, X.

[Y,ESTCOEF] = step(H,X,STEPSIZE) outputs the estimated coefficients, ESTCOEF,
and accepts a step size input, STEPSIZE. This syntax applies when the properties of H are
set so that CoefficientOutputPort is true and StepSizeSource is Input port.

[Y,ESTCOEF] = step(H,X,STEPSIZE,ADAPT) outputs the estimated coefficients,
ESTCOEF, and accepts a step size input,STEPSIZE, and a control signal input, ADAPT.
This syntax applies when the properties of H are set so that CoefficientOutputPort is
true, StepSizeSource is Input port, and AdaptInputPort is true.

[Y,ESTCOEF] = step(H,X,ADAPT) outputs the estimated coefficients, ESTCOEF, and
accepts a control signal input, ADAPT. This syntax applies when the properties of H are set
so that CoefficientOutputPort is true and AdaptInputPort is true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-251

reset
System object: comm.IQImbalanceCompensator
Package: comm

Reset states of the IQImbalanceCompensator System object

Syntax
reset(H)

Description
reset(H) resets the states of the IQImbalanceCompensator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

4 System Objects — Alphabetical List

4-252

comm.BPSKModulator
Package: comm

Modulate using BPSK method

Description
The BPSKModulator object modulates using the binary phase shift keying method. The
output is a baseband representation of the modulated signal.

To modulate a binary phase shift signal:

1 Define and set up your BPSK modulator object. See “Construction” on page 4-253.
2 Call step to modulate a signal according to the properties of

comm.BPSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.BPSKModulator creates a modulator System object, H, that modulates the
input signal using the binary phase shift keying (BPSK) method.

H = comm.BPSKModulator(Name,Value) creates a BPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.BPSKModulator(PHASE,Name,Value) creates a BPSK modulator object, H.
The object's PhaseOffset property is set to PHASE, and the other specified properties
are set to the specified values.

 comm.BPSKModulator

4-253

Properties
PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a finite, real
scalar. The default is 0.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a Signedness of Auto.
The default is numerictype([],16). This property applies when you set the
OutputDataType on page 4-0 property to Custom.

Methods

constellation Calculate or plot ideal signal constellation
step Modulate using BPSK method

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-254

BPSK Data Scatter Plot

This example creates binary data, modulates it, and then displays the data using a scatter
plot.

Create binary data symbols

data = randi([0 1],100,1);

Create a BPSK modulator System object

bpskModulator = comm.BPSKModulator;

Change the phase offset to pi/16

bpskModulator.PhaseOffset = pi/16;

Modulate and plot the data

modData = bpskModulator(data);
scatterplot(modData)

 comm.BPSKModulator

4-255

Algorithms
This object implements the algorithm, inputs, and outputs described on the BPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

4 System Objects — Alphabetical List

4-256

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BPSKDemodulator | comm.PSKModulator

Introduced in R2012a

 comm.BPSKModulator

4-257

constellation
System object: comm.BPSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate BPSK Modulator Reference Constellation
Create a BPSK Modulator System object™ and calculate the reference constellation
values.

Create a comm.BPSKModulator System object.

h = comm.BPSKModulator;

Calculate and display the reference constellation values by calling the constellation
function.

refC = constellation(h)

refC = 2×1 complex

4 System Objects — Alphabetical List

4-258

 1.0000 + 0.0000i
 -1.0000 + 0.0000i

Plot BPSK Modulator Reference Constellation
Create a BPSK Modulator System object™ and plot the reference constellation.

Create a comm.BPSKModulator System object.

bpsk = comm.BPSKModulator;

Plot the reference constellation by calling the constellation function.

constellation(bpsk)

 constellation

4-259

4 System Objects — Alphabetical List

4-260

step
System object: comm.BPSKModulator
Package: comm

Modulate using BPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the BPSK modulator System object, H. It
returns the baseband modulated output, Y. The input must be a column vector of bits. The
data type of the input can be numeric, logical, or unsigned fixed point of word length 1 (fi
object).

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-261

comm.OFDMModulator
Package: comm

Modulate using OFDM method

Description
The OFDMModulator object modulates using the orthogonal frequency division
modulation method. The output is a baseband representation of the modulated signal.

To modulate an OFDM signal:

1 Define and set up the OFDM modulator object. See “Construction” on page 4-262.
2 Call step to modulate a signal according to the properties of

comm.OFDMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.OFDMModulator creates a modulator System object, H, that modulates the
input signal using the orthogonal frequency division modulation (OFDM) method.

H = comm.OFDMModulator(Name,Value) creates a OFDM modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OFDMModulator(hDemod) creates an OFDM modulator object, H, whose
properties are determined by the corresponding OFDM demodulator object, hDemod.

4 System Objects — Alphabetical List

4-262

Properties
FFTLength

The length of the FFT, NFFT, is equivalent to the number of subcarriers used in the
modulation process. FFTLength must be ≥ 8.

Specify the number of subcarriers. The default is 64.

NumGuardBandCarriers

The number of guard band subcarriers allocated to the left and right guard bands.

Specify the number of left and right subcarriers as nonnegative integers from 0 to
(floor(FFTLength / 2) − 1) where you specify the left, NleftG, and right, NrightG, guard
bands independently in a 2-by-1 column vector. The default values are [6; 5].

InsertDCNull

This is a logical variable that controls whether a DC null is inserted. The default value
is false.

The DC subcarrier is the center of the frequency band and has the index value:

• (FFTLength / 2) + 1 when FFTLength is even
• (FFTLength + 1) / 2 when FFTLength is odd

PilotInputPort

This is a logical property that controls whether you can specify the pilot carrier indices.
If true, you can assign individual subcarriers for pilot transmission; otherwise, pilot
information will be assumed to be embedded in the input data. The default value is
false.

PilotCarrierIndices

If the comm.OFDMModulator.PilotInputPort property is set to true, you can specify
the indices of the pilot subcarriers. You can assign the indices to the same or different
subcarriers for each symbol. Similarly, the pilot carrier indices can differ across multiple
transmit antennas. Depending on the desired level of control for index assignments, the
dimensions of the property vary. Valid pilot indices fall in the range

 comm.OFDMModulator

4-263

NleftG + 1, NFFT/2 ∪ NFFT/2 + 2, NFFT−NrightG ,

where the index value cannot exceed the number of subcarriers. When the pilot indices
are the same for every symbol and transmit antenna, the property has dimensions Npilot-
by-1, where Npilot is the number of pilot subcarriers. When the pilot indices vary across
symbols, the property has dimensions of Npilot-by-Nsym, where Nsym is the number of
symbols. If there is only one symbol but multiple transmit antennas, the property has
dimensions of Npilot-by-1-by-NT, where NT is the number of transmit antennas. If the
indices vary across the number of symbols and transmit antennas, the property has
dimensions of Npilot-by-Nsym-by-NT. It is desirable that when the number of transmit
antennas is greater than one, the indices per symbol should be mutually distinct across
antennas to avoid interference. The default value is [12; 26; 40; 54].

CyclicPrefixLength

The CyclicPrefixLength property specifies the length of the OFDM cyclic prefix. If
you specify a scalar, the prefix length is the same for all symbols through all antennas. If
you specify a row vector of length Nsym, the prefix length can vary across symbols but
remains the same length through all antennas. The default value is 16.

Windowing

This is a logical property whose state enables or disables windowing. Windowing is the
process in which the OFDM symbol is multiplied by a raised cosine window before
transmission to more quickly reduce the power of out-of-band subcarriers. This serves to
reduce spectral regrowth. The default value is false.

WindowLength

This property specifies the length of the raised cosine window when
comm.OFDMModulator.Windowing is true. Use positive integers with a maximum value
no greater than the minimum cyclic prefix length. For example, in a configuration having
four symbols with cyclic prefix lengths of [12 16 14 18], the window length cannot
exceed 12. The default value is 1.

NumSymbols

This property specifies the number of symbols, Nsym. NumSymbols must be a positive
integer. The default value is 1.

4 System Objects — Alphabetical List

4-264

NumTransmitAntennnas

This property determines the number of antennas, NT, used to transmit the OFDM
modulated signal. The property is a positive integer. The default value is 1.

Methods
info Provide dimensioning information for the OFDM method
reset Reset states of the OFDMModulator System object
showResourceMapping Show the subcarrier mapping of the OFDM symbols created by

the OFDM modulator System object.
step Modulate using OFDM method

Common to All System Objects
release Allow System object property value changes

Examples

Construct and Modify OFDM Modulator

An OFDM modulator System object™ can be constructed using default properties. Once
constructed, these properties can be modified.

Construct an OFDM modulator.

ofdmMod = comm.OFDMModulator;

Display the properties of the modulator.

disp(ofdmMod)

 comm.OFDMModulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 InsertDCNull: false
 PilotInputPort: false

 comm.OFDMModulator

4-265

 CyclicPrefixLength: 16
 Windowing: false
 NumSymbols: 1
 NumTransmitAntennas: 1

Modify the number of subcarriers and symbols.

ofdmMod.FFTLength = 128;
ofdmMod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

disp(ofdmMod)

 comm.OFDMModulator with properties:

 FFTLength: 128
 NumGuardBandCarriers: [2x1 double]
 InsertDCNull: false
 PilotInputPort: false
 CyclicPrefixLength: 16
 Windowing: false
 NumSymbols: 2
 NumTransmitAntennas: 1

The showResourceMapping method shows the mapping of data, pilot, and null
subcarriers in the time-frequency space. Apply the showResourceMapping method.

showResourceMapping(ofdmMod)

4 System Objects — Alphabetical List

4-266

Construct OFDM Modulator from OFDM Demodulator

An OFDM modulator System object™ can be constructed from an existing OFDM
demodulator System object.

Construct an OFDM demodulator, ofdmDemod and specify pilot indices for a single
symbol and two transmit antennas.

Note: You can set the PilotCarrierIndices property in the demodulator object, which
then changes the number of transmit antennas in the modulator object. The number of

 comm.OFDMModulator

4-267

receive antennas in the demodulator is uncorrelated with the number of transmit
antennas.

ofdmDemod = comm.OFDMDemodulator;
ofdmDemod.PilotOutputPort = true;
ofdmDemod.PilotCarrierIndices = cat(3,[12; 26; 40; 54],...
 [13; 27; 41; 55]);

Use the demodulator, ofdmDemod, to construct the OFDM modulator.

ofdmMod = comm.OFDMModulator(ofdmDemod);

Display the properties of the modulator and verify that they match those of the
demodulator.

disp(ofdmMod)

 comm.OFDMModulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 InsertDCNull: false
 PilotInputPort: true
 PilotCarrierIndices: [4x1x2 double]
 CyclicPrefixLength: 16
 Windowing: false
 NumSymbols: 1
 NumTransmitAntennas: 2

disp(ofdmDemod)

 comm.OFDMDemodulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 RemoveDCCarrier: false
 PilotOutputPort: true
 PilotCarrierIndices: [4x1x2 double]
 CyclicPrefixLength: 16
 NumSymbols: 1
 NumReceiveAntennas: 1

4 System Objects — Alphabetical List

4-268

Visualize Time-Frequency Resource Assignments for OFDM Modulator

The showResourceMapping method displays the time-frequency resource mapping for
each transmit antenna.

Construct an OFDM modulator.

mod = comm.OFDMModulator;

Apply the showResourceMapping method.

showResourceMapping(mod)

Insert a DC null.

 comm.OFDMModulator

4-269

mod.InsertDCNull = true;

Show the resource mapping after adding the DC null.

showResourceMapping(mod)

Create Modulator and Specify Pilots

The OFDM modulator enables you to specify the subcarrier indices for the pilot signals.
The indices can be specified for each symbol and transmit antenna. When there is more
than one transmit antenna, ensure that the pilot indices for each symbol differ between
antennas.

4 System Objects — Alphabetical List

4-270

Construct an OFDM modulator that has two symbols and insert a DC null.

mod = comm.OFDMModulator('FFTLength',128,'NumSymbols',2,...
 'InsertDCNull',true);

Turn on the pilot input port so you can specify the pilot indices.

mod.PilotInputPort = true;

Specify the same pilot indices for both symbols.

mod.PilotCarrierIndices = [12; 56; 89; 100];

Visualize the placement of the pilot signals and nulls in the OFDM time-frequency grid
using the showResourceMapping method.

showResourceMapping(mod)

 comm.OFDMModulator

4-271

Concatenate a second column of pilot indices to the PilotCarrierIndices property to
specify different indices for the second symbol.

mod.PilotCarrierIndices = cat(2, mod.PilotCarrierIndices, ...
 [17; 61; 94; 105]);

Verify that the pilot subcarrier indices differ between symbols.

showResourceMapping(mod)

4 System Objects — Alphabetical List

4-272

Increase the number of transmit antennas to two.

mod.NumTransmitAntennas = 2;

Specify the pilot indices for each of the two transmit antennas. To provide indices for
multiple antennas while minimizing interference among the antennas, populate the
PilotCarrierIndices property as a 3-D array such that the indices for each symbol
differ among antennas.

mod.PilotCarrierIndices = cat(3,[20; 50; 70; 110], ...
 [15; 60; 75; 105]);

 comm.OFDMModulator

4-273

Display the resource mapping for the two transmit antennas. The gray lines denote the
insertion of custom nulls. The nulls are created by the object to minimize interference
among the pilot symbols from different antennas.

showResourceMapping(mod)

4 System Objects — Alphabetical List

4-274

Create Modulator with Varying Cyclic Prefix Lengths

Specify the length of the cyclic prefix for each OFDM symbol.

Construct an OFDM modulator having five symbols, four left guard-band subcarriers, and
three right guard-band subcarriers. Specify the cyclic prefix length for each OFDM
symbol.

mod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...
 'NumSymbols',5,...
 'CyclicPrefixLength',[12 10 14 11 13]);

 comm.OFDMModulator

4-275

Display the properties of the modulator and verify that the cyclic prefix length changes
across symbols.

disp(mod)

 comm.OFDMModulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 InsertDCNull: false
 PilotInputPort: false
 CyclicPrefixLength: [12 10 14 11 13]
 Windowing: false
 NumSymbols: 5
 NumTransmitAntennas: 1

Info Method to Determine OFDM Modulator Data Dimensions

Determine the OFDM modulator data dimensions by using the info method.

Construct an OFDM modulator System object™ with user-specified pilot indices, insert a
DC null, and specify two transmit antennas.

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3], ...
 'PilotInputPort',true, ...
 'PilotCarrierIndices',cat(3,[12; 26; 40; 54], ...
 [11; 25; 39; 53]), ...
 'InsertDCNull',true, ...
 'NumTransmitAntennas',2);

Use the info method to find the modulator input data, pilot input data, and output data
sizes.

info(hMod)

ans = struct with fields:
 DataInputSize: [48 1 2]
 PilotInputSize: [4 1 2]
 OutputSize: [80 2]

4 System Objects — Alphabetical List

4-276

Create OFDM Modulated Data

Generate OFDM modulated symbols for use in link-level simulations.

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers,
and two symbols having different pilot indices for each symbol.

mod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...
'PilotInputPort',true, ...
'PilotCarrierIndices',[12 11; 26 27; 40 39; 54 55], ...
'NumSymbols',2, ...
'InsertDCNull',true);

Determine input data, pilot, and output data dimensions.

modDim = info(mod);

Generate random data symbols for the OFDM modulator. The structure variable, modDim,
determines the number of data symbols.

dataIn = complex(randn(modDim.DataInputSize),randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.

pilotIn = complex(rand(modDim.PilotInputSize),rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modData = step(mod,dataIn,pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

demod = comm.OFDMDemodulator(mod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut, pilotOut] = step(demod,modData);

Verify that, within a tight tolerance, the input data and pilot symbols match the output
data and pilot symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...
 pilotIn(:) - pilotOut(:)])) < 1e-10)

 comm.OFDMModulator

4-277

isSame = logical
 1

Algorithms
Orthogonal frequency division modulation (OFDM) divides a high-rate transmit data
stream into N lower-rate streams, each of which has a symbol duration larger than the
channel delay spread. This serves to mitigate intersymbol interference (ISI). The
individual substreams are sent over N parallel subchannels which are orthogonal to each
other. Through the use of an inverse fast Fourier transform (IFFT), OFDM can be
transmitted using a single radio. Specifically, the OFDM Modulator System object
modulates an input signal using orthogonal frequency division modulation. The output is a
baseband representation of the modulated signal:

v(t) = ∑
k = 0

N − 1
Xke j2πkΔf t, 0 ≤ t ≤ T,

where {Xk} are data symbols, N is the number of subcarriers, and T is the OFDM symbol
time. The subcarrier spacing of Δf = 1/T makes them orthogonal over each symbol period.
This is expressed as:

1
T∫0 T

e j2πmΔf t * e j2πnΔf t dt = 1
T∫0 T

e j2π(m− n)Δf t dt = 0 for m ≠ n .

The data symbols, Xk, are usually complex and can be from any modulation alphabet, e.g.,
QPSK, 16-QAM, or 64-QAM.

The figure shows an OFDM modulator. It consists of a bank of N complex modulators,
where each corresponds to one OFDM subcarrier.

4 System Objects — Alphabetical List

4-278

Guard Bands and Intervals
There are three types of OFDM subcarriers: data, pilot, and null. Data subcarriers are
used for transmitting data while pilot subcarriers are used for channel estimation. There
is no transmission on null subcarriers, which provide a DC null and provide buffers
between OFDM resource blocks. These buffers are referred to as guard bands whose
purpose is to prevent inter-symbol interference. The allocation of nulls and guard bands
vary depending upon the applicable standard, e.g., 802.11n differs from LTE.
Consequently, the OFDM modulator object allows the user to assign subcarrier indices.

 comm.OFDMModulator

4-279

Analogous to the concept of guard bands, the OFDM modulator object supports guard
intervals which are used to provide temporal separation between OFDM symbols so that
the signal does not lose orthogonality due to time-dispersive channels. As long as the
guard interval is longer than the delay spread, each symbol does not interfere with other
symbols. Guard intervals are created by using cyclic prefixes in which the last part of an
OFDM symbol is copied and inserted as the first part of the OFDM symbol. The benefit of
cyclic prefix insertion is maintained as long as the span of the time dispersion does not
exceed the duration of the cyclic prefix. The OFDM modulator object enables the setting
of the cyclic prefix length. The drawback in using a cyclic prefix is the penalty from
increased overhead.

4 System Objects — Alphabetical List

4-280

Raised Cosine Windowing
While the cyclic prefix creates guard period in time domain to preserve orthogonality, an
OFDM symbol rarely begins with the same amplitude and phase exhibited at the end of
the prior OFDM symbol. This causes spectral regrowth, which is the spreading of signal
bandwidth due to intermodulation distortion. To limit this spectral regrowth, it is desired
to create a smooth transition between the last sample of a symbol and the first sample of
the next symbol. This can be done by using a cyclic suffix and raised cosine windowing.

To create the cyclic suffix, the first NWIN samples of a given symbol are appended to the
end of that symbol. However, in order to comply with the 802.11g standard, for example,
the length of a symbol cannot be arbitrarily lengthened. Instead, the cyclic suffix must
overlap in time and is effectively summed with the cyclic prefix of the following symbol.
This overlapped segment is where windowing is applied. Two windows are applied, one of
which is the mathematical inverse of the other. The first raised cosine window is applied
to the cyclic suffix of symbol k, and decreases from 1 to 0 over its duration. The second
raised cosine window is applied to the cyclic prefix of symbol k+1, and increases from 0
to 1 over its duration. This provides a smooth transition from one symbol to the next.

The raised cosine window, w(t), in the time domain can be expressed as:

w(t) =

1, 0 ≤ t <
T − TW

2
1
2 1 + cos π

TW
t −

T − TW
2 ,

T − TW
2 ≤ t ≤

T + TW
2

0, otherwise

,

where

• T represents the OFDM symbol duration including the guard interval.
• TW represents the duration of the window.

Adjust the length of the cyclic suffix via the window length setting property, with suffix
lengths set between 1 and the minimum cyclic prefix length. While windowing improves
spectral regrowth, it does so at the expense of multipath fading immunity. This occurs
because redundancy in the guard band is reduced because the guard band sample values
are compromised by the smoothing.

The following figures display the application of raised cosine windowing.

 comm.OFDMModulator

4-281

Selected Bibliography

[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile Broadband.
London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX. Upper Saddle
River, NJ: Prentice Hall, 2007.

[3] Agilent Technologies, Inc., “OFDM Raised Cosine Windowing”, http://
wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/
ofdm_raised_cosine_windowing.htm.

4 System Objects — Alphabetical List

4-282

http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm
http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm
http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm

[4] Montreuil, L., R. Prodan, and T. Kolze. “OFDM TX Symbol Shaping 802.3bn”, http://
www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf. Broadcom, 2013.

[5] “IEEE Standard 802.16TM-2009,” New York: IEEE, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
qammod

Objects
comm.OFDMDemodulator | comm.QPSKModulator

Blocks
OFDM Modulator Baseband

Introduced in R2014a

 comm.OFDMModulator

4-283

http://www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf
http://www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf

info
System object: comm.OFDMModulator
Package: comm

Provide dimensioning information for the OFDM method

Syntax
Y = info(H)

Description
Y = info(H) provides data dimensioning information for the OFDM modulator System
object, H. It returns the expected dimensions for the:

• Input data array
• Pilot data array
• Output data array

The output, Y, is a structure containing the following three fields.

Y.DataInputSize
Dimensions of the modulator input data, Ndata-by-Nsym-by-Nt, where Ndata is the
number of data subcarriers such that Ndata = NFFT − NleftG − NrightG − NDCNull − Npilot −
NcustNull.

4 System Objects — Alphabetical List

4-284

Variable Definitions

Variable Description
NFFT Number of subcarriers
NleftG Number of subcarriers in the left guard band
NrightG Number of subcarriers in the right guard band
NDCNull Number of subcarriers in the DC null (either 0 or 1)
Npilot Number of pilot subcarriers
NcustNull Number of subcarriers used for custom nulls (applies

only when the pilot indices property is a 3-D array)
Nt Number of transmit antennas

Y.PilotInputSize
Dimensions of the pilot input array, Npilot-by-Nsym-by-Nt.

Y.OutputSize
Dimensions of the modulator output data, (NFFT + NCP)×Nsym-by-Nt, where NCP is the
length of the cyclic prefix.

 info

4-285

reset
System object: comm.OFDMModulator
Package: comm

Reset states of the OFDMModulator System object

Syntax
reset(H)

Description
reset(H) resets the states of the OFDMModulator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

4 System Objects — Alphabetical List

4-286

showResourceMapping
System object: comm.OFDMModulator
Package: comm

Show the subcarrier mapping of the OFDM symbols created by the OFDM modulator
System object.

Syntax
showResourceMapping(H)
showResourceMapping(H,CI)

Description
showResourceMapping(H) shows a visualization of the subcarrier mapping for the
OFDM symbols used by the OFDM modulator System object, H. The subcarrier indices are
numbered from 1 to NFFT.

showResourceMapping(H,CI) shows the resource mapping where the optional
argument, CI, is used to number the subcarrier indices that will be displayed. CI is a 1x2
integer row vector such that diff(CI)= NFFT − 1.

 showResourceMapping

4-287

step
System object: comm.OFDMModulator
Package: comm

Modulate using OFDM method

Syntax
Y = step(H,X)
Y = step(H,X,PILOT)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the OFDM modulator System object, H,
and returns the baseband modulated output, Y, which is a double-precision, 2-D array
with complex values. The input, X, is a numeric, real or complex 3-D array of symbols
(typically created with a baseband demodulator, e.g., QPSK). Its dimensions are a function
of the number of subcarriers, the number of guard band subcarriers, the number of pilot
subcarriers, and whether or not there is a DC null. You can determine the dimensions by
using the info method.

Y = step(H,X,PILOT) maps the PILOT signal onto the subcarriers specified by the
PilotCarrierIndices property of H. The input PILOT is a numeric, real or complex 3-D
array. This syntax applies when the PilotInputPort property of H is true. The info method
provides the dimensions of the PILOT array.

Note obj specifies the System object on which to run this step method.

4 System Objects — Alphabetical List

4-288

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-289

comm.OFDMDemodulator
Package: comm

Demodulate using OFDM method

Description
The OFDMDemodulator object demodulates using the orthogonal frequency division
demodulation method. The output is a baseband representation of the modulated signal,
which was input into the OFDMModulator companion object.

To demodulate an OFDM signal:

1 Define and set up the OFDM demodulator object. See “Construction” on page 4-290.
2 Call step to demodulate a signal according to the properties of

comm.OFDMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.OFDMDemodulator creates a demodulator System object, H, that
demodulates an input signal by using the orthogonal frequency division demodulation
method.

H = comm.OFDMDemodulator(Name,Value) creates an OFDM demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OFDMDemodulator(hMod) creates an OFDM demodulator object, H, whose
properties are determined by the corresponding OFDM modulator object, hMod.

4 System Objects — Alphabetical List

4-290

Properties
FFTLength

The length of the FFT, NFFT, is equivalent to the number of subcarriers used in the
modulation process. FFTLength must be ≥ 8.

Specify the number of subcarriers. The default is 64.

NumGuardBandCarriers

The number of guard band subcarriers allocated to the left and right guard bands.

Specify the number of left and right subcarriers as nonnegative integers in [0,NFFT/2 − 1]
where you specify the left, NleftG, and right, NrightG, guard bands independently in a 2-by-1
column vector. The default values are [6; 5].

RemoveDCCarrier

A logical variable that when true, mandates removal of a DC subcarrier. The default
value is false.

PilotOutputPort

A logical property that controls whether to separate the pilot signals and make them
available at an additional output port. The location of each pilot output symbol is
determined by the pilot subcarrier indices specified in the PilotCarrierIndices
property. When false, pilot symbols may be present but embedded in the data. The default
value is false.

PilotCarrierIndices

If the PilotOutputPort property is true, output separate pilot signals located at the
indices specified by the PilotCarrierIndices property. If the indices are a 2-D array,
the pilot carriers across all the transmit antennas per symbol are the same. If there is
more than one transmit antenna (this information is not known by the demodulator), the
pilots from different transmit antennas may interfere with each other. To avoid this,
specify the pilot carrier indices as a 3-D array with different pilot indices for each symbol
across the antennas. This avoids interference between pilots from different transmit
antennas, since, on a per-symbol basis, each transmit antenna has different pilot carriers
and the OFDM modulator creates custom nulls at the appropriate locations. The size of

 comm.OFDMDemodulator

4-291

the third dimension of the PilotCarrierIndices property gives the number of
transmit antennas.

CyclicPrefixLength

The cyclic prefix length property specifies the length of the OFDM cyclic prefix. If you
specify a scalar, the prefix length is the same for all symbols through all antennas. If you
specify a row vector of length Nsym, the prefix length can vary across symbols but remains
the same length through all antennas. The default value is 16.

NumSymbols

This property specifies the number of symbols, Nsym. Specify Nsym as a positive integer.
The default value is 1.

NumReceiveAntennnas

This property determines the number of antennas, NR, used to receive the OFDM
modulated signal. Specify NR as a positive integer. The default value is 1.

Methods

info Provide dimensioning information for the OFDM method
reset Reset states of the OFDMDemodulator System object
showResourceMapping Show the subcarrier mapping of the OFDM symbols created by

the OFDM demodulator System object
step Demodulate using OFDM method

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-292

Create and Modify OFDM Demodulator

Construct an OFDM demodulator System object™ with default properties. Modify some of
the properties.

Construct the OFDM demodulator.

demod = comm.OFDMDemodulator

demod =
 comm.OFDMDemodulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 RemoveDCCarrier: false
 PilotOutputPort: false
 CyclicPrefixLength: 16
 NumSymbols: 1
 NumReceiveAntennas: 1

Modify the number of subcarriers and symbols.

demod.FFTLength = 128;
demod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

demod

demod =
 comm.OFDMDemodulator with properties:

 FFTLength: 128
 NumGuardBandCarriers: [2x1 double]
 RemoveDCCarrier: false
 PilotOutputPort: false
 CyclicPrefixLength: 16
 NumSymbols: 2
 NumReceiveAntennas: 1

 comm.OFDMDemodulator

4-293

Create OFDM Demodulator from OFDM Modulator

Create an OFDM demodulator System object™ from an existing OFDM modulator System
object.

Construct an OFDM modulator using default parameters.

mod = comm.OFDMModulator('NumTransmitAntennas',4);

Construct the corresponding OFDM demodulator from the modulator, mod.

demod = comm.OFDMDemodulator(mod);

Display the properties of the modulator and verify that they match those of the
demodulator.

mod

mod =
 comm.OFDMModulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 InsertDCNull: false
 PilotInputPort: false
 CyclicPrefixLength: 16
 Windowing: false
 NumSymbols: 1
 NumTransmitAntennas: 4

demod

demod =
 comm.OFDMDemodulator with properties:

 FFTLength: 64
 NumGuardBandCarriers: [2x1 double]
 RemoveDCCarrier: false
 PilotOutputPort: false
 CyclicPrefixLength: 16
 NumSymbols: 1
 NumReceiveAntennas: 1

4 System Objects — Alphabetical List

4-294

Note that the number of transmit antennas is independent of the number of receive
antennas.

Visualize Time-Frequency Resource Assignments

The showResourceMapping method shows the time-frequency resource mapping for
each transmit antenna.

Construct an OFDM demodulator.

demod = comm.OFDMDemodulator;

Apply the showResourceMapping method.

showResourceMapping(demod)

 comm.OFDMDemodulator

4-295

Remove the DC subcarrier.

demod.RemoveDCCarrier = true;

Show the resource mapping after removing the DC subcarrier.

showResourceMapping(demod)

4 System Objects — Alphabetical List

4-296

Demodulate OFDM Data

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers,
and two symbols that have different pilot indices for each symbol.

mod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...
'PilotInputPort',true,'PilotCarrierIndices',cat(2,[12; 26; 40; 54],...
[11; 27; 39; 55]),'NumSymbols',2,'InsertDCNull',true);

Determine input data, pilot, and output data dimensions.

modDim = info(mod)

 comm.OFDMDemodulator

4-297

modDim = struct with fields:
 DataInputSize: [52 2]
 PilotInputSize: [4 2]
 OutputSize: [160 1]

Generate random data symbols for the OFDM modulator. Determine the number of data
symbols by using the structure variable, modDim.

dataIn = complex(randn(modDim.DataInputSize),randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.

pilotIn = complex(rand(modDim.PilotInputSize),rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modSig = step(mod,dataIn,pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

demod = comm.OFDMDemodulator(mod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut,pilotOut] = step(demod,modSig);

Verify that the input data and pilot symbols match the output data and pilot symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...
 pilotIn(:) - pilotOut(:)])) < 1e-10)

isSame = logical
 1

Algorithms
The Orthogonal Frequency Division Modulation (OFDM) Demodulator System object
demodulates an OFDM input signal by using an FFT operation that results in N parallel
data streams.

4 System Objects — Alphabetical List

4-298

The figure shows an OFDM demodulator. It consists of a bank of N correlators with one
assigned to each OFDM subcarrier followed by a parallel-to-serial conversion.

Guard Bands and Intervals
There are three types of OFDM subcarriers: data, pilot, and null. Data subcarriers are
used for transmitting data while pilot subcarriers are used for channel estimation. There
is no transmission on null subcarriers, which are used to provide a DC null as well as to
provide buffers between OFDM resource blocks. These buffers are referred to as guard
bands whose purpose is to prevent inter-symbol interference. The allocation of nulls and
guard bands varies depending upon the standard, e.g., 802.11n differs from LTE.
Consequently, the OFDM modulator object allows the user to assign subcarrier indices as
required.

 comm.OFDMDemodulator

4-299

Analogous to the concept of guard bands, the OFDM modulator object supports guard
intervals that provide temporal separation between OFDM symbols so that the signal does
not lose orthogonality due to time-dispersive channels. As long as the guard interval is
longer than the delay spread, each symbol does not interfere with other symbols. Guard
intervals are created by using cyclic prefixes in which the last part of an OFDM symbol is
copied and inserted as the first part of the OFDM symbol. The benefit of cyclic prefix
insertion is maintained as long as the span of the time dispersion does not exceed the
duration of the cyclic prefix. The OFDM modulator object enables the cyclic prefix length
to be set. The drawback in using a cyclic prefix is increased overhead.

4 System Objects — Alphabetical List

4-300

Selected Bibliography

[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile
Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed, Fundamentals of WiMAX, Upper Saddle
River, NJ: Prentice Hall, 2007.

[3] I. E. E. E., “IEEE Standard 802.16TM-2009.”

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.OFDMModulator | comm.QPSKDemodulator |
comm.RectangularQAMDemodulator

Blocks
OFDM Demodulator Baseband

Functions
ofdmdemod

Introduced in R2014a

 comm.OFDMDemodulator

4-301

info
System object: comm.OFDMDemodulator
Package: comm

Provide dimensioning information for the OFDM method

Syntax
Y = info(H)

Description
Y = info(H) provides data dimensioning information for the OFDM demodulator
System object, H. It returns the expected dimensions for data input into the OFDM
demodulator, for the pilot output, and for the data output from the demodulator. The
output, Y, is a structure containing three fields: InputSize, DataOutputSize, and
PilotOutputSize.

Y.InputSize
Gives the dimensions of the demodulator input data, [(NFFT + NCP) × Nsym]-by-Nr,
where NFFT is the number of subcarriers, NCP is the length of the cyclic prefix, Nsym is
the number of symbols, and Nr is the number of receive antennas.

Y.DataOutputSize
Shows the dimensions of the demodulator output data, Ndata-by-Nsym-by-Nr, where
Ndata is the number of data subcarriers such that Ndata = NFFT − NleftG − NrightG −
NDCNull − Npilot − NcustNull. The variables are defined as follows:

NFFT Number of subcarriers
NleftG Number of subcarriers in the left guard

band
NrightG Number of subcarriers in the right

guard band

4 System Objects — Alphabetical List

4-302

NDCNull Number of subcarriers in the DC null
(either 0 or 1)

Npilot Number of pilot subcarriers
NcustNull Number of subcarriers used for custom

nulls

Y.PilotOutputSize
Provides the dimensions of the pilot signal output array, Npilot-by-Nsym-by-Nr or Npilot-
by-Nsym-by-Nt-by-Nr, depending on the number of transmit antennas.

 info

4-303

reset
System object: comm.OFDMDemodulator
Package: comm

Reset states of the OFDMDemodulator System object

Syntax
reset(H)

Description
reset(H) resets the states of the OFDMDemodulator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

4 System Objects — Alphabetical List

4-304

showResourceMapping
System object: comm.OFDMDemodulator
Package: comm

Show the subcarrier mapping of the OFDM symbols created by the OFDM demodulator
System object

Syntax
showResourceMapping(H)
showResourceMapping(H,CI)

Description
showResourceMapping(H) shows a visualization of the subcarrier mapping for the
OFDM symbols used by the OFDM demodulator System object, H. The subcarrier indices
are numbered from 1 to NFFT.

showResourceMapping(H,CI) shows the resource mapping where the optional
argument, CI, is used to number the subcarrier indices that will be displayed. CI is a 1x2
integer row vector such that diff(CI)= NFFT − 1.

 showResourceMapping

4-305

step
System object: comm.OFDMDemodulator
Package: comm

Demodulate using OFDM method

Syntax
Y = step(H,X)
[Y,PILOT] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the OFDM demodulator System object,
H, and returns the baseband demodulated output, Y. The input is a double-precision, real
or complex, 2-D matrix of symbols whose dimensions are a function of the number of
subcarriers, the cyclic prefix length, and the number of receive antennas. You can
determine the dimensions by using the info method. The output, Y, is a double-precision,
complex, 3-D array.

[Y,PILOT] = step(H,X) separates the PILOT signal on the subcarriers specified by
the PilotCarrierIndices property value of H. This syntax applies when the PilotOutputPort
property of H is true. PILOT is a double-precision, complex, 3-D array.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

4 System Objects — Alphabetical List

4-306

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-307

comm.CarrierSynchronizer
Package: comm

Compensate for carrier frequency offset

Description
The comm.CarrierSynchronizer System object compensates for carrier frequency and
phase offsets in signals that use single-carrier modulation schemes. The carrier
synchronizer algorithm is compatible with BPSK, QPSK, OQPSK, 8-PSK, PAM, and
rectangular QAM modulation schemes.

Note

• This System object does not resolve phase ambiguities created by the synchronization
algorithm. As indicated in this table, the potential phase ambiguity introduced by the
synchronizer depends on the modulation type:

Modulation Phase Ambiguity (degrees)
'BPSK' or 'PAM' 0, 180
'OQPSK', 'QPSK', or 'QAM' 0, 90, 180, 270
'8PSK' 0, 45, 90, 135, 180, 225, 270, 315

The “Examples” on page 4-0 demonstrate carrier synchronization and resolution of
phase ambiguity.

• For best results, apply carrier synchronization to non-oversampled signals, as
demonstrated in “Correct Phase and Frequency Offset for 16-QAM Using Coarse and
Fine Synchronization” on page 4-318.

To compensate for frequency and phase offsets in signals that use single-carrier
modulation schemes:

1 Create the comm.CarrierSynchronizer object and set its properties.

4 System Objects — Alphabetical List

4-308

2 Call the object, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
carrSynch = comm.CarrierSynchronizer
carrSynch = comm.CarrierSynchronizer(Name,Value)

Description
carrSynch = comm.CarrierSynchronizer creates a System object that compensates
for carrier frequency offset and phase offset in signals that use single-carrier modulation
schemes.

carrSynch = comm.CarrierSynchronizer(Name,Value) sets properties using one
or more name-value pairs. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Modulation — Modulation type
'QAM' (default) | '8PSK' | 'BPSK' | 'OQPSK' | 'PAM' | 'QPSK'

Modulation type, specified as 'QAM', '8PSK', 'BPSK', 'OQPSK', 'PAM', or 'QPSK'.
Example: comm.CarrierSynchronizer('Modulation','QPSK') creates a carrier
synchronizer System object to use with a QPSK modulated signal.

 comm.CarrierSynchronizer

4-309

Tunable: No

ModulationPhaseOffset — Modulation phase offset method
'Auto' (default) | 'Custom'

Modulation phase offset method, specified as 'Auto' or 'Custom'.

• 'Auto' — Apply the traditional offset for the specified modulation type.

Modulation Phase Offset (radians)
'BPSK', 'QAM', or 'PAM' 0
'OQPSK' or 'QPSK' π/4
'8PSK' π/8

• 'Custom' — Specify a user-defined phase offset with the CustomPhaseOffset
property.

Tunable: Yes

CustomPhaseOffset — Custom phase offset
0 (default) | scalar

Custom phase offset in radians, specified as a scalar.

Dependencies

This property applies when the ModulationPhaseOffset property is set to 'Custom'.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
2 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Tunable: Yes
Data Types: double

DampingFactor — Damping factor of loop
0.707 (default) | positive scalar

Damping factor of the loop, specified as a positive scalar.

4 System Objects — Alphabetical List

4-310

Tunable: Yes
Data Types: double

NormalizedLoopBandwidth — Normalized bandwidth of loop
0.01 (default) | scalar

Normalized bandwidth of the loop, specified as a scalar in the range (0,1]. The loop
bandwidth is normalized by the sample rate of the synchronizer.

Decreasing the loop bandwidth reduces the synchronizer convergence time but also
reduces the pull-in range of the synchronizer.

Tunable: Yes
Data Types: double

Usage

Syntax
[outSig,phErr] = carrSynch(inSig)

Description
[outSig,phErr] = carrSynch(inSig) compensates for frequency offset and phase
offset in the input signal. This System object returns a compensated output signal and an
estimate of the phase error.

Input Arguments
inSig — Input signal
scalar | column vector

Input signal, specified as a complex scalar or a column vector of complex values.
Data Types: double | single
Complex Number Support: Yes

 comm.CarrierSynchronizer

4-311

Output Arguments
outSig — Output signal
scalar (default) | column vector

Output signal, returned as a scalar or column vector with the same data type and length
as inSig. The output signal adjusts the input signal compensating for carrier frequency
and phase offsets in signals that use single-carrier modulation schemes.

phErr — Phase error estimate
scalar (default) | column vector

Phase error estimate in radians, returned as a scalar or column vector with the same
length as inSig.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.CarrierSynchronizer
info Characteristic information about carrier synchronizer
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

4 System Objects — Alphabetical List

4-312

Correct Phase and Frequency Offset in QPSK Link

Correct phase and frequency offsets of a QPSK signal passed through an AWGN channel.
Using preambles, resolve phase ambiguity.

Define the simulation parameters.

M = 4; % Modulation order
rng(1993) % For repeatable results
barker = comm.BarkerCode(...
 'Length',13,'SamplesPerFrame',13); % For preamble
msgLen = 1e4;
numFrames = 10;
frameLen = msgLen/numFrames;

Add preambles to each frame, which are used later when performing phase ambiguity
resolution. Generate random data symbols, and apply QPSK modulation.

preamble = (1+barker())/2; % Length 13, unipolar
data = zeros(msgLen,1);
for idx = 1 : numFrames
 payload = randi([0 M-1],frameLen-barker.Length,1);
 data((idx-1)*frameLen + (1:frameLen)) = [preamble; payload];
end

modSig = pskmod(data,4,pi/4);

Create a comm.PhaseFrequencyOffset System object™ to introduce phase and
frequency offsets to the modulated input signal. Set the phase offset to 45 degrees,
frequency offset to 1 kHz, and sample rate to 10 kHz. The frequency offset is set to 1% of
the sample rate.

pfo = comm.PhaseFrequencyOffset('PhaseOffset',45, ...
 'FrequencyOffset',1e4,'SampleRate',1e6);

Create a carrier synchronizer System object to use for correcting the phase and
frequency offsets with samples per symbol set to 1.

carrierSync = comm.CarrierSynchronizer(...
 'SamplesPerSymbol',1,'Modulation','QPSK');

Apply phase and frequency offsets using the pfo System object, and then pass the signal
through an AWGN channel to add white Gaussian noise.

 comm.CarrierSynchronizer

4-313

modSigOffset = pfo(modSig);
rxSig = awgn(modSigOffset,12);

Display the scatter plot of the received signal. The data appear in a circle instead of being
grouped around the reference constellation points due to the frequency offset.

scatterplot(rxSig)

Use the carrierSync System object to correct the phase and frequency offset in the
received signal.

syncSignal = carrierSync(rxSig);

Use a constellation diagram to display the first and last 1000 symbols of the synchronized
signal. Before convergence of the synchronizer loop, the plotted symbols are not grouped

4 System Objects — Alphabetical List

4-314

around the reference constellation points. After convergence, the plotted symbols are
grouped around the reference constellation points.

constDiag = comm.ConstellationDiagram(...
'SymbolsToDisplaySource','Property','SymbolsToDisplay',300, ...
'ChannelNames',{'Before convergence','After convergence'},'ShowLegend',true, ...
'Position',[400 400 400 400]);

constDiag([syncSignal(1:1000) syncSignal(9001:10000)]);

 comm.CarrierSynchronizer

4-315

Demodulate the synchronized signal. Compute and display the total bit errors and BER.

syncData = pskdemod(syncSignal,4,pi/4);
[syncDataTtlErr,syncDataBER] = biterr(data(6000:end),syncData(6000:end))

syncDataTtlErr = 3990

syncDataBER = 0.4986

Phase ambiguity in the received signal might cause bit errors. Using the preamble,
determine phase ambiguity. Remove this phase ambiguity from the synchronized signal to
reduce bit errors.

idx = 9000 + (1:barker.Length);
phOffset = angle(modSig(idx) .* conj(syncSignal(idx)));
phOffset = round((2/pi) * phOffset); % -1, 0, 1, +/-2
phOffset(phOffset==-2) = 2; % Prep for mean operation
phOffset = mean((pi/2) * phOffset); % -pi/2, 0, pi/2, or pi
disp(['Estimated mean phase offset = ',num2str(phOffset*180/pi),' degrees'])

Estimated mean phase offset = 180 degrees

resPhzSig = exp(1i*phOffset) * syncSignal;

Demodulate the signal after resolving the phase ambiguity. Recompute and display the
updated total bit errors and BER. Removing the phase ambiguity reduces the BER
dramatically.

resPhzData = pskdemod(resPhzSig,4,pi/4);
[resPhzTtlErr, resPhzBER] = biterr(data(6000:end),resPhzData(6000:end))

resPhzTtlErr = 403

resPhzBER = 0.0504

Estimate Frequency Offset in an 8-PSK Link

Estimate the frequency offset introduced into a noisy 8-PSK signal using a carrier
synchronizer System object™.

Define the simulation parameters.

M = 8; % Modulation order
fs = 1e6; % Sample rate (Hz)

4 System Objects — Alphabetical List

4-316

foffset = 1000; % Frequency offset (Hz)
phaseoffset = 15; % Phase offset (deg)
snrdb = 20; % Signal-to-noise ratio (dB)

Create a comm.PhaseFrequencyOffset System object to introduce phase and
frequency offsets to a modulated signal.

pfo = comm.PhaseFrequencyOffset('PhaseOffset',phaseoffset, ...
 'FrequencyOffset',foffset,'SampleRate',fs);

Create a carrier synchronizer System object to use for correcting the phase and
frequency offsets. Set the Modulation property to 8PSK.

carrierSync = comm.CarrierSynchronizer('Modulation','8PSK');

Generate random data and apply 8-PSK modulation.

data = randi([0 M-1],5000,1);
modSig = pskmod(data,M,pi/M);

Apply phase and frequency offsets using the pfo System object, and pass the signal
through an AWGN channel to add Gaussian white noise.

modSigOffset = pfo(modSig);
rxSig = awgn(modSigOffset,snrdb);

Use the carrier synchronizer to estimate the phase offset of the received signal.

[~,phError] = carrierSync(rxSig);

Determine the frequency offset by using the diff function to compute an approximate
derivative of the phase error. The derivative must be scaled by 2π because the phase
error is measured in radians.

estFreqOffset = diff(phError)*fs/(2*pi);

Plot the running mean of the estimated frequency offset. After the synchronizer converges
to a solution, the mean value of the estimate is approximately equal to the input
frequency offset value of 1000 Hz.

rmean = cumsum(estFreqOffset)./(1:length(estFreqOffset))';
plot(rmean)
xlabel('Symbols')
ylabel('Estimated Frequency Offset (Hz)')
grid

 comm.CarrierSynchronizer

4-317

Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine
Synchronization

Compensation of significant phase and frequency offsets for a 16-QAM signal in an AWGN
channel is accomplished in two steps. First, correct the coarse frequency offset using the
estimate provided by the coarse frequency compensator, and then fine-tune the correction
using carrier synchronization. Because of the coarse frequency correction, the carrier
synchronizer converges quickly even though the normalized bandwidth is set to a low
value. Lower normalized bandwidth values enable better correction for small residual

4 System Objects — Alphabetical List

4-318

carrier offsets. After applying phase and frequency offset corrections to the received
signal, resolve phase ambiguity using the preambles.

Define the simulation parameters.

fs = 10000; % Sample rate (Hz)
sps = 4; % Samples per symbol
M = 16; % Modulation order
k = log2(M); % Bits per symbol
rng(1996) % Set seed for repeatable results
barker = comm.BarkerCode(...
 'Length',13,'SamplesPerFrame',13); % For preamble
msgLen = 1e4;
numFrames = 10;
frameLen = msgLen/numFrames;

Generate data payloads and add the preamble to each frame. The preamble is later used
for phase ambiguity resolution.

preamble = (1+barker())/2; % Length 13, unipolar
data = zeros(msgLen, 1);
for idx = 1 : numFrames
 payload = randi([0 M-1],frameLen-barker.Length,1);
 data((idx-1)*frameLen + (1:frameLen)) = [preamble; payload];
end

Create a System object for the transmit pulse shape filtering, the receive pulse shape
filtering, the QAM coarse frequency compensation, the carrier synchronization, and a
constellation diagram.

txFilter = comm.RaisedCosineTransmitFilter(...
 'OutputSamplesPerSymbol',sps);
rxFilter = comm.RaisedCosineReceiveFilter(...
 'InputSamplesPerSymbol',sps,'DecimationFactor',sps);
coarse = comm.CoarseFrequencyCompensator('SampleRate',fs, ...
 'FrequencyResolution',10);
fine = comm.CarrierSynchronizer(...
 'DampingFactor',0.4,'NormalizedLoopBandwidth',0.001, ...
 'SamplesPerSymbol',1,'Modulation','QAM');
axislimits = [-6 6];
constDiagram = comm.ConstellationDiagram('ReferenceConstellation',qammod(0:M-1,M), ...
 'ChannelNames',{'Before convergence','After convergence'}, ...
 'ShowLegend',true,'XLimits',axislimits,'YLimits',axislimits);

 comm.CarrierSynchronizer

4-319

Also create a System object for the AWGN channel, and the phase and frequency offset to
add impairments to the signal. A phase offset greater than 90 degrees is added to induce
a phase ambiguity that results in a constellation quadrant shift.

ebn0 = 8;
freqoffset = 110;
phaseoffset = 110;
awgnChannel = comm.AWGNChannel('EbNo',ebn0, ...
 'BitsPerSymbol',k,'SamplesPerSymbol',sps);
pfo = comm.PhaseFrequencyOffset('FrequencyOffset',freqoffset, ...
 'PhaseOffset',phaseoffset,'SampleRate',fs);

Generate random data symbols, apply 16-QAM modulation, and pass the modulated signal
through the transmit pulse shaping filter.

txMod = qammod(data,M);
txSig = txFilter(txMod);

Apply phase and frequency offsets using the pfo System object, and then pass the signal
through an AWGN channel to add white Gaussian noise.

txSigOffset = pfo(txSig);
rxSig = awgnChannel(txSigOffset);

The coarse frequency compensator System object provides a rough correction for the
frequency offset. For the conditions in this example, correcting the frequency offset of the
received signal correction to within 10 Hz of the transmitted signal is sufficient.

syncCoarse = coarse(rxSig);

Pass the signal through the receive pulse shaping filter, and apply fine frequency
correction.

rxFiltSig = fine(rxFilter(syncCoarse));

Display the constellation diagram of the first and last 1000 symbols in the signal. Before
convergence of the synchronization loop, the spiral nature of the diagram indicates that
the frequency offset is not corrected. After the carrier synchronizer has converged to a
solution, the symbols are aligned with the reference constellation.

constDiagram([rxFiltSig(1:1000) rxFiltSig(9001:end)])

4 System Objects — Alphabetical List

4-320

Demodulate the signal. Account for the signal delay caused by the transmit and receive
filters to align the received data with the transmitted data. Compute and display the total
bit errors and BER. When checking the bit errors, use the later portion of the received
signal to be sure the synchronization loop has converged.

 comm.CarrierSynchronizer

4-321

rxData = qamdemod(rxFiltSig,M);
delay = (txFilter.FilterSpanInSymbols + rxFilter.FilterSpanInSymbols) / 2;
idxSync = 2000; % Check BER for the received signal after the synchronization loop has converged
[syncDataTtlErr,syncDataBER] = biterr(data(idxSync:end-delay),rxData(idxSync+delay:end))

syncDataTtlErr = 16116

syncDataBER = 0.5042

Depending on the random data used, there may be bit errors resulting from phase
ambiguity in the received signal after the synchronization loop converges and locks. In
this case, you can use the preamble to determine and then remove the phase ambiguity
from the synchronized signal to reduce bit errors. If phase ambiguity is minimal, the
number of bit errors may be unchanged.

idx = 9000 + (1:barker.Length);
phOffset = angle(txMod(idx) .* conj(rxFiltSig(idx+delay)));

phOffsetEst = mean(phOffset);
disp(['Phase offset = ',num2str(rad2deg(phOffsetEst)),' degrees'])

Phase offset = -90.1401 degrees

resPhzSig = exp(1i*phOffsetEst) * rxFiltSig;

Demodulate the signal after resolving the phase ambiguity. Recompute the total bit errors
and BER.

resPhzData = qamdemod(resPhzSig,M);
[resPhzTtlErr,resPhzBER] = biterr(data(idxSync:end-delay),resPhzData(idxSync+delay:end))

resPhzTtlErr = 5

resPhzBER = 1.5643e-04

MSK Signal Recovery

Model channel impairments such as timing phase offset, carrier frequency offset, and
carrier phase offset for a minimum shift keying (MSK) signal. Use
comm.MSKTimingSynchronizer and comm.CarrierSynchronizer System objects to
synchronize such signals at the receiver. The MSK timing synchronizer recovers the
timing offset, while a carrier synchronizer recovers the carrier frequency and phase
offsets.

4 System Objects — Alphabetical List

4-322

Initialize system variables by running the MATLAB script
configureMSKSignalRecoveryEx. Define the logical control variable
recoverTimingPhase to enable timing phase recovery, and recoverCarrier to enable
carrier frequency and phase recovery.

configureMSKSignalRecoveryEx;
recoverTimingPhase = true;
recoverCarrier = true;

Modeling Channel Impairments

Specify the sample delay, timingOffset, that the channel model applies. Create a
variable fractional delay object to introduce the timing delay to the transmitted signal.

timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;

Create a comm.PhaseFrequencyOffset System object to introduce carrier phase and
frequency offsets to a modulated signal. Because the MSK modulator upsamples the
transmitted symbols, set the SampleRate property to the ratio of the
samplesPerSymbol and the sample time, Ts.

freqOffset = 50;
phaseOffset = 30;
pfo = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',freqOffset, ...
 'PhaseOffset',phaseOffset, ...
 'SampleRate',samplesPerSymbol/Ts);

Create a comm.AWGNChannel System object to add white Gaussian noise to the
modulated signal. The noise power is determined by the EbNo property, that is the bit
energy to noise power spectral density ratio. Because the MSK modulator generates
symbols with 1 Watt of power, set the signal power property of the AWGN channel System
object to 1.

EbNo = 20 + 10*log10(samplesPerSymbol);
chAWGN = comm.AWGNChannel(...
 'NoiseMethod','Signal to noise ratio (Eb/No)', ...
 'EbNo',EbNo,...
 'SignalPower',1, ...
 'SamplesPerSymbol',samplesPerSymbol);

 comm.CarrierSynchronizer

4-323

Timing Phase, Carrier Frequency, and Carrier Phase Synchronization

Create an MSK timing synchronizer to recover symbol timing phase using a fourth-order
nonlinearity method.

timeSync = comm.MSKTimingSynchronizer(...
 'SamplesPerSymbol',samplesPerSymbol, ...
 'ErrorUpdateGain',0.02);

Create a carrier synchronizer to recover both carrier frequency and phase. Because the
MSK constellation is QPSK with a 0-degree phase offset, set the
comm.CarrierSynchronizer accordingly.

phaseSync = comm.CarrierSynchronizer(...
 'Modulation','QPSK', ...
 'ModulationPhaseOffset','Custom', ...
 'CustomPhaseOffset',0, ...
 'SamplesPerSymbol',1);

Stream Processing Loop

The simulation modulates data using MSK modulation. The modulated symbols pass
through the channel model, which applies timing delay, carrier frequency and phase shift,
and additive white Gaussian noise. The receiver performs timing phase and carrier
frequency and phase recovery. Finally, the signal symbols are demodulated and the bit
error rate is calculated. The plotResultsMSKSignalRecoveryEx script generates
scatter plots in this order to show these effects:

1 Channel impairments
2 Timing synchronization
3 Carrier synchronization

At the end of the simulation, the example displays the timing phase, frequency, and phase
estimates as a function of simulation time.

for p = 1:numFrames
 %--
 % Generate and modulate data
 %--
 txBits = randi([0 1],samplesPerFrame,1);
 txSym = modem(txBits);
 %--
 % Transmit through channel

4 System Objects — Alphabetical List

4-324

 %--
 %
 % Add timing offset
 rxSigTimingOff = varDelay(txSym,timingOffset*samplesPerSymbol);
 %
 % Add carrier frequency and phase offset
 rxSigCFO = pfo(rxSigTimingOff);
 %
 % Pass the signal through an AWGN channel
 rxSig = chAWGN(rxSigCFO);
 %
 % Save the transmitted signal for plotting
 plot_rx = rxSig;
 %
 %--
 % Timing recovery
 %--
 if recoverTimingPhase
 % Recover symbol timing phase using fourth-order nonlinearity
 % method
 [rxSym,timEst] = timeSync(rxSig);
 % Calculate the timing delay estimate for each sample
 timEst = timEst(1)/samplesPerSymbol;
 else
 % Do not apply timing recovery and simply downsample the received
 % signal
 rxSym = downsample(rxSig,samplesPerSymbol);
 timEst = 0;
 end

 % Save the timing synchronized received signal for plotting
 plot_rxTimeSync = rxSym;

 %--
 % Carrier frequency and phase recovery
 %--
 if recoverCarrier
 % The following script applies carrier frequency and phase recovery
 % using a second order phase-locked loop (PLL), and removes phase ambiguity
 [rxSym,phEst] = phaseSync(rxSym);
 removePhaseAmbiguityMSKSignalRecoveryEx;
 freqShiftEst = mean(diff(phEst)/(Ts*2*pi));
 phEst = mod(mean(phEst),360); % in degrees
 else

 comm.CarrierSynchronizer

4-325

 freqShiftEst = 0;
 phEst = 0;
 end

 % Save the phase synchronized received signal for plotting
 plot_rxPhSync = rxSym;
 %--
 % Demodulate the received symbols
 %--
 rxBits = demod(rxSym);
 %--
 % Calculate the bit error rate
 %--
 errorStats = BERCalc(txBits,rxBits);
 %--
 % Plot results
 %--
 plotResultsMSKSignalRecoveryEx;
end

4 System Objects — Alphabetical List

4-326

 comm.CarrierSynchronizer

4-327

4 System Objects — Alphabetical List

4-328

Display the bit error rate and the total number of symbols processed by the error rate
calculator.

BitErrorRate = errorStats(1)
TotalNumberOfSymbols = errorStats(3)

BitErrorRate =

 4.0001e-06

TotalNumberOfSymbols =

 comm.CarrierSynchronizer

4-329

 499982

Conclusion and Further Experimentation

The recovery algorithms are demonstrated by using constellation plots taken after timing,
carrier frequency, and carrier phase synchronization.

Open the script to create a writable copy of this example and its supporting files. Then, to
show the effects of the recovery algorithms, you can enable and disable the logical control
variables recoverTimingPhase and recoverCarrier and rerun the simulation.

Appendix

This example uses these scripts:

• configureMSKSignalRecoveryEx
• plotResultsMSKSignalRecoveryEx
• removePhaseAmbiguityMSKSignalRecoveryEx

Algorithms
The comm.CarrierSynchronizer System object is a closed-loop compensator that uses
the PLL-based algorithm described in [1]. The output of the synchronizer, yn, is a
frequency-shifted version of the complex input signal, xn, for the nth sample. The
synchronizer output is

yn = xneiλn ,

where λn is the output of the direct digital synthesizer (DDS). The DDS is the discrete-
time version of a voltage-controlled oscillator and is a core component of discrete-time
phase locked loops. In the context of this System object, the DDS works as an integration
filter.

4 System Objects — Alphabetical List

4-330

To correct for the frequency offset, first the algorithm determines the phase error, en. The
value of the phase error depends on the modulation scheme.

Modulation Phase Error
QAM or QPSK

e x x x xn n n n n= { }()¥ { } - { }()¥ { }sgn Re Im sgn Im Re

For a detailed description of this equation,
see [1].

BPSK or PAM
e x xn n n= { }()¥ { }sgn Re Im

For a detailed description of this equation,
see [1].

 comm.CarrierSynchronizer

4-331

Modulation Phase Error
8-PSK

en =

sgn Re xn × Im xn − 2− 1 sgn Im xn × Re xn , for Re xn ≥ Im xn

2− 1 sgn Re xn × Im xn − sgn Im xn × Re xn , for Re xn < Im xn

For a detailed description of this equation,
see [2].

OQPSK
e x xn n-SamplePerSymbol/2 n-SamplePerSymbol/2= { }()¥ { } -sgn Re Im ssgn Im Rex xn n{ }()¥ { }

To ensure system stability, the phase error passes through a biquadratic loop filter
governed by

ψn = gIen + ψn−1 ,

where ψn is the output of the loop filter at sample n, and gI is the integrator gain. The
integrator gain is determined from the equation

gI =
4 θ2/d
KpK0

,

where θ, d, K0, and Kp are determined from the System object properties. Specifically,

θ =
Bn

ζ + 1
4ζ

and d = 1 + 2ζθ + θ2,

where Bn is the normalized loop bandwidth, and ζ is the damping factor. The phase
recovery gain, K0, is equal to the number of samples per symbol. The modulation type
determines the phase error detector gain, Kp.

Modulation Kp

BPSK, PAM, QAM, QPSK, or OQPSK 2
8-PSK 1

The output of the loop filter is then passed to the DDS. The DDS is another biquadratic
loop filter whose expression is based on the forward Euler integration rule

4 System Objects — Alphabetical List

4-332

λn = gPen‐1 + ψn‐1 + λn‐1 ,

where gP is the proportional gain that is expressed as

gP = 4ζ θ/d
KpK0

.

The info object function of this System object returns estimates of the normalized pull-in
range, the maximum frequency lock delay, and the maximum phase lock delay. The
normalized pull-in range, (Δf)pull-in, is expressed in radians and estimated as

Δf pull‐in ≈ min 1, 2π 2ζBn .

The expression for (Δf)pull-in becomes less accurate as 2π 2ζBn approaches 1.

The maximum frequency lock delay, TFL, and phase lock delay, TPL, are expressed in
samples and estimated as

TFL ≈ 4
Δf pull‐in

2

Bn
3 and TPL ≈

1.3
Bn

.

References
[1] Rice, M. Digital Communications: A Discrete-Time Approach. Upper Saddle River, NJ:

Prentice Hall, 2009, pp. 359–393.

[2] Zhijie, H., Y. Zhiqiang, Z. Ming, and W. Kuang. “8PSK Demodulation for New
Generation DVB-S2.” 2004 International Conference on Communications, Circuits
and Systems. Vol. 2, 2004, pp. 1447–1450.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 comm.CarrierSynchronizer

4-333

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CoarseFrequencyCompensator | comm.PhaseFrequencyOffset |
comm.SymbolSynchronizer

Blocks
Carrier Synchronizer

Topics
“QPSK Transmitter and Receiver”

Introduced in R2015a

4 System Objects — Alphabetical List

4-334

info
Package: comm

Characteristic information about carrier synchronizer

Syntax
infostruct = info(carrSynch)

Description
infostruct = info(carrSynch) returns a structure containing characteristic
information for the CarrierSynchronizer System object.

Examples

Determine Carrier Synchronizer Loop Parameters

Create a carrier synchronizer object.

csync = comm.CarrierSynchronizer;

Determine the normalized pull-in range, the maximum frequency lock delay, and the
maximum phase lock delay by using the info method.

syncInfo = info(csync)

syncInfo = struct with fields:
 NormalizedPullInRange: 0.0628
 MaxFrequencyLockDelay: 1.5787e+04
 MaxPhaseLockDelay: 130

 info

4-335

The normalized pull-in range is 0.0628 rad/sec. Convert the pull-in range to Hz. This
represents the maximum normalized frequency offset that can be corrected by the carrier
synchronizer.

foffsetmax = syncInfo.NormalizedPullInRange/(2*pi)

foffsetmax = 0.0100

The time to acquire a frequency lock is 15787 s, and the time to acquire a phase lock is
130 s.

The overall acquisition time, Tlock, is well approximated by the sum of the frequency
and phase lock terms.

Tlock = syncInfo.MaxFrequencyLockDelay + syncInfo.MaxPhaseLockDelay

Tlock = 1.5917e+04

Input Arguments
carrSynch — System object to get information from
System object

System object to get information from.

Output Arguments
infostruct — Structure containing object information
struct

Structure containing these fields with information about the System object.

NormalizedPullInRange — Normalized pull in range
scalar

Normalized pull in range in radians, returned as a scalar. NormalizedPullInRange is
the largest frequency offset (rad), normalized by the loop bandwidth, for which the
synchronizer can acquire lock.

4 System Objects — Alphabetical List

4-336

MaxFrequencyLockDelay — Maximum frequency lock delay
positive integer

Maximum frequency lock delay, returned as a positive integer. MaxFrequencyLockDelay
is the number of samples required for the synchronizer to acquire frequency lock.

MaxPhaseLockDelay — Maximum phase lock delay
positive integer

Maximum phase lock delay, returned as a positive integer. MaxPhaseLockDelay is the
number of samples required for the synchronizer to acquire phase lock.

Data Types: struct

See Also
Objects
comm.CarrierSynchronizer

Introduced in R2015a

 info

4-337

comm.CCDF
Package: comm

Measure complementary cumulative distribution function

Description
The CCDF object measures the probability of a signal's instantaneous power to be a
specified level above its average power.

To measure complementary cumulative distribution of a signal:

1 Define and set up your CCDF object. See “Construction” on page 4-338 .
2 Call step to measure complementary cumulative distribution according to the

properties of comm.CCDF. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.CCDF creates a complementary cumulative distribution function measurement
(CCDF) System object, H, that measures the probability of a signal's instantaneous power
to be a specified level above its average power.

H = comm.CCDF(Name,Value) creates a CCDF object, H, with each specified property
set to the specified value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-338

Properties
NumPoints

Number of CCDF points

Specify the number of CCDF points that the object calculates. This property requires a
numeric, positive, integer scalar. The default is 1000. Use this property with the
MaximumPowerLimit on page 4-0 property to control the size of the histogram bins.
The object uses these bins to estimate CCDF curves. This controls the resolution of the
curves. All input channels must have the same number of CCDF points.

MaximumPowerLimit

Maximum expected input signal power

Specify the maximum expected input signal power limit for each input channel. The
default is 50. Set this property to a numeric scalar or row vector length equal to the
number of input channels. When you set this property to a scalar, the object assumes that
the signals in all input channels have the same expected maximum power. When you set
this property to a row vector length equal to the number of input channels, the object
assumes that the i-th element of the vector is the maximum expected power for the signal
at the i-th input channel. When you call the step method, the object displays the value of
this property is in the units that you specify in the PowerUnits on page 4-0 property.
For each input channel, the object obtains CCDF results by integrating a histogram of
instantaneous input signal powers. The object sets the bins of the histogram so that the
last bin collects all power occurrences that are equal to, or greater than the power that
you specify in this property. The object issues a warning if any input signal exceeds its
specified maximum power limit. Use this property with the NumPoints on page 4-0
property to control the size of the histogram bins that the object uses to estimate CCDF
curves (such as control the resolution of the curves).

PowerUnits

Power units

Specify the power measurement units as one of dBm | dBW | Watts. The default is dBm.
The step method outputs power measurements in the units specified in the PowerUnits
on page 4-0 property. When you set this property to dBm or dBW, the step method
outputs relative power values in a dB scale. When you set this property to Watts, the
step method outputs relative power values in a linear scale. When you call the step

 comm.CCDF

4-339

method, the object assumes that the units of MaximumPowerLimit on page 4-0 have
the same value you specified in the PowerUnits property.

AveragePowerOutputPort

Enable average power measurement output

When you set this property to true, the step method outputs running average power
measurements. The default is false.

PeakPowerOutputPort

Enable peak power measurement output

When you set this property to true, the step method outputs running peak power
measurements. The default is false.

PAPROutputPort

Enable PAPR measurement output

When you set this property to true, the step method outputs running peak-to-average-
power measurements. The default is false.

Methods
getPercentileRelativePower Get relative power value for a given probability
getProbability Get the probability for a given relative power value
plot Plot CCDF curves
reset Reset states of CCDF measurement object
step Measure complementary cumulative distribution function

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-340

Obtain CCDF curves for 16-QAM and QPSK signals

Create a CCDF System object and specify that it output average power and peak power
measurements.

ccdf = comm.CCDF('AveragePowerOutputPort',true, ...
 'PeakPowerOutputPort',true);

Generate 16-QAM and QPSK modulated signals.

qamTxSig = qammod(randi([0 15],20e3,1),16,'UnitAveragePower',true);
qpskTxSig = pskmod(randi([0 3],20e3,1),4,pi/4);

Pass the signals through an AWGN channel.

qamRxSig = awgn(qamTxSig,15);
qpskRxSig = awgn(qpskTxSig,15);

Measure the CCDF of the two waveforms. Plot the CCDF using the plot method of
comm.CCDF.

[CCDFy,CCDFx,AvgPwr,PeakPwr] = ccdf([qamRxSig qpskRxSig]);

plot(ccdf)
legend('16-QAM','QPSK')

 comm.CCDF

4-341

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects — Alphabetical List

4-342

See Also
comm.ACPR | comm.EVM | comm.MER

Introduced in R2012a

 comm.CCDF

4-343

getPercentileRelativePower
System object: comm.CCDF
Package: comm

Get relative power value for a given probability

Syntax
R = getPercentileRelativePower(H,P)

Description
R = getPercentileRelativePower(H,P) finds the relative power values, R. The
power of the signal of interest is above its average power by R dB (if PowerUnits equals
'dBW', or 'dBm') or by a factor of R (in linear scale if PowerUnits equals 'Watts') with a
probability P.

The method output R, is a column vector with the i-th element corresponding to the
relative power for the i-th input channel. The method input P can be a double precision
scalar, or a vector with a number of elements equal to the number of input channels. If P
is a scalar, then all the relative powers in R correspond to the same probability value
specified in P. If P is a vector, then the i-th element of R corresponds to a power value that
occurs in the i-th input channel, with a probability specified in the i-th element of P.

For the i-th input channel, this method evaluates the inverse CCDF curve at probability
value P(i).

Examples
Obtain CCDF curves for a unit variance AWGN signal and a dual- one signal. The AWGN
signal is RPW1 dB above its average power one percent of the time, and the dual-tone
signal is RPW2 dB above its average power 10 percent of the time. This example finds the
values of RPW1 and RPW2.

4 System Objects — Alphabetical List

4-344

 n = [0:5e3-1].';
 s1 = randn(5e3,1); % AWGN signal
 s2 = sin(0.01*pi*n)+sin(0.03*pi*n); % dual-tone signal
 hCCDF = comm.CCDF; % create a CCDF object
 step(hCCDF,[s1 s2]); % step the CCDF measurements
 plot(hCCDF) % plot CCDF curves
 legend('AWGN','Dual-tone')
 RPW = getPercentileRelativePower(hCCDF,[1 10]);
 RPW1 = RPW(1)
 RPW2 = RPW(2)

 getPercentileRelativePower

4-345

getProbability
System object: comm.CCDF
Package: comm

Get the probability for a given relative power value

Syntax
P = getProbability(H,R)

Description
P = getProbability(H,R) finds the probability, P, of the power level of the signal of
interest being R dBs (if PowerUnits equals 'dBW', or 'dBm') or Watts (if PowerUnits equals
'Watts') above its average power. P is a column vector with the i-th element corresponding
to the probability value for the i-th input channel. Input R can be a double precision scalar
or a vector with a number of elements equal to the number of input channels. If R is a
scalar, then all the probability values in P correspond to the same relative power specified
in R. If R is a vector, then the ith element of P contains a probability value for the i-th
channel and for the relative power specified in the i-th element of R.

For the i-th input channel, this method evaluates the CCDF curve at relative power value
R(i)

Examples
Obtain CCDF curves for a unit variance AWGN signal and a dual- tone signal. Find the
probability that the AWGN signal power is 5 dB above its average power and that the
dual-tone signal power is 3 dB above its average power.

 n = [0:5e3-1].';
 s1 = randn(5e3,1); % AWGN signal
 s2 = sin(0.01*pi*n)+sin(0.03*pi*n); % dual-tone signal
 hCCDF = comm.CCDF;
 step(hCCDF,[s1 s2]);

4 System Objects — Alphabetical List

4-346

 plot(hCCDF) % plot CCDF curves
 legend('AWGN','Dual-tone')
 P = getProbability(hCCDF,[5 3]) % get probabilities

 getProbability

4-347

plot
System object: comm.CCDF
Package: comm

Plot CCDF curves

Syntax
D = plot(H)

Description
D = plot(H) plots CCDF measurements in the CCDF System object, H. The plot
method returns the plot handles as an output, D. This method plots the same number of
curves as there are input channels. The H input can be followed by parameter-value pairs
to specify additional properties of the curves. For example, plot(H,LineWidth,2) will
create curves with line widths of 2 points.

The comm.CCDF System object does not support C code generation for this method.

4 System Objects — Alphabetical List

4-348

reset
System object: comm.CCDF
Package: comm

Reset states of CCDF measurement object

Syntax
reset(H)

Description
reset(H) resets the states of the CCDF object, H.

 reset

4-349

step
System object: comm.CCDF
Package: comm

Measure complementary cumulative distribution function

Syntax
[CCDFY,CCDFX] = step(H,X)
[CCDFY,CCDFX,AVG] = step(H,X)
[CCDFY,CCDFX,PEAK] = step(H,X)
[CCDFY,CCDFX,PAPR] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[CCDFY,CCDFX] = step(H,X) updates CCDF, average power, and peak power
measurements for input X using the CCDF System object, H. It outputs the y-axis, CCDFY,
and x-axis, CCDFX, CCDF points. X must be a double precision, M-by-N matrix, where M is
the number of time samples and N is the number of input channels. The step method
outputs CCDFY as a matrix whose i-th column contains updated probability values
measured from the i-th column of input matrix X. CCDFY contains the y-axis points of the
CCDF curves of each channel. The step method outputs CCDFX as a matrix containing, in
its i-th column, the corresponding updated instantaneous-to-average power ratios for the
ith column of input matrix X. CCDFX contains the x-axis points of the CCDF curves of each
channel. The object sets the number of rows in CCDFY and CCDFX equal to NumPoints
property + 1. The probability values are percentages in the [0 100] interval. When you
set the PowerUnits property to dBW or dBm, the relative powers are in dB scale. When
you set the PowerUnits property to Watts, the relative powers are in linear scale.

4 System Objects — Alphabetical List

4-350

Measurements are updated each time you call the step method until you reset the object.
You call the plot method to plot CCDF curves for each channel.

[CCDFY,CCDFX,AVG] = step(H,X) returns updated average power measurements,
AVG, when you set the AveragePowerOutputPort property to true. The step method
outputs AVG as a column vector with the ith element corresponding to an updated
average power measurement for the signal available in the ith column of input matrix X.
You specify the units for AVG in the PowerUnits property.

[CCDFY,CCDFX,PEAK] = step(H,X) returns updated peak power measurements,
PEAK, when you set the PeakPowerOutputPort property to true. The step method
outputs PEAK as a column vector with the ith element corresponding to an updated peak
power measurement for the signal available in the ith column of input matrix X. You
specify the units for PEAK in the PowerUnits property.

[CCDFY,CCDFX,PAPR] = step(H,X) returns updated peak-to-average power ratio
measurements, PAPR, when you set the PAPROutputPort property to true. The step
methods outputs PAPR as a column vector with the ith element corresponding to an
updated peak-to-average power ratio measurement for the signal available in the ith
column of input matrix X. When you set the PowerUnits property to dBW or dBm, the
method outputs PAPR in a dB scale. When you set the PowerUnits property to Watts,
the method outputs PAPR in a linear scale. You can combine optional output arguments
when you set their enabling properties. Optional outputs must be listed in the same order
as the order of the enabling properties. For example,

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-351

comm.CoarseFrequencyCompensator
Package: comm

Compensate for frequency offset for PAM, PSK, or QAM

Description
The CoarseFrequencyCompensator System object compensates for the frequency
offset of received signals.

To compensate for the frequency offset of a PAM, PSK, or QAM signal:

1 Define and set up your coarse frequency compensator object. See “Construction” on
page 4-352.

2 Call step to compensate for the frequency offset of a PAM, PSK, or QAM signal
according to the properties of comm.CoarseFrequencyCompensator. The behavior
of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
CFC = comm.CoarseFrequencyCompensator creates a coarse frequency offset
compensator object, CFC. This object uses an open-loop technique to estimate and
compensate for the carrier frequency offset in a received signal.

CFC = comm.CoarseFrequencyCompensator(Name,Value) creates a coarse
frequency offset compensator object, CFC, with the specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

4 System Objects — Alphabetical List

4-352

Properties
Modulation

Modulation type

Specify the signal modulation type as BPSK, QPSK, OQPSK, 8PSK, PAM, or QAM. The default
is QAM. This property is nontunable.

Algorithm

Algorithm used to estimate frequency offset

Specify the estimation algorithm as one of FFT-based or Correlation-based. The
default is FFT-based. This property is nontunable.

The table shows the allowable combinations of the modulation type and the estimation
algorithm.

Modulation FFT-Based Algorithm Correlation-Based
Algorithm

BPSK, QPSK, 8PSK, PAM ✓ ✓

OQPSK, QAM ✓

Use the correlation-based algorithm for HDL implementations and for other situations in
which you want to avoid using an FFT.

This property appears when Modulation is 'BPSK', 'QPSK', '8PSK', or 'PAM'.

FrequencyResolution

Frequency resolution (Hz)

Specify the frequency resolution for the offset frequency estimation as a positive, real
scalar of data type double. This property establishes the FFT length used to perform
spectral analysis and must be less than the sample rate. The default is 0.001. This
property is nontunable.

MaximumFrequencyOffset

Maximum measurable frequency offset (Hz)

 comm.CoarseFrequencyCompensator

4-353

Specify the maximum measurable frequency offset as a positive, real scalar of data type
double.

The value of this property must be less than fsamp / M, where fsamp is the sample rate and
M is the modulation order. As a best practice, set MaximumOffset to less than r / (4M).
This property applies only if Algorithm is Correlation-based. The default is 0.05.
This property is nontunable.

SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type
double. The default is 1. This property is nontunable.

SamplesPerSymbol

Samples per symbol

Specify the number of samples per symbol, s, as a real positive finite integer scalar, such
that s ≥ 2. The default value is 4. This property is nontunable.

This property appears when Modulation is 'OQPSK'.

Methods

info Characteristic information about coarse frequency compensator
reset Reset states of the CoarseFrequencyCompensator object
step Compensate for frequency offset

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-354

Compensate for Frequency Offset in a QPSK Signal

Compensate for a 4 kHz frequency offset imposed on a noisy QPSK signal.

Set the example parameters.

nSym = 2048; % Number of input symbols
sps = 4; % Samples per symbol
nSamp = nSym*sps; % Number of samples
fs = 80000; % Sampling frequency (Hz)

Create a square root raised cosine transmit filter.

txfilter = comm.RaisedCosineTransmitFilter(...
 'RolloffFactor',0.2, ...
 'FilterSpanInSymbols',8, ...
 'OutputSamplesPerSymbol',sps);

Create a phase frequency offset object to introduce the 4 kHz frequency offset.

freqOffset = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',-4000, ...
 'SampleRate',fs);

Create a coarse frequency compensator object to compensate for the offset.

freqComp = comm.CoarseFrequencyCompensator(...
 'Modulation','QPSK', ...
 'SampleRate',fs, ...
 'FrequencyResolution',1);

Generate QPSK symbols, filter the modulated data, pass the signal through an AWGN
channel, and apply the frequency offset.

data = randi([0 3],nSym,1);
modData = pskmod(data,4,pi/4);
txSig = txfilter(modData);
rxSig = awgn(txSig,20,'measured');
offsetData = freqOffset(rxSig);

Compensate for the frequency offset using freqComp. When the frequency offset is high,
it is beneficial to do coarse frequency compensation prior to receive filtering because
filtering suppresses energy in the useful spectrum.

[compensatedData,estFreqOffset] = freqComp(offsetData);

 comm.CoarseFrequencyCompensator

4-355

Display the estimate of the frequency offset.

estFreqOffset

estFreqOffset =

 -3.9999e+03

Return information about the freqComp object. To obtain the FFT length, you must call
freqComp prior to calling the info method.

freqCompInfo = info(freqComp)

freqCompInfo =

 struct with fields:

 FFTLength: 131072
 Algorithm: 'FFT-based'

Create a spectrum analyzer object and plot the offset and compensated spectra. Verify
that the compensated signal has a center frequency at 0 Hz and that the offset signal has
a center frequency at -4 kHz.

specAnal = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true, ...
 'ChannelNames',{'Offset Signal' 'Compensated Signal'});
specAnal([offsetData compensatedData])

4 System Objects — Alphabetical List

4-356

Compensate for Frequency Offset Using Coarse and Fine Compensation

Correct for a phase and frequency offset in a noisy QAM signal using a carrier
synchronizer. Then correct for the offsets using both a carrier synchronizer and a coarse
frequency compensator.

Set the example parameters.

fs = 10000; % Symbol rate (Hz)
sps = 4; % Samples per symbol
M = 16; % Modulation order
k = log2(M); % Bits per symbol

 comm.CoarseFrequencyCompensator

4-357

Create a QAM modulator and an AWGN channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',k,'SamplesPerSymbol',sps);

Create a constellation diagram object to visualize the effects of the offset compensation
techniques. Specify the constellation diagram to display only the last 4000 samples.

constdiagram = comm.ConstellationDiagram(...
 'ReferenceConstellation',qammod(0:M-1,M), ...
 'SamplesPerSymbol',sps, ...
 'SymbolsToDisplaySource','Property','SymbolsToDisplay',4000, ...
 'XLimits',[-5 5],'YLimits',[-5 5]);

Introduce a frequency offset of 400 Hz and a phase offset of 30 degrees.

phaseFreqOffset = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',400,...
 'PhaseOffset',30,...
 'SampleRate',fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi([0 M-1],10000,1);
modSig = qammod(data,M);

Create a raised cosine filter object and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',sps, ...
 'Gain',sqrt(sps));
txSig = txfilter(modSig);

Apply the phase and frequency offset, and then pass the signal through the AWGN
channel.

freqOffsetSig = phaseFreqOffset(txSig);
rxSig = channel(freqOffsetSig);

Apply fine frequency correction to the signal by using the carrier synchronizer.

fineSync = comm.CarrierSynchronizer('DampingFactor',0.7, ...
 'NormalizedLoopBandwidth',0.005, ...
 'SamplesPerSymbol',sps, ...
 'Modulation','QAM');
rxData = fineSync(rxSig);

Display the constellation diagram of the last 4000 symbols.

4 System Objects — Alphabetical List

4-358

constdiagram(rxData)

Even with time to converge, the spiral nature of the plot shows that the carrier
synchronizer has not yet compensated for the large frequency offset. The 400 Hz offset is
1% of the sample rate.

 comm.CoarseFrequencyCompensator

4-359

Repeat the process with a coarse frequency compensator inserted before the carrier
synchronizer.

Create a coarse frequency compensator to reduce the frequency offset to a manageable
level.

coarseSync = comm.CoarseFrequencyCompensator('Modulation','QAM','FrequencyResolution',1,'SampleRate',fs*sps);

Pass the received signal to the coarse frequency compensator and then to the carrier
synchronizer.

syncCoarse = coarseSync(rxSig);
rxData = fineSync(syncCoarse);

Plot the constellation diagram of the signal after coarse and fine frequency compensation.

constdiagram(rxData)

4 System Objects — Alphabetical List

4-360

 comm.CoarseFrequencyCompensator

4-361

The received data now aligns with the reference constellation.

Algorithms

Correlation-Based
The correlation-based estimation algorithm, which can be used to estimate the frequency
offset for PSK and PAM signals, is described in [1]. To determine the frequency offset, Δf,
the algorithm performs a maximum likelihood (ML) estimation of the complex-valued
oscillation exp(j2πΔft). The observed signal, rk, is represented as

rk = e j 2πΔfkTs + θ , 1 ≤ k ≤ N ,

where Ts is the sampling interval, θ is an unknown random phase, and N is the number of
samples. The maximum likelihood estimation of the frequency offset is equivalent to
seeking the maximum of the likelihood function, Λ(Δf),

Λ(Δf) ≈ ∑
i = 1

N
rie
− j2πΔf iTs

2
= ∑

k = 1

N
∑

m = 1

N
rkrm* e− j2πΔfTs(k−m) .

After simplifying, the problem is expressed as a discrete Fourier transform, weighted by a
parabolic windowing function. It is expressed as

Im ∑
k = 1

N − 1
k(N − k)R(k)e j2πΔf Ts = 0 ,

where R(k) denotes the estimated autocorrelation of the sequence rk and is represented
as

R(k) ≜ 1
N − k ∑

i = k + 1

N
ri ri− k* , 0 ≤ k ≤ N − 1 .

The term k(N–k) is the parabolic windowing function. In [1], it is shown that R(k) is a poor
estimate of the autocorrelation of rk when k = 0 or when k is close to N. Consequently, the
windowing function can be expressed as a rectangular sequence of 1s for k = 1, 2, ..., L,
where L ≤ N – 1. The results is a modified ML estimation strategy in which

4 System Objects — Alphabetical List

4-362

Im ∑
k = 1

L
R(k)e− j2πΔf kTs = 0 .

This results in an estimate of Δf in which

Δf ≅ fsamp
π(L + 1)arg ∑

k = 1

L
R(k) .

The sampling frequency, fsamp, is the reciprocal of Ts. The number of elements used to
compute the autocorrelation sequence, L, are determined as

L = round
fsamp
fmax

− 1,

where fmax is the maximum expected frequency offset and round is the nearest integer
function. The frequency offset estimate improves when L ≥ 7 and leads to the
recommendation that fmax ≤ fsamp / (4M).

FFT-Based
FFT-based algorithms can be used to estimate the frequency offset for all modulation
types. Two variations are used in comm.CoarseFrequencyCompensator.

• For BPSK, QPSK, 8PSK, PAM, or QAM modulations the FFT-based algorithm used is
described in [2]. The algorithm estimates Δf by using a periodogram of the mth power
of the received signal and is given as

Δf =
fsamp
N ⋅margmax

f
∑

k = 0

N − 1
rm(k)e− j2πkt/N , −

Rsym
2 ≤ f ≤

Rsym
2 ,

where m is the modulation order, r(k) is the received sequence, Rsym is the symbol rate,
and N is the number of samples. The algorithm searches for a frequency that
maximizes the time average of the mth power of the received signal multiplied by
various frequencies in the range of [–Rsym/2, Rsym/2]. As the form of the algorithm is the
definition of the discrete Fourier transform of rm(t), searching for a frequency that
maximizes the time average is equivalent to searching for a peak line in the spectrum
of rm(t). The number of points required by the FFT is

N = 2 log2
fsamp

fr ,

 comm.CoarseFrequencyCompensator

4-363

where fr is the desired frequency resolution.
• For OQPSK modulation the FFT-based algorithm used is described in [4]. The algorithm

searches for spectral peaks at +/- 200 kHz around the symbol rate. This technique
locates desired peaks in the presence of interference from spectral content around
baseband frequencies due to filtering.

References

[1] Luise, M. and R. Regiannini. “Carrier recovery in all-digital modems for burst-mode
transmissions.” IEEE Transactions on Communications. Vol. 43, No. 2, 3, 4,
Feb/Mar/April, 1995, pp. 1169–1178.

[2] Wang, Y., K. Shi, and E. Serpedi. “Non-Data-Aided Feedforward Carrier Frequency
Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach.”
EURASIP Journal on Applied Signal Processing. 2004:13, pp. 1993–2001.

[3] Nakagawa, T., M. Matsui, T. Kobayashi, K. Ishihara, R. Kudo, M. Mizoguchi, and Y.
Miyamoto. “Non-Data-Aided Wide-Range Frequency Offset Estimator for QAM
Optical Coherent Receivers.” Optical Fiber Communication Conference and
Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers
Conference. March 2011, pp. 1–3.

[4] Olds, Jonathan. "Designing an OQPSK demodulator".

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects — Alphabetical List

4-364

See Also
comm.CarrierSynchronizer | comm.PhaseFrequencyOffset | dsp.FFT

Introduced in R2015b

 comm.CoarseFrequencyCompensator

4-365

info
System object: comm.CoarseFrequencyCompensator
Package: comm

Characteristic information about coarse frequency compensator

Syntax
S = info(CFC)

Description
S = info(CFC) returns a structure, S, containing characteristic information for the
CoarseFrequencyCompensator System object, CFC. S has fields FFTLength,
Algorithm, and MaxLag. Algorithm is the type of algorithm used in estimating the
frequency offset. FFTLength is the number of samples used in the FFT and is provided
when the algorithm is FFT-based. MaxLag is the number of samples used in estimating
the autocorrelation and is provided when the algorithm is Correlation-based.

Note The step method must be run once to determine the FFTLength.

4 System Objects — Alphabetical List

4-366

reset
System object: comm.CoarseFrequencyCompensator
Package: comm

Reset states of the CoarseFrequencyCompensator object

Syntax
reset(CFC)

Description
reset(CFC) resets the internal states of the CoarseFrequencyCompensator object,
CFC.

 reset

4-367

step
System object: comm.CoarseFrequencyCompensator
Package: comm

Compensate for frequency offset

Syntax
Y = step(CFC,X)
[Y,EST] = step(CFC,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(CFC,X) compensates for the carrier frequency offset of the input X and
returns the result in Y. X must be a column vector. The step method outputs the
compensated signal Y as a complex column vector having the same dimensions and data
type as X.

[Y,EST] = step(CFC,X) returns a scalar estimate of the frequency offset, EST.

Note CFC specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-368

comm.ConstellationDiagram
Package: comm

Display constellation diagram for input signals

Description
The comm.ConstellationDiagram System object displays real and complex-valued
floating and fixed-point signals in the IQ plane. Use this System object to perform
qualitative and quantitative analysis on modulated single-carrier signals.

In the constellation diagram window you can:

• Input and plot multiple signals on a single constellation diagram. You can define one
reference constellation for each input signal. For more information, see
ReferenceConstellation.

• Choose which channels are displayed by selecting signals in the legend. Use the
ShowLegend property to display the legend. For a multichannel signal, specify the
input as a matrix with individual signals defined in the columns of the matrix.

• Display the “EVM / MER Measurements” on page 4-387 panel, which displays
calculated error vector magnitude (EVM) and modulation error ratio (MER)
measurements. When multiple signals are input to a comm.ConstellationDiagram
System object, use the Trace Selection pane to choose the signal being measured.

 comm.ConstellationDiagram

4-369

To display constellation diagrams:

1 Create the comm.ConstellationDiagram object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

4 System Objects — Alphabetical List

4-370

Creation

Syntax
constdiag = comm.ConstellationDiagram
constdiag = comm.ConstellationDiagram(Name,Value)

Description
constdiag = comm.ConstellationDiagram returns a
comm.ConstellationDiagram System object that displays real and complex-valued
floating and fixed-point signals in the IQ plane.

constdiag = comm.ConstellationDiagram(Name,Value) set the properties of the
System object using one or more name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).
Example: constdiag = comm.ConstellationDiagram('SampleOffset',1e3)
specifies that the first 1000 samples received will not be displayed.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Name — Title of Constellation Diagram window
'Constellation Diagram' (default) | character vector

Title of the Constellation Diagram window, specified as a character vector.

SamplesPerSymbol — Number of samples used to represent each symbol
1 (default) | positive integer

 comm.ConstellationDiagram

4-371

Number of samples used to represent each symbol, specified as a positive integer. When
the SamplesPerSymbol property is greater than 1, the signal is downsampled before it
is plotted.

Tunable: Yes

SampleOffset — Number of samples to skip before plotting points
0 (default) | nonnegative integer

Number of samples to skip before plotting points, specified as a nonnegative integer less
than SamplesPerSymbol. This property specifies the number of samples to skip when
downsampling the input signal.

Tunable: Yes

SymbolsToDisplaySource — Source of symbols to display
'Input frame length' (default) | 'Property'

Source of symbols to display, specified as:

• 'Input frame length' — The number of symbols to display is equal to the input
frame length divided by SamplesPerSymbol.

• 'Property' — SymbolsToDisplay specifies the maximum number of symbols to
display.

Tunable: Yes

SymbolsToDisplay — Maximum number of symbols to display
256 (default) | positive integer

Maximum number of symbols to display, specified as a positive integer. Use
SymbolsToDisplay to limit the maximum number of symbols displayed when long
signals are input. Symbols plotted are the most recent symbols received.

Tunable: Yes
Dependencies

This property applies when SymbolsToDisplaySource is set to 'Property'.

ReferenceConstellation — Reference constellations
[0.7071+0.7071i -0.7071+0.7071i -0.7071-0.7071i 0.7070-0.7071i]
(default) | row vector | cell array

4 System Objects — Alphabetical List

4-372

Reference constellations for the input signals, specified as a row vector or cell array of
vectors defining the ideal constellation points for each input signal. Input signals can be
single channel or multichannel. You can define one reference constellation for each input
signal. For multichannel input signals, one reference constellation specification applies to
all the individual signals in that input signal. To obtain the “EVM / MER Measurements”
on page 4-387, you must set the ReferenceConstellation property.

Tunable: Yes
Data Types: double
Complex Number Support: Yes

ReferenceMarker — Marker for reference display
'+' (default) | string | cell array

Specify the marker for the reference display as a string or cell array of strings. Select the
marker symbol as one of the markers in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Tunable: Yes
Data Types: string

 comm.ConstellationDiagram

4-373

ReferenceColor — Color for reference display constellation
[1 0 0] (red) (default) | row vector | cell array

Color for reference display constellation, specified as a three-element row vector
indicating RGB component colors or as a cell array containing RGB component colors for
each input signal.
Data Types: double

ShowReferenceConstellation — Display the reference constellation
true (default) | false

Display the reference constellation, specified as true or false.

Tunable: Yes
Data Types: logical

ShowTrajectory — Turn on signal trajectory plot
false (default) | true

Turn on signal trajectory plot, specified as false or true. The signal trajectory is a plot
of the in-phase component versus the quadrature component of a modulated signal. See
the Show Signal Trajectory button on the toolbar in the “Signal Display” on page 4-385.

Tunable: Yes
Data Types: logical

Position — Scope window position and size
410-by-300 pixel window at center of screen (default) | four-element vector

Scope window position and size in pixels, specified as a four-element vector of the form
[left bottom width height]. The first two elements in the vector indicate the location of the
lower left corner and the last two specify the size of the window. The default value for the
location depends on the screen resolution. By default, the window is positioned in the
center of the screen with a width and height of 410 and 300 pixels, respectively.

Tunable: Yes
Data Types: double

NumInputPorts — Number of input ports
1 (default) | integer in the range [1, 20]

4 System Objects — Alphabetical List

4-374

Specify the number of input ports, as an integer in the range [1, 20]. Each input signal,
whether it is a multichannel signal or a single channel signal, becomes a separate input
port in the scope.

When multichannel input signals are specified, the maximum number of input ports is
limited by the total number of input signals defined. The total number of input signals
cannot exceed 20.

ShowGrid — Turn on grid
true (default) | false

Turn on the grid, specified as true or false.

Tunable: Yes
Data Types: logical

ChannelNames — Names for input channels
empty cell (default) | cell array of strings or character vectors

Names for input channels, specified as a cell array of strings or character vectors. If you
do not specify names, the channels are labeled as Channel 1, Channel 2, etc.

The names assigned to input channels appear in the legend and the Measurements >
Trace Selection pane.

To show the legend, set ShowLegend to true. The legend displays after you provide an
input signal to the comm.ConstellationDiagram System object.

To show the Trace Selection pane, select Tools > Measurements > Trace Selection.
To enable the Trace Selection pane, you must first provide an input signal to the
comm.ConstellationDiagram System object.
Example: constDiag = comm.ConstellationDiagram('ChannelNames',{'8-
QAM','8-PSK'}) assigns names for two input channels to 8-QAM and 8-PSK.

Tunable: Yes

ShowLegend — Display legend
false (default) | true

Display the legend, specified as false or true. The names listed in the legend are the
signal names specified by the ChannelNames property.

 comm.ConstellationDiagram

4-375

From the legend, you can control which signals to plot. In the scope legend, click a signal
name to hide the signal in the scope. To show the signal, click the signal name again. To
show only one signal and hide all other signals, right-click the signal name. To show all
signals, press Esc.

Tunable: Yes
Data Types: logical

ColorFading — Add color fading effect
false (default) | true

Add color fading effect, specified as false or true. When you set this property to true,
the points in the display fade as the interval of time after they are first plotted increases.
This animation resembles an oscilloscope display.
Data Types: logical

Title — Plot title
blank (default) | character vector | string

Plot title, specified as a character vector or string.

Tunable: Yes

XLimits — x-axis limits
[-1.375 1.375] (default) | two-element numeric vector

x-axis limits, specified as a two-element numeric vector of the form [xmin xmax].

Tunable: Yes

YLimits — y-axis limits
[-1.375 1.375] (default) | two-element numeric vector

y-axis limits, specified as a two-element numeric vector of the form [ymin ymax].

Tunable: Yes

XLabel — x-axis label
'In-phase Amplitude' (default) | character vector | string

x-axis label, specified as a character vector or string.

4 System Objects — Alphabetical List

4-376

Tunable: Yes

YLabel — y-axis label
'Quadrature Amplitude' (default) | character vector | string

y-axis label, specified as a character vector or string.

Tunable: Yes

EnableMeasurements — Display measurements pane
false (default) | true

Display measurements pane, specified as false or true. To compute and display EVM or
MER measurements, activate this pane.

Tunable: Yes
Data Types: logical

MeasurementInterval — Measurement interval
'Current Display' (default) | 'All displays' | positive integer

Measurement interval, specified as 'Current Display', 'All displays', or a
positive integer in the range [2 SymbolsToDisplay]. This property specifies the window
length for the EVM and MER measurements.

When the input signal contains one sample per symbol and the reference constellation is
provided, the constellation diagram display can measure the signal quality in terms of
EVM and MER. The “EVM / MER Measurements” on page 4-387 pane can be displayed by
clicking the Signal Quality button. See the toolbar in the “Signal Display” on page 4-385.
After the number of input data samples is greater than MeasurementInterval, the EVM
and MER measurements are computed.

Tunable: Yes

EVMNormalization — EVM normalization method
'Average constellation power' (default) | 'Peak constellation power'

EVM normalization method, specified as 'Average constellation power' or 'Peak
constellation power'. For more information, see “EVM / MER Measurements” on
page 4-387.

Tunable: Yes

 comm.ConstellationDiagram

4-377

Usage

Syntax
constdiag(signal1,signal2,...,signalN)

Description
constdiag(signal1,signal2,...,signalN) displays up to NumInputPorts signals
in one constellation diagram.

Input Arguments
signal — Input signal or signals to plot
column vector | matrix

Specify one or more signals to be plotted in the comm.ConstellationDiagram. Signals
can have different data types and dimensions. To create a multichannel signal, specify a
matrix with individual signals defined in the columns of the matrix.
Example: constDiag([siganl1_1,signal1_2],signal2) displays the multichannel
and multi-input constellation diagram. First input is two concatenated column vectors of
length N to make an N-by-2 matrix input signal and the second input is a single channel
signal.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scopes
show Show scope window

4 System Objects — Alphabetical List

4-378

hide Hide scope window
isVisible Determine visibility of scope window

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Plot Amplitude-Imbalanced QPSK Constellation

QPSK modulate random data symbols and apply an amplitude imbalance to the signal.
Pass the signal through a noisy channel. Plot the resultant constellation.

Create a constellation diagram object. Because the default reference constellation for the
comm.ConstellationDiagram System object is QPSK, it is not necessary to set
additional properties.

constDiagram = comm.ConstellationDiagram;

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],1000,1);
modData = pskmod(data,4,pi/4);

Apply an amplitude imbalance to the modulated signal.

txSig = iqimbal(modData,5);

Pass the transmitted signal through an AWGN channel and display the constellation
diagram. Observe that the data points have shifted from their ideal locations.

rxSig = awgn(txSig,20);
constDiagram(rxSig)

 comm.ConstellationDiagram

4-379

4 System Objects — Alphabetical List

4-380

Plot 16-QAM Constellation

Apply 16-QAM modulation, transmit data using an AWGN channel, and plot the signal
constellation.

Create a 16-QAM reference constellation.

M = 16;
refC = qammod(0:M-1,M);

Create a comm.ConstellationDiagram System object. Specify the constellation
reference points and axes limits using name-value pairs.

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refC, ...
 'XLimits',[-4 4],'YLimits',[-4 4]);

Generate random, 16-ary data symbols.

data = randi([0 M-1],1000,1);

Apply 16-QAM modulation.

sym = qammod(data,M);

Pass the modulated signal through an AWGN channel.

rcv = awgn(sym,15);

Display the constellation diagram.

constDiagram(rcv)

 comm.ConstellationDiagram

4-381

4 System Objects — Alphabetical List

4-382

View Multi-Input Signals Constellation

Use the comm.ConstellationDiagram System object to visualize the constellation of
multi-input and multichannel modulated signals. Plot a multichannel signal with two 16-
QAM signals with SNR 10 and 20 for the first input, and one 8-PSK signal for the second
input.

Create a 16-QAM and a 8-PSK reference constellation.

M = 16;
refQAM = qammod(0:M-1,M);
S = 8;
refPSK = pskmod(0:S-1,S,pi/8);

Create a comm.ConstellationDiagram object™.

constDiag = comm.ConstellationDiagram(2,...
 'ReferenceConstellation',{refQAM,refPSK},'ShowLegend',true,...
 'XLimits',[-6 6],'YLimits',[-6 6], ...
 'ChannelNames',{'16-QAM , SNR 10 dB','16-QAM , SNR 20 dB','8-PSK'});

Generate random data symbols, modulate the symbols, and add AWGN with two different
SNRs to yield two received signals.

d = randi([0 M-1],1000,1);
dQAM = qammod(d,M);
rcv1_1 = awgn(dQAM,10);
rcv1_2 = awgn(dQAM,20);
d = randi([0 S-1],1000,1);
dPSK = pskmod(d,S,pi/8);
rcv2 = awgn(dPSK,20);

For the first input, create a multichannel signal by concatenating the two received 16-
QAM signals. A single reference constellation is applied for all the multichannel signals of
one input. Second input uses a single channel 8-PSK signal. This input has a seperate
reference constellation.

View the multi-input and multichannel signals .

constDiag([rcv1_1,rcv1_2],rcv2);

 comm.ConstellationDiagram

4-383

4 System Objects — Alphabetical List

4-384

More About

Signal Display
To communicate simulation data that corresponds to the current display, the scope uses
the Frames indicator on the scope window. This figure highlights important aspects of
the Constellation Diagram window.

 comm.ConstellationDiagram

4-385

To change the Constellation Diagram window settings, select menu options under File,
Tools, and View. Changes made via menu options adjust the property settings of the
System object accordingly.

4 System Objects — Alphabetical List

4-386

EVM / MER Measurements
The EVM / MER signal quality pane displays the measurement settings, and error vector
magnitude (EVM) and modulation error ratio (MER) measurement calculation results for
the specified trace selection.

• EVM — An error vector is a vector in the IQ plane from the ideal constellation point to
the actual point at the receiver. The root mean square error vector magnitude,
EVMRMS, is measured for the average and peak constellation power.

On the constellation diagram, you can display the EVMRMS measurements normalized
by either the Average constellation power or Peak constellation power
method as computed using these algorithms.

 comm.ConstellationDiagram

4-387

EVM Normalization
Method

Algorithm

Average
constellation power

Average constellation power normalization:

EVMk = 100
ek

Pavg

EVMRMS, in percent, for average constellation power
normalization:

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

Peak constellation
power

Peak constellation power normalization

EVMk = 100
ek

Pmax

EVMRMS, in percent, for peak constellation power
normalization

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

The EVM / MER pane shows the average and peak EVMRMS in both percent and
decibels for the selected trace. The EVM reported in decibels is computed as EVM
(dB) = 10‑log10(EVMMS) = 20‑log10(EVMRMS), where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) symbol values. I k and Qk represent measured

(received) symbol values.
• N is the input vector length.

4 System Objects — Alphabetical List

4-388

• Pavg is the value for Average constellation power.
• Pmax is the value for Peak constellation power.
•

EVM EVM
RMS MS

=

The maximum EVM value in a vector is EVMmax = max
k ∈ [1, ..., N]

EVMk , where k is the

kth symbol in a vector of length N.

For more information, see comm.EVM.
• MER — MER is the ratio of the average power of the transmitted signal to the average

power of the error vector. The EVM / MER pane indicates average MER measurement
result in decibels for the selected trace.

MER is a measure of the SNR in a modulated signal, calculated in dB. The MER over N
symbols is

MER = 10 · log10

∑
n = 1

N
Ik2 + Qk

2

∑
n = 1

N
ek

dB,

where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured

(received) symbols.

For more information, see comm.MER.

Tips
• If you want any of these features, use a comm.ConstellationDiagram System

object.

 comm.ConstellationDiagram

4-389

• Measurements
• Basic reference constellations
• Signal trajectory plots
• Maintaining state between calls

• If you want a simple signal constellation snapshot, use the scatterplot function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does
not support code generation for standalone applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
Constellation Diagram

Objects
comm.EyeDiagram

Functions
scatterplot

Introduced in R2013a

4 System Objects — Alphabetical List

4-390

comm.ConvolutionalDeinterleaver
Package: comm

Restore ordering of symbols using shift registers

Description
The ConvolutionalDeinterleaver object recovers a signal that was interleaved using
the convolutional Interleaver object. The parameters in the two blocks should have the
same values.

To recover convolutionally interleaved binary data:

1 Define and set up your convolutional deinterleaver object. See “Construction” on
page 4-391.

2 Call step to convolutionally deinterleave according to the properties of
comm.ConvolutionalDeinterleaver. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.ConvolutionalDeinterleaver creates a convolutional deinterleaver
System object, H. This object restores the original ordering of a sequence that was
interleaved using the convolutional interleaver System object.

H = comm.ConvolutionalDeinterleaver(Name,Value) creates a convolutional
deinterleaver System object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.ConvolutionalDeinterleaver

4-391

Properties
NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is 6.

RegisterLengthStep

Symbol capacity difference of each successive shift register

Specify the difference in symbol capacity of each successive shift register, where the last
register holds zero symbols as a positive, scalar integer. The default is 2.

InitialConditions

Initial conditions of shift registers

Specify the values that are initially stored in each shift register as a numeric scalar or
vector, except the last shift register, which has zero delay. If you set this property to a
scalar, then all shift registers, except the last one, store the same specified value. You can
also set this property to a column vector with length equal to the value of the
NumRegisters property. With this setting, the i-th shift register stores the (N–i+1)-th
element of the specified vector. The value of the first element of this property is
unimportant because the last shift register has zero delay. The default is 0.

Methods
reset Reset states of the convolutional deinterleaver object
step Restore ordering of symbols using shift registers

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-392

Convolutional Interleaving and Deinterleaving

Create convolutional interleaver and deinterleaver objects.

interleaver = comm.ConvolutionalInterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);
deinterleaver = comm.ConvolutionalDeinterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);

Generate data, and pass the data through the convolutional interleaver. Pass the
interleaved data through the convolutional deinterleaver.

data = (0:20)';
intrlvData = interleaver(data);
deintrlvData = deinterleaver(intrlvData);

Display the original sequence, interleaved sequence and restored sequence.

[data intrlvData deintrlvData]

ans = 21×3

 0 0 0
 1 0 0
 2 2 0
 3 0 0
 4 4 0
 5 0 0
 6 6 0
 7 1 1
 8 8 2
 9 3 3
 ⋮

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties. After accounting for this delay,
confirm that the original and deinterleaved data are identical.

intrlvDelay = interleaver.NumRegisters * interleaver.RegisterLengthStep

intrlvDelay = 6

numSymErrors = symerr(data(1:end-intrlvDelay),deintrlvData(1+intrlvDelay:end))

numSymErrors = 0

 comm.ConvolutionalDeinterleaver

4-393

Algorithms
This object implements the algorithm, inputs, and outputs described on the Convolutional
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalInterleaver | comm.MultiplexedInterleaver

Introduced in R2012a

4 System Objects — Alphabetical List

4-394

reset
System object: comm.ConvolutionalDeinterleaver
Package: comm

Reset states of the convolutional deinterleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the ConvolutionalDeinterleaver object, H.

 reset

4-395

step
System object: comm.ConvolutionalDeinterleaver
Package: comm

Restore ordering of symbols using shift registers

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a convolutional interleaver and returns Y. The input X must be a column vector. The
data type can be numeric, logical, or fixed-point (fi objects). Y has the same data type as
X. The convolutional deinterleaver object uses a set of N shift registers, where N is the
value specified by the NumRegisters property. The object sets the delay value of the k-th
shift register to the product of (k-1) and RegisterLengthStep property value. With each
new input symbol, a commutator switches to a new register and the new symbol shifts in
while the oldest symbol in that register shifts out. When the commutator reaches the N-th
register and the next new input occurs, it returns to the first register.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-396

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-397

comm.ConvolutionalEncoder
Package: comm

Convolutionally encode binary data

Description
The ConvolutionalEncoder object encodes a sequence of binary input vectors to
produce a sequence of binary output vectors.

To convolutionally encode a binary signal:

1 Define and set up your convolutional encoder object. See “Construction” on page 4-
398.

2 Call step to encode a sequence of binary input vectors to produce a sequence of
binary output vectors according to the properties of comm.ConvolutionalEncoder.
The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.ConvolutionalEncoder creates a System object, H, that convolutionally
encodes binary data.

H = comm.ConvolutionalEncoder(Name,Value) creates a convolutional encoder
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.ConvolutionalEncoder(TRELLIS,Name,Value) creates a convolutional
encoder object, H This object has the TrellisStructure on page 4-0 property set to
TRELLIS, and the other specified properties set to the specified values.

4 System Objects — Alphabetical List

4-398

Properties
TrellisStructure

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. The default is the result of poly2trellis(7, [171 133]).

TerminationMethod

Termination method of encoded frame

Specify how the encoded frame is terminated as one of Continuous | Truncated |
Terminated. The default is Continuous. When you set this property to Continuous,
the object retains the encoder states at the end of each input vector for use with the next
input vector. When you set this property to Truncated, the object treats each input
vector independently. The encoder states are reset at the start of each input vector. If you
set the InitialStateInputPort on page 4-0 property to false, the object resets its
states to the all-zeros state. If you set the InitialStateInputPort property to true,
the object resets the states to the values you specify in the initial states step method
input. When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder states
to all-zeros states at the end of the vector. For a rate K/N code, the step method outputs a
vector with length N × (L + S) K, where S = constraintLength–1 (or, in the case of
multiple constraint lengths, S = sum(constraintLength(i)–1)). L is the length of the input
to the step method.

ResetInputPort

Enable encoder reset input

Set this property to true to enable an additional input to the step method. The default is
false. When this additional reset input is a nonzero value, the internal states of the
encoder reset to their initial conditions. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

DelayedResetAction

Delay output reset

 comm.ConvolutionalEncoder

4-399

Set this property to true to delay resetting the object output. The default is false. When
you set this property to true, the reset of the internal states of the encoder occurs after
the object computes the encoded data. When you set this property to false, the reset of
the internal states of the encoder occurs before the object computes the encoded data.
This property applies when you set the ResetInputPort on page 4-0 property to
true.

InitialStateInputPort

Enable initial state input

Set this property to true to enable a step method input that allows the specification of
the initial state of the encoder for each input vector. The default is false. This property
applies when you set the TerminationMethod on page 4-0 property to Truncated.

FinalStateOutputPort

Enable final state output

Set this property to true to obtain the final state of the encoder via a step method output.
The default is false. This property applies when you set the TerminationMethod on
page 4-0 property to Continuous or Truncated.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. When you set this property to None the object does not apply puncturing. When
you set this property to Property, the object punctures the code. This puncturing is
based on the puncture pattern vector that you specify in the PuncturePattern on page
4-0 property. This property applies when you set the TerminationMethod on page 4-
0 property to Continuous or Truncated.

PuncturePattern

Puncture pattern vector

Specify the puncture pattern used to puncture the encoded data as a column vector. The
default is [1; 1; 0; 1; 0; 1]. The vector contains 1s and 0s, where the 0 indicates
the punctured, or excluded, bits. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous or Truncated and the
PuncturePatternSource on page 4-0 property to Property.

4 System Objects — Alphabetical List

4-400

Methods
reset Reset states of the convolutional encoder object
step Convolutionally encode binary data

Common to All System Objects
release Allow System object property value changes

Examples

Encode and Decode 8-DPSK Modulated Data

Transmit a convolutionally encoded 8-DPSK modulated bit stream through an AWGN
channel. Then, demodulate and decode using a Viterbi decoder.

Create the necessary System objects.

hConEnc = comm.ConvolutionalEncoder;
hMod = comm.DPSKModulator('BitInput',true);
hChan = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)',...
 'SNR',10);
hDemod = comm.DPSKDemodulator('BitOutput',true);
hDec = comm.ViterbiDecoder('InputFormat','Hard');
hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay', 34);

Process the data using the following steps:

1 Generate random bits
2 Convolutionally encode the data
3 Apply DPSK modulation
4 Pass the modulated signal through AWGN
5 Demodulate the noisy signal
6 Decode the data using a Viterbi algorithm
7 Collect error statistics

 comm.ConvolutionalEncoder

4-401

for counter = 1:20
 data = randi([0 1],30,1);
 encodedData = step(hConEnc, data);
 modSignal = step(hMod, encodedData);
 receivedSignal = step(hChan, modSignal);
 demodSignal = step(hDemod, receivedSignal);
 receivedBits = step(hDec, demodSignal);
 errors = step(hError, data, receivedBits);
end

Display the number of errors.

errors(2)

ans = 3

Convolutional Encoding and Viterbi Decoding with a Puncture Pattern Matrix

Encode and decode a sequence of bits using a convolutional encoder and a Viterbi
decoder with a defined puncture pattern. Verify that the input and output bits are
identical

Define a puncture pattern matrix and reshape it into vector form for use with the Encoder
and Decoder objects.

pPatternMat = [1 0 1;1 1 0];
pPatternVec = reshape(pPatternMat,6,1);

Create convolutional encoder and a Viterbi decoder in which the puncture pattern is
defined by pPatternVec.

ENC = comm.ConvolutionalEncoder(...
 'PuncturePatternSource','Property', ...
 'PuncturePattern',pPatternVec);

DEC = comm.ViterbiDecoder('InputFormat','Hard', ...
 'PuncturePatternSource','Property',...
 'PuncturePattern',pPatternVec);

Create an error rate counter with the appropriate receive delay.

ERR = comm.ErrorRate('ReceiveDelay',DEC.TracebackDepth);

4 System Objects — Alphabetical List

4-402

Encode and decode a sequence of random bits.

dataIn = randi([0 1],600,1);

dataEncoded = step(ENC,dataIn);

dataOut = step(DEC,dataEncoded);

Verify that there are no errors in the output data.

errStats = step(ERR,dataIn,dataOut);
errStats(2)

ans = 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Convolutional
Encoder block reference page. The object properties correspond to the block parameters,
except:
The operation mode Reset on nonzero input via port block parameter corresponds to
the ResetInputPort on page 4-0 property.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.APPDecoder | comm.ViterbiDecoder

 comm.ConvolutionalEncoder

4-403

Introduced in R2012a

4 System Objects — Alphabetical List

4-404

reset
System object: comm.ConvolutionalEncoder
Package: comm

Reset states of the convolutional encoder object

Syntax
reset(H)

Description
reset(H) resets the states of the ConvolutionalEncoder object, H.

 reset

4-405

step
System object: comm.ConvolutionalEncoder
Package: comm

Convolutionally encode binary data

Syntax
Y = step(H,X)
Y = step(H,X,INITSTATE)
Y = step(H,X,R)
[Y,FSTATE] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes the binary data, X, using the convolutional encoding that you
specify in the TrellisStructure property. It returns the encoded data, Y. Both X and Y are
column vectors of data type numeric, logical, or unsigned fixed point of word length 1 (fi
object). When the convolutional encoder represents a rate K/N code, the length of the
input vector equals K×L, for some positive integer, L. The step method sets the length of
the output vector, Y, to L×N.

Y = step(H,X,INITSTATE) uses the initial state specified in the INITSTATE input
when you set the TerminationMethod property to 'Truncated' and the
InitialStateInputPort property to true. INITSTATE must be an integer scalar.

Y = step(H,X,R) resets the internal states of the encoder when you input a non-zero
reset signal, R. R must be a double precision or logical scalar. This syntax applies when

4 System Objects — Alphabetical List

4-406

you set the TerminationMethod property to Continuous and the ResetInputPort property
to true.

[Y,FSTATE] = step(H,X) returns the final state of the encoder in the integer scalar
output FSTATE when you set the FinalStateOutputPort property to true. This syntax
applies when you set the TerminationMethod property to Continuous or Truncated.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-407

comm.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers with same property values

Description
The ConvolutionalInterleaver object permutes the symbols in the input signal.
Internally, this class uses a set of shift registers.

To convolutionally interleave binary data:

1 Define and set up your convolutional interleaver object. See “Construction” on page
4-408.

2 Call step to convolutionally interleave according to the properties of
comm.ConvolutionalInterleaver. The behavior of step is specific to each object
in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.ConvolutionalInterleaver creates a convolutional interleaver System
object, H, that permutes the symbols in the input signal using a set of shift registers.

H = comm.ConvolutionalInterleaver(Name,Value) creates a convolutional
interleaver System object, H. This object has each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-408

Properties
NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is 6.

RegisterLengthStep

Number of additional symbols that fit in each successive shift register

Specify the number of additional symbols that fit in each successive shift register as a
positive, scalar integer. The default is 2. The first register holds zero symbols.

InitialConditions

Initial conditions of shift registers

Specify the values that are initially stored in each shift register as a numeric scalar or
vector. You do not need to specify a value for the first shift register, which has zero delay.
The default is 0. The value of the first element of this property is unimportant because the
first shift register has zero delay. If you set this property to a scalar, then all shift
registers, except the first one, store the same specified value. If you set it to a column
vector with length equal to the value of the NumRegisters on page 4-0 property, then
the i-th shift register stores the i-th element of the specified vector.

Methods
reset Reset states of the convolutional interleaver object
step Permute input symbols using shift registers

Common to All System Objects
release Allow System object property value changes

Examples

 comm.ConvolutionalInterleaver

4-409

Convolutional Interleaving and Deinterleaving

Create convolutional interleaver and deinterleaver objects.

interleaver = comm.ConvolutionalInterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);
deinterleaver = comm.ConvolutionalDeinterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);

Generate data, and pass the data through the convolutional interleaver. Pass the
interleaved data through the convolutional deinterleaver.

data = (0:20)';
intrlvData = interleaver(data);
deintrlvData = deinterleaver(intrlvData);

Display the original sequence, interleaved sequence and restored sequence.

[data intrlvData deintrlvData]

ans = 21×3

 0 0 0
 1 0 0
 2 2 0
 3 0 0
 4 4 0
 5 0 0
 6 6 0
 7 1 1
 8 8 2
 9 3 3
 ⋮

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties. After accounting for this delay,
confirm that the original and deinterleaved data are identical.

intrlvDelay = interleaver.NumRegisters * interleaver.RegisterLengthStep

intrlvDelay = 6

numSymErrors = symerr(data(1:end-intrlvDelay),deintrlvData(1+intrlvDelay:end))

numSymErrors = 0

4 System Objects — Alphabetical List

4-410

Algorithms
This object implements the algorithm, inputs, and outputs described on the Convolutional
Interleaver block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalDeinterleaver | comm.MultiplexedInterleaver

Introduced in R2012a

 comm.ConvolutionalInterleaver

4-411

reset
System object: comm.ConvolutionalInterleaver
Package: comm

Reset states of the convolutional interleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the ConvolutionalInterleaver object, H.

4 System Objects — Alphabetical List

4-412

step
System object: comm.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector. The data type can be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X. The convolutional interleaver object uses a set of
N shift registers, where N is the value specified by the NumRegisters property. The object
sets the delay value of the k-th shift register to the product of (k-1) and the
RegisterLengthStep property value. With each new input symbol, a commutator switches
to a new register and the new symbol shifts in while the oldest symbol in that register
shifts out. When the commutator reaches the N-th register and the next new input
occurs , it returns to the first register.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

4-413

nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-414

comm.CPFSKDemodulator
Package: comm

Demodulate using CPFSK method and Viterbi algorithm

Description
The CPFSKDemodulator object demodulates a signal that was modulated using the
continuous phase frequency shift keying method. The input is a baseband representation
of the modulated signal.

To demodulate a signal that was modulated using the continuous phase frequency shift
keying method:

1 Define and set up your CPFSK demodulator object. See “Construction” on page 4-
415 .

2 Call step to demodulate the signal according to the properties of
comm.CPFSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.CPFSKDemodulator creates a demodulator System object, H. This object
demodulates the input continuous phase frequency shift keying (CPFSK) modulated data
using the Viterbi algorithm.

H = comm.CPFSKDemodulator(Name,Value) creates a CPFSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.CPFSKDemodulator

4-415

H = comm.CPFSKDemodulator(M,Name,Value) creates a CPFSK demodulator object,
H. This object has the ModulationOrder property set to M, and the other specified
properties set to the specified values.

Properties
ModulationOrder

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of
two, real, integer scalar. The default is 4.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer values. The default is
false.

When you set this property to false, the step method outputs a column vector of length
equal to N/SamplesPerSymbol on page 4-0 and with elements that are integers
between –(ModulationOrder on page 4-0 –1) and ModulationOrder–1. In this case,
N, is the length of the input signal, which indicates the number of input baseband
modulated symbols.

When you set this property to true, the step method outputs a binary column vector of
length equal to P×(N/SamplesPerSymbol), where P = log2(ModulationOrder). The
output contains length-P bit words. In this scenario, the object first maps each
demodulated symbol to an odd integer value, K, between –(ModulationOrder-1) and
ModulationOrder–1. The object then maps K to the nonnegative integer (K
+ModulationOrder–1)/2. Finally, the object maps each nonnegative integer to a length-
P binary word, using the mapping specified in the SymbolMapping on page 4-0
property.

SymbolMapping

Symbol encoding

Specify the mapping of the modulated symbols as one of Binary | Gray. The default is
Binary. This property determines how the object maps each demodulated integer symbol

4 System Objects — Alphabetical List

4-416

value (in the range 0 and ModulationOrder on page 4-0 –1) to a P-length bit word,
where P = ModulationOrder on page 4-0 (ModulationOrder).

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the BitOutput on page 4-0 property to true.

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar.
The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar. The default is 16. The value of this property is
also the value of the output delay. That value is the number of zero symbols that precede
the first meaningful demodulated symbol in the output.

 comm.CPFSKDemodulator

4-417

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set the
BitOutput on page 4-0 property to false. The default is double.

When you set the BitOutput property to true, specify the output data type as one of
logical | double.

Methods
reset Reset states of CPFSK demodulator object
step Demodulate using CPFSK method and Viterbi algorithm

Common to All System Objects
release Allow System object property value changes

Examples

Demodulate a signal using CPFSK modulation with Gray mapping

% Create a CPFSK modulator, an AWGN channel, and a CPFSK demodulator
 hMod = comm.CPFSKModulator(8, 'BitInput', true, ...
 'SymbolMapping', 'Gray');
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.CPFSKDemodulator(8, 'BitOutput', true, ...
 'SymbolMapping', 'Gray');

 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm.
 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;
 hError = comm.ErrorRate('ReceiveDelay', delay);
 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);

4 System Objects — Alphabetical List

4-418

 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.004006
Number of errors = 120

Algorithms
This object implements the algorithm, inputs, and outputs described on the CPFSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters. For CPFSK the phase shift per symbol is π × h, where h is the
modulation index.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKModulator | comm.CPMDemodulator | comm.CPMModulator

Introduced in R2012a

 comm.CPFSKDemodulator

4-419

reset
System object: comm.CPFSKDemodulator
Package: comm

Reset states of CPFSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the CPFSKDemodulator object, H.

4 System Objects — Alphabetical List

4-420

step
System object: comm.CPFSKDemodulator
Package: comm

Demodulate using CPFSK method and Viterbi algorithm

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the CPFSK demodulator System object,
H, and returns Y. Input X must be a double or single precision, column vector with a
length equal to an integer multiple of the number of samples per symbol specified in the
SamplesPerSymbol property. Depending on the BitOutput property value, output Y
can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-421

comm.CPFSKModulator
Package: comm

Modulate using CPFSK method

Description
The CPFSKModulator object modulates using the continuous phase frequency shift
keying method. The output is a baseband representation of the modulated signal.

To modulate a signal using the continuous phase frequency shift keying method:

1 Define and set up your CPFSK modulator object. See “Construction” on page 4-422.
2 Call step to modulate the signal according to the properties of

comm.CPFSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.CPFSKModulator creates a modulator System object, H. This object
modulates the input signal using the continuous phase frequency shift keying (CPFSK)
modulation method.

H = comm.CPFSKModulator(Name,Value) creates a CPFSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPFSKModulator(M,Name,Value) creates a CPFSK modulator object, H.
This object has the ModulationOrder property set to M, and the other specified
properties set to the specified values.

4 System Objects — Alphabetical List

4-422

Properties
ModulationOrder

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of
two, real, integer scalar. The default is 4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to false, the step method input must be a double-precision or signed integer
data type column vector. This vector comprises odd integer values between –
(ModulationOrder on page 4-0 –1) and ModulationOrder–1.

When you set this property to true, the step method input must be a column vector of P-
length bit words, where P = log2(ModulationOrder). The input data must be double
precision or logical data type. The object maps each bit word to an integer K between 0
and ModulationOrder–1, using the mapping specified in the SymbolMapping on page
4-0 property. The object then maps the integer K to the intermediate value 2K–
(ModulationOrder–1) and proceeds as in the case when you set the BitInput on page
4-0 property to false.

SymbolMapping

Symbol encoding

Specify the mapping of bit inputs as one of Binary | Gray. The default is Binary. This
property determines how the object maps each input P-length bit word, where P =
log2(ModulationOrder on page 4-0), to an integer between 0 and
ModulationOrder–1.

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the BitInput on page 4-0 property to true.

 comm.CPFSKModulator

4-423

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector. The phase shift over a symbol is π
× h.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar.
The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar. The default
is 8. The upsampling factor is the number of output samples that the step method
produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

reset Reset states of CPFSK modulator object
step Modulate using CPFSK method

4 System Objects — Alphabetical List

4-424

Common to All System Objects
release Allow System object property value changes

Examples

Demodulate a signal using CPFSK modulation with Gray mapping
% Create a CPFSK modulator, an AWGN channel, and a CPFSK demodulator
 hMod = comm.CPFSKModulator(8, 'BitInput', true, ...
 'SymbolMapping', 'Gray');
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.CPFSKDemodulator(8, 'BitOutput', true, ...
 'SymbolMapping', 'Gray');

 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm.
 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;
 hError = comm.ErrorRate('ReceiveDelay', delay);
 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.004006
Number of errors = 120

Algorithms
This object implements the algorithm, inputs, and outputs described on the CPFSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters. For CPFSK the phase shift per symbol is π × h, where h is the modulation
index.

 comm.CPFSKModulator

4-425

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKDemodulator | comm.CPMDemodulator | comm.CPMModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-426

reset
System object: comm.CPFSKModulator
Package: comm

Reset states of CPFSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the CPFSKModulator object, H.

 reset

4-427

step
System object: comm.CPFSKModulator
Package: comm

Modulate using CPFSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the CPFSK modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with data types double,
signed integer, or logical. The length of output vector, Y, is equal to the number of input
samples times the number of samples per symbol specified in the SamplesPerSymbol
property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-428

comm.CPMCarrierPhaseSynchronizer
Package: comm

(To be removed) Recover carrier phase of baseband CPM signal

Note comm.CPMCarrierPhaseSynchronizer will be removed in a future release. Use
comm.CarrierSynchronizer instead.

Description
The CPMCarrierPhaseSynchronizer object recovers the carrier phase of the input
signal using the 2P-Power method. This feedforward method is clock aided, but not data
aided. The method is suitable for systems that use certain types of baseband modulation.
These types include: continuous phase modulation (CPM), minimum shift keying (MSK),
continuous phase frequency shift keying (CPFSK), and Gaussian minimum shift keying
(GMSK).

To recover the carrier phase of the input signal:

1 Define and set up your CPM carrier phase synchronizer object. See “Construction” on
page 4-429.

2 Call step to recover the carrier phase of the input signal using the 2P-Power method
according to the properties of comm.CPMCarrierPhaseSynchronizer. The
behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.CPMCarrierPhaseSynchronizer creates a CPM carrier phase synchronizer
System object, H. This object recovers the carrier phase of a baseband continuous phase

 comm.CPMCarrierPhaseSynchronizer

4-429

modulation (CPM), minimum shift keying (MSK), continuous phase frequency shift keying
(CPFSK), or Gaussian minimum shift keying (GMSK) modulated signal using the 2P-power
method.

H = comm.CPMCarrierPhaseSynchronizer(Name,Value) creates a CPM carrier
phase synchronizer object, H This object has each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.CPMCarrierPhaseSynchronizer(HALFPOW,Name,Value) creates a CPM
carrier phase synchronizer object, H. This object has the P on page 4-0 property set to
HALFPOW, and the other specified properties set to the specified values.

Properties
P

Denominator of CPM modulation index

Specify the denominator of the CPM modulation index of the input signal as a real
positive scalar integer value of data type single or double. The default is 2. This property
is tunable.

ObservationInterval

Number of symbols where carrier phase assumed constant

Specify the observation interval as a real positive scalar integer value of data type single
or double. The default is 100.

Methods
reset Reset states of the CPM carrier phase synchronizer object
step Recover carrier phase of baseband CPM signal

Common to All System Objects
release Allow System object property value changes

4 System Objects — Alphabetical List

4-430

Examples
Recover carrier phase of a CPM signal using 2P-power method.

M = 16;
P = 2;
phOffset = 10 *pi/180; % in radians
numSamples = 100;
% Create CPM modulator System object
 hMod = comm.CPMModulator(M, 'InitialPhaseOffset',phOffset, ...
 'BitInput',true, 'ModulationIndex',1/P, 'SamplesPerSymbol',1);
% Create CPM carrier phase synchronizer System object
 hSync = comm.CPMCarrierPhaseSynchronizer(P,...
 'ObservationInterval',numSamples);
% Generate random binary data
 data = randi([0 1],numSamples*log2(M),1);
% Modulate random data and add carrier phase
 modData = step(hMod, data);
% Recover the carrier phase
 [recSig phEst] = step(hSync, modData);
 fprintf('The carrier phase is estimated to be %g degrees.\n', phEst);

Algorithms
This object implements the algorithm, inputs, and outputs described on the CPM Phase
Recovery block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.CPMCarrierPhaseSynchronizer

4-431

See Also
comm.CPMModulator | comm.CarrierSynchronizer

Introduced in R2012a

4 System Objects — Alphabetical List

4-432

reset
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Reset states of the CPM carrier phase synchronizer object

Syntax
reset(H)

Description
reset(H) resets the states of the CPMCarrierPhaseSynchronizer object, H.

 reset

4-433

step
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Recover carrier phase of baseband CPM signal

Syntax
[Y,PH] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[Y,PH] = step(H,X) recovers the carrier phase of the input signal, X, and returns the
phase corrected signal, Y, and the carrier phase estimate (in degrees), PH. X must be a
complex scalar or column vector input signal of data type single or double.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-434

comm.CPMDemodulator
Package: comm

Demodulate using CPM method and Viterbi algorithm

Description
The CPMDemodulator object demodulates a signal that was modulated using continuous
phase modulation. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using continuous phase modulation:

1 Define and set up your CPM demodulator object. See “Construction” on page 4-435.
2 Call step to demodulate a signal according to the properties of

comm.CPMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.CPMDemodulator creates a demodulator System object, H. This object
demodulates the input continuous phase modulated (CPM) data using the Viterbi
algorithm.

H = comm.CPMDemodulator(Name,Value) creates a CPM demodulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPMDemodulator(M,Name,Value) creates a CPM demodulator object, H,
with the ModulationOrder property set to M, and the other specified properties set to
the specified values.

 comm.CPMDemodulator

4-435

Properties
ModulationOrder

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of
two, real, integer scalar. The default is 4.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer values. The default is
false.

When you set this property to false, the step method outputs a column vector of length
equal to N/SamplesPerSymbol on page 4-0 and with elements that are integers
between -(ModulationOrder on page 4-0 -1) and ModulationOrder–1. Here, N, is
the length of the input signal which indicates the number of input baseband modulated
symbols.

When you set this property to true, the step method outputs a binary column vector of
length equal to P×(N/SamplesPerSymbol), where P = log2(ModulationOrder). The
output contains length-P bit words. In this scenario, the object first maps each
demodulated symbol to an odd integer value, K, between –(ModulationOrder–1) and
ModulationOrder–1. The object then maps K to the nonnegative integer (K
+ModulationOrder–1)/2. Finally, the object maps each nonnegative integer to a length-
P binary word, using the mapping specified in the SymbolMapping on page 4-0
property.

SymbolMapping

Symbol encoding

Specify the mapping of the demodulated symbols as one of Binary | Gray. The default is
Binary. This property determines how the object maps each demodulated integer symbol
value (in the range 0 and ModulationOrder on page 4-0 –1) to a P-length bit word,
where P = log2(ModulationOrder).

When you set this property to Binary, the object uses a natural binary-coded ordering.

4 System Objects — Alphabetical List

4-436

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the BitOutput on page 4-0 property to true.

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

FrequencyPulse

Frequency pulse shape

Specify the type of pulse shaping that the modulator has used to smooth the phase
transitions of the input modulated signal as one of Rectangular | Raised Cosine |
Spectral Raised Cosine | Gaussian | Tamed FM. The default is Rectangular.

MainLobeDuration

Main lobe duration of spectral raised cosine pulse

Specify, in number of symbol intervals, the duration of the largest lobe of the spectral
raised cosine pulse. This value is the value that the modulator used to pulse-shape the
input modulated signal. The default is 1. This property requires a real, positive, integer
scalar. This property applies when you set the FrequencyPulse on page 4-0 property
to Spectral Raised Cosine.

RolloffFactor

Rolloff factor of spectral raised cosine pulse

Specify the roll off factor of the spectral raised cosine pulse. This value is the value that
the modulator used to pulse-shape the input modulated signal. The default is 0.2. This
property requires a real scalar between 0 and 1. This property applies when you set the
FrequencyPulse on page 4-0 property to Spectral Raised Cosine.

 comm.CPMDemodulator

4-437

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of bandwidth and symbol time for the Gaussian pulse shape. This
value is the value that the modulator used to pulse-shape the input modulated signal. The
default is 0.3. This property requires a real, positive scalar. This property applies when
you set the FrequencyPulse on page 4-0 property to Gaussian.

PulseLength

Pulse length

Specify the length of the frequency pulse shape in symbol intervals. The value of this
property requires a real positive integer. The default is 1.

SymbolPrehistory

Symbol prehistory

Specify the data symbols used by the modulator prior to the first call to the step method.
The default is 1. This property requires a scalar or vector with odd integer elements
between –(ModulationOrder on page 4-0 –1) and (ModulationOrder–1). If the value
is a vector, then its length must be one less than the value in the PulseLength on page
4-0 property.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar.
The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

4 System Objects — Alphabetical List

4-438

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar. The default is 16. The value of this property is
also the output delay, which is the number of zero symbols that precede the first
meaningful demodulated symbol in the output.

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set the
BitOutput on page 4-0 property to false. When you set the BitOutput property to
true, specify the output data type as one of logical | double. The default is double.

Methods
reset Reset states of CPM demodulator object
step Demodulate using CPM method and Viterbi algorithm

Common to All System Objects
release Allow System object property value changes

Examples

Demodulate a CPM signal with Gray mapping and bit inputs

% Create a CPM modulator, an AWGN channel, and a CPM demodulator.
 hMod = comm.CPMModulator(8, 'BitInput', true, ...
 'SymbolMapping', 'Gray');
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.CPMDemodulator(8, 'BitOutput', true, ...
 'SymbolMapping', 'Gray');
% Create an error rate calculator, account for the delay caused by the Viterbi algorithm.
 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;
 hError = comm.ErrorRate('ReceiveDelay', delay);
 for counter = 1:100
 % Transmit 100 3-bit words

 comm.CPMDemodulator

4-439

 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.004006
Number of errors = 120

Apply GFSK Modulation and Demodulation

Using the comm.CPMModulator and comm.CPMDemodulator System objects apply
GFSK modulation and demodulation to random bit data.

Create a GFSK modulator and demodulator object pair.

gfskMod = comm.CPMModulator('ModulationOrder', 2, 'FrequencyPulse', 'Gaussian', ...
 'BandwidthTimeProduct', 0.5, 'ModulationIndex', 1, ...
 'BitInput', true);
gfskDemod = comm.CPMDemodulator('ModulationOrder', 2, 'FrequencyPulse', 'Gaussian', ...
 'BandwidthTimeProduct', 0.5, 'ModulationIndex', 1, ...
 'BitOutput', true);

Generate random bit data and apply GFSK modulation. Use a scatter plot to view the
constellation.

numSym = 100;
x = randi([0 1],numSym*gfskMod.SamplesPerSymbol,1);
y = gfskMod(x);
eyediagram(y,16)

4 System Objects — Alphabetical List

4-440

Demodulate the GFSK modulated data. To verify that the demodulated signal data is equal
to the original data, you must account for the delay introduced by the Gaussian filtering in
the GFSK modulation and demodulation processing.

 comm.CPMDemodulator

4-441

z = gfskDemod(y);
delay = finddelay(x,z);
isequal(x(1:end-delay),z(delay+1:end))

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the CPM
Demodulator Baseband block reference page. The object properties correspond to the
block parameters. For CPM the phase shift per symbol is π × h, where h is the modulation
index.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKDemodulator | comm.CPMModulator | comm.GMSKDemodulator |
comm.MSKDemodulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-442

reset
System object: comm.CPMDemodulator
Package: comm

Reset states of CPM demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the CPMDemodulator object, H.

 reset

4-443

step
System object: comm.CPMDemodulator
Package: comm

Demodulate using CPM method and Viterbi algorithm

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the CPM demodulator System object, H,
and returns Y. X must be a double or single precision, column vector with a length equal
to an integer multiple of the number of samples per symbol specified in the
SamplesPerSymbol property. Depending on the BitOutput property value, output Y
can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-444

comm.CPMModulator
Package: comm

Modulate using CPM method

Description
The CPMModulator object modulates using continuous phase modulation. The output is a
baseband representation of the modulated signal.

To modulate a signal using continuous phase modulation:

1 Define and set up your CPM modulator object. See “Construction” on page 4-445.
2 Call step to modulate a signal according to the properties of comm.CPMModulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.CPMModulator creates a modulator System object, H. This object modulates
the input signal using the continuous phase modulation (CPM) method.

H = comm.CPMModulator(Name,Value) creates a CPM modulator object, H. This
object has each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPMModulator(M,Name,Value) creates a CPM modulator object, H, with
the ModulationOrder property set to M and the other specified properties set to the
specified values.

 comm.CPMModulator

4-445

Properties
ModulationOrder

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property must be a power of
two, real, integer scalar. The default is 4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false.

When you set this property to false, the step method input requires double-precision or
signed integer data type column vector. This vector must comprise odd integer values
between –(ModulationOrder on page 4-0 –1) and ModulationOrder–1.

When you set this property to true, the step method input requires a column vector of
P-length bit words, where P = log2(ModulationOrder). The input data must have a
double-precision or logical data type. The object maps each bit word to an integer K
between 0 and ModulationOrder–1, using the mapping specified in the
SymbolMapping on page 4-0 property. The object then maps the integer K to the
intermediate value 2K-(ModulationOrder–1) and proceeds as in the case when BitInput
is false.

SymbolMapping

Symbol encoding

Specify the mapping of bit inputs as one of Binary | Gray. The default is Binary. This
property determines how the object maps each input P-length bit word, where P =
log2(ModulationOrder on page 4-0), to an integer between 0 and
ModulationOrder–1.

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the BitInput on page 4-0 property to true.

4 System Objects — Alphabetical List

4-446

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector. The phase shift over a symbol is π
× h.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

FrequencyPulse

Frequency pulse shape

Specify the type of pulse shaping that the modulator uses to smooth the phase transitions
of the modulated signal. Choose from Rectangular | Raised Cosine | Spectral
Raised Cosine | Gaussian | Tamed FM. The default is Rectangular.

MainLobeDuration

Main lobe duration of spectral raised cosine pulse

Specify, in number of symbol intervals, the duration of the largest lobe of the spectral
raised cosine pulse. The default is 1. This property requires a real, positive, integer scalar.
This property applies when you set the FrequencyPulse on page 4-0 property to
Spectral Raised Cosine.

RolloffFactor

Rolloff factor of spectral raised cosine pulse

Specify the rolloff factor of the spectral raised cosine pulse. The default is 0.2. This
property requires a real scalar between 0 and 1. This property applies when you set the
FrequencyPulse on page 4-0 property to Spectral Raised Cosine.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

 comm.CPMModulator

4-447

Specify the product of bandwidth and symbol time for the Gaussian pulse shape. The
default is 0.3. This property requires a real, positive scalar. This property applies when
you set the FrequencyPulse on page 4-0 property to Gaussian.

PulseLength

Pulse length

Specify the length of the frequency pulse shape in symbol intervals. The value of this
property requires a real, positive integer. The default is 1.

SymbolPrehistory

Symbol prehistory

Specify the data symbols used by the modulator prior to the first call to the step method
in reverse chronological order. The default is 1. This property requires a scalar or vector
with odd integer elements between –(ModulationOrder on page 4-0 –1) and
(ModulationOrder–1). If the value is a vector, then its length must be one less than the
value in the PulseLength on page 4-0 property.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar.
The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar. The default
is 8. The upsampling factor is the number of output samples that the step method
produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

4 System Objects — Alphabetical List

4-448

Methods

reset Reset states of CPM modulator object
step Modulate using CPM method

Common to All System Objects
release Allow System object property value changes

Examples

Modulate a CPM signal with Gray mapping and bit inputs

% Create a CPM modulator, an AWGN channel, and a CPM demodulator.
 hMod = comm.CPMModulator(8, 'BitInput', true, ...
 'SymbolMapping', 'Gray');
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.CPMDemodulator(8, 'BitOutput', true, ...
 'SymbolMapping', 'Gray');
% Create an error rate calculator, account for the delay caused by the Viterbi algorithm.
 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;
 hError = comm.ErrorRate('ReceiveDelay', delay);
 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.004006
Number of errors = 120

 comm.CPMModulator

4-449

Apply GFSK Modulation and Demodulation

Using the comm.CPMModulator and comm.CPMDemodulator System objects apply
GFSK modulation and demodulation to random bit data.

Create a GFSK modulator and demodulator object pair.

gfskMod = comm.CPMModulator('ModulationOrder', 2, 'FrequencyPulse', 'Gaussian', ...
 'BandwidthTimeProduct', 0.5, 'ModulationIndex', 1, ...
 'BitInput', true);
gfskDemod = comm.CPMDemodulator('ModulationOrder', 2, 'FrequencyPulse', 'Gaussian', ...
 'BandwidthTimeProduct', 0.5, 'ModulationIndex', 1, ...
 'BitOutput', true);

Generate random bit data and apply GFSK modulation. Use a scatter plot to view the
constellation.

numSym = 100;
x = randi([0 1],numSym*gfskMod.SamplesPerSymbol,1);
y = gfskMod(x);
eyediagram(y,16)

4 System Objects — Alphabetical List

4-450

Demodulate the GFSK modulated data. To verify that the demodulated signal data is equal
to the original data, you must account for the delay introduced by the Gaussian filtering in
the GFSK modulation and demodulation processing.

 comm.CPMModulator

4-451

z = gfskDemod(y);
delay = finddelay(x,z);
isequal(x(1:end-delay),z(delay+1:end))

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the CPM
Modulator Baseband block reference page. The object properties correspond to the block
parameters. For CPM the phase shift per symbol is π × h, where h is the modulation
index.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKModulator | comm.CPMDemodulator | comm.GMSKModulator |
comm.MSKModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-452

reset
System object: comm.CPMModulator
Package: comm

Reset states of CPM modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the CPMModulator object, H.

 reset

4-453

step
System object: comm.CPMModulator
Package: comm

Modulate using CPM method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the CPM modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with data types double,
signed integer, or logical. The length of output vector, Y, is equal to the number of input
samples times the number of samples per symbol specified in the SamplesPerSymbol
property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-454

comm.CRCDetector
Package: comm

Detect errors in input data using CRC

Description
The comm.CRCDetector System object computes cyclic redundancy check (CRC)
checksums for an entire received codeword. For successful CRC detection in a
communications system link, you must align the property settings of the
comm.CRCDetector System object with the paired comm.CRCGenerator System object.
For more information, see “CRC Syndrome Detector Operation” on page 4-463.

To detect errors in the received codeword containing CRC sequence bits:

1 Create the comm.CRCDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
crcdetector = comm.CRCDetector
crcdetector = comm.CRCDetector(Name,Value)
crcdetector = comm.CRCDetector(poly,Name,Value)

Description
crcdetector = comm.CRCDetector creates a CRC code detector System object. This
object detects errors in the received codewords according to a specified generator
polynomial.

 comm.CRCDetector

4-455

crcdetector = comm.CRCDetector(Name,Value) sets properties using one or more
name-value pairs. For example, comm.CRCDetector('Polynomial','z^16 + z^14 +
z + 1') configures the CRC code detector System object to use the CRC-16 cyclic
redundancy check bits when checking for CRC code errors in the received codewords.
Enclose each property name in quotes.

crcdetector = comm.CRCDetector(poly,Name,Value) creates a CRC code
detector System object. This object has the Polynomial property set to poly, and the
other specified properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Polynomial — Generator polynomial
'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector |
integer row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in

order of descending power. The length of this vector is (N+1), where N is the degree
of the generator polynomial. For example, [1 1 0 1] represents the polynomial x3+
z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the
polynomial in descending order. For example, [3 2 0] represents the polynomial z3 +
z2 + 1.

For more information, see “Character Representation of Polynomials”.

Some commonly used generator polynomials include:

4 System Objects — Alphabetical List

4-456

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 +
z^8 + z^7 + z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same
polynomial, p(z) = z 7 + z 2 + 1.
Data Types: double | char

InitialConditions — Initial states of internal shift register
0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row
vector with a length equal to the degree of the generator polynomial. A scalar value is
expanded to a row vector of equal length to the degree of the generator polynomial.
Data Types: logical

DirectMethod — Use direct algorithm for CRC checksum calculations
false (default) | true

Use direct algorithm for CRC checksum calculations, specified as false or true.

When you set this property to true, the object uses the direct algorithm for CRC
checksum calculations. When you set this property to false, the object uses the non-
direct algorithm for CRC checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and
Correction”.
Data Types: logical

ReflectInputBytes — Reflect input bytes
false (default) | true

 comm.CRCDetector

4-457

Reflect input bytes, specified as false or true. Set this property to true to flip the
received codeword on a bytewise basis before entering the data into the shift register.

When you set this property to true, the received codeword length divided by the value of
the ChecksumsPerFrame property must be an integer and a multiple of 8.
Data Types: logical

ReflectChecksums — Reflect checksums before final XOR
false (default) | true

Reflect checksums before final XOR, specified as false or true. Set this property to
true to flip the CRC checksums around their centers after the received codeword is
completely through the shift register.

When you set this property to true, the object flips the CRC checksums around their
centers before the final XOR.
Data Types: logical

FinalXOR — Final XOR
0 (default) | binary scalar | binary vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the
degree of the generator polynomial. The XOR operation runs using the value of the
FinalXOR property and the CRC checksum before comparing with the input checksum. A
scalar value is expanded to a row vector of equal length to the degree of the generator
polynomial. A setting of 0 is equivalent to no XOR operation.
Data Types: logical

ChecksumsPerFrame — Number of checksums calculated
1 (default) | positive integer

Number of checksums calculated for each received codeword frame, specified as a
positive integer. for more information, see “CRC Syndrome Detector Operation” on page
4-463.
Data Types: double

4 System Objects — Alphabetical List

4-458

Usage

Syntax
out = crcdetector(codeword)
[msg,err] = crcdetector(codeword)

Description
out = crcdetector(codeword) checks CRC code bits for each received codeword
frame, removes the checksums, and then concatenates subframes to the output frame.

[msg,err] = crcdetector(codeword) also returns the checksum error signal
computed when checking CRC code bits for each codeword subframe.

Input Arguments
codeword — Received codeword
binary column vector

Received codeword, specified as a binary column vector.
Data Types: double | logical

Output Arguments
out — Output frame
binary column vector

Output frame, returned as a binary column vector that inherits the data type of the input
signal. The message word output contains the received codeword with the checksums
removed.

The length of the output frame is n - k * r bits, where n is the size of the received
codeword, k is the number of checksums per frame, and r is the degree of the generator
polynomial.

err — Checksum error signal
binary column vector

 comm.CRCDetector

4-459

Checksum error signal, returned as a binary column vector that inherits the data type of
the input signal. The length of Err equals the value of ChecksumsPerFrame. For each
checksum computation, an element value of 0 in err indicates no checksum error, and an
element value of 1 in err indicates a checksum error.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

CRC Detection of Errors in a Random Message

Pass binary data through a CRC generator, introduce a bit error, and detect the error
using a CRC detector.

Create a random binary vector.

x = randi([0 1],12,1);

Encode the input message frame using a CRC generator with the ChecksumsPerFrame
property set to 2. This subdivides the incoming frame into two equal-length subframes.

crcgenerator = comm.CRCGenerator([1 0 0 1],'ChecksumsPerFrame',2);
codeword = crcgenerator(x);

Decode the codeword and verify that there are no errors in either subframe.

crcdetector = comm.CRCDetector([1 0 0 1],'ChecksumsPerFrame',2);
[~, err] = crcdetector(codeword)

4 System Objects — Alphabetical List

4-460

err = 2×1

 0
 0

Introduce an error in the second subframe by inverting the last element of subframe 2.
Pass the corrupted codeword through the CRC detector and verify that the error is
detected in the second subframe.

codeword(end) = not(codeword(end));
[~,err] = crcdetector(codeword)

err = 2×1

 0
 1

Cyclic Redundancy Check of Noisy BPSK Data Frames

Use a CRC code to detect frame errors in a noisy BPSK signal.

Create a CRC generator and detector pair using a standard CRC-4 polynomial,
z4 + z3 + z2 + z + 1.

poly = 'z4+z3+z2+z+1';
crcgenerator = comm.CRCGenerator(poly);
crcdetector = comm.CRCDetector(poly);

Generate 12-bit frames of binary data and append the CRC bits. Based on the degree of
the polynomial, 4 bits are appended to each frame. Apply BPSK modulation and pass the
signal through an AWGN channel. Demodulate and use the CRC detector to determine if
the frame is in error.

numFrames = 20;
frmError = zeros(numFrames,1);

for k = 1:numFrames
 data = randi([0 1],12,1); % Generate binary data
 encData = crcgenerator(data); % Append CRC bits

 comm.CRCDetector

4-461

 modData = pskmod(encData,2); % BPSK modulate
 rxSig = awgn(modData,5); % AWGN channel, SNR = 5 dB
 demodData = pskdemod(rxSig,2); % BPSK demodulate
 [~,frmError(k)] = crcdetector(demodData); % Detect CRC errors
end

Identify the frames in which CRC code bit errors are detected.

find(frmError)

ans = 6

More About

Cyclic Redundancy Check Coding
Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting
errors that occur when a data frame is transmitted. Unlike block or convolutional codes,
CRC codes do not have a built-in error-correction capability. Instead, when a
communications system detects an error in a received codeword, the receiver requests
the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits,
called the checksum or syndrome, and then appends the checksum to the data frame.
After receiving a transmitted codeword, the receiver applies the same rule to the received
codeword. If the resulting checksum is nonzero, an error has occurred and the
transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is
divided into subframes, the rule is applied to each data subframe, and individual
checksums are appended to each subframe. The subframe codewords are concatenated to
output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

4 System Objects — Alphabetical List

4-462

CRC Syndrome Detector Operation
The CRC syndrome detector outputs the received message frame and a checksum error
vector according to the specified generator polynomial and number of checksums per
frame.

The checksum bits are removed from each subframe, so that the resulting the output
frame length is n - k × r, where n is the size of the received codeword, k is the number of
checksums per frame, and r is the degree of the generator polynomial. The input frame
must be evenly divisible by k.

For a specific initial state of the internal shift register:

1 The received codeword is divided into k equal sized subframes.
2 The CRC is removed from each of the k subframes and compared to the checksum

calculated on the received codeword subframes.
3 The output frame is assembled by concatenating the subframe bits of the k subframes

and then output as a column vector.
4 The checksum error is output as a binary column vector of length k. An element value

of 0 indicates an error-free received subframe, and an element value of 1 indicates an
error occurred in the received subframe.

For the scenario shown here, a 16-bit codeword is received, a third degree generator
polynomial computes the CRC checksum, the initial state is 0, and the number of
checksums per frame is 2.

 comm.CRCDetector

4-463

Since the number of checksums per frame is 2 and the generator polynomial degree is 3,
the received codeword is split in half and two checksums of size 3 are computed, one for
each half of the received codeword. The initial states are not shown, because an initial
state of [0] does not affect the output of the CRC algorithm. The output frame contains
the concatenation of the two halves of the received codeword as a single vector of size 10.
The checksum error signal output contains a 2-by-1 binary frame vector whose entries
depend on whether the computed checksums are zero. As shown in the figure, the first
checksum is nonzero and the second checksum is zero, indicating an error occurred in
reception of the first half of the codeword.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood

Cliffs, N.J.: Prentice-Hall, 1988.

4 System Objects — Alphabetical List

4-464

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.
Upper Saddle River, N.J.: Prentice Hall, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CRCGenerator | comm.HDLCRCDetector

Blocks
General CRC Syndrome Detector

Topics
“Cyclic Redundancy Check Codes”

 comm.CRCDetector

4-465

comm.CRCGenerator
Package: comm

Generate CRC code bits and append to input data

Description
The comm.CRCGenerator System object generates cyclic redundancy check (CRC) code
bits for each input frame and appends them to the frame. For more information, see “CRC
Generator Operation” on page 4-477.

To generate CRC code bits for each input frame and append them to the frame:

1 Create the comm.CRCGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
crcgenerator= comm.CRCGenerator
crcgenerator = comm.CRCGenerator(Name,Value)
crcgenerator = comm.CRCGenerator(poly,Name,Value)

Description
crcgenerator= comm.CRCGenerator creates a CRC code generator System object.
This object generates CRC bits according to a specified generator polynomial and
appends them to the input frame.

crcgenerator = comm.CRCGenerator(Name,Value) sets properties using one or
more name-value pairs. For example, comm.CRCGenerator('Polynomial','z^16 +

4 System Objects — Alphabetical List

4-466

z^14 + z + 1') configures the CRC generator System object to append CRC-16 cyclic
redundancy check bits to the input frame. Enclose each property name in quotes.

crcgenerator = comm.CRCGenerator(poly,Name,Value) creates a CRC code
generator System object. This object has the Polynomial property set to poly, and the
other specified properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Polynomial — Generator polynomial
'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector |
integer row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in

order of descending power. The length of this vector is (N+1), where N is the degree
of the generator polynomial. For example, [1 1 0 1] represents the polynomial x3+
z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the
polynomial in descending order. For example, [3 2 0] represents the polynomial z3 +
z2 + 1.

For more information, see “Character Representation of Polynomials”.

Some commonly used generator polynomials include:

 comm.CRCGenerator

4-467

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 +
z^8 + z^7 + z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same
polynomial, p(z) = z 7 + z 2 + 1.
Data Types: double | char

InitialConditions — Initial states of internal shift register
0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row
vector with a length equal to the degree of the generator polynomial. A scalar value is
expanded to a row vector of equal length to the degree of the generator polynomial.
Data Types: logical

DirectMethod — Use direct algorithm for CRC checksum calculations
false (default) | true

Use direct algorithm for CRC checksum calculations, specified as false or true.

When you set this property to true, the object uses the direct algorithm for CRC
checksum calculations. When you set this property to false, the object uses the non-
direct algorithm for CRC checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and
Correction”.
Data Types: logical

ReflectInputBytes — Reflect input bytes
false (default) | true

4 System Objects — Alphabetical List

4-468

Reflect input bytes, specified as false or true. Set this property to true to flip the input
frame on a bytewise basis before entering the data into the shift register.

When you set this property to true, the input frame length divided by the value of the
ChecksumsPerFrame property must be an integer and a multiple of 8.
Data Types: logical

ReflectChecksums — Reflect checksums before final XOR
false (default) | true

Reflect checksums before final XOR, specified as false or true. Set this property to
true to flip the CRC checksums around their centers after the input data are completely
through the shift register.
Data Types: logical

FinalXOR — Final XOR
0 (default) | binary scalar | binary vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the
degree of the generator polynomial. The XOR operation runs using the value of the
FinalXOR property and the CRC checksum before comparing with the input checksum. A
scalar value is expanded to a row vector of equal length to the degree of the generator
polynomial. A setting of 0 is equivalent to no XOR operation.
Data Types: logical

ChecksumsPerFrame — Number of checksums calculated for each frame
1 (default) | positive integer

Number of checksums calculated for each frame, specified as a positive integer. For more
information, see “CRC Generator Operation” on page 4-477.
Data Types: double

Usage

Syntax
codeword = crcgenerator(x)

 comm.CRCGenerator

4-469

Description
codeword = crcgenerator(x) generates CRC code bits for each input frame and
appends them to the frame.

Input Arguments
x — Input signal
binary column vector

Input signal, specified as a binary column vector. The length of the input frame must be a
multiple of the value of the ChecksumsPerFrame property. If the input data type is
double, the least significant bit is used as the binary value. For more information, see
“CRC Generator Operation” on page 4-477.
Data Types: double | logical

Output Arguments
codeword — Output codeword frame
binary column vector

Output codeword frame, returned as a binary column vector that inherits the data type of
the input signal. The output contains the input frames with the CRC code sequence bits
appended.

The length of the output codeword frame is m + k * r, where m is the size of the input
message, k is the number of checksums per input frame, and r is the degree of the
generator polynomial. For more information, see “CRC Generator Operation” on page 4-
477.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects — Alphabetical List

4-470

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Generate CRC-8 Checksum

Generate a CRC-8 checksum for the example shown in 802.11™-2016[1] on page 4-0 ,
section 21.3.10.3 and compare with the expected CRC.

Create a CRC Generator System object™. To align with the CRC calculation in
802.11-20016, the System object™ sets the generator polynomial as z8 + z2 + z + 1, initial
states to 1, direct method, and final XOR to 1.

crc8 = comm.CRCGenerator('Polynomial','z^8 + z^2 + z + 1', ...
 'InitialConditions',1,'DirectMethod',true,'FinalXOR',1)

crc8 =
 comm.CRCGenerator with properties:

 Polynomial: 'z^8 + z^2 + z + 1'
 InitialConditions: 1
 DirectMethod: true
 ReflectInputBytes: false
 ReflectChecksums: false
 FinalXOR: 1
 ChecksumsPerFrame: 1

Process one input frame according to the example from the 802.11-2016 standard in
section 21.3.10.3. In the example, the input bit stream {m0, … m22} is {1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1} and the expected CRC checksum {c7, … c0} is {0 0 0 1 1 1 0
0}.

x = [1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]';
expectedChecksum = [0 0 0 1 1 1 0 0]';
checksumLength = length(expectedChecksum);

 comm.CRCGenerator

4-471

The generated CRC checksum is compared to the expected checksum.

codeword = crc8(x);
checksum = codeword(end-checksumLength+1:end);
isequal(checksum,expectedChecksum)

ans = logical
 1

References

[1] IEEE Std 802.11™-2016 IEEE Standard for Information Technology—Local and
Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN MAC and
PHY Specifications.

CRC Detection of Errors in a Random Message

Pass binary data through a CRC generator, introduce a bit error, and detect the error
using a CRC detector.

Create a random binary vector.

x = randi([0 1],12,1);

Encode the input message frame using a CRC generator with the ChecksumsPerFrame
property set to 2. This subdivides the incoming frame into two equal-length subframes.

crcgenerator = comm.CRCGenerator([1 0 0 1],'ChecksumsPerFrame',2);
codeword = crcgenerator(x);

Decode the codeword and verify that there are no errors in either subframe.

crcdetector = comm.CRCDetector([1 0 0 1],'ChecksumsPerFrame',2);
[~, err] = crcdetector(codeword)

err = 2×1

 0
 0

4 System Objects — Alphabetical List

4-472

Introduce an error in the second subframe by inverting the last element of subframe 2.
Pass the corrupted codeword through the CRC detector and verify that the error is
detected in the second subframe.

codeword(end) = not(codeword(end));
[~,err] = crcdetector(codeword)

err = 2×1

 0
 1

Cyclic Redundancy Check of Noisy BPSK Data Frames

Use a CRC code to detect frame errors in a noisy BPSK signal.

Create a CRC generator and detector pair using a standard CRC-4 polynomial,
z4 + z3 + z2 + z + 1.

poly = 'z4+z3+z2+z+1';
crcgenerator = comm.CRCGenerator(poly);
crcdetector = comm.CRCDetector(poly);

Generate 12-bit frames of binary data and append the CRC bits. Based on the degree of
the polynomial, 4 bits are appended to each frame. Apply BPSK modulation and pass the
signal through an AWGN channel. Demodulate and use the CRC detector to determine if
the frame is in error.

numFrames = 20;
frmError = zeros(numFrames,1);

for k = 1:numFrames
 data = randi([0 1],12,1); % Generate binary data
 encData = crcgenerator(data); % Append CRC bits
 modData = pskmod(encData,2); % BPSK modulate
 rxSig = awgn(modData,5); % AWGN channel, SNR = 5 dB
 demodData = pskdemod(rxSig,2); % BPSK demodulate
 [~,frmError(k)] = crcdetector(demodData); % Detect CRC errors
end

Identify the frames in which CRC code bit errors are detected.

 comm.CRCGenerator

4-473

find(frmError)

ans = 6

CRC-16-CCITT Generator for X.25

Create a CRC-16-CCITT generator as described in Section 2.2.7.4 of ITU-T
Recommendation X-25[1] on page 4-0 using the input data and expected frame check
sequence (FCS) from Example 2 in Appendix I, I.1.

Create an unnumbered acknowledgement (UA) response frame where address = B and F
= 1.

Address = [1 0 0 0 0 0 0 0];
UA = [1 1 0 0 1 1 1 0];
input = [Address UA]';
expectedChecksum = [1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0]'; % Expected FCS
checksumLength = 16;

crcGen = comm.CRCGenerator(...
 'Polynomial','X^16 + X^12 + X^5 + 1',...
 'InitialConditions',1,...
 'DirectMethod',true,...
 'FinalXOR',1);
crcSeq = crcGen(input);
checkSum = crcSeq(end-checksumLength+1:end);

Compare calculated checksum with the expected checksum.

isequal(expectedChecksum,checkSum)

ans = logical
 1

References

[1] ITU Telecommunication Standardization Sector. Series X: Data Networks And Open
System Communication. Public data networks – Interfaces. 1997

4 System Objects — Alphabetical List

4-474

CRC-32 Generator for Ethernet

Create a CRC-32 code for the frame check sequence (FCS) field for Ethernet as described
in Section 3.2.9 of the IEEE Standard for Ethernet[1] on page 4-0 .

rng(1865); % Seed the random number generator for repeatable results

Initialize a message with random data to represent the protected fields of the MAC frame,
specifically the destination address, source address, length or type field, MAC client data,
and padding.

data = randi([0,1],100,1);

Specify the CRC-32 generating polynomial used for encoding Ethernet messages.

poly = [32,26,23,22,16,12,11,10,8,7,5,4,2,1,0];

Calculate the CRC by following the steps specified in the standard and using the
nondirect method to generate the CRC code.

dataN = [not(data(1:32));data(33:end)]; % Section 3.2.9 step a) and b)
crcGen1 = comm.CRCGenerator(...
 'Polynomial', poly, ...
 'InitialConditions', 0, ...
 'DirectMethod', false, ...
 'FinalXOR', 1);
seq = crcGen1(dataN); % Section 3.2.9 step c), d) and e)
csNondirect = seq(end-31:end);

Calculate the CRC by following the steps specified in the standard and using the direct
method to generate the CRC code.

crcGen2 = comm.CRCGenerator(...
 'Polynomial', poly, ...
 'InitialConditions', 1, ...
 'DirectMethod', true, ...
 'FinalXOR', 1);
txSeq = crcGen2(data);
csDirect = txSeq(end-31:end);

Compare the generated CRC codes by using the nondirect and direct methods.

disp([csNondirect';csDirect']);

 Columns 1 through 13

 comm.CRCGenerator

4-475

 1 1 1 0 1 1 0 0 1 0 0 1 0
 1 1 1 0 1 1 0 0 1 0 0 1 0

 Columns 14 through 26

 1 0 0 1 0 1 0 1 1 0 0 0 1
 1 0 0 1 0 1 0 1 1 0 0 0 1

 Columns 27 through 32

 1 1 0 0 1 0
 1 1 0 0 1 0

isequal(csNondirect,csDirect)

ans = logical
 1

rng('default'); % Reset the random number generator

References

[1] IEEE Computer Society. IEEE Standard for Ethernet: Std 802.3-2012. New York, NY:
2012.

More About

Cyclic Redundancy Check Coding
Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting
errors that occur when a data frame is transmitted. Unlike block or convolutional codes,
CRC codes do not have a built-in error-correction capability. Instead, when a
communications system detects an error in a received codeword, the receiver requests
the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits,
called the checksum or syndrome, and then appends the checksum to the data frame.
After receiving a transmitted codeword, the receiver applies the same rule to the received
codeword. If the resulting checksum is nonzero, an error has occurred and the
transmitter should resend the data frame.

4 System Objects — Alphabetical List

4-476

When the number of checksums per frame is greater than 1, the input data frame is
divided into subframes, the rule is applied to each data subframe, and individual
checksums are appended to each subframe. The subframe codewords are concatenated to
output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

CRC Generator Operation
The CRC generator appends CRC checksums to the input frame according to the specified
generator polynomial and number of checksums per frame.

For a specific initial state of the internal shift register and k checksums per input frame:

1 The input signal is divided into k subframes of equal size.
2 Each of the k subframes are prefixed with the initial states vector.
3 The CRC algorithm is applied to each subframe.
4 The resulting checksums are appended to the end of each subframe.
5 The subframes are concatenated and output as a column vector.

For the scenario shown here, a 10-bit frame is input, a third degree generator polynomial
computes the CRC checksum, the initial state is 0, and the number of checksums per
frame is 2.

 comm.CRCGenerator

4-477

The input frame is divided into two subframes of size 5 and checksums of size 3 are
computed and appended to each subframe. The initial states are not shown, because an
initial state of [0] does not affect the output of the CRC algorithm. The output
transmitted codeword frame has the size 5 + 3 + 5 + 3 = 16.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood

Cliffs, N.J.: Prentice-Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage.
Upper Saddle River, N.J.: Prentice Hall, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 System Objects — Alphabetical List

4-478

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CRCDetector | comm.HDLCRCGenerator

Blocks
General CRC Generator

Topics
“Cyclic Redundancy Check Codes”

 comm.CRCGenerator

4-479

comm.DBPSKDemodulator
Package: comm

Demodulate using DBPSK method

Description
The DBPSKDemodulator object demodulates a signal that was modulated using the
differential binary phase shift keying method. The input is a baseband representation of
the modulated signal.

To demodulate a signal that was modulated using differential binary phase shift keying:

1 Define and set up your DBPSK demodulator object. See “Construction” on page 4-
480.

2 Call step to demodulate a signal according to the properties of
comm.DBPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DBPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the differential binary phase shift keying (DBPSK)
method.

H = comm.DBPSKDemodulator(Name,Value) creates a DBPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-480

H = comm.DBPSKDemodulator(PHASE,Name,Value) creates a DBPSK demodulator
object, H. This object has the PhaseRotation property set to PHASE and the other
specified properties set to the specified values.

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated bits in
radians as a real scalar. The default is 0. This value corresponds to the phase difference
between previous and current modulated bits when the input is zero.

OutputDataType

Data type of output

Specify output data type as one of Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | logical. The
default is Full precision. When you set this property to Full precision, the output
data type has the same data type as the input. In this case, that value must be a double-
or single-precision data type.

Methods
reset Reset states of DBPSK demodulator object
step Demodulate using DBPSK method

Common to All System Objects
release Allow System object property value changes

Examples

 comm.DBPSKDemodulator

4-481

DBPSK Signal in AWGN

Create a DBPSK modulator and demodulator pair.

dbpskmod = comm.DBPSKModulator(pi/4);
dpbpskdemod = comm.DBPSKDemodulator(pi/4);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for
the one bit transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50-bit frames
• DBPSK modulate
• Pass through AWGN channel
• DBPSK demodulate
• Collect error statistics

for counter = 1:100
 txData = randi([0 1],50,1);
 modSig = dbpskmod(txData);
 rxSig = awgn(modSig,7);
 rxData = dpbpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0040

numErrors = errorStats(2)

numErrors = 20

numBits = errorStats(3)

numBits = 4999

4 System Objects — Alphabetical List

4-482

Algorithms
This object implements the algorithm, inputs, and outputs described on the DBPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DBPSKModulator | comm.DQPSKModulator

Introduced in R2012a

 comm.DBPSKDemodulator

4-483

reset
System object: comm.DBPSKDemodulator
Package: comm

Reset states of DBPSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the DBPSKDemodulator object, H.

4 System Objects — Alphabetical List

4-484

step
System object: comm.DBPSKDemodulator
Package: comm

Demodulate using DBPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the DBPSK demodulator System object,
H, and returns Y. Input X must be a double or single precision data type scalar or column
vector.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-485

comm.DBPSKModulator
Package: comm

Modulate using DBPSK method

Description
The DBPSKModulator object modulates using the differential binary phase shift keying
method. The output is a baseband representation of the modulated signal.

To modulate a signal using differential binary phase shift keying:

1 Define and set up your DBPSK modulator object. See “Construction” on page 4-486.
2 Call step to modulate a signal according to the properties of

comm.DBPSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DBPSKModulator creates a modulator System object, H. This object
modulates the input signal using the differential binary phase shift keying (DBPSK)
method.

H = comm.DBPSKModulator(Name,Value) creates a DBPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DBPSKModulator(PHASE,Name,Value) creates a DBPSK modulator object,
H. This object has the PhaseRotation property set to PHASE, and the other specified
properties set to the specified values.

4 System Objects — Alphabetical List

4-486

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated bits in
radians as a real scalar value. The default is 0. This value corresponds to the phase
difference between previous and current modulated bits when the input is zero.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods
reset Reset states of DBPSK modulator object
step Modulate using DBPSK method

Common to All System Objects
release Allow System object property value changes

Examples

DBPSK Signal in AWGN

Create a DBPSK modulator and demodulator pair.

dbpskmod = comm.DBPSKModulator(pi/4);
dpbpskdemod = comm.DBPSKDemodulator(pi/4);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for
the one bit transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

 comm.DBPSKModulator

4-487

Main processing loop steps:

• Generate 50-bit frames
• DBPSK modulate
• Pass through AWGN channel
• DBPSK demodulate
• Collect error statistics

for counter = 1:100
 txData = randi([0 1],50,1);
 modSig = dbpskmod(txData);
 rxSig = awgn(modSig,7);
 rxData = dpbpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0040

numErrors = errorStats(2)

numErrors = 20

numBits = errorStats(3)

numBits = 4999

Algorithms
This object implements the algorithm, inputs, and outputs described on the DBPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

4 System Objects — Alphabetical List

4-488

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DBPSKDemodulator | comm.DQPSKModulator

Introduced in R2012a

 comm.DBPSKModulator

4-489

reset
System object: comm.DBPSKModulator
Package: comm

Reset states of DBPSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the DBPSKModulator object, H.

4 System Objects — Alphabetical List

4-490

step
System object: comm.DBPSKModulator
Package: comm

Modulate using DBPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the DBPSK modulator System object, H. It
returns the baseband modulated output, Y. The input must be a numeric or logical data
type column vector of bits.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-491

comm.Descrambler
Package: comm

Descramble input signal

Description
The comm.Descrambler object descrambles a scalar or column vector input signal. The
comm.Descrambler object is the inverse of the comm.Scrambler object. If you use the
comm.Scrambler object in a transmitter, then you use the comm.Descrambler object in
the related receiver.

This schematic shows the descrambler operation. The adders and subtracter operate
modulo N, where N is the value specified by the Calculation base property.

Input data

Descrambled data

1 2 M-1 M

p11 p2 pm-1 pm

At each time step, the input causes the contents of the registers to shift sequentially.
Using the Polynomial property, you specify the on or off state for each switch in the
descrambler. To make the comm.Descrambler object reverse the operation of the
comm.Scrambler object, use the same property settings in both objects. If there is no
signal delay between the scrambler and the descrambler, then the InitialConditions in the
two objects must be the same.

To descramble an input signal:

1 Create the comm.Descrambler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

4 System Objects — Alphabetical List

4-492

Creation

Syntax
descrambler = comm.Descrambler
descrambler = comm.Descrambler(base,poly,cond)
descrambler = comm.Descrambler(___ ,Name,Value)

Description
descrambler = comm.Descrambler creates a descrambler System object. This object
descrambles the input data by using a linear feedback shift register that you specify with
the Polynomial property.

descrambler = comm.Descrambler(base,poly,cond) creates the descrambler
object with the CalculationBase property set to base, the Polynomial property set to
poly, and the InitialConditions property set to cond.
Example: comm.Descrambler(8,'1 + z^-2 + z^-3 + z^-5 + z^-7',[0 3 2 2 5
1 7]) sets the calculation base to 8, and the descrambler polynomial and initial
conditions as specified.

descrambler = comm.Descrambler(___ ,Name,Value) sets properties using one or
more name-value pairs and either of the previous syntaxes. Enclose each property name
in single quotes.
Example: comm.Descrambler('CalculationBase',2)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

 comm.Descrambler

4-493

CalculationBase — Range of input data
4 (default) | nonnegative integer

Range of input data used in the descrambler for modulo operations, specified as a
nonnegative integer. The input and output of this object are integers from 0 to
CalculationBase – 1.
Data Types: double

Polynomial — Connections for linear feedback shift registers
'1 + z^-1 + z^-2 + z^-4' (default) | character vector | integer vector | binary vector

Connections for linear feedback shift registers in the descrambler, specified as a
character vector, integer vector, or binary vector. The Polynomial property defines if
each switch in the descrambler is on or off. Specify the polynomial as:

• A character vector, such as '1 + z^-6 + z^-8'. For more details on specifying
polynomials in this way, see Character Representation of Polynomials.

• An integer vector, such as [0 -6 -8], listing the descrambler coefficients in order of
descending powers of z-1, where p(z-1) = 1 + p1z-1 + p2z-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of z that appear
in the polynomial that have a coefficient of 1. In this case, the order of the descramble
polynomial is one less than the binary vector length.

Example: '1 + z^-6 + z^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent
this polynomial:

p(z-1) = 1 + z-6 + z-8

Data Types: double | char

InitialConditionsSource — Initial conditions source
'Property' (default) | 'Input port'

• 'Property' – Specify descrambler initial conditions by using the InitialConditions
property.

• 'Input port' – Specify descrambler initial conditions by using an additional input
argument, initcond, when calling the object.

Data Types: char

InitialConditions — Initial conditions of descrambler registers
[0 1 2 3] (default) | nonnegative integer vector

4 System Objects — Alphabetical List

4-494

Initial conditions of descrambler registers when the simulation starts, specified as a
nonnegative integer vector. The length of InitialConditions must equal the order of
the Polynomial property. The vector element values must be integers from 0 to
CalculationBase – 1.

Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

ResetInputPort — Descrambler state reset port
false (default) | true

Descrambler state reset port, specified as false or true. If ResetInputPort is true,
you can reset the descrambler object by using an additional input argument, reset, when
calling the object.

Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

Usage

Syntax
descrambledOut = descrambler(signal)
descrambledOut = descrambler(signal,initcond)
descrambledOut = descrambler(signal,reset)

Description
descrambledOut = descrambler(signal) descrambles the input signal. The output
is the same data type and length as the input vector.

descrambledOut = descrambler(signal,initcond)provides an additional input
with values specifying the initial conditions of the linear feedback shift register.

This syntax applies when you set the InitialConditionsSource property of the object to
'Input port'.

 comm.Descrambler

4-495

descrambledOut = descrambler(signal,reset) provides an additional input
indicating whether to reset the state of the descrambler.

This syntax applies when you set the InitialConditionsSource property of the object to
'Property' and the ResetInputPort to true.

Input Arguments
signal — Input signal
column vector

Input signal, specified as a column vector.
Example: descrambledOut = descrambler([0 1 1 0 1 0])
Data Types: double | logical

initcond — Initial register condition
nonnegative integer column vector

Initial descrambler register conditions when the simulation starts, specified as a
nonnegative integer column vector. The length of initcond must equal the order of the
Polynomial property. The vector element values must be integers from 0 to
CalculationBase – 1.
Example: descrambledOut = descrambler(signal,[0 1 1 0]) corresponds to
possible initial register states for a descrambler with a polynomial order of 4 and a
calculation base of 2 or higher.
Data Types: double

reset — Reset initial state of descrambler
scalar

Reset initial state of the descrambler when the simulation starts, specified as a scalar.
When the value of reset is nonzero, the object is reset before it is called.
Example: descrambledOut = descrambler(signal,0) descrambles the input signal
without resetting the descrambler states.
Data Types: double

4 System Objects — Alphabetical List

4-496

Output Arguments
out — Descrambled output
column vector

Descrambled output, returned as a column vector with the same data type and length as
signal.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Scramble and Descramble Data

Scramble and descramble 8-ary data using comm.Scrambler and comm.Descrambler
System objects™ having a calculation base of 8.

Create scrambler and descrambler objects, specifying the calculation base, polynomial,
and initial conditions using input arguments. The scrambler and descrambler polynomials
are specified with different but equivalent data formats.

N = 8;
scrambler = comm.Scrambler(N,'1 + z^-2 + z^-3 + z^-5 + z^-7', ...
 [0 3 2 2 5 1 7]);
descrambler = comm.Descrambler(N,[1 0 1 1 0 1 0 1], ...
 [0 3 2 2 5 1 7]);

 comm.Descrambler

4-497

Scramble and descramble random integers. Display the original data, scrambled data,
and descrambled data sequences.

data = randi([0 N-1],5,1);
scrData = scrambler(data);
deScrData = descrambler(scrData);
[data scrData deScrData]

ans = 5×3

 6 7 6
 7 5 7
 1 7 1
 7 0 7
 5 3 5

Verify that the descrambled data matches the original data.

isequal(data,deScrData)

ans = logical
 1

Scramble and Descramble Data with Changing Initial Conditions

Scramble and descramble quaternary data while changing the initial conditions between
function calls.

Create scrambler and descrambler System objects having a calculation base of 4. Set the
InitialConditionsSource property to 'Input port' so you can set the initial
conditions as an argument to the object.

N = 4;
scrambler = comm.Scrambler(N,'1 + z^-3','InitialConditionsSource','Input port');
descrambler = comm.Descrambler(N,'1 + z^-3','InitialConditionsSource','Input port');

Preallocate memory for the error vector which will be used to store errors output by the
symerr function.

errVec = zeros(10,1);

4 System Objects — Alphabetical List

4-498

Scramble and descramble random integers while changing the initial conditions,
initCond, each time the loop executes. Use the symerr function to determine if the
scrambling and descrambling operations result in symbol errors.

for k = 1:10
 initCond = randperm(3)';
 data = randi([0 N-1],5,1);
 scrData = scrambler(data,initCond);
 deScrData = descrambler(scrData,initCond);
 errVec(k) = symerr(data,deScrData);
end

Examine errVec to verify that the output from the descrambler matches the original
data.

errVec

errVec = 10×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.Descrambler

4-499

See Also
Objects
comm.PNSequence | comm.Scrambler

Blocks
Descrambler

Introduced in R2012a

4 System Objects — Alphabetical List

4-500

comm.DifferentialDecoder
Package: comm

Decode binary signal using differential decoding

Description
The DifferentialDecoder object decodes the binary input signal. The output is the
logical difference between the consecutive input element within a channel.

To decode a binary signal using differential decoding:

1 Define and set up your differential decoder object. See “Construction” on page 4-
501.

2 Call step to decode a binary signal according to the properties of
comm.DifferentialDecoder. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DifferentialDecoder creates a differential decoder System object, H. This
object decodes a binary input signal that was previously encoded using a differential
encoder.

H = comm.DifferentialDecoder(Name,Value) creates object, H, with each specified
property set to the specified value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

 comm.DifferentialDecoder

4-501

Properties
InitialCondition

Initial value used to generate initial output

Specify the initial condition as a real scalar. This property can have a logical, numeric, or
fixed-point (embedded.fi object) data type. The default is 0. The object treats nonbinary
values as binary signals.

Methods
reset Reset states of differential decoder object
step Decode binary signal using differential decoding

Common to All System Objects
release Allow System object property value changes

Examples

Decode Differentially Encoded Signal

Create a differential encoder and decoder pair.

diffEnc = comm.DifferentialEncoder;
diffDec = comm.DifferentialDecoder;

Generate random binary data. Differentially encode and decode the data.

data = randi([0 1],100,1);
encData = diffEnc(data);
decData = diffDec(encData);

Determine the number of errors between the original data and the decoded data.

numErrors = biterr(data,decData)

numErrors = 0

4 System Objects — Alphabetical List

4-502

Algorithms
This object implements the algorithm, inputs, and outputs described on the Differential
Decoder block reference page. The object properties correspond to the block parameters,
except:
The object only supports single channel, column vector inputs.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DifferentialEncoder

Introduced in R2012a

 comm.DifferentialDecoder

4-503

reset
System object: comm.DifferentialDecoder
Package: comm

Reset states of differential decoder object

Syntax
reset(H)

Description
reset(H) resets the states of the DifferentialDecoder object, H.

4 System Objects — Alphabetical List

4-504

step
System object: comm.DifferentialDecoder
Package: comm

Decode binary signal using differential decoding

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) decodes the differentially encoded input data, X, and returns the
decoded data, Y. The input X must be a column vector of data type logical, numeric, or
fixed-point (embedded.fi objects). Y has the same data type as X. The object treats non-
binary inputs as binary signals. The object computes the initial output value by
performing an Xor operation of the value in the InitialCondition property and the
first element of the vector you input the first time you call the step method.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-505

comm.DifferentialEncoder
Package: comm

Encode binary signal using differential coding

Description
The DifferentialEncoder object encodes the binary input signal within a channel. The
output is the logical difference between the current input element and the previous
output element.

To encode a binary signal using differential coding:

1 Define and set up your differential encoder object. See “Construction” on page 4-
506.

2 Call step to encode a binary signal according to the properties of
comm.DifferentialEncoder. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DifferentialEncoder creates a differential encoder System object, H. This
object encodes a binary input signal by calculating its logical difference with the
previously encoded data.

H = comm.DifferentialEncoder(Name,Value) creates object, H, with each specified
property set to the specified value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-506

Properties
InitialCondition

Initial value used to generate initial output

Specify the initial condition as a real scalar. This property can have a logical, numeric, or
fixed-point (embedded.fi object) data type. The default is 0. The object treats nonbinary
values as binary signals.

Methods
reset Reset states of differential encoder object
step Encode binary signal using differential coding

Common to All System Objects
release Allow System object property value changes

Examples

Differentially Encode Binary Data

Create a differential encoder object.

diffEnc = comm.DifferentialEncoder;

Generate random binary data. Encode the data.

data = randi([0 1],10,1);
encData = diffEnc(data)

encData = 10×1

 1
 0
 0
 1

 comm.DifferentialEncoder

4-507

 0
 0
 0
 1
 0
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Differential
Encoder block reference page. The object properties correspond to the block parameters,
except:
The object only supports single channel, column vector inputs.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DifferentialDecoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-508

reset
System object: comm.DifferentialEncoder
Package: comm

Reset states of differential encoder object

Syntax
reset(H)

Description
reset(H) resets the states of the DifferentialEncoder object, H.

 reset

4-509

step
System object: comm.DifferentialEncoder
Package: comm

Encode binary signal using differential coding

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes the binary input data, X, and returns the differentially encoded
data, Y. The input X must be a column vector of data type logical, numeric, or fixed-point
(embedded.fi objects). Y has the same data type as X. The object treats non-binary inputs
as binary signals. The object computes the initial output value by performing an Xor
operation of the value in the InitialCondition property and the first element of the
vector you input the first time you call the step method.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-510

comm.DiscreteTimeVCO
Package: comm

Generate variable frequency sinusoid

Description
The DiscreteTimeVCO (voltage-controlled oscillator) object generates a signal whose
frequency shift from the quiescent frequency property is proportional to the input signal.
The input signal is interpreted as a voltage.

To generate a variable frequency sinusoid:

1 Define and set up your discrete time voltage-controlled oscillator object. See
“Construction” on page 4-511 .

2 Call step to generate a variable frequency sinusoid according to the properties of
comm.DiscreteTimeVCO. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DiscreteTimeVCO creates a discrete-time voltage-controlled oscillator (VCO)
System object, H. This object generates a sinusoidal signal with the frequency shifted
from the specified quiescent frequency to a value proportional to the input signal.

H = comm.DiscreteTimeVCO(Name,Value) creates a discrete-time VCO object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.DiscreteTimeVCO

4-511

Properties
OutputAmplitude

Amplitude of output signal

Specify the amplitude of the output signal as a double- or single-precision, scalar value.
The default is 1. This property is tunable.

QuiescentFrequency

Frequency of output signal when input is zero

Specify the quiescent frequency of the output signal in Hertz, as a double- or single-
precision, real, scalar value. The default is 10. This property is tunable.

Sensitivity

Sensitivity of frequency shift of output signal

Specify the sensitivity of the output signal frequency shift to the input as a double- or
single-precision, real, scalar value. The default is 1. This value scales the input voltage
and, consequently, the shift from the quiescent frequency value. The property measures
Sensitivity in Hertz per volt. This property is tunable.

InitialPhase

Initial phase of output signal

Specify the initial phase of the output signal, in radians, as a double or single precision,
real, scalar value. The default is 0.

SampleRate

Sample rate of input

Specify the sample rate of the input, in Hertz, as a double- or single-precision, positive,
scalar value. The default is 100.

4 System Objects — Alphabetical List

4-512

Methods
reset Reset states of discrete-time VCO object
step Generate variable frequency sinusoid

Common to All System Objects
release Allow System object property value changes

Examples

Generate FSK Signal Using Discrete Time VCO

Create a signal source System object™.

reader = dsp.SignalSource;

Generate random data and apply rectangular pulse shaping.

reader.Signal = randi([0 7],10,1);
reader.Signal = rectpulse(reader.Signal,100);

Create a signal logger and discrete time VCO System objects.

logger = dsp.SignalSink;
discreteVCO = comm.DiscreteTimeVCO('OutputAmplitude',8,'QuiescentFrequency',1);

Generate an FSK signal.

while(~isDone(reader))
 sig = reader();
 y = discreteVCO(sig);
 logger(y);
end
oscsig = logger.Buffer;

Plot the generated FSK signal.

t = (0:length(oscsig)-1)'/discreteVCO.SampleRate;
plot(t,reader.Signal,'--r', 'LineWidth',3)
hold on

 comm.DiscreteTimeVCO

4-513

plot(t,oscsig,'-b');
hold off
xlabel('Time (s)')
ylabel('Amplitude (V)')
legend('Input Signal','FSK Signal','location','se')

Algorithms
This object implements the algorithm, inputs, and outputs as described on the Discrete-
Time VCO block reference page. However, this object and the corresponding block may

4 System Objects — Alphabetical List

4-514

not generate the exact same outputs for single-precision inputs or property values due to
the following differences in casting strategies and arithmetic precision issues:

• The block always casts the result of intermediate mathematical operations to the input
data type. The object does not cast intermediate results and MATLAB decides the data
type. The object casts the final output to the input data type.

• You can specify the SampleRate object property in single-precision or double-
precision. The block does not allow this.

• In arithmetic operations with more than two operands with mixed data types, the
result may differ depending on the order of operation. Thus, the following calculation
may also contribute to the difference in the output of the block and the object:

input * sensitivity * sampleTime
• The block performs this calculation from left to right. However, since sensitivity *

sampleTime is a one-time calculation, the object calculates this in the following
manner:

input * (sensitivity * sampleTime)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPMCarrierPhaseSynchronizer | comm.CarrierSynchronizer

Introduced in R2012a

 comm.DiscreteTimeVCO

4-515

reset
System object: comm.DiscreteTimeVCO
Package: comm

Reset states of discrete-time VCO object

Syntax
reset(H)

Description
reset(H) resets the states of the DiscreteTimeVCO object, H.

4 System Objects — Alphabetical List

4-516

step
System object: comm.DiscreteTimeVCO
Package: comm

Generate variable frequency sinusoid

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) generates a sinusoidal signal, Y, with frequency shifted, from the value
you specify in the QuiescentFrequency property, to a value proportional to the input
signal, X. The input, X, must be a double or single precision, real, scalar value. The
output, Y, has the same data type and size as the input, X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-517

comm.DPD
Package: comm

Digital predistorter

Description
The comm.DPD System object applies digital predistortion (DPD) to a complex baseband
signal by using a memory polynomial to compensate for nonlinearities in a power
amplifier. For more information, see “Digital Predistortion” on page 4-524.

To predistort signals:

1 Create the comm.DPD object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
dpd = comm.DPD
dpd = comm.DPD(Name,Value)

Description
dpd = comm.DPD creates a digital predistorter System object to predistort a signal.

dpd = comm.DPD(Name,Value) sets properties using one or more name-value pairs.
For example, comm.DPD('PolynomialType','Cross-term memory polynomial')
configures the predistorter System object to predistort the input signal by using a
memory polynomial with cross terms. Enclose each property name in quotes.

4 System Objects — Alphabetical List

4-518

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

PolynomialType — Polynomial type
'Memory polynomial' (default) | 'Cross-term memory polynomial'

Polynomial type used for predistortion, specified as one of these values:

• 'Memory polynomial' — Predistorts the input signal by using a memory polynomial
without cross terms.

• 'Cross-term memory polynomial' — Predistorts the input signal by using a
memory polynomial with cross terms.

For more information, see “Digital Predistortion” on page 4-524.

Coefficients — Memory-polynomial coefficients
complex([1 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]) (default) | matrix

Memory-polynomial coefficients, specified as a matrix. The number of rows in the matrix
must equal the memory depth of the memory polynomial.

• If PolynomialType is 'Memory polynomial', the number of columns in the matrix
is the degree of the memory polynomial.

• If PolynomialType is 'Cross-term memory polynomial', the number of
columns in the matrix must equal m(n-1)+1. m is the memory depth of the polynomial,
and n is the degree of the memory polynomial.

For more information, see “Digital Predistortion” on page 4-524.
Data Types: double
Complex Number Support: Yes

 comm.DPD

4-519

Usage

Syntax
out = dpd(in)

Description
out = dpd(in) predistorts a complex baseband signal by using a memory polynomial to
compensate for nonlinearities in a power amplifier.

Input Arguments
in — Input baseband signal
column vector

Input baseband signal, specified as a column vector.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Predistorted baseband signal
column vector

Predistorted baseband signal, returned as a column vector of the same length as the input
signal.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects — Alphabetical List

4-520

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Predistort Power Amplifier Input Signal

Apply digital predistortion (DPD) to a power amplifier input signal. The DPD coefficient
estimator System object uses a captured signal containing power amplifier input and
output signals to determine the predistortion coefficient matrix.

Load a file containing the input and output signals for the power amplifier.

load('commpowamp_dpd_data.mat','PA_input','PA_output')

Generate a DPD coefficient estimator System object and a raised cosine transmit filter
System object.

estimator = comm.DPDCoefficientEstimator(...
 'DesiredAmplitudeGaindB',10, ...
 'PolynomialType','Memory polynomial', ...
 'Degree',5,'MemoryDepth',3,'Algorithm','Least squares');

rctFilt = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',2);

Estimate the digital predistortion memory-polynomial coefficients.

coef = estimator(PA_input,PA_output);

Generate a DPD System object using coef, the estimated coefficients output from the
DPD coefficient estimator, as for the coefficient matrix.

dpd = comm.DPD('PolynomialType','Memory polynomial', ...
 'Coefficients',coef);

Generate 2000 random symbols and apply 16-QAM modulation to the signal. Apply raised
cosine transmit filtering to the modulated signal.

 comm.DPD

4-521

s = randi([0,15],2000,1);
u = qammod(s,16);
x = rctFilt(u);

Apply digital predistortion to the data. The DPD System object returns a predistorted
signal to provide as input to the power amplifier.

y = dpd(x);

Format of Coefficient Matrix for Digital Predistortion Memory Polynomial

This examples shows the format of the coefficient matrix for the DPD memory polynomial
by using a randomly generated coefficient matrix. The example:

• Creates a digital predistortion System object configured using a memory polynomial
coefficient matrix with the memory depth set to 3 and the polynomial degree set to 5
consisting of random values.

• Predistorts a signal using the memory-polynomial coefficient matrix.
• Compares one predistorted output element to the corresponding input element that

has been manually computed using the memory-polynomial coefficient matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input
by generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to
1. Add small random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,5);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,5)+1j*randn(3,5));

Create a DPD System object using the memory polynomial coefficient matrix, coef.

dpd = comm.DPD('PolynomialType','Memory polynomial','Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18)
to show how the coefficient matrix is used to calculate that particular output value.

4 System Objects — Alphabetical List

4-522

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef.*[u u.*abs(u) u.*(abs(u).^2) u.*(abs(u).^3) u.*(abs(u).^4)])))

ans = logical
 1

Format of Cross-Term Coefficient Matrix for Digital Predistortion Memory
Polynomial

This examples shows the format of the coefficient matrix for the DPD memory polynomial
by using a randomly generated coefficient matrix. The example:

• Creates a digital predistorter System object configured using a cross-term memory
polynomial coefficient matrix with the memory depth set to 3 and the polynomial
degree set to 5 consisting of random values.

• Predistorts a signal using the cross-term memory polynomial coefficient matrix.
• Compares one predistorted output element to the corresponding input element that

has been manually computed using the cross-term memory polynomial coefficient
matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input
by generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to
1. Add small random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,3*(5-1)+1);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,13) + 1j*randn(3,13));

Create a DPD System object using the cross-term memory polynomial coefficient matrix,
coef.

dpd = comm.DPD('PolynomialType','Cross-term memory polynomial','Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18)
to show how the coefficient matrix is used to calculate that particular output value.

 comm.DPD

4-523

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef.*[u u*abs(u.') u*(abs(u.').^2) u*(abs(u.').^3) u*(abs(u.').^4)])))

ans = logical
 1

More About

Digital Predistortion
Wireless communication transmissions commonly require wide bandwidth signal
transmission over a wide signal dynamic range. To transmit signals over a wide dynamic
range and achieve high efficiency, RF power amplifiers (PAs) commonly operate in their
nonlinear region. As this constellation diagram shows, the nonlinear behavior of a PA
causes signal constellation distortions that pinch the amplitude (AM-AM distortion) and
twist phase (AM-PM distortion) of constellation points proportional to the amplitude of
the constellation point.

4 System Objects — Alphabetical List

4-524

The goal of digital predistortion is to find a nonlinear function that linearizes the net
effect of the PA nonlinear behavior at the PA output across the PA operating range. When
the PA input is x(n), and the predistortion function is f(u(n)), where u(n) is the true signal
to be amplified, the PA output is approximately equal to G×u(n), where G is the desired
amplitude gain of the PA.

 comm.DPD

4-525

The digital predistorter can be configured to use a memory polynomial with or without
cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and
amjk.

• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .

The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function
f(u(n)) to predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on
the work in reference papers by Morgan, et al [1], and by Schetzen [2], using the
theoretical foundation developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G},
to the PA input, {x(n)}, provides a good approximation to the function f(u(n)), needed to
predistort {u(n)} to produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the
memory-polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm
or a recursive least squares algorithm. The least squares fit algorithm or a recursive least
squares algorithms use the memory polynomial equations above for a memory polynomial
with or without cross terms, by replacing {u(n)} with {y(n)/G}. The function order and

4 System Objects — Alphabetical List

4-526

dimension of the coefficient matrix are defined by the degree and depth of the memory
polynomial.

For an example that details the process of accurately estimating memory-polynomial
coefficients and predistorting a PA input signal, see “Power Amplifier Characterization
with DPD for Reduced Signal Distortion”.

For background reference material, see the works listed in [1] and [2].

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John

Pastalan. "A Generalized Memory Polynomial Model for Digital Predistortion of
Power Amplifiers." IEEE Transactions on Signal Processing. Vol. 54, Number 10,
October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York:
Wiley, 1980.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.DPDCoefficientEstimator

Blocks
DPD

 comm.DPD

4-527

Topics
“Power Amplifier Characterization with DPD for Reduced Signal Distortion”

Introduced in R2019a

4 System Objects — Alphabetical List

4-528

comm.DPDCoefficientEstimator
Package: comm

Estimate memory-polynomial coefficients for digital predistortion

Description
The comm.DPDCoefficientEstimator System object estimates the coefficients of a
memory polynomial for digital pre-distortion (DPD) of a nonlinear power amplifier, given
the baseband equivalent input and baseband equivalent output of the power amplifier. For
more information, see “Digital Predistortion” on page 4-537.

To compute predistortion coefficients:

1 Create the comm.DPDCoefficientEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
estimator = comm.DPDCoefficientEstimator
estimator = comm.DPDCoefficientEstimator(Name,Value)

Description
estimator = comm.DPDCoefficientEstimator creates a digital predistortion
coefficient estimator System object to estimate the coefficients of a memory polynomial
for digital predistortion (DPD) of a nonlinear power amplifier.

estimator = comm.DPDCoefficientEstimator(Name,Value) sets properties using
one or more name-value pairs. For example,

 comm.DPDCoefficientEstimator

4-529

comm.DPDCoefficientEstimator('PolynomialType','Cross-term memory
polynomial') configures the predistortion coefficient estimator System object to
estimate the coefficients for a memory-polynomial with cross terms. Enclose each
property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

DesiredAmplitudeGaindB — Desired amplitude gain
10 (default) | scalar

Desired amplitude gain in dB, specified as a scalar. This property value expresses the
desired signal gain at the compensated amplifier output.

Tunable: Yes
Data Types: double

PolynomialType — Polynomial type
'Memory polynomial' (default) | 'Cross-term memory polynomial'

Polynomial type used for predistortion, specified as one of these values:

• 'Memory polynomial' — Computes predistortion coefficients by using a memory
polynomial without cross terms

• 'Cross-term memory polynomial' — Computes predistortion coefficients by
using a memory polynomial with cross terms

For more information, see “Digital Predistortion” on page 4-537.

Degree — Memory-polynomial degree
5 (default) | positive integer

Memory-polynomial degree, specified as a positive integer.

4 System Objects — Alphabetical List

4-530

Data Types: double

MemoryDepth — Memory-polynomial depth
3 (default) | positive integer

Memory-polynomial depth in samples, specified as a positive integer.
Data Types: double

Algorithm — Estimation algorithm
'Least squares' (default) | 'Recursive least squares'

Adaptive algorithm used for equalization, specified as one of these values:

• 'Least squares' — Estimate the memory polynomial coefficients by using a least
squares algorithm

• 'Recursive least squares' — Estimate the memory polynomial coefficients by
using a recursive least squares algorithm

For algorithm reference material, see the works listed in [1] and [2].
Data Types: char | string

ForgettingFactor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the recursive least squares algorithm, specified as a scalar in
the range (0, 1]. Decreasing the forgetting factor reduces the convergence time but
causes the output estimates to be less stable.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'Recursive least squares'.
Data Types: double

InitialCoefficientEstimate — Initial coefficient estimate
[] (default) | matrix

Initial coefficient estimate for the recursive least squares algorithm, specified as a matrix.

 comm.DPDCoefficientEstimator

4-531

• If InitialCoefficientEstimate is an empty matrix, the initial coefficient estimate
for the recursive least squares algorithm is chosen automatically to correspond to a
memory polynomial that is an identity function, so that the output is equal to input.

• If InitialCoefficientEstimate is a nonempty matrix, the number of rows must
be equal to MemoryDepth.

• If PolynomialType is 'Memory polynomial', the number of columns is the
degree of the memory polynomial.

• If PolynomialType is 'Cross-term memory polynomial', the number of
columns must equal m(n-1)+1. m is the memory depth of the polynomial, and n is
the degree of the memory polynomial.

For more information, see “Digital Predistortion” on page 4-537.

Dependencies

To enable this property, set Algorithm to 'Recursive least squares'.
Data Types: double
Complex Number Support: Yes

Usage

Syntax
coef = estimator(paIn,paOut)

Description
coef = estimator(paIn,paOut) estimates the coefficients of a memory polynomial
for use by the comm.DPD System object to predistort a complex baseband signal by using
a memory-polynomial to compensate for nonlinearities in a power amplifier.

Input Arguments
paIn — Power amplifier baseband equivalent input
column vector

4 System Objects — Alphabetical List

4-532

Power amplifier baseband equivalent input, specified as a column vector.
Data Types: double
Complex Number Support: Yes

paOut — Power amplifier baseband equivalent output
column vector

Power amplifier baseband equivalent output, specified as a column vector of the same
length as paIn.
Data Types: double
Complex Number Support: Yes

Output Arguments
coef — Memory-polynomial coefficients
matrix

Memory-polynomial coefficients, returned as a matrix. For more information, see “Digital
Predistortion” on page 4-537.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

 comm.DPDCoefficientEstimator

4-533

Predistort Power Amplifier Input Signal

Apply digital predistortion (DPD) to a power amplifier input signal. The DPD coefficient
estimator System object uses a captured signal containing power amplifier input and
output signals to determine the predistortion coefficient matrix.

Load a file containing the input and output signals for the power amplifier.

load('commpowamp_dpd_data.mat','PA_input','PA_output')

Generate a DPD coefficient estimator System object and a raised cosine transmit filter
System object.

estimator = comm.DPDCoefficientEstimator(...
 'DesiredAmplitudeGaindB',10, ...
 'PolynomialType','Memory polynomial', ...
 'Degree',5,'MemoryDepth',3,'Algorithm','Least squares');

rctFilt = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',2);

Estimate the digital predistortion memory-polynomial coefficients.

coef = estimator(PA_input,PA_output);

Generate a DPD System object using coef, the estimated coefficients output from the
DPD coefficient estimator, as for the coefficient matrix.

dpd = comm.DPD('PolynomialType','Memory polynomial', ...
 'Coefficients',coef);

Generate 2000 random symbols and apply 16-QAM modulation to the signal. Apply raised
cosine transmit filtering to the modulated signal.

s = randi([0,15],2000,1);
u = qammod(s,16);
x = rctFilt(u);

Apply digital predistortion to the data. The DPD System object returns a predistorted
signal to provide as input to the power amplifier.

y = dpd(x);

4 System Objects — Alphabetical List

4-534

Format of Coefficient Matrix for Digital Predistortion Memory Polynomial

This examples shows the format of the coefficient matrix for the DPD memory polynomial
by using a randomly generated coefficient matrix. The example:

• Creates a digital predistortion System object configured using a memory polynomial
coefficient matrix with the memory depth set to 3 and the polynomial degree set to 5
consisting of random values.

• Predistorts a signal using the memory-polynomial coefficient matrix.
• Compares one predistorted output element to the corresponding input element that

has been manually computed using the memory-polynomial coefficient matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input
by generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to
1. Add small random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,5);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,5)+1j*randn(3,5));

Create a DPD System object using the memory polynomial coefficient matrix, coef.

dpd = comm.DPD('PolynomialType','Memory polynomial','Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18)
to show how the coefficient matrix is used to calculate that particular output value.

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef.*[u u.*abs(u) u.*(abs(u).^2) u.*(abs(u).^3) u.*(abs(u).^4)])))

ans = logical
 1

 comm.DPDCoefficientEstimator

4-535

Format of Cross-Term Coefficient Matrix for Digital Predistortion Memory
Polynomial

This examples shows the format of the coefficient matrix for the DPD memory polynomial
by using a randomly generated coefficient matrix. The example:

• Creates a digital predistorter System object configured using a cross-term memory
polynomial coefficient matrix with the memory depth set to 3 and the polynomial
degree set to 5 consisting of random values.

• Predistorts a signal using the cross-term memory polynomial coefficient matrix.
• Compares one predistorted output element to the corresponding input element that

has been manually computed using the cross-term memory polynomial coefficient
matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input
by generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to
1. Add small random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,3*(5-1)+1);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,13) + 1j*randn(3,13));

Create a DPD System object using the cross-term memory polynomial coefficient matrix,
coef.

dpd = comm.DPD('PolynomialType','Cross-term memory polynomial','Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18)
to show how the coefficient matrix is used to calculate that particular output value.

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef.*[u u*abs(u.') u*(abs(u.').^2) u*(abs(u.').^3) u*(abs(u.').^4)])))

ans = logical
 1

4 System Objects — Alphabetical List

4-536

More About

Digital Predistortion
Wireless communication transmissions commonly require wide bandwidth signal
transmission over a wide signal dynamic range. To transmit signals over a wide dynamic
range and achieve high efficiency, RF power amplifiers (PAs) commonly operate in their
nonlinear region. As this constellation diagram shows, the nonlinear behavior of a PA
causes signal constellation distortions that pinch the amplitude (AM-AM distortion) and
twist phase (AM-PM distortion) of constellation points proportional to the amplitude of
the constellation point.

The goal of digital predistortion is to find a nonlinear function that linearizes the net
effect of the PA nonlinear behavior at the PA output across the PA operating range. When

 comm.DPDCoefficientEstimator

4-537

the PA input is x(n), and the predistortion function is f(u(n)), where u(n) is the true signal
to be amplified, the PA output is approximately equal to G×u(n), where G is the desired
amplitude gain of the PA.

The digital predistorter can be configured to use a memory polynomial with or without
cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and
amjk.

• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .

The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function
f(u(n)) to predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on
the work in reference papers by Morgan, et al [1], and by Schetzen [2], using the
theoretical foundation developed for Volterra systems.

4 System Objects — Alphabetical List

4-538

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G},
to the PA input, {x(n)}, provides a good approximation to the function f(u(n)), needed to
predistort {u(n)} to produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the
memory-polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm
or a recursive least squares algorithm. The least squares fit algorithm or a recursive least
squares algorithms use the memory polynomial equations above for a memory polynomial
with or without cross terms, by replacing {u(n)} with {y(n)/G}. The function order and
dimension of the coefficient matrix are defined by the degree and depth of the memory
polynomial.

For an example that details the process of accurately estimating memory-polynomial
coefficients and predistorting a PA input signal, see “Power Amplifier Characterization
with DPD for Reduced Signal Distortion”.

For background reference material, see the works listed in [1] and [2].

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John

Pastalan. "A Generalized Memory Polynomial Model for Digital Predistortion of
Power Amplifiers." IEEE Transactions on Signal Processing. Vol. 54, Number 10,
October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York:
Wiley, 1980.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.DPDCoefficientEstimator

4-539

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.DPD

Blocks
DPD Coefficient Estimator

Topics
“Power Amplifier Characterization with DPD for Reduced Signal Distortion”

Introduced in R2019a

4 System Objects — Alphabetical List

4-540

comm.DPSKDemodulator
Package: comm

Demodulate using M-ary DPSK method

Description
The DPSKDemodulator object demodulates a signal that was modulated using the M-ary
differential phase shift keying method. The input is a baseband representation of the
modulated signal. The input and output for this object are discrete-time signals. This
object accepts a scalar-valued or column vector input signal.

To demodulate a signal that was modulated using differential phase shift keying:

1 Define and set up your DPSK modulator object. See “Construction” on page 4-541.
2 Call step to demodulate a signal according to the properties of DPSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the M-ary differential phase shift keying (M-DPSK)
method.

H = comm.DPSKDemodulator(Name,Value) creates an M-DPSK demodulator object,
H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DPSKDemodulator(M,PHASE,Name,Value) creates an M-DPSK
demodulator object, H. This object has the ModulationOrder property set to M, the

 comm.DPSKDemodulator

4-541

PhaseRotation property set to PHASE, and the other specified properties set to the
specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value.
The default is 8.

PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar value. The default is pi/8. This value corresponds to the phase
difference between previous and current modulated symbols when the input is zero.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false. When you set this property to true the step method outputs a column
vector of bit values. The length of this column vector is equal to log2(ModulationOrder
on page 4-0) times the number of demodulated symbols.

When you set this property to false, the step method outputs a column vector. The
length of this column vector is equal to that of the input data vector. The output contains
integer symbol values between 0 and ModulationOrder-1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) bits to the corresponding symbol as one of Binary | Gray. The default is Gray.
When you set this property to Gray, the object uses a Gray-encoded signal constellation.
When you set this property to Binary, the input integer m, between (0 ≤ m ≤

4 System Objects — Alphabetical List

4-542

ModulationOrder–1) maps to the current symbol. This mapping uses exp(j×
PhaseRotation + j×2 × π ×m/ModulationOrder)×(previously modulated symbol).

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The
default is Full precision. When you set this property to Full precision, the input
data type is single or double precision, the output data is the same as that of the input.
When you set the BitOutput on page 4-0 property to true, logical data type
becomes a valid option.

Methods
reset Reset states of M-DPSK demodulator object
step Demodulate using M-ary DPSK method

Common to All System Objects
release Allow System object property value changes

Examples

8-DPSK Signal in AWGN

Create a DPSK modulator and demodulator pair. Create an AWGN channel object having
three bits per symbol.

dpskmod = comm.DPSKModulator(8,pi/8,'BitInput',true);
dpskdemod = comm.DPSKDemodulator(8,pi/8,'BitOutput',true);
channel = comm.AWGNChannel('EbNo',10,'BitsPerSymbol',3);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for
the one bit transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

 comm.DPSKDemodulator

4-543

Main processing loop steps:

• Generate 50 3-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate
• Collect error statistics

for counter = 1:100
 txData = randi([0 1],150,1);
 modSig = dpskmod(txData);
 rxSig = channel(modSig);
 rxData = dpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0098

numErrors = errorStats(2)

numErrors = 147

numBits = errorStats(3)

numBits = 14999

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-DPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

4 System Objects — Alphabetical List

4-544

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DBPSKDemodulator | comm.DPSKModulator | comm.DQPSKDemodulator

Introduced in R2012a

 comm.DPSKDemodulator

4-545

reset
System object: comm.DPSKDemodulator
Package: comm

Reset states of M-DPSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the DPSKDemodulator object, H.

4 System Objects — Alphabetical List

4-546

step
System object: comm.DPSKDemodulator
Package: comm

Demodulate using M-ary DPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the DPSK demodulator System object,
H, and returns Y. Input X must be a double or single precision data type scalar or column
vector. Depending on the BitOutput property value, output Y can be integer or bit
valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-547

comm.DPSKModulator
Package: comm

Modulate using M-ary DPSK method

Description
The DPSKModulator object modulates using the M-ary differential phase shift keying
method. The output is a baseband representation of the modulated signal.

To modulate a signal using differential phase shift keying:

1 Define and set up your DPSK modulator object. See “Construction” on page 4-548.
2 Call step to modulate a signal according to the properties of

comm.DPSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DPSKModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary differential phase shift keying (M-DPSK) method.

H = comm.DPSKModulator(Name,Value) creates an M-DPSK modulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DPSKModulator(M,PHASE,Name,Value) creates an M-DPSK modulator
object, H. This object has the ModulationOrder property set to M, the PhaseRotation
property set to PHASE, and the other specified properties set to the specified values.

4 System Objects — Alphabetical List

4-548

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value.
The default is 8.

PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar value. The default is pi/8. This value corresponds to the phase
difference between previous and current modulated symbols when the input is zero.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values whose
length is an integer multiple of log2(ModulationOrder on page 4-0). This vector
contains bit representations of integers between 0 and ModulationOrder–1. When you
set this property to false, the step method input requires a column vector of integer
symbol values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) input bits to the corresponding symbol as one of Binary | Gray. The default is
Gray. When you set this property to Gray, the object uses a Gray-encoded signal
constellation. When you set this property to Binary, the input integer m, between
(0 ≤ m ≤ ModulationOrder–1) shifts the output phase. This shift is (PhaseRotation on
page 4-0 + 2 × π ×m/ModulationOrder) radians from the previous output phase.
The output symbol uses exp(j×PhaseRotation + j×2 × π ×m/ModulationOrder)×
(previously modulated symbol).

 comm.DPSKModulator

4-549

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods
reset Reset states of M-DPSK modulator object
step Modulate using M-ary DPSK method

Common to All System Objects
release Allow System object property value changes

Examples

8-DPSK Signal in AWGN

Create a DPSK modulator and demodulator pair. Create an AWGN channel object having
three bits per symbol.

dpskmod = comm.DPSKModulator(8,pi/8,'BitInput',true);
dpskdemod = comm.DPSKDemodulator(8,pi/8,'BitOutput',true);
channel = comm.AWGNChannel('EbNo',10,'BitsPerSymbol',3);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for
the one bit transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50 3-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate

4 System Objects — Alphabetical List

4-550

• Collect error statistics

for counter = 1:100
 txData = randi([0 1],150,1);
 modSig = dpskmod(txData);
 rxSig = channel(modSig);
 rxData = dpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0098

numErrors = errorStats(2)

numErrors = 147

numBits = errorStats(3)

numBits = 14999

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-DPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.DPSKModulator

4-551

See Also
comm.DBPSKModulator | comm.DPSKDemodulator | comm.DQPSKModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-552

reset
System object: comm.DPSKModulator
Package: comm

Reset states of M-DPSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the DPSKModulator object, H.

 reset

4-553

step
System object: comm.DPSKModulator
Package: comm

Modulate using M-ary DPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the DPSK modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric or logical
data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-554

comm.DQPSKDemodulator
Package: comm

Demodulate using DQPSK method

Description
The DQPSKDemodulator object demodulates a signal that was modulated using the
differential quadrature phase shift keying method. The input is a baseband representation
of the modulated signal.

To demodulate a signal that was modulated using differential quadrature phase shift
keying:

1 Define and set up your DQPSK modulator object. See “Construction” on page 4-555.
2 Call step to demodulate a signal according to the properties of DQPSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DQPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the differential quadrature phase shift keying
(DQPSK) method.

H = comm.DQPSKDemodulator(Name,Value) creates a DQPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.DQPSKDemodulator

4-555

H = comm.DQPSKDemodulator(PHASE,Name,Value) creates a DQPSK demodulator
object, H. This object has the PhaseRotation property set to PHASE and the other
specified properties set to the specified values.

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar. The default is pi/4. This value corresponds to the phase
difference between previous and current modulated symbols when the input is zero.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false. When you set this property to true the step method outputs a column
vector of bit values with length equal to twice the number of demodulated symbols. When
you set this property to false, the step method outputs a column vector, of length equal
to the input data vector, that contains integer symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of 2 bits to the corresponding symbol as
one of Binary | Gray. The default is Gray. When you set this property to Gray, the
object uses a Gray-encoded signal constellation. When you set this property to Binary,
the integer m, between 0 ≤ m ≤ 3 maps to the current symbol as exp(j×PhaseRotation
on page 4-0 + j×2 × π × m 4)×(previously modulated symbol).

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The

4 System Objects — Alphabetical List

4-556

default is Full precision. When you set this property to Full precision the output
has the same data type as that of the input. In this case, the input data type is single- or
double-precision value. When you set the BitOutput on page 4-0 property to true,
logical data type becomes a valid option.

Methods
reset Reset states of DQPSK demodulator object
step Demodulate using DQPSK method

Common to All System Objects
release Allow System object property value changes

Examples

DQPSK Signal in AWGN

Create a DQPSK modulator and demodulator pair. Create an AWGN channel object having
two bits per symbol.

dqpskmod = comm.DQPSKModulator('BitInput',true);
dqpskdemod = comm.DQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',6,'BitsPerSymbol',2);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for
the one bit transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50 2-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate

 comm.DQPSKDemodulator

4-557

• Collect error statistics

for counter = 1:100
 txData = randi([0 1],100,1);
 modSig = dqpskmod(txData);
 rxSig = channel(modSig);
 rxData = dqpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0170

numErrors = errorStats(2)

numErrors = 170

numBits = errorStats(3)

numBits = 9999

Algorithms
This object implements the algorithm, inputs, and outputs described on the DQPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects — Alphabetical List

4-558

See Also
comm.DBPSKDemodulator | comm.DPSKDemodulator | comm.DQPSKModulator

Introduced in R2012a

 comm.DQPSKDemodulator

4-559

reset
System object: comm.DQPSKDemodulator
Package: comm

Reset states of DQPSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the DQPSKDemodulator object, H.

4 System Objects — Alphabetical List

4-560

step
System object: comm.DQPSKDemodulator
Package: comm

Demodulate using DQPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the DQPSK demodulator System object,
H, and returns Y. Input X must be a single or double precision data type scalar or column
vector. Depending on the BitOutput property value, output Y can be integer or bit
valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-561

comm.DQPSKModulator
Package: comm

Modulate using DQPSK method

Description
The DQPSKModulator object modulates using the differential quadrature phase shift
keying method. The output is a baseband representation of the modulated signal.

To modulate a signal using differential quadrature phase shift keying:

1 Define and set up your DQPSK modulator object. See “Construction” on page 4-562.
2 Call step to modulate a signal according to the properties of

comm.DQPSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.DQPSKModulator creates a modulator System object, H. This object
modulates the input signal using the differential quadrature phase shift keying (DQPSK)
method.

H = comm.DQPSKModulator(Name,Value) creates a DQPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DQPSKModulator(PHASE,Name,Value) creates a DQPSK modulator object,
H. This object has the PhaseRotation property set to PHASE and the other specified
properties set to the specified values.

4 System Objects — Alphabetical List

4-562

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar value. The default is pi/4. This value corresponds to the phase
difference between previous and current modulated symbols when the input is zero.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values. The length
of this vector is an integer multiple of two. This vector contains bit representations of
integers between 0 and 3. When you set this property to false, the step method input
must be a column vector of integer symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of two input bits to the corresponding
symbol as one of Binary | Gray. The default is Gray. When you set this property to
Gray, the object uses a Gray-encoded signal constellation. When you set this property to
Binary, the input integer m, between 0 ≤ m ≤ 3 shifts the output phase. This shift is
(PhaseRotation on page 4-0 + 2 × π × m 4) radians from the previous output phase.
The output symbol is exp(j×PhaseRotation + j×2 × π × m 4)×(previously modulated
symbol).

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

 comm.DQPSKModulator

4-563

Methods
reset Reset states of DQPSK modulator object
step Modulate using DQPSK method

Common to All System Objects
release Allow System object property value changes

Examples

DQPSK Signal in AWGN

Create a DQPSK modulator and demodulator pair. Create an AWGN channel object having
two bits per symbol.

dqpskmod = comm.DQPSKModulator('BitInput',true);
dqpskdemod = comm.DQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',6,'BitsPerSymbol',2);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for
the one bit transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50 2-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate
• Collect error statistics

for counter = 1:100
 txData = randi([0 1],100,1);
 modSig = dqpskmod(txData);
 rxSig = channel(modSig);
 rxData = dqpskdemod(rxSig);

4 System Objects — Alphabetical List

4-564

 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0170

numErrors = errorStats(2)

numErrors = 170

numBits = errorStats(3)

numBits = 9999

Algorithms
This object implements the algorithm, inputs, and outputs described on the DQPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DBPSKModulator | comm.DPSKModulator | comm.DQPSKDemodulator

 comm.DQPSKModulator

4-565

Introduced in R2012a

4 System Objects — Alphabetical List

4-566

reset
System object: comm.DQPSKModulator
Package: comm

Reset states of DQPSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the DQPSKModulator object, H.

 reset

4-567

step
System object: comm.DQPSKModulator
Package: comm

Modulate using DQPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the DQPSK modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric or logical
data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-568

comm.ErrorRate
Package: comm

Compute bit or symbol error rate of input data

Description
The ErrorRate object compares input data from a transmitter with input data from a
receiver and calculates the error rate as a running statistic. To obtain the error rate, the
object divides the total number of unequal pairs of data elements by the total number of
input data elements from one source.

To obtain the error rate:

1 Define and set up your error rate object. See “Construction” on page 4-569.
2 Call step to compare input data from a transmitter with input data from a receiver

and calculate the error rate according to the properties of comm.ErrorRate. The
behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.ErrorRate creates an error rate calculator System object, H. This object
computes the error rate of the received data by comparing it to the transmitted data.

H = comm.ErrorRate(Name,Value) creates an error rate calculator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.ErrorRate

4-569

Properties
ReceiveDelay

Number of samples to delay transmitted signal

Specify the number of samples by which the received data lags behind the transmitted
data. This value must be a real, nonnegative, double-precision, integer scalar. Use this
property to align the samples for comparison in the transmitted and received input data
vectors. Specify the delay in number of samples, regardless of whether the input is a
scalar or a vector. The default is 0.

ComputationDelay

Computation delay

Specify the number of data samples that the object should ignore at the beginning of the
comparison. This value must be a real, nonnegative, double-precision, integer scalar. Use
this property to ignore the transient behavior of both input signals. The default is 0.

Samples

Samples to consider

Specify samples to consider as one of Entire frame | Custom | Input port. The
property defines whether the object should consider all or only part of the input frames
when computing error statistics. The default is Entire frame. Select Entire frame to
compare all the samples of the RX frame to those of the TX frame. Select Custom or
Input port to list the indices of the RX frame elements that the object should consider
when making comparisons. When you set this property to Custom, you can list the indices
as a scalar or a column vector of double-precision integers through the CustomSamples
on page 4-0 property. When you set this property to Input port, you can list the
indices as an input to the step method.

CustomSamples

Selected samples from frame

Specify a scalar or a column vector of double-precision, real, positive integers. This value
lists the indices of the elements of the RX frame vector that the object uses when making
comparisons. This property applies when you set the Samples on page 4-0 property
to Custom. The default is an empty vector, which specifies that all samples are used.

4 System Objects — Alphabetical List

4-570

ResetInputPort

Enable error rate reset input

Set this property to true to reset the error statistics via an input to the step method.
The default is false.

Methods
reset Reset states of error rate calculator object
step Compute bit or symbol error rate of input data

Common to All System Objects
release Allow System object property value changes

Examples

Calculate Error Statistics

Create two binary vectors and determine the error statistics.

Create a bit error rate counter object.

errorRate = comm.ErrorRate;

Create an arbitrary binary data vector.

x = [1 0 1 0 1 0 1 0 1 0]';

Introduce errors to the first and last bits.

y = x;
y(1) = ~y(1);
y(end) = ~y(end);

Calculate the error statistics.

z = errorRate(x,y);

 comm.ErrorRate

4-571

The first element of the vector z is the bit error rate.

z(1)

ans = 0.2000

The second element of z is the total error count.

z(2)

ans = 2

The third element of z is the total number of bits.

z(3)

ans = 10

Calculate BER between Transmitted and Received Signal

Create an 8-DPSK modulator and demodulator pair that work with binary data.

dpskModulator = comm.DPSKModulator('ModulationOrder',8,'BitInput',true);
dpskDemodulator = comm.DPSKDemodulator('ModulationOrder',8,'BitOutput',true);

Create an error rate calculator, accounting for the three bit (one symbol) transient caused
by the differential modulation.

errorRate = comm.ErrorRate('ComputationDelay',3);

Calculate the BER for 10 frames.

BER = zeros(10,1);

for i= 1:10
 txData = randi([0 1],96,1); % Generate binary data
 modData = dpskModulator(txData); % Modulate
 rxSig = awgn(modData,7); % Pass through AWGN channel
 rxData = dpskDemodulator(rxSig); % Demodulate
 errors = errorRate(txData,rxData); % Compute error statistics
 BER(i) = errors(1); % Save BER data
end

4 System Objects — Alphabetical List

4-572

Display the BER.

BER

BER = 10×1

 0.1613
 0.1640
 0.1614
 0.1496
 0.1488
 0.1309
 0.1405
 0.1399
 0.1370
 0.1411

Algorithms
This object implements the algorithm, inputs, and outputs described on the Error Rate
Calculation block reference page. The object properties correspond to the block
parameters, except:

• The Output data and Variable name block parameters do not have a corresponding
properties. The object always returns the result as an output.

• The Stop simulation block parameter does not have a corresponding property. To
implement similar behavior, use the output of the step method in a while loop, to
programmatically stop the simulation. See the Gray Coded 8-PSK.

• The Computation mode parameter corresponds to the Samples on page 4-0 and
CustomSamples on page 4-0 properties.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.ErrorRate

4-573

matlab:showdemo commGrayCodedPSK

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
alignsignals | finddelay

Introduced in R2012a

4 System Objects — Alphabetical List

4-574

reset
System object: comm.ErrorRate
Package: comm

Reset states of error rate calculator object

Syntax
reset(H)

Description
reset(H) resets the states of the ErrorRate object, H.

 reset

4-575

step
System object: comm.ErrorRate
Package: comm

Compute bit or symbol error rate of input data

Syntax
Y = step(H,TX,RX)
Y = step(H,TX,RX,SEL)
Y = step(H,TX,RX,RST)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,TX,RX) counts the number of differences between the transmitted data
vector, TX, and received data vector, RX. The step method outputs a three-element vector
consisting of the error rate, followed by the number of errors detected and the total
number of samples compared. TX and RX inputs can be either scalars or column vectors of
the same data type. Valid data types are single, double, integer or logical. If TX is a scalar
and RX is a vector, or vice-versa, then the block compares the scalar with each element of
the vector.

Y = step(H,TX,RX,SEL) calculates the errors based on selected samples from the
input frame specified by the SEL input. SEL must be a real, double-precision integer-
valued scalar or a column vector. The vector lists the indices of the elements of the RX
input vector that the object should consider when making comparisons. This syntax
applies when you set the Samples property to 'Input Port'.

Y = step(H,TX,RX,RST) resets the error count whenever the input RST is non-zero.
RST must be a real, double, or logical scalar. When you set the RST input to a nonzero

4 System Objects — Alphabetical List

4-576

value, the object clears its error statistics and then recomputes them based on the
current TX and RX inputs. This syntax applies when you set the ResetInputPort
property to true. You can combine optional input arguments when their enabling
properties are set. Optional inputs must be listed in the same order as the order of the
enabling properties.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-577

comm.LinearEqualizer
Package: comm

Equalize modulated signals using linear filtering

Description
The comm.LinearEqualizer System object uses a linear filter tap delay line with a
weighted sum to equalize modulated signals transmitted through a dispersive channel.
The equalizer object adaptively adjusts tap weights based on the selected algorithm. For
more information, see “Algorithms” on page 4-621.

To equalize modulated signals using a linear filter:

1 Create the comm.LinearEqualizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
lineq = comm.LinearEqualizer
lineq = comm.LinearEqualizer(Name,Value)

Description
lineq = comm.LinearEqualizer creates a linear equalizer System object to
adaptively equalize a signal.

lineq = comm.LinearEqualizer(Name,Value) sets properties using one or more
name-value pairs. For example, comm.LinearEqualizer('Algorithm','RLS')

4 System Objects — Alphabetical List

4-578

configures the equalizer object to update tap weights using the recursive least squares
(RLS) algorithm. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Algorithm — Adaptive algorithm
'LMS' (default) | 'RLS' | 'CMA'

Adaptive algorithm used for equalization, specified as one of these values:

• 'LMS' — Update the equalizer tap weights using the “Least Mean Square (LMS)
Algorithm” on page 4-622.

• 'RLS' — Update the equalizer tap weights using the “Recursive Least Square (RLS)
Algorithm” on page 4-623.

• 'CMA' — Update the equalizer tap weights using the “Constant Modulus Algorithm
(CMA)” on page 4-623.

Data Types: char | string

NumTaps — Number of equalizer taps
5 (default) | positive integer

Number of equalizer taps, specified as a positive integer.
Data Types: double

StepSize — Step size
0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the
step size reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

 comm.LinearEqualizer

4-579

Tip To determine the maximum step size allowed, use the maxstep object function.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'LMS' or 'CMA'.
Data Types: double

ForgettingFactor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the
equalizer output estimates to be less stable.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

InitialInverseCorrelationMatrix — Initial inverse correlation matrix
0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is
equal to the NumTaps property value. If you specify
InitialInverseCorrelationMatrix as a scalar, a, the equalizer sets the initial
inverse correlation matrix to a times the identity matrix: a(eye(NTaps)).

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

Constellation — Signal constellation
pskmod(0:3,4,pi/4) (default) | vector

4 System Objects — Alphabetical List

4-580

Signal constellation, specified as a vector. The default value is a QPSK constellation
generated using this code: pskmod(0:3,4,pi/4).

Tunable: Yes
Data Types: double

ReferenceTap — Reference tap
3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the NumTaps property
value. The equalizer uses the reference tap location to track the main energy of the
channel.
Data Types: double

InputDelay — Input signal delay
0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a
nonnegative integer. If the input signal is a vector of length greater than 1, then the input
delay is relative to the start of the input vector. If the input signal is a scalar, then the
input delay is relative to the first call of the System object and to the first call of the
System object after calling the release or reset object function.
Data Types: double

InputSamplesPerSymbol — Number of input samples per symbol
1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this property
to any number greater than one effectively creates a fractionally spaced equalizer. For
more information, see “Symbol Tap Spacing” on page 4-620.
Data Types: double

TrainingFlagInputPort — Enable training control input
false (default) | true

Enable training control input, specified as false or true. Setting this property to true
enables the equalizer training flag input tf.

Tunable: Yes
Data Types: logical

 comm.LinearEqualizer

4-581

AdaptAfterTraining — Update tap weights when not training
true (default) | false

Update tap weights when not training, specified as true or false. If this property is set
to true, the System object uses decision directed mode to update equalizer tap weights.
If this property is set to false, the System object keeps the equalizer tap weights
unchanged after training.

Tunable: Yes
Data Types: logical

AdaptWeightsSource — Source of adapt tap weights request
'Property' (default) | 'Input port'

Source of adapt tap weights request, specified as one of these values:

• 'Property' — Specify this value to use the AdaptWeights property to control when
the System object adapts tap weights.

• 'Input port' — Specify this value to use the aw input to control when the System
object adapts tap weights.

Dependencies

To enable this property, set Algorithm to 'CMA'.
Data Types: char | string

AdaptWeights — Adapt tap weights
true (default) | false

Adapt tap weights, specified as true or false. If this property is set to true, the System
object updates the equalizer tap weights. If this property is set to false, the System
object keeps the equalizer tap weights unchanged.

Tunable: Yes

Dependencies

To enable this property, set AdaptWeightsSource to 'Property' and set
AdaptAfterTraining to true.
Data Types: logical

4 System Objects — Alphabetical List

4-582

InitialWeightsSource — Source for initial tap weights
'Auto' (default) | 'Property'

Source for initial tap weights, specified as

• 'Auto' — Initialize the tap weights to the algorithm-specific default values, as
described in the InitialWeights property.

• 'Property' — Initialize the tap weights using the InitialWeights property value.

Data Types: char | string

InitialWeights — Initial tap weights
0 or [0;0;1;0;0] (default) | scalar | column vector

Initial tap weights used by the adaptive algorithm, specified as a scalar or vector. The
default is 0 when the Algorithm property is set to 'LMS' or 'RLS'. The default is
[0;0;1;0;0] when the Algorithm property is set to 'CMA'.

If you specify InitialWeights as a vector, the vector length must be equal to the
NumTaps property value. If you specify InitialWeights as a scalar, the equalizer uses
scalar expansion to create a vector of length NumTaps with all values set to
InitialWeights.

Tunable: Yes

Dependencies

To enable this property, set InitialWeightsSource to 'Property'.
Data Types: double

WeightUpdatePeriod — Tap weight update period
1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer
updates the tap weights after processing this number of symbols.
Data Types: double

 comm.LinearEqualizer

4-583

Usage

Syntax
y = lineq(x,tsym)
y = lineq(x,tsym,tf)

y = lineq(x)
y = lineq(x,aw)

Description
y = lineq(x,tsym) equalizes input signal x by using training symbols tsym. The
output is the equalized symbols. To enable this syntax, set the Algorithm property to
'LMS' or 'RLS'.

y = lineq(x,tsym,tf) also specifies training flag tf. The System object starts
training when tf changes from false to true (at the rising edge). The System object
trains until all symbols in tsym are processed. The input tsym is ignored when tf is
false. To enable this syntax, set the Algorithm property to 'LMS' or 'RLS' and
TrainingFlagInputPort property to true.

y = lineq(x) equalizes input signal x. To enable this syntax, set the Algorithm property
to 'CMA'.

y = lineq(x,aw) also specifies adapts weights flag aw. The System object adapts the
equalizer tap weights when aw is true. If aw is false, the System object keeps the
weights unchanged. To enable this syntax, set the Algorithm property to 'CMA' and
AdaptWeightsSource property to 'Input port'.

[y,err] = lineq(___) also returns error signal err using input arguments from any
of the previous syntaxes.

[y,err,weights] = lineq(___) also returns weights, the tap weights from the last
tap weight update, using input arguments from any of the previous syntaxes.

4 System Objects — Alphabetical List

4-584

Input Arguments
x — Input signal
column vector

Input signal, specified as a column vector. The input signal vector length must be equal to
an integer multiple of the InputSamplesPerSymbol property value. For more information,
see “Symbol Tap Spacing” on page 4-620.
Data Types: double
Complex Number Support: Yes

tsym — Training symbols
column vector

Training symbols, specified as a column vector of length less than or equal to the length
of input x. The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS'.
Data Types: double
Complex Number Support: Yes

tf — Training flag
true | false

Training flag, specified as true or false. The System object starts training when tf
changes from false to true (at the rising edge). The System object trains until all
symbols in tsym are processed. The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS' and
TrainingFlagInputPort property to true.
Data Types: logical

aw — Adapt weights flag
true | false

Adapt weights flag, specified as true or false. If aw is true, the System object adapts
weights. If aw is false, the System object keeps the weights unchanged.

 comm.LinearEqualizer

4-585

Dependencies

To enable this argument, set the Algorithm property to 'CMA' and AdaptWeightsSource
property to 'Input port'.
Data Types: logical

Output Arguments
y — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal
x.

err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal x.

weights — Tap weights
column vector

Tap weights, returned as a column vector that has NumTaps elements. weights contains
the tap weights from the last tap weight update.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.LinearEqualizer
isLocked Determine if System object is in use
clone Create duplicate System object
info Characteristic information about the equalizer object
maxstep Maximum step size for LMS equalizer convergence
mmseweights Linear equalizer MMSE tap weights

4 System Objects — Alphabetical List

4-586

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Linearly Equalize BPSK-Modulated Signal

Create a BPSK modulator and an equalizer System object™, specifying a linear LMS
equalizer having eight taps and a step size of 0.03.

bpsk = comm.BPSKModulator;
eqlms = comm.LinearEqualizer('Algorithm','LMS','NumTaps',8,'StepSize',0.03);

Change the reference tap index of the equalizer.

eqlms.ReferenceTap = 4;

Build a set of test data. Receive the data by convolving the signal.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

Use maxstep to find the maximum permitted step size.

mxStep = maxstep(eqlms,rxsig)

mxStep = 0.1384

Equalize the received signal. Use the first 200 symbols as the training sequence.

y = eqlms(rxsig,x(1:200));

Linearly Equalize QPSK-Modulated Signal

Apply linear equalization using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through a multipath AWGN channel.

 comm.LinearEqualizer

4-587

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];

Generate QPSK-modulated symbols. Apply multipath channel filtering and AWGN
impairments to the symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a linear equalizer System object and display the default configuration. Adjust the
reference tap to 1. Check the maximum permitted step size. Equalize the impaired
symbols.

eq = comm.LinearEqualizer

eq =
 comm.LinearEqualizer with properties:

 Algorithm: 'LMS'
 NumTaps: 5
 StepSize: 0.0100
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

eq.ReferenceTap = 1;

mxStep = maxstep(eq,rx)

mxStep = 0.3154

[y,err,weights] = eq(rx,tx(1:numTrainingSymbols));

Plot the constellation of the impaired and equalized symbols.

4 System Objects — Alphabetical List

4-588

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)

Plot the equalizer error signal and compute the error vector magnitude (EVM) of the
equalized symbols.

 comm.LinearEqualizer

4-589

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|');title('Equalizer Error Signal')

errevm = comm.EVM;
evm = errevm(tx,y)

evm = 11.7710

Plot the equalizer tap weights.

subplot(3,1,1);
stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([0 6 -0.5 1])
title('Equalizer Tap Weights')
subplot(3,1,2);
stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([0 6 -0.5 1])

4 System Objects — Alphabetical List

4-590

subplot(3,1,3);
stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([0 6 -0.5 1])

Linearly Equalize System By Using Different Training Schemes

Demonstrate linear equalization by using the least mean squares (LMS) algorithm to
recover QPSK symbols passed through an AWGN channel. Apply different equalizer
training schemes and show the symbol error magnitude.

 comm.LinearEqualizer

4-591

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200
training symbols and 1800 random data symbols. Configure a linear LMS equalizer to
recover the packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
lineq = comm.LinearEqualizer('Algorithm','LMS', ...
 'NumTaps',5,'ReferenceTap',3,'StepSize',0.01);

Train the Equalizer at the Beginning of Each Packet With Reset

Use prepended training symbols when processing each packet. After processing each
packet, reset the equalizer. This reset forces the equalizer to train the taps with no
previous knowledge. Equalizer error signal plots for the first, second, and last packet
show higher symbol errors at the start of each packet.

jj = 1;
figure
for ii = 1:numPkts
 b = randi([0 M-1],numDataSymbols,1);
 dataSym = pskmod(b,M,pi/4);
 packet = [trainingSymbols;dataSym];
 rx = awgn(packet,SNR);
 [~,err] = lineq(rx,trainingSymbols);
 reset(lineq)
 if (ii ==1 || ii == 2 ||ii == numPkts)
 subplot(3,1,jj)
 plot(abs(err))
 title(['Packet # ',num2str(ii)])
 xlabel('Symbols')
 ylabel('Error Magnitude')
 axis([0,length(packet),0,1])
 grid on;
 jj = jj+1;
 end
end

4 System Objects — Alphabetical List

4-592

Train the Equalizer at the Beginning of Each Packet Without Reset

Process each packet using prepended training symbols. Do not reset the equalizer after
each packet is processed. By not resetting after each packet, the equalizer retains tap
weights from training prior packets. Equalizer error signal plots for the first, second, and
last packet show that after the initial training on the first packet, subsequent packets
have less symbol errors at the start of each packet.

release(lineq)
jj = 1;
figure
for ii = 1:numPkts
 b = randi([0 M-1],numDataSymbols,1);
 dataSym = pskmod(b,M,pi/4);

 comm.LinearEqualizer

4-593

 packet = [trainingSymbols;dataSym];
 channel = 1;
 rx = awgn(packet*channel,SNR);
 [~,err] = lineq(rx,trainingSymbols);
 if (ii ==1 || ii == 2 ||ii == numPkts)
 subplot(3,1,jj)
 plot(abs(err))
 title(['Packet # ',num2str(ii)])
 xlabel('Symbols')
 ylabel('Error Magnitude')
 axis([0,length(packet),0,1])
 grid on;
 jj = jj+1;
 end
end

4 System Objects — Alphabetical List

4-594

Train the Equalizer Periodically

Systems with signals subject to time-varying channels require periodic equalizer training
to maintain lock on the channel variations. Specify a system that has 200 symbols of
training for every 1800 data symbols. Between training, the equalizer does not update tap
weights. The equalizer processes 200 symbols per packet.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);

 comm.LinearEqualizer

4-595

tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Set the AdaptAfterTraining property to false to stop the equalizer tap weight
updates after the training phase.

release(lineq)
lineq.AdaptAfterTraining = false

lineq =
 comm.LinearEqualizer with properties:

 Algorithm: 'LMS'
 NumTaps: 5
 StepSize: 0.0100
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: false
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

Equalize the impaired data. Plot the angular error from the channel, the equalizer error
signal, and signal constellation. As the channel varies, the equalizer output does not
remove the channel effects. The output constellation rotates out of sync, resulting in bit
errors.

[y,err] = lineq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel Without Retraining')

4 System Objects — Alphabetical List

4-596

scatterplot(y)

 comm.LinearEqualizer

4-597

Set the TrainingInputPort property to true to configure the equalizer to retrain the
taps when signaled by the trainFlag input. The equalizer trains only when trainFlag
is true. After every 2000 symbols, the equalizer retrains the taps and keeps lock on
variations of the channel. Plot the angular error from the channel, equalizer error signal,
and signal constellation. As the channel varies, the equalizer output removes the channel
effects. The output constellation does not rotate out of sync and bit errors are reduced.

release(lineq)
lineq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;
trainingPeriod = 2000;
eVec = zeros(size(rx));

4 System Objects — Alphabetical List

4-598

yVec = zeros(size(rx));
for p=1:numPackets
 [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
 lineq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag);
 symbolCnt = symbolCnt + spp;
 if symbolCnt >= trainingPeriod
 trainFlag = true;
 symbolCnt = 0;
 else
 trainFlag = false;
 end
end
figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

 comm.LinearEqualizer

4-599

scatterplot(yVec)

4 System Objects — Alphabetical List

4-600

Linearly Equalize Delayed Signal

Simulate a system with delay between the transmitted symbols and received samples.
Typical systems have transmitter and receiver filters that result in a delay. This delay
must be accounted for to synchronize the system. In this example, the system delay is
introduced without transmit and receive filters. Linear equalization, using the least mean
squares (LMS) algorithm, recovers QPSK symbols.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;

 comm.LinearEqualizer

4-601

numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Generate QPSK-modulated symbols. Apply multipath channel filtering, a system delay, and
AWGN to the transmitted symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');

Create equalizer and EVM System objects. The equalizer System object specifies a linear
equalizer that uses the LMS algorithm.

lineq = comm.LinearEqualizer('Algorithm','LMS', ...
 'NumTaps',9,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
 'Estimated from reference constellation');

Equalize Without Adjusting Input Delay

Equalize the received symbols.

[y1,err1,wts1] = lineq(rx,tx(1:numTrainingSymbols,1));

Find the delay between the received symbols and the transmitted symbols by using the
finddelay function.

rxDelay = finddelay(tx,rx)

rxDelay = 20

Display the equalizer information. The latency value indicates the delay introduced by the
equalizer. Calculate the total delay as the sum of rxDelay and the equalizer latency.

eqInfo = info(lineq)

eqInfo = struct with fields:
 Latency: 4

totalDelay = rxDelay + eqInfo.Latency;

4 System Objects — Alphabetical List

4-602

Until the equalizer output converges, the symbol error rate is high. Plot the error output,
err1, to determine when the equalized output converges.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')

The plot shows excessive errors beyond the 1000 symbols training period. When
demodulating symbols and computing symbol errors, to account for the unconverged
output and the system delay between the equalizer output and transmitted symbols, skip
the first 2000 symbols.

 comm.LinearEqualizer

4-603

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)

symErrWithDelay = 5999

evmWithDelay = evm(y1)

evmWithDelay = 29.5795

The error rate and EVM are high because the receive delay was not accounted for in the
equalizer System object.

Adjust Input Delay in Equalizer

Equalize the received data by using the delay value to set the InputDelay property.
Because InputDelay is a nontunable property, you must release the lineq System
object to reconfigure the InputDelay property. Equalize the received symbols.

release(lineq)
lineq.InputDelay = rxDelay

lineq =
 comm.LinearEqualizer with properties:

 Algorithm: 'LMS'
 NumTaps: 9
 StepSize: 0.0100
 Constellation: [1x4 double]
 ReferenceTap: 5
 InputDelay: 20
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

[y2,err2,wts2] = lineq(rx,tx(1:numTrainingSymbols,1));

Plot the tap weights and equalized error magnitude. A stem plot shows the equalizer tap
weights before and after the system delay is removed. A 2-D line plot shows the slower
equalizer convergence for the delayed signal as compared to the signal with the delay
removed.

subplot(2,1,1)
stem([real(wts1),real(wts2)])

4 System Objects — Alphabetical List

4-604

xlabel('Taps')
ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on

figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')

 comm.LinearEqualizer

4-605

ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on

Plot error output of the equalized signals, rxDelayed and rxDelayRemoved. For the
signal that has the delay removed, the equalizer converges during the 1000 symbol
training period. When demodulating symbols and computing symbol errors, to account for
the unconverged output and the system delay between the equalizer output and
transmitted symbols, skip the first 500 symbols. Reconfiguring the equalizer to account
for the system delay enables better equalization of the signal, and reduces symbol errors
and the EVM.

eqInfo = info(lineq)

4 System Objects — Alphabetical List

4-606

eqInfo = struct with fields:
 Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)

symErrDelayRemoved = 0

evmDelayRemoved = evm(y2(500+totalDelay:end))

evmDelayRemoved = 9.4435

Linearly Equalize Symbols By Using EVM-Based Training

Recover QPSK symbols with a linear equalizer by using the constant modulus algorithm
(CMA) and EVM-based taps training. When using blind equalizer algorithms, such as
CMA, train the equalizer taps by using the AdaptWeights property to start and stop
training. Helper functions are used to generate plots and apply phase correction.

Initialize system variables.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
raylChan = comm.RayleighChannel('PathDelays',[0 1], ...
 'AveragePathGains',[0 -12],'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Create the equalizer and EVM System objects. The equalizer System object specifies a
linear equalizer by using the CMA adaptive algorithm. Call the helper function to initialize
figure plots.

lineq = comm.LinearEqualizer('Algorithm','CMA', ...
 'NumTaps',5,'ReferenceTap',3, ...
 'StepSize',0.03,'AdaptWeightsSource','Input port')

lineq =
 comm.LinearEqualizer with properties:

 comm.LinearEqualizer

4-607

 Algorithm: 'CMA'
 NumTaps: 5
 StepSize: 0.0300
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputSamplesPerSymbol: 1
 AdaptWeightsSource: 'Input port'
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

info(lineq)

ans = struct with fields:
 Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
 'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = initFigures(numPackets,lineq);

Equalization Loop

To implement the equalization loop:

1 Generate PSK data packets.
2 Apply Rayleigh fading and AWGN to the transmission data.
3 Apply equalization to the received data and phase correction to the equalizer output.
4 Estimate the EVM and toggle the adaptWeights flag to true or false based on the

EVM level.
5 Update the figure plots.

for p=1:numPackets
 data = randi([0 M-1],numSymbols,1);
 tx = pskmod(data,M,pi/4);
 rx = awgn(raylChan(tx),SNR);
 rxDelay = finddelay(rx,tx);
 [y,err,wts] = lineq(rx,adaptWeights);
 y = phaseCorrection(y);
 evmEst = evm(y);
 adaptWeights = (evmEst > 20);

4 System Objects — Alphabetical List

4-608

 updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
 wts,y(end),evmEst,adaptWeights,p,numPackets)
end

rxDelay

rxDelay = 0

The figure plots show that, as the EVM varies, the equalizer toggles in and out of
decision-directed weight adaptation mode.

Helper Functions

This helper function initializes figures that show a quad plot of simulation results.

 comm.LinearEqualizer

4-609

function [errPlot,evmPlot,scatter,adaptState] = initFigures(numPkts,lineq)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(lineq.NumTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 lineq.NumTaps 0 1.8])
xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');
axis square; axis([-1.2 1.2 -1.2 1.2]); grid on
xlabel('In-phase'); ylabel('Quadrature'); title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on; axis([0 numPkts -0.2 1.2])
ylabel('Training'); xlabel('Symbols'); title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on; axis([1 numPkts 0 100])
xlabel('Symbols'); ylabel('EVM (%)'); title('EVM')
end

This helper function updates figures.

function updateFigures(errPlot,evmPlot,scatSym, ...
 adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
 yVec = nan(numFrames,1);
 evmVec = nan(numFrames,1);
 adaptVec = nan(numFrames,1);
end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;

errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);

4 System Objects — Alphabetical List

4-610

scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

This helper function applies phase correction.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Linearly Equalize Packetized Signals in Fading Environments

Recover QPSK symbols in fading environments with a linear equalizer, using the least
mean squares (LMS) algorithm. Use the reset object function to equalize independent
packets. Use helper functions to generate plots. This example also shows symbol-based
processing and frame-based processing.

Setup

Initialize system variables, create an equalizer System object, and initialize the plot
figures.

M = 4; % QPSK
numSym = 1000;
numTrainingSym = 100;
numPackets = 5;
numTaps = 9;
ttlNumSym = numSym + numTrainingSym;
raylChan = comm.RayleighChannel('PathDelays',[0 1], ...
 'AveragePathGains',[0 -9], ...
 'MaximumDopplerShift',0, ...
 'PathGainsOutputPort',true);
SNR = 35;
rxVec = zeros(ttlNumSym,numPackets);
txVec = zeros(ttlNumSym,numPackets);
yVec = zeros(ttlNumSym,1);
eVec = zeros(ttlNumSym,1);

lineq1 = comm.LinearEqualizer('Algorithm','LMS', ...

 comm.LinearEqualizer

4-611

 'NumTaps',numTaps,'ReferenceTap',5, ...
 'StepSize',0.01,'TrainingFlagInputPort',true);

[errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,lineq1, ...
 raylChan.AveragePathGains);

Symbol-Based Processing

For symbol-based processing, provide one symbol at the input of the equalizer. Reset the
equalizer state and channel after processing each packet.

for p = 1:numPackets
 trainingFlag = true;
 for q=1:ttlNumSym
 data = randi([0 M-1],1,1);
 tx = pskmod(data,M,pi/4);
 [xc,pg] = raylChan(tx);
 rx = awgn(xc,25);
 [y,err,wts] = lineq1(rx,tx,trainingFlag);

Disable training after processing numTrainingSym training symbols.

 if q == numTrainingSym
 trainingFlag = false;
 end
 updateFigures(errPlot,wStem,hStem,scatPlot,err,wts,y,pg,q,ttlNumSym);
 txVec(q,p) = tx;
 rxVec(q,p) = rx;
 end

After processing each packet, reset the channel System object to get a new realization of
channel taps and the equalizer System object to restore the default taps weights.

 reset(raylChan)
 reset(lineq1)
end

4 System Objects — Alphabetical List

4-612

Packet-Based Processing

For packet-based processing, provide one packet at the input of the equalizer. Each
packet contains ttlNumSym symbols. Because the training duration is less than the
packet length, you do not need to specify the start-training input.

yVecPkt = zeros(ttlNumSym,numPackets);
errVecPkt = zeros(ttlNumSym,numPackets);
wgtVecPkt = zeros(numTaps,numPackets);
lineq2 = comm.LinearEqualizer('Algorithm','LMS', ...
 'NumTaps',9,'ReferenceTap',6,'StepSize',0.01);
for p = 1:numPackets
 [yVecPkt(:,p),errVecPkt(:,p),wgtVecPkt(:,p)] = ...
 lineq2(rxVec(:,p),txVec(1:numTrainingSym,p));

 comm.LinearEqualizer

4-613

 for q=1:ttlNumSym
 updateFigures(errPlot,wStem,hStem,scatPlot, ...
 errVecPkt(q,p),wgtVecPkt(:,p),yVecPkt(q,p),pg,q,ttlNumSym);
 end

After processing each packet, reset the channel System object to get a new realization of
channel taps and the equalizer System object to restore the default taps weights.

 reset(raylChan)
 reset(lineq2)
end

Helper Functions

The helper function initializes the figures.

4 System Objects — Alphabetical List

4-614

function [errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,lineq,pg)
yVec = nan(ttlNumSym,1);
eVec = nan(ttlNumSym,1);
wVec = zeros(lineq.NumTaps,1);
figure;
subplot(2,2,1);
wStem = stem(wVec);
axis([1 lineq.NumTaps 0 1.8]); grid on
xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude')
subplot(2,2,2);
hStem = stem([0 abs(pg) 0]);
grid on;
xlabel('Taps'); ylabel('|Path Gain|'); title('Channel Path Gain Magnitude')
subplot(2,2,3);
errPlot = plot(eVec);
axis([1 ttlNumSym 0 1.2]); grid on
xlabel('Symbols'); ylabel('|Error Magnitude|'); title('Error Magnitude')
subplot(2,2,4);
scatPlot = plot(yVec,'.');
axis square; axis([-1.2 1.2 -1.2 1.2]); grid on;
xlabel('In-phase'); ylabel('Quadrature'); title(sprintf('Scatter Plot'));
end

This helper function updates the figures.

function updateFigures(errPlot,wStem,hStem,scatPlot, ...
 err,wts,y,pg,p,ttlNumSym)
persistent yVec eVec
if p == 1
 yVec = nan(ttlNumSym,1);
 eVec = nan(ttlNumSym,1);
end
yVec(p) = y;
eVec(p) = abs(err);
errPlot.YData = abs(eVec);
wStem.YData = abs(wts);
hStem.YData = [0 abs(pg) 0];
scatPlot.XData = real(yVec);
scatPlot.YData = imag(yVec);
drawnow limitrate
end

 comm.LinearEqualizer

4-615

Nonadaptive Linear Equalization

Use the linear equalizer in nonadaptive mode. Use the mmseweights object function to
calulate the minimum mean squared error (MMSE) solution and use the weights for the
linear equalizer taps weights.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
EbN0 = 20;

Generate QPSK modulated symbols. Apply delayed multipath channel filtering and AWGN
impairments to the symbols.

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a linear equalizer System object configured to use CMA algorithm, set the
AdaptWeights property to false, and the InitialWeightsSource property to
Property. Calculate the MMSE weights. Set the initial tap weights to the calculated
MMSE weights. Equalize the impaired symbols.

eq = comm.LinearEqualizer('Algorithm','CMA','AdaptWeights',false,'InitialWeightsSource','Property')

eq =
 comm.LinearEqualizer with properties:

 Algorithm: 'CMA'
 NumTaps: 5
 StepSize: 0.0100
 Constellation: [1x4 double]
 InputSamplesPerSymbol: 1
 AdaptWeightsSource: 'Property'
 AdaptWeights: false
 InitialWeightsSource: 'Property'
 InitialWeights: [5x1 double]
 WeightUpdatePeriod: 1

wgts = mmseweights(eq,chtaps,EbN0)

4 System Objects — Alphabetical List

4-616

wgts = 5×1 complex

 0.0005 - 0.0068i
 0.0103 + 0.0117i
 0.9694 - 0.0019i
 -0.3987 + 0.2186i
 0.0389 - 0.1756i

eq.InitialWeights = wgts;

[y,err,weights] = eq(rx);

Plot constellation of impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)

 comm.LinearEqualizer

4-617

Plot the equalizer error signal and compute the error vector magnitude of the equalized
symbols.

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|')

4 System Objects — Alphabetical List

4-618

errevm = comm.EVM;
evm = errevm(tx,y)

evm = 140.6177

Plot equalizer tap weights.

subplot(3,1,1); stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
title('Equalizer Tap Weights')
subplot(3,1,2); stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
subplot(3,1,3); stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)

 comm.LinearEqualizer

4-619

More About

Symbol Tap Spacing
You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional
symbol-spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per
symbol as 1. Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-
rate equalizers are sensitive to timing phase.

4 System Objects — Alphabetical List

4-620

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of
input samples per symbol as an integer greater than 1 and provide an input signal
oversampled at that sampling rate. Fractional symbol-spaced equalizers have taps
spaced at an integer fraction of the input symbol duration. Fractional symbol-spaced
equalizers are not sensitive to timing phase.

Algorithms

Linear Equalizers
Linear equalizers can remove intersymbol interference (ISI) when the frequency response
of a channel has no null. If a null exists in the frequency response of a channel, linear
equalizers tend to enhance the noise. In this case, use decision feedback equalizers to
avoid enhancing the noise.

A linear equalizer consists of a tapped delay line that stores samples from the input
signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the
delay line and updates the weights to prepare for the next symbol period.

Linear equalizers can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output
sample rate equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an
integer greater than 1. Typically, K is 4 for fractionally spaced equalizers. The output
sample rate is 1/T and the input sample rate is K/T, where T is the symbol period. Tap-
weight updating occurs at the output rate.

This schematic shows a linear equalizer with L weights, a symbol period of T, and K
samples per symbol. If K is 1, the result is a symbol-spaced linear equalizer instead of a
fractional symbol-spaced linear equalizer.

 comm.LinearEqualizer

4-621

In each symbol period, the equalizer receives K input samples at the tapped delay line.
The equalizer then outputs a weighted sum of the values in the tapped delay line and
updates the weights to prepare for the next symbol period.

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm
For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is
a vector of all inputs ui. Based on the current set of weights, the LMS algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed when using the LMS
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = d - y.

4 System Objects — Alphabetical List

4-622

Recursive Least Square (RLS) Algorithm
For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u
is the vector of all inputs ui. Based on the current set of inputs, u, and the inverse
correlation matrix, P, the RLS algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range
(0, 1]. Decreasing the forgetting factor reduces the equalizer convergence time but
causes the equalized output signal to be less stable. H denotes the Hermitian transpose.
Based on the current inverse correlation matrix, the new inverse correlation matrix is

Pnew =
Pcurrent(1− KuH)
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)
For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights
wi, and u is the vector of all inputs ui. Based on the current set of weights, the CMA
adaptive algorithm creates the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed by the CMA
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = y(R - |y|2), where R is a constant related to the
signal constellation.

 comm.LinearEqualizer

4-623

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
comm.DecisionFeedback | comm.MLSEEqualizer

Blocks
Linear Equalizer

Topics
“Equalization”
“Adaptive Equalizers”

Introduced in R2019a

4 System Objects — Alphabetical List

4-624

comm.DecisionFeedbackEqualizer
Package: comm

Equalize modulated signals using decision feedback filtering

Description
The comm.DecisionFeedbackEqualizer System object uses a decision feedback filter
tap delay line with a weighted sum to equalize modulated signals transmitted through a
dispersive channel. The equalizer object adaptively adjusts tap weights based on the
selected algorithm. For more information, see “Algorithms” on page 4-664.

To equalize modulated signals using a decision feedback filter:

1 Create the comm.DecisionFeedbackEqualizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
dfe = comm.DecisionFeedbackEqualizer
dfe = comm.DecisionFeedbackEqualizer(Name,Value)

Description
dfe = comm.DecisionFeedbackEqualizer creates a decision feedback equalizer
System object to adaptively equalize a signal.

dfe = comm.DecisionFeedbackEqualizer(Name,Value) sets properties using one
or more name-value pairs. For example,
comm.DecisionFeedbackEqualizer('Algorithm','RLS') configures the equalizer

 comm.DecisionFeedbackEqualizer

4-625

object to update tap weights using the recursive least squares (RLS) algorithm. Enclose
each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Algorithm — Adaptive algorithm
'LMS' (default) | 'RLS' | 'CMA'

Adaptive algorithm used for equalization, specified as one of these values:

• 'LMS' — Update the equalizer tap weights using the “Least Mean Square (LMS)
Algorithm” on page 4-666.

• 'RLS' — Update the equalizer tap weights using the “Recursive Least Square (RLS)
Algorithm” on page 4-666.

• 'CMA' — Update the equalizer tap weights using the “Constant Modulus Algorithm
(CMA)” on page 4-667.

Data Types: char | string

NumForwardTaps — Number of forward equalizer taps
5 (default) | positive integer

Number of forward equalizer taps, specified as a positive integer.
Data Types: double

NumFeedbackTaps — Number of feedback equalizer taps
3 (default) | positive integer

Number of feedback equalizer taps, specified as a positive integer.
Data Types: double

4 System Objects — Alphabetical List

4-626

StepSize — Step size
0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the
step size reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tip To determine the maximum step size allowed, use the maxstep object function.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'LMS' or 'CMA'.
Data Types: double

ForgettingFactor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the
equalizer output estimates to be less stable.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

InitialInverseCorrelationMatrix — Initial inverse correlation matrix
0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is
equal to the sum of the NumForwardTaps and NumFeedbackTaps property values. If you
specify InitialInverseCorrelationMatrix as a scalar, a, the equalizer sets the
initial inverse correlation matrix to a times the identity matrix: a(eye(NTaps)).

Tunable: Yes

 comm.DecisionFeedbackEqualizer

4-627

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

Constellation — Signal constellation
pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation
generated using this code: pskmod(0:3,4,pi/4).

Tunable: Yes
Data Types: double

ReferenceTap — Reference tap
3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the NumForwardTaps
property value. The equalizer uses the reference tap location to track the main energy of
the channel.
Data Types: double

InputDelay — Input signal delay
0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a
nonnegative integer. If the input signal is a vector of length greater than 1, then the input
delay is relative to the start of the input vector. If the input signal is a scalar, then the
input delay is relative to the first call of the System object and to the first call of the
System object after calling the release or reset object function.
Data Types: double

InputSamplesPerSymbol — Number of input samples per symbol
1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this property
to any number greater than one effectively creates a fractionally spaced equalizer.
Data Types: double

4 System Objects — Alphabetical List

4-628

TrainingFlagInputPort — Enable training control input
false (default) | true

Enable training control input, specified as false or true. Setting this property to true
enables the equalizer training flag input tf.

Tunable: Yes
Data Types: logical

AdaptAfterTraining — Update tap weights when not training
true (default) | false

Update tap weights when not training, specified as true or false. If this property is set
to true, the System object uses decision directed mode to update equalizer tap weights.
If this property is set to false, the System object keeps the equalizer tap weights
unchanged after training.

Tunable: Yes
Data Types: logical

AdaptWeightsSource — Source of adapt tap weights request
'Property' (default) | 'Input port'

Source of adapt tap weights request, specified as one of these values:

• 'Property' — Specify this value to use the AdaptWeights property to control when
the System object adapts tap weights.

• 'Input port' — Specify this value to use the aw input to control when the System
object adapts tap weights.

Dependencies

To enable this property, set Algorithm to 'CMA'.
Data Types: char | string

AdaptWeights — Adapt tap weights
true (default) | false

Adapt tap weights, specified as true or false. If this property is set to true, the System
object updates the equalizer tap weights. If this property is set to false, the System
object keeps the equalizer tap weights unchanged.

 comm.DecisionFeedbackEqualizer

4-629

Tunable: Yes

Dependencies

To enable this property, set AdaptWeightsSource to 'Property' and set
AdaptAfterTraining to true.
Data Types: logical

InitialWeightsSource — Source for initial tap weights
'Auto' (default) | 'Property'

Source for initial tap weights, specified as one of these values:

• 'Auto' — Initialize the tap weights to the algorithm-specific default values, as
described in the InitialWeights property.

• 'Property' — Initialize the tap weights using the InitialWeights property value.

Data Types: char | string

InitialWeights — Initial weights
0 or [0;0;1;0;0] (default) | scalar | vector

Initial weights used by the adaptive algorithm, specified as a scalar or vector. The default
is 0 when the Algorithm property is set to 'LMS' or 'RLS'. The default is [0;0;1;0;0]
when the Algorithm property is set to 'CMA'.

If you specify InitialWeights as a scalar, the equalizer uses scalar expansion to create
a vector of length NTaps with all values set to InitialWeights. NTaps is equal to the sum
of the NumForwardTaps and NumFeedbackTaps property values. If you specify
InitialWeights as a vector, the vector length must be NTaps.

Tunable: Yes
Data Types: double

WeightUpdatePeriod — Tap weight update period
1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer
updates the tap weights after processing this number of symbols.
Data Types: double

4 System Objects — Alphabetical List

4-630

Usage

Syntax
y = dfe(x,tsym)
y = dfe(x,tsym,tf)
y = dfe(x)
y = dfe(x,aw)
[y,err] = dfe(___)
[y,err,weights] = dfe(___)

Description
y = dfe(x,tsym) equalizes input signal x by using training symbols tsym. The output
is the equalized symbols. To enable this syntax, set the Algorithm property to 'LMS' or
'RLS'.

y = dfe(x,tsym,tf) also specifies training flag tf. The System object starts training
when tf changes from false to true (at the rising edge). The System object trains until
all symbols in tsym are processed. The input tsym is ignored when tf is false. To
enable this syntax, set the Algorithm property to 'LMS' or 'RLS' and
TrainingFlagInputPort property to true.

y = dfe(x) equalizes input signal x. To enable this syntax, set the Algorithm property to
'CMA'.

y = dfe(x,aw) also specifies adapts weights flag aw. The System object adapts the
equalizer tap weights when aw is true. If aw is false, the System object keeps the
weights unchanged. To enable this syntax, set the Algorithm property to 'CMA' and
AdaptWeightsSource property to 'Input port'.

[y,err] = dfe(___) also returns error signal err using input arguments from any of
the previous syntaxes.

[y,err,weights] = dfe(___) also returns weights, the tap weights from the last
tap weight update, using input arguments from any of the previous syntaxes.

 comm.DecisionFeedbackEqualizer

4-631

Input Arguments
x — Input signal
column vector

Input signal, specified as a column vector. The input signal vector length must be equal to
an integer multiple of the InputSamplesPerSymbol property value. For more information,
see “Symbol Tap Spacing” on page 4-664.
Data Types: double
Complex Number Support: Yes

tsym — Training symbols
column vector

Training symbols, specified as a column vector of length less than or equal to the length
of input x. The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS'.
Data Types: double

tf — Training flag
true | false

Training flag, specified as true or false. The System object starts training when tf
changes from false to true (at the rising edge). The System object trains until all
symbols in tsym are processed. The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS' and
TrainingFlagInputPort property to true.
Data Types: logical

aw — Adapt weights flag
true | false

Adapt weights flag, specified as true or false. If aw is true, the System object adapts
weights. If aw is false, the System object keeps the weights unchanged.

4 System Objects — Alphabetical List

4-632

Dependencies

To enable this argument, set the Algorithm property to 'CMA' and AdaptWeightsSource
property to 'Input port'.
Data Types: logical

Output Arguments
y — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal
x.

err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal x.

weights — Tap weights
column vector

Tap weights, returned as a column vector that has NTaps elements. NTaps is equal to the
sum of the NumForwardTaps and NumFeedbackTaps property values. weights contains
the tap weights from the last tap weight update.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.DecisionFeedbackEqualizer
isLocked Determine if System object is in use
clone Create duplicate System object
info Characteristic information about the equalizer object
maxstep Maximum step size for LMS equalizer convergence

 comm.DecisionFeedbackEqualizer

4-633

mmseweights Linear equalizer MMSE tap weights

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Decision Feedback Equalize BPSK-Modulated Signal

Create a BPSK modulator and an equalizer System object™, specifying a decision
feedback LMS equalizer having eight forward taps, five feedback taps, and a step size of
0.03.

bpsk = comm.BPSKModulator;
eqdfe_lms = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
 'NumForwardTaps',8,'NumFeedbackTaps',5,'StepSize',0.03);

Change the reference tap index of the equalizer.

eqdfe_lms.ReferenceTap = 4;

Build a set of test data. Receive the data by convolving the signal.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

Use maxstep to find the maximum permitted step size.

mxStep = maxstep(eqdfe_lms,rxsig)

mxStep = 0.1028

Equalize the received signal. Use the first 200 symbols as the training sequence.

y = eqdfe_lms(rxsig,x(1:200));

4 System Objects — Alphabetical List

4-634

Decision Feedback Equalize QPSK-Modulated Signal

Apply decision feedback equalization using the least mean squares (LMS) algorithm to
recover QPSK symbols passed through a delayed multipath AWGN channel.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];

Generate QPSK-modulated symbols. Apply delayed multipath channel filtering and AWGN
impairments to the symbols.

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a decision feedback equalizer System object and display the default configuration.
Adjust the reference tap to 1. Check the maximum permitted step size. Equalize the
impaired symbols.

eq = comm.DecisionFeedbackEqualizer

eq =
 comm.DecisionFeedbackEqualizer with properties:

 Algorithm: 'LMS'
 NumForwardTaps: 5
 NumFeedbackTaps: 3
 StepSize: 0.0100
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

eq.ReferenceTap = 1;

mxStep = maxstep(eq,rx)

 comm.DecisionFeedbackEqualizer

4-635

mxStep = 0.2141

[y,err,weights] = eq(rx,tx(1:numTrainingSymbols));

Plot the constellation of the impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)

4 System Objects — Alphabetical List

4-636

Plot the equalizer error signal and compute the error vector magnitude of the equalized
symbols.

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|')

 comm.DecisionFeedbackEqualizer

4-637

errevm = comm.EVM;
evm = errevm(tx,y)

evm = 10.1621

Plot the equalizer tap weights.

subplot(3,1,1); stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
title('Equalizer Tap Weights')
subplot(3,1,2); stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
subplot(3,1,3); stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)

4 System Objects — Alphabetical List

4-638

Decision Feedback Equalize System Using Different Training Schemes

Demonstrate decision feedback equalization using the least mean squares (LMS)
algorithm to recover QPSK symbols passed through an AWGN channel. Apply different
equalizer training schemes and show the symbol error magnitude.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200
training symbols and 1800 random data symbols. Configure a decision feedback LMS
equalizer to recover the packet data.

 comm.DecisionFeedbackEqualizer

4-639

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
 'NumForwardTaps',5,'NumFeedbackTaps',4,'ReferenceTap',3,'StepSize',0.01);

Train the Equalizer at the Beginning of Each Packet With Reset

Process each packet using prepended training symbols. Reset the equalizer after
processing each packet. Resetting the equalizer after each packet forces the equalizer to
train taps with no a priori knowledge. Equalizer error signal plots for the first, second,
and last packet show higher symbol errors at the start of each packet.

jj = 1;
figure
for ii = 1:numPkts
 b = randi([0 M-1],numDataSymbols,1);
 dataSym = pskmod(b,M,pi/4);
 packet = [trainingSymbols;dataSym];
 rx = awgn(packet,SNR);
 [~,err] = dfeq(rx,trainingSymbols);
 reset(dfeq)
 if (ii ==1 || ii == 2 ||ii == numPkts)
 subplot(3,1,jj)
 plot(abs(err))
 ylim([0 1])
 title(['Packet # ',num2str(ii)])
 xlabel('Symbols');
 ylabel('Error Magnitude');
 grid on;
 jj = jj+1;
 end
end

4 System Objects — Alphabetical List

4-640

Train the Equalizer at the Beginning of Each Packet Without Reset

Process each packet using prepended training symbols. Do not reset the equalizer after
each packet is processed. By not resetting after each packet, the equalizer retains tap
weights from training prior packets. Equalizer error signal plots for the first, second, and
last packet show that after the initial training on the first packet, subsequent packets
have less symbol errors at the start of each packet.

release(dfeq)
jj = 1;
figure
for ii = 1:numPkts
 b = randi([0 M-1],numDataSymbols,1);
 dataSym = pskmod(b,M,pi/4);

 comm.DecisionFeedbackEqualizer

4-641

 packet = [trainingSymbols;dataSym];
 channel = 1;
 rx = awgn(packet*channel,SNR);
 [~,err] = dfeq(rx,trainingSymbols);
 if (ii ==1 || ii == 2 ||ii == numPkts)
 subplot(3,1,jj)
 plot(abs(err))
 ylim([0 1])
 title(['Packet # ',num2str(ii)])
 xlabel('Symbols');
 ylabel('Error Magnitude');
 grid on;
 jj = jj+1;
 end
end

4 System Objects — Alphabetical List

4-642

Train the Equalizer Periodically

Systems with signals subject to time-varying channels require periodic equalizer training
to maintain lock on the channel variations. Specify a system that has 200 symbols of
training for every 1800 data symbols. Between training, the equalizer does not update tap
weights. The equalizer processes 200 symbols per packet.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);

 comm.DecisionFeedbackEqualizer

4-643

tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Set the AdaptAfterTraining property to false to stop the equalizer tap weight
updates after the training phase.

release(dfeq)
dfeq.AdaptAfterTraining = false

dfeq =
 comm.DecisionFeedbackEqualizer with properties:

 Algorithm: 'LMS'
 NumForwardTaps: 5
 NumFeedbackTaps: 4
 StepSize: 0.0100
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: false
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

Equalize the impaired data. Plot the angular error from the channel, the equalizer error
signal, and signal constellation. As the channel varies, the equalizer output does not
remove the channel effects. Also, the output constellation rotates out of sync, resulting in
bit errors.

[y,err] = dfeq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')

4 System Objects — Alphabetical List

4-644

grid on
title('Time-Varying Channel Without Retraining')

scatterplot(y)

 comm.DecisionFeedbackEqualizer

4-645

Set the TrainingInputPort property to true to configure the equalizer to retrain the
taps when signaled by the trainFlag input. The equalizer trains only when trainFlag
is true. After every 2000 symbols, the equalizer retrains the taps and keeps lock on
variations of the channel. Plot the angular error from the channel, the equalizer error
signal, and signal constellation. As the channel varies, the equalizer output removes the
channel effects. Also, the output constellation does not rotate out of sync, and bit errors
are reduced.

release(dfeq)
dfeq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;

4 System Objects — Alphabetical List

4-646

trainingPeriod = 2000;
eVec = zeros(size(rx));
yVec = zeros(size(rx));
for p=1:numPackets
 [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
 dfeq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag);
 symbolCnt = symbolCnt + spp;
 if symbolCnt >= trainingPeriod
 trainFlag = true;
 symbolCnt = 0;
 else
 trainFlag = false;
 end
end
figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

 comm.DecisionFeedbackEqualizer

4-647

scatterplot(yVec)

4 System Objects — Alphabetical List

4-648

Decision Feedback Equalize Delayed Signal

Simulate a system with delay between the transmitted symbols and received samples.
Typical systems have transmitter and receiver filters that result in a delay. This delay
must be accounted for to synchronize the system. In this example, the system delay is
introduced without transmit and receive filters. Decision feedback equalization, using the
least mean squares (LMS) algorithm, recovers QPSK symbols.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;

 comm.DecisionFeedbackEqualizer

4-649

numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Generate QPSK-modulated symbols. Apply multipath channel filtering, a system delay, and
AWGN to the transmitted symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');

Create equalizer and EVM System objects. The equalizer System object specifies a
decision feedback equalizer using the LMS algorithm.

dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
 'NumForwardTaps',9,'NumFeedbackTaps',6,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
 'Estimated from reference constellation');

Equalize Without Adjusting Input Delay

Equalize the received symbols.

[y1,err1,wts1] = dfeq(rx,tx(1:numTrainingSymbols,1));

Find the delay between the received symbols and the transmitted symbols by using the
finddelay function.

rxDelay = finddelay(tx,rx)

rxDelay = 20

Display the equalizer information. The latency value indicates the delay introduced by the
equalizer. Calculate the total delay as the sum of rxDelay and the equalizer latency.

eqInfo = info(dfeq)

eqInfo = struct with fields:
 Latency: 4

totalDelay = rxDelay + eqInfo.Latency;

4 System Objects — Alphabetical List

4-650

Until the equalizer output converges, the symbol error rate is high. Plot the error output,
err1, to determine when the equalized output converges.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')

The plot shows excessive errors for the first 2000 symbols. When demodulating symbols
and computing symbol errors, account for the unconverged output and the system delay
between the equalizer output and transmitted symbols.

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)

 comm.DecisionFeedbackEqualizer

4-651

symErrWithDelay = 6001

evmWithDelay = evm(y1)

evmWithDelay = 25.6868

The error rate and EVM are high because the receive delay was not accounted for in the
equalizer System object.

Adjust Input Delay in Decision Feedback Equalizer

Equalize the received data by using the delay value to set the InputDelay property.
Since InputDelay is a nontunable property, you must release the dfeq System object to
reconfigure the InputDelay property. Equalize the received symbols.

release(dfeq)
dfeq.InputDelay = rxDelay

dfeq =
 comm.DecisionFeedbackEqualizer with properties:

 Algorithm: 'LMS'
 NumForwardTaps: 9
 NumFeedbackTaps: 6
 StepSize: 0.0100
 Constellation: [1x4 double]
 ReferenceTap: 5
 InputDelay: 20
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

[y2,err2,wts2] = dfeq(rx,tx(1:numTrainingSymbols,1));

Plot the tap weights and equalized error magnitude. A stem plot shows the equalizer tap
weights before and after the system delay is removed. A 2-D line plot shows the slower
equalizer convergence for the delayed signal, as compared to the signal with the delay
removed.

subplot(2,1,1)
stem([real(wts1),real(wts2)])
xlabel('Taps')

4 System Objects — Alphabetical List

4-652

ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on

figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')

 comm.DecisionFeedbackEqualizer

4-653

ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on

Plot error output of the equalized signals, rxDelayed and rxDelayRemoved. For the
signal that has the delay removed, the equalizer converges during the 1000 symbol
training period. When demodulating symbols and computing symbol errors, to account for
the unconverged output and the system delay between the equalizer output and
transmitted symbols, skip the first 500 symbols. Reconfiguring the equalizer to account
for the system delay enables better equalization of the signal, and reduces symbol errors
and the EVM.

eqInfo = info(dfeq)

4 System Objects — Alphabetical List

4-654

eqInfo = struct with fields:
 Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)

symErrDelayRemoved = 0

evmDelayRemoved = evm(y2(500+totalDelay:end))

evmDelayRemoved = 7.5147

Decision Feedback Equalize Symbols Using EVM-Based Training

Recover QPSK symbols with a decision equalizer, using the constant modulus algorithm
(CMA) and EVM-based taps training. When using blind equalizer algorithms, such as
CMA, you can train the equalizer taps using the AdaptWeights property to start and
stop training. Use helper functions to generate plots and apply phase correction.

Initialize system variables.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
refTap = 3;
nFwdTaps = 5;
nFdbkTaps = 4;
ttlTaps = nFwdTaps + nFdbkTaps;
raylChan = comm.RayleighChannel('PathDelays',[0 1], ...
 'AveragePathGains',[0 -12],'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Create the equalizer and EVM System objects. The equalizer System object specifies a
decision feedback equalizer using the CMA adaptive algorithm. Call the helper function to
initialize figure plots.

dfeq = comm.DecisionFeedbackEqualizer('Algorithm','CMA', ...
 'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ...
 'StepSize',0.03,'AdaptWeightsSource','Input port')

 comm.DecisionFeedbackEqualizer

4-655

dfeq =
 comm.DecisionFeedbackEqualizer with properties:

 Algorithm: 'CMA'
 NumForwardTaps: 5
 NumFeedbackTaps: 4
 StepSize: 0.0300
 Constellation: [1x4 double]
 ReferenceTap: 3
 InputSamplesPerSymbol: 1
 AdaptWeightsSource: 'Input port'
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

info(dfeq)

ans = struct with fields:
 Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
 'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = initFigures(numPackets,ttlTaps);

Equalization Loop

Follow these steps to implement the equalization loop.

1 Generate OQPSK data packets.
2 Apply Rayleigh fading and AWGN to the transmission data.
3 Apply equalization to the received data and phase correction to the equalizer output.
4 Estimate the EVM and toggle the adaptWeights flag to true or false based on the

EVM level.
5 Update the figure plots.

for p=1:numPackets
 data = randi([0 M-1],numSymbols,1);
 tx = pskmod(data,M,pi/4);
 rx = awgn(raylChan(tx),SNR);
 rxDelay = finddelay(rx,tx);
 [y,err,wts] = dfeq(rx,adaptWeights);

4 System Objects — Alphabetical List

4-656

 y = phaseCorrection(y);
 evmEst = evm(y);
 adaptWeights = (evmEst > 20);

 updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
 wts,y(end),evmEst,adaptWeights,p,numPackets)
end

rxDelay

rxDelay = 0

The figure plots show that, as the EVM varies, the equalizer toggles in and out of
decision-directed weight adaptation mode.

 comm.DecisionFeedbackEqualizer

4-657

Helper Functions

This helper function initializes figures that show a quad plot of simulation results.

function [errPlot,evmPlot,scatter,adaptState] = initFigures(numPkts,ttlTaps)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(ttlTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 ttlTaps 0 1.8])
xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');
axis square; axis([-1.2 1.2 -1.2 1.2]); grid on
xlabel('In-phase'); ylabel('Quadrature'); title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on; axis([0 numPkts -0.2 1.2])
ylabel('Training'); xlabel('Symbols'); title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on; axis([1 numPkts 0 100])
xlabel('Symbols'); ylabel('EVM (%)'); title('EVM')
end

This helper function updates the figures.

function updateFigures(errPlot,evmPlot,scatSym, ...
 adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
 yVec = nan(numFrames,1);
 evmVec = nan(numFrames,1);
 adaptVec = nan(numFrames,1);
end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;

4 System Objects — Alphabetical List

4-658

errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);
scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

This helper function applies phase correction.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Decision Feedback Equalize Packetized Signals in Fading Environments

Recover QPSK symbols in fading environments with a decision feedback equalizer, using
the least mean squares (LMS) algorithm. Use the reset object function to equalize
independent packets. Use helper functions to generate plots. This example also shows
symbol-based processing and frame-based processing.

Setup

Initialize system variables, create the equalizer System object, and initialize the plot
figures.

M = 4; % QPSK
numSym = 1000;
numTrainingSym = 100;
numPackets = 5;
refTap = 5;
nFwdTaps = 9;
nFdbkTaps = 4;
ttlTaps = nFwdTaps + nFdbkTaps;
stepsz = 0.01;
ttlNumSym = numSym + numTrainingSym;
raylChan = comm.RayleighChannel('PathDelays',[0 1], ...
 'AveragePathGains',[0 -9], ...
 'MaximumDopplerShift',0, ...

 comm.DecisionFeedbackEqualizer

4-659

 'PathGainsOutputPort',true);
SNR = 35;
rxVec = zeros(ttlNumSym,numPackets);
txVec = zeros(ttlNumSym,numPackets);
yVec = zeros(ttlNumSym,1);
eVec = zeros(ttlNumSym,1);

dfeq1 = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
 'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ...
 'StepSize',stepsz,'TrainingFlagInputPort',true);

[errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,ttlTaps, ...
 raylChan.AveragePathGains);

Symbol-Based Processing

For symbol-based processing, provide one symbol at the input of the equalizer. Reset the
equalizer state and channel after processing each packet.

for p = 1:numPackets
 trainingFlag = true;
 for q=1:ttlNumSym
 data = randi([0 M-1],1,1);
 tx = pskmod(data,M,pi/4);
 [xc,pg] = raylChan(tx);
 rx = awgn(xc,25);
 [y,err,wts] = dfeq1(rx,tx,trainingFlag);

Disable training after processing numTrainingSym training symbols.

 if q == numTrainingSym
 trainingFlag = false;
 end
 updateFigures(errPlot,wStem,hStem,scatPlot,err,wts,y,pg,q,ttlNumSym);
 txVec(q,p) = tx;
 rxVec(q,p) = rx;
 end

After processing each packet, reset the channel System object to get a new realization of
channel taps and the equalizer System object to restore the default taps weights.

 reset(raylChan)
 reset(dfeq1)
end

4 System Objects — Alphabetical List

4-660

Packet-Based Processing

For packet-based processing, provide one packet at the input of the equalizer. Each
packet contains ttlNumSym symbols. Because the training duration is less than the
packet length, you do not need to specify the start-training input.

yVecPkt = zeros(ttlNumSym,numPackets);
errVecPkt = zeros(ttlNumSym,numPackets);
wgtVecPkt = zeros(ttlTaps,numPackets);
dfeq2 = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
 'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ...
 'StepSize',stepsz);
for p = 1:numPackets
 [yVecPkt(:,p),errVecPkt(:,p),wgtVecPkt(:,p)] = ...

 comm.DecisionFeedbackEqualizer

4-661

 dfeq2(rxVec(:,p),txVec(1:numTrainingSym,p));
 for q=1:ttlNumSym
 updateFigures(errPlot,wStem,hStem,scatPlot, ...
 errVecPkt(q,p),wgtVecPkt(:,p),yVecPkt(q,p),pg,q,ttlNumSym);
 end

After processing each packet, reset the channel System object to get a new realization of
channel taps and the equalizer System object to restore the default taps weights.

 reset(raylChan)
 reset(dfeq2)
end

4 System Objects — Alphabetical List

4-662

Helper Functions

This helper function initializes the figures.

function [errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,ttlTap,pg)
yVec = nan(ttlNumSym,1);
eVec = nan(ttlNumSym,1);
wVec = zeros(ttlTap,1);
figure;
subplot(2,2,1);
wStem = stem(wVec);
axis([1 ttlTap 0 1.8]); grid on
xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude')
subplot(2,2,2);
hStem = stem([0 abs(pg) 0]);
grid on;
xlabel('Taps'); ylabel('|Path Gain|'); title('Channel Path Gain Magnitude')
subplot(2,2,3);
errPlot = plot(eVec);
axis([1 ttlNumSym 0 1.2]); grid on
xlabel('Symbols'); ylabel('|Error Magnitude|'); title('Error Magnitude')
subplot(2,2,4);
scatPlot = plot(yVec,'.');
axis square; axis([-1.2 1.2 -1.2 1.2]); grid on;
xlabel('In-phase'); ylabel('Quadrature'); title(sprintf('Scatter Plot'));
end

This helper function updates the figures.

function updateFigures(errPlot,wStem,hStem,scatPlot, ...
 err,wts,y,pg,p,ttlNumSym)
persistent yVec eVec
if p == 1
 yVec = nan(ttlNumSym,1);
 eVec = nan(ttlNumSym,1);
end
yVec(p) = y;
eVec(p) = abs(err);
errPlot.YData = abs(eVec);
wStem.YData = abs(wts);
hStem.YData = [0 abs(pg) 0];
scatPlot.XData = real(yVec);
scatPlot.YData = imag(yVec);

 comm.DecisionFeedbackEqualizer

4-663

drawnow limitrate
end

More About

Symbol Tap Spacing
You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional
symbol-spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per
symbol as 1. Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-
rate equalizers are sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of
input samples per symbol as an integer greater than 1 and provide an input signal
oversampled at that sampling rate. Fractional symbol-spaced equalizers have taps
spaced at an integer fraction of the input symbol duration. Fractional symbol-spaced
equalizers are not sensitive to timing phase.

Algorithms

Decision Feedback Equalizers
A decision feedback equalizer (DFE) is a nonlinear equalizer that reduces intersymbol
interference (ISI) in frequency-selective channels. If a null exists in the frequency
response of a channel, DFEs do not enhance the noise. A DFE consists of a tapped delay
line that stores samples from the input signal and contains a forward filter and a feedback
filter. The forward filter is similar to a linear equalizer. The feedback filter contains a
tapped delay line whose inputs are the decisions made on the equalized signal. Once per
symbol period, the equalizer outputs a weighted sum of the values in the delay line and
updates the weights to prepare for the next symbol period.

DFEs can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output
sample rate equals the input sample rate.

4 System Objects — Alphabetical List

4-664

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an
integer greater than 1. Typically, K is 4 for fractional symbol-spaced equalizers. The
output sample rate is 1/T and the input sample rate is K/T. Tap weight updating occurs
at the output rate.

This schematic shows a fractional symbol-spaced DFE with a total of N weights, a symbol
period of T, and K samples per symbol. The filter has L forward weights and N-L feedback
weights. The forward filter is at the top, and the feedback filter is at the bottom. If K is 1,
the result is a symbol-spaced DFE instead of a fractional symbol-spaced DFE.

In each symbol period, the equalizer receives K input samples at the forward filter and
one decision or training sample at the feedback filter. The equalizer then outputs a
weighted sum of the values in the forward and feedback delay lines and updates the
weights to prepare for the next symbol period.

Note The algorithm for the Adaptive Algorithm block in the schematic jointly optimizes
the forward and feedback weights. Joint optimization is especially important for
convergence in the recursive least square (RLS) algorithm.

 comm.DecisionFeedbackEqualizer

4-665

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm
For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is
a vector of all inputs ui. Based on the current set of weights, the LMS algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed when using the LMS
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = d - y.

Recursive Least Square (RLS) Algorithm
For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u
is the vector of all inputs ui. Based on the current set of inputs, u, and the inverse
correlation matrix, P, the RLS algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range
(0, 1]. Decreasing the forgetting factor reduces the equalizer convergence time but
causes the equalized output signal to be less stable. H denotes the Hermitian transpose.
Based on the current inverse correlation matrix, the new inverse correlation matrix is

Pnew =
Pcurrent(1− KuH)
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

4 System Objects — Alphabetical List

4-666

Constant Modulus Algorithm (CMA)
For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights
wi, and u is the vector of all inputs ui. Based on the current set of weights, the CMA
adaptive algorithm creates the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing
the step size reduces the equalizer convergence time but causes the equalized output
signal to be less stable. To determine the maximum step size allowed by the CMA
adaptive algorithm, use the maxstep object function. The * operator denotes the complex
conjugate and the error calculation e = y(R - |y|2), where R is a constant related to the
signal constellation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
comm.LinearEqualizer | comm.MLSEEqualizer

Blocks
Decision Feedback Equalizer

Topics
“Equalization”
“Adaptive Equalizers”

Introduced in R2019a

 comm.DecisionFeedbackEqualizer

4-667

info
Package: comm

Characteristic information about the equalizer object

Syntax
infostruct = info(obj)

Description
infostruct = info(obj) returns a structure containing characteristic information for
the System object.

Input Arguments
obj — System object to get information from
System object

System object to get information from.

Output Arguments
infostruct — Structure containing object information
struct

Structure containing fields with information about the System object.

Latency — Equalizer latency
scalar

Equalizer latency, returned as a scalar.

4 System Objects — Alphabetical List

4-668

See Also
Objects
comm.DecisionFeedbackEqualizer | comm.LinearEqualizer

Introduced in R2012a

 info

4-669

maxstep
Package: comm

Maximum step size for LMS equalizer convergence

Syntax
mumax = maxstep(eq,x)

Description
mumax = maxstep(eq,x) predicts a bound on the step size to provide convergence of
the mean values of the coefficients of the equalizer defined by the eq System object. The
set input signal sequences in x are assumed to have zero mean or nearly so.

Examples

Decision Feedback Equalize BPSK-Modulated Signal

Create a BPSK modulator and an equalizer System object™, specifying a decision
feedback LMS equalizer having eight forward taps, five feedback taps, and a step size of
0.03.

bpsk = comm.BPSKModulator;
eqdfe_lms = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
 'NumForwardTaps',8,'NumFeedbackTaps',5,'StepSize',0.03);

Change the reference tap index of the equalizer.

eqdfe_lms.ReferenceTap = 4;

Build a set of test data. Receive the data by convolving the signal.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

4 System Objects — Alphabetical List

4-670

Use maxstep to find the maximum permitted step size.

mxStep = maxstep(eqdfe_lms,rxsig)

mxStep = 0.1028

Equalize the received signal. Use the first 200 symbols as the training sequence.

y = eqdfe_lms(rxsig,x(1:200));

Input Arguments
eq — Equalizer object
System object

Equalizer object, specified as a comm.LinearEqualizer or
comm.DecisionFeedbackFEqualizer System object.

x — Input signal
column vector

Input signal, specified as a column vector. The input signal vector length must be equal to
an integer multiple of the InputSamplesPerSymbol property. For more information, see
“Symbol Tap Spacing” on page 4-664.
Data Types: double
Complex Number Support: Yes

Output Arguments
mumax — Prediction of maximum step size for LMS equalizer convergence
scalar

Prediction of maximum step size for LMS equalizer convergence, returned as a scalar.

 maxstep

4-671

See Also
Objects
comm.DecisionFeedbackEqualizer | comm.LinearEqualizer

Introduced in R2019a

4 System Objects — Alphabetical List

4-672

mmseweights
Package: comm

Linear equalizer MMSE tap weights

Syntax
weights = mmse(eq,chTaps,EbN0)

Description
weights = mmse(eq,chTaps,EbN0) calculated minimum mean squared error (MMSE)
solution for the linear equalizer, eq System object given the channel delay taps, chTaps,
and signal to noise ratio, EbN0.

Examples

Calculate MMSE Weights for Linear Equalizer

Calculate the minimum mean squared error (MMSE) solution and use the weights for the
linear equalizer taps weights.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
EbN0 = 20;

Generate QPSK modulated symbols. Apply delayed multipath channel filtering and AWGN
impairments to the symbols.

 mmseweights

4-673

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a linear equalizer System object configured to use CMA algorithm and input the
taps weights. Calculate the MMSE weights. Set the initial tap weights to the calculated
MMSE weights. Equalize the impaired symbols.

eq = comm.LinearEqualizer('Algorithm','CMA','AdaptWeights',false,'InitialWeightsSource','Property')

eq =
 comm.LinearEqualizer with properties:

 Algorithm: 'CMA'
 NumTaps: 5
 StepSize: 0.0100
 Constellation: [1x4 double]
 InputSamplesPerSymbol: 1
 AdaptWeightsSource: 'Property'
 AdaptWeights: false
 InitialWeightsSource: 'Property'
 InitialWeights: [5x1 double]
 WeightUpdatePeriod: 1

wgts = mmseweights(eq,chtaps,EbN0)

wgts = 5×1 complex

 0.0005 - 0.0068i
 0.0103 + 0.0117i
 0.9694 - 0.0019i
 -0.3987 + 0.2186i
 0.0389 - 0.1756i

eq.InitialWeights = wgts;

[y,err,weights] = eq(rx);

Plot constellation of impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)

4 System Objects — Alphabetical List

4-674

Plot the equalizer error signal and compute the error vector magnitude of the equalized
symbols.

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|')

 mmseweights

4-675

errevm = comm.EVM;
evm = errevm(tx,y)

evm = 140.6177

Plot equalizer tap weights.

subplot(3,1,1); stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
title('Equalizer Tap Weights')
subplot(3,1,2); stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
subplot(3,1,3); stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)

4 System Objects — Alphabetical List

4-676

Input Arguments
eq — Equalizer object
System object

Equalizer object, specified as a comm.LinearEqualizer System object.

chTaps — Channel delay taps
vector

Channel delay taps, specified as a vector.

 mmseweights

4-677

Data Types: double
Complex Number Support: Yes

EbN0 — Signal to noise ratio
scalar

Signal to noise ratio of the channel, specified as a scalar.
Data Types: double

Output Arguments
weights — Weights for linear equalizer
vector

Weights for linear equalizer, returned as a vector.

See Also
Objects
comm.LinearEqualizer

Introduced in R2019a

4 System Objects — Alphabetical List

4-678

comm.EVM
Package: comm

Measure error vector magnitude

Description
The comm.EVM (error vector magnitude) System object measures the modulator or
demodulator performance of an impaired signal.

To measure error vector magnitude:

1 Define and set up your EVM object. See “Construction” on page 4-679.
2 Call step to measure the modulator or demodulator performance according to the

properties of comm.EVM. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
EVM = comm.EVM creates an error vector magnitude object, EVM. This object measures
the amount of impairment in a modulated signal.

EVM = comm.EVM(Name,Value) creates an EVM object with each specified property set
to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Example: EVM = comm.EVM('ReferenceSignalSource','Estimated from
reference constellation') creates an object, EVM, that measures the RMS EVM of a
received signal by using a reference constellation.

 comm.EVM

4-679

Properties
Normalization

Normalization method

Normalization method used in EVM calculation, specified as one of the following:
'Average reference signal power' (default), 'Average constellation
power', or 'Peak constellation power'.

AverageConstellationPower

Average constellation power

Average constellation power, specified in watts as a positive real scalar. This property is
available when Normalization is 'Average constellation power'. The default is
1.

PeakConstellationPower

Peak constellation power

Peak constellation power, specified in watts as a positive real scalar. This property is
available when Normalization is 'Peak constellation power'. The default is 1.

ReferenceSignalSource

Reference signal source

Reference signal source, specified as either 'Input port' (default) or 'Estimated
from reference constellation'. To provide an explicit reference signal against
which the input signal is measured, set this property to 'Input port'. To measure the
EVM of the input signal against a reference constellation, set this property to
'Estimated from reference constellation'.

ReferenceConstellation

Reference constellation

Reference constellation, specified as a vector. This property is available when the
ReferenceSignalSource property is 'Estimated from reference
constellation'.

4 System Objects — Alphabetical List

4-680

The default is [0.7071 - 0.7071i; -0.7071 - 0.7071i; -0.7071 + 0.7071i;
0.7071 + 0.7071i], which corresponds to a standard QPSK constellation. You can
derive constellation points by using modulation functions or objects. For example, to
derive the reference constellation for a 16-QAM signal, you can use qammod(0:15,16).

MeasurementIntervalSource

Measurement interval source

Measurement interval source, specified as one of the following: 'Input length'
(default), 'Entire history', 'Custom', or 'Custom with periodic reset'. This
property affects the RMS and maximum EVM outputs only.

• To calculate EVM using only the current samples, set this property to 'Input
length'.

• To calculate EVM for all samples, set this property to 'Entire history'.
• To calculate EVM over an interval you specify and to use a sliding window, set this

property to 'Custom'.
• To calculate EVM over an interval you specify and to reset the object each time the

measurement interval is filled, set this property to 'Custom with periodic
reset'.

MeasurementInterval

Measurement interval

Measurement interval over which the EVM is calculated, specified in samples as a real
positive integer. This property is available when MeasurementIntervalSource is
'Custom' or 'Custom with periodic reset'. The default is 100.

AveragingDimensions

Averaging dimensions

Averaging dimensions, specified as a positive integer or row vector of positive integers.
This property determines the dimensions over which the averaging is performed. For
example, to average across the rows, set this property to 2. The default is 1.

The object supports variable-size inputs over the dimensions in which the averaging takes
place. However, the input size for the nonaveraged dimensions must remain constant
between step calls. For example, if the input has size [4 3 2] and Averaging

 comm.EVM

4-681

dimensions is [1 3], the output size is [1 3 1], and the second dimension must
remain fixed at 3.

MaximumEVMOutputPort

Maximum EVM measurement output port

Maximum EVM measurement output port, specified as a logical scalar. To create an
output port for maximum EVM measurements, set this property to true. The default is
false.

XPercentileEVMOutputPort

X-percentile EVM measurement output port

X-percentile EVM measurement output port, specified as a logical scalar. To create an
output port for X-percentile EVM measurements, set this property to true. The X-
percentile EVM measurements persist until you reset the object. These measurements are
calculated by using all of the input frames since the last reset. The default is false.

XPercentileValue

X-percentile value

X-percentile value below which X% of the EVM measurements fall, specified as a real
scalar from 0 to 100. This property is available when XPercentileEVMOutputPort is
true. The default is 95.

SymbolCountOutputPort

Symbol count output port

Symbol count output port, specified as a logical scalar. To output the number of
accumulated symbols used to calculate the X-percentile EVM measurements, set this
property to true. This property is available when XPercentileEVMOutputPort is
true. The default is false.

4 System Objects — Alphabetical List

4-682

Methods
reset Reset states of EVM measurement object
step Measure error vector magnitude

Common to All System Objects
release Allow System object property value changes

Examples

Measure EVM of Noisy 16-QAM Modulated Signal

Create an EVM object. Configure it using name-value pairs to output maximum EVM, 90th
percentile EVM, and the symbol count.

evm = comm.EVM('MaximumEVMOutputPort',true,...
 'XPercentileEVMOutputPort',true, 'XPercentileValue',90,...
 'SymbolCountOutputPort',true);

Generate random data symbols. Apply 16-QAM modulation. The modulated signal serves
as the reference for the subsequent EVM measurements.

data = randi([0 15],1000,1);
refSym = qammod(data,16,'UnitAveragePower',true);

Pass the modulated signal through an AWGN channel.

rxSym = awgn(refSym,20);

Measure the EVM of the noisy signal.

[rmsEVM,maxEVM,pctEVM,numSym] = evm(refSym,rxSym)

rmsEVM = 9.8775

maxEVM = 26.8385

pctEVM = 14.9750

numSym = 1000

 comm.EVM

4-683

Estimate Received EVM

Generate filtered QAM data and pass it through an AWGN channel. Compute the symbol
error rate, and estimate the EVM of the received signal.

Create channel and filter System objects™.

M = 16;
refConst = qammod(0:M-1,M);
channel = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',15,'SignalPower',10);

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',4);
rxfilter = comm.RaisedCosineReceiveFilter('InputSamplesPerSymbol',4, ...
 'DecimationFactor',4);

Create an EVM object to output RMS and maximum EVM measurements.

evm = comm.EVM('MaximumEVMOutputPort',true, ...
 'ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation',refConst);

Create an error rate object and account for the signal delay through the transmit and
receive filters. For a filter, the group delay is equal to 1/2 of the FilterSpanInSymbols
property.

rxd = (txfilter.FilterSpanInSymbols + rxfilter.FilterSpanInSymbols)/2;
errorRate = comm.ErrorRate('ReceiveDelay',rxd);

Perform the following channel operations:

• Generate random data symbols.
• Apply 16-QAM modulation.
• Filter the modulated data through a raised cosine Tx filter.
• Pass the transmitted signal through an AWGN channel.
• Filter the received data through a raised cosine Rx filter.
• Demodulate the filtered data.

txData = randi([0 15],1000,1);
modData = qammod(txData,M);

4 System Objects — Alphabetical List

4-684

txSig = txfilter(modData);
rxSig = channel(txSig);
filtSig = rxfilter(rxSig);
rxData = qamdemod(filtSig,M);

Calculate the error statistics and display the symbol error rate.

errStats = errorRate(txData,rxData);
symErrRate = errStats(1)

symErrRate = 0.0222

Measure and display the received RMS EVM and maximum EVM values. Take the filter
delay into account by deleting the first rxd+1 symbols. Because there are symbol errors,
the EVM may not be totally accurate.

[rmsEVM,maxEVM] = evm(filtSig(rxd+1:end))

rmsEVM = 17.2966

maxEVM = 40.1595

Measure EVM Using Reference Constellation

Generate random data symbols, and apply 8-PSK modulation.

d = randi([0 7],2000,1);
txSig = pskmod(d,8,pi/8);

Pass the modulated signal through an AWGN channel.

rxSig = awgn(txSig,30);

Create an EVM object. Measure the RMS EVM using the transmitted signal as the
reference.

evm = comm.EVM;
rmsEVM1 = evm(txSig,rxSig);

Release the EVM object. Configure the object to estimate the EVM of the received signal
against a reference constellation.

 comm.EVM

4-685

release(evm)
evm.ReferenceSignalSource = 'Estimated from reference constellation';
evm.ReferenceConstellation = pskmod(0:7,8,pi/8);

Measure the RMS EVM using only the received signal as an input. Verify that it matches
the result obtained when using a reference signal.

rmsEVM2 = evm(rxSig);
[rmsEVM1 rmsEVM2]

ans = 1×2

 3.1524 3.1524

Measure EVM Using Custom Measurement Interval

Measure the EVM of a noisy 8-PSK signal using two types of custom measurement
intervals. Display the results.

Set the number of frames, M, and the number of subframes per frame, K.

M = 2;
K = 5;

Set the number of symbols in a subframe. Calculate the corresponding frame length.

sfLen = 100;
frmLen = K*sfLen

frmLen = 500

Create an EVM object. Configure the object to use a custom measurement interval equal
to the frame length.

evm1 = comm.EVM('MeasurementIntervalSource','Custom', ...
 'MeasurementInterval',frmLen);

Configure the object to measure EVM using an 8-PSK reference constellation.

evm1.ReferenceSignalSource = 'Estimated from reference constellation';
evm1.ReferenceConstellation = pskmod(0:7,8,pi/8);

4 System Objects — Alphabetical List

4-686

Create an EVM object, and configure it use a 500-symbol measurement interval with a
periodic reset. Configure the object to measure EVM using an 8-PSK reference
constellation.

evm2 = comm.EVM('MeasurementIntervalSource','Custom with periodic reset', ...
 'MeasurementInterval',frmLen);
evm2.ReferenceSignalSource = 'Estimated from reference constellation';
evm2.ReferenceConstellation = pskmod(0:7,8,pi/8);

Initialize the EVM and signal-to-noise arrays.

rmsEVM1 = zeros(K,M);
rmsEVM2 = zeros(K,M);
snrdB = zeros(K,M);

Measure the EVM for a noisy 8-PSK signal using both objects. The SNR increases by 1 dB
from subframe to subframe. For evm1, the 500 most recent symbols are used to compute
the estimate. In this case, a sliding window is used so that an entire frame of data is
always processed. For evm2, the symbols are cleared each time a new frame is
encountered.

for m = 1:M
 for k = 1:K
 data = randi([0 7],sfLen,1);
 txSig = pskmod(data,8,pi/8);
 snrdB(k,m) = k+(m-1)*K+7;
 rxSig = awgn(txSig,snrdB(k,m));
 rmsEVM1(k,m) = evm1(rxSig);
 rmsEVM2(k,m) = evm2(rxSig);
 end
end

Display the EVM measured using the two approaches. The windowing used in the first
case provides an averaging across the subframes. In the second case, the EVM object
resets after the first frame so that the calculated EVM values more accurately reflect the
current SNR.

stairs(snrdB(:),[rmsEVM1(:) rmsEVM2(:)])
xlabel('SNR (dB)')
ylabel('EVM (%)')
legend('No Reset','Periodic Reset')

 comm.EVM

4-687

Measure EVM Across Different Dimensions

Create OFDM modulator and demodulator objects.

ofdmmod = comm.OFDMModulator('FFTLength',32,'NumSymbols',4);
ofdmdemod = comm.OFDMDemodulator('FFTLength',32,'NumSymbols',4);

Determine the number of subcarriers and symbols in the OFDM signal.

ofdmDims = info(ofdmmod);
numSC = ofdmDims.DataInputSize(1)

4 System Objects — Alphabetical List

4-688

numSC = 21

numSym = ofdmDims.DataInputSize(2)

numSym = 4

Generate random symbols and apply QPSK modulation.

msg = randi([0 3],numSC,numSym);
modSig = pskmod(msg,4,pi/4);

OFDM modulate the QPSK signal. Pass the signal through an AWGN channel. Demodulate
the noisy signal.

txSig = ofdmmod(modSig);
rxSig = awgn(txSig,10,'measured');
demodSig = ofdmdemod(rxSig);

Create an EVM object, where the result is averaged over the subcarriers. Measure the
EVM. There are four entries corresponding to each of the 4 OFDM symbols.

evm = comm.EVM('AveragingDimensions',1);
rmsEVM = evm(demodSig,modSig)

rmsEVM = 1×4

 27.4354 23.6279 22.6772 23.1699

Overwrite the EVM object, where the result is averaged over the OFDM symbols.
Measure the EVM. There are 21 entries corresponding to each of the 21 subcarriers.

evm = comm.EVM('AveragingDimensions',2);
rmsEVM = evm(demodSig,modSig)

rmsEVM = 21×1

 28.8225
 17.8536
 18.6809
 20.8872
 22.3532
 24.7197
 30.1954
 33.4899
 36.2847

 comm.EVM

4-689

 21.4230
 ⋮

Measure the EVM and average over both the subcarriers and the OFDM symbols.

evm = comm.EVM('AveragingDimensions',[1 2]);
rmsEVM = evm(demodSig,modSig)

rmsEVM = 24.2986

Plot Time-Varying EVM for OFDM Signal

Calculate and plot the EVM of an OFDM signal. The signal consists of two packets
separated by an interval.

Create System objects to:

• OFDM modulate a signal
• Introduce phase noise
• Plot time-varying signals

ofdmmod = comm.OFDMModulator('FFTLength',256,'NumSymbols',2);

pnoise = comm.PhaseNoise('Level',-60,'FrequencyOffset',20,'SampleRate',1000);

tscope = dsp.TimeScope('YLabel','EVM (%)','YLimits',[0 40], ...
 'SampleRate',1000,'TimeSpan',1.2, ...
 'ShowGrid',true);

Create an EVM object. To generate a time-varying estimate of the EVM, set the
AveragingDimensions property to 2.

evm = comm.EVM('MaximumEVMOutputPort',false, ...
 'ReferenceSignalSource','Input port', ...
 'AveragingDimensions',2);

Determine the input data dimensions of the OFDM modulator.

modDims = info(ofdmmod)

modDims =

4 System Objects — Alphabetical List

4-690

 struct with fields:

 DataInputSize: [245 2]
 OutputSize: [544 1]

Create QPSK-modulated random data for the first packet. Apply OFDM modulation.

data = randi([0 3],modDims.DataInputSize);
qpskSig = pskmod(data,4,pi/4);
txSig1 = ofdmmod(qpskSig);

Create a second data packet.

data = randi([0 3],modDims.DataInputSize);
qpskSig = pskmod(data,4,pi/4);
txSig2 = ofdmmod(qpskSig);

Concatenate the two packets and include an interval in which nothing is transmitted.

txSig = [txSig1; zeros(112,1); txSig2];

Apply I/Q amplitude and phase imbalance to the transmitted signal.

rxSigIQimb = iqimbal(txSig,2,5);

Apply phase noise.

rxSig = pnoise(rxSigIQimb);

Measure the EVM of the received signal, and plot its time-varying EVM.

e = evm(txSig,rxSig);
tscope(e)

 comm.EVM

4-691

Algorithms
Both the EVM block and the EVM object provide three normalization methods. You can
normalize measurements according to the average power of the reference signal, average

4 System Objects — Alphabetical List

4-692

constellation power, or peak constellation power. Different industry standards follow one
of these normalization methods.

The block or object calculates the RMS EVM value differently for each normalization
method.

EVM Normalization
Method

Algorithm

Reference signal

EVMRMS =

1
N ∑k = 1

N
(ek)

1
N ∑k = 1

N
(Ik2 + Qk

2)
* 100

Average power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

Peak power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

Where:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2

• Ik = In-phase measurement of the kth symbol in the burst
• Qk = Quadrature phase measurement of the kth symbol in the burst
• N = Input vector length
• Pavg = The value for Average constellation power
• Pmax = The value for Peak constellation power
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received)

symbols.

The max EVM is the maximum EVM value in a frame or EVMmax = max
k ∈ [1, ..., N]

EVMk ,

where k is the kth symbol in a burst of length N.

 comm.EVM

4-693

The definition for EVMk varies depending upon which normalization method you select for
computing measurements. The block or object supports these algorithms.

EVM Normalization Algorithm
Reference signal

EVMk =
ek

1
N ∑k = 1

N
(Ik2 + Qk

2)
* 100

Average power
EVMk = 100

ek
Pavg

Peak power
EVMk = 100

ek
Pmax

The block or object computes the X-percentile EVM by creating a histogram of all the
incoming EVMk values. The output provides the EVM value below which X% of the EVM
values fall.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ACPR | comm.CCDF | comm.MER

Introduced in R2012a

4 System Objects — Alphabetical List

4-694

reset
System object: comm.EVM
Package: comm

Reset states of EVM measurement object

Syntax
reset(H)

Description
reset(H) resets the states of the EVM object, H.

 reset

4-695

step
System object: comm.EVM
Package: comm

Measure error vector magnitude

Syntax
RMSEVM = step(EVM,REFSYM,RXSYM)
RMSEVM = step(EVM,RXSYM)
[___ ,MAXEVM] = step(___)
[___ ,XEVM] = step(___)
[___ ,NUMSYM] = step(___)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

RMSEVM = step(EVM,REFSYM,RXSYM) returns the measured root-mean-square EVM,
RMSEVM, of the received signal RXSYM, based on reference signal REFSYM. EVM values are
measured as a percentage.

REFSYM and RXSYM inputs are complex column vectors of equal dimensions and data type.
The data type can be double, single, signed integer, or signed fixed point with power-of-
two slope and zero bias. All outputs of the object are of data type double. To set the
interval over which the EVM is measured, use the MeasurementIntervalSource and
MeasurementInterval properties.

RMSEVM = step(EVM,RXSYM) returns the measured EVM of received signal RXSYM
based on a reference signal specified in the ReceivedConstellation property.

4 System Objects — Alphabetical List

4-696

[___ ,MAXEVM] = step(___) returns the maximum EVM, MAXEVM, given either of the
two previous syntaxes.

To return the maximum EVM value, set the MaximumEVMOutputPort property to true.
To set the interval over which the maximum EVM is measured, use the
MeasurementIntervalSource and MeasurementInterval properties.

[___ ,XEVM] = step(___) returns the X-percentile EVM, XEVM.

To return the X-percentile EVM, set the XPercentileEVMOutputPort property to true.
XEVM is the EVM below which X% of the measurements fall, where X is set by the
XPercentileValue property. XEVM is measured using all the input frames since the last
reset.

[___ ,NUMSYM] = step(___) returns the number of symbols, NUMSYM, used to
calculate the X-percentile EVM.

To return NUMSYM, set the SymbolCountOutputPort property to true. NUMSYM is
measured using all the input frames since the last reset.

Note EVM specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-697

comm.EyeDiagram
Package: comm

Display eye diagram of time-domain signals

Description
The eye diagram System object displays multiple traces of a modulated signal to produce
an eye diagram. You can use the object to reveal the modulation characteristics of the
signal, such as the effects of pulse shaping or channel distortions. The eye diagram can
measure signal characteristics and plot horizontal and vertical bathtub curves when the
jitter and noise comply with the dual-Dirac model [1].

To display the eye diagram of an input signal:

1 Create a comm.EyeDiagram object and set the properties of the object.
2 Call step to display the eye diagram of the signal.

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction
ed = comm.EyeDiagram returns an eye diagram object, ed, using the default
properties.

ed = comm.EyeDiagram(Name,Value) specifies additional properties using
Name,Value pairs. Unspecified properties have default values.

Example:

ed = comm.EyeDiagram('DisplayMode','2D color histogram', ...
 'OversamplingMethod','Input interpolation');

4 System Objects — Alphabetical List

4-698

Properties
Name — Caption to display on the eye diagram window
'Eye Diagram' (default) | character vector

Name displayed on the eye diagram window, specified as a character vector. Tunable.

SampleRate — Input signal sample rate (Hz)
1 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive real scalar.

SamplesPerSymbol — Number of samples per symbol
8 (default) | positive integer scalar

Number of samples per symbol, specified as a positive integer scalar. Tunable.

SampleOffset — Number of samples to omit before plotting the first point
0 (default) | nonnegative integer scalar

Number of samples to omit before plotting the first point, specified as a nonnegative
integer scalar. To avoid irregular behavior, specify the offset to be less than the product of
SamplesPerSymbol and SamplePerTrace.

SymbolsPerTrace — Number of symbols per trace
2 (default) | positive integer scalar

Number of symbols per trace, specified as a positive integer scalar. To obtain eye
measurements and visualize bathtub curves, use the default value of 2. Tunable.

TracesToDisplay — Number of traces to display
40 (default) | positive integer scalar

Number of traces to display, specified as a positive integer scalar. This property is
available when the DisplayMode property is specified as 'Line plot'. Tunable.

DisplayMode — Eye diagram display mode
'Line plot' (default) | '2D color histogram'

Eye diagram display mode, specified as 'Line plot' or '2D color histogram'.
Tunable.

 comm.EyeDiagram

4-699

• Specify 'Line plot' to overlay traces by plotting one line for each of the last
TracesToDisplay traces.

• Specify '2D color histogram' to display a color gradient that shows how often the
input matches different time and amplitude values.

EnableMeasurements — Enable eye diagram measurements
false (default) | true

Enable eye diagram measurements, specified as a logical scalar. Tunable.

ShowBathtub — Enable visualization of bathtub curves
'None' (default) | 'Horizontal' | 'Vertical' | 'Both'

Enable visualization of bathtub curves, specified as 'None', 'Horizontal',
'Vertical', or 'Both'. This property is available when EnableMeasurements is
true. Tunable.

OverlayHistogram — Histogram overlay
'None' (default) | 'Jitter' | 'Noise'

Histogram overlay, specified as 'None', 'Jitter', or 'Noise'.

• To overlay a horizontal histogram on the eye diagram, set this property to 'Jitter'.
• To overlay a vertical histogram on the eye diagram, set this property to 'Noise'.

This property is available when DisplayMode is '2D color histogram' and
EnableMeasurements is true. Tunable.

DecisionBoundary — Amplitude level threshold
0 (default) | scalar

Amplitude level threshold in V, specified as a scalar. This property separates the different
signaling regions for horizontal (jitter) histograms, and is available when
EnableMeasurements is true. This property is tunable, but the jitter histograms reset
when the property changes.

For non-return-to-zero (NRZ) signals, set DecisionBoundary to 0. For return-to-zero
(RZ) signals, set DecisionBoundary to half the maximum amplitude.

EyeLevelBoundaries — Time range for calculating eye levels
[40 60] (default) | vector

4 System Objects — Alphabetical List

4-700

Time range for calculating eye levels, specified as a two-element vector. These values are
expressed as a percentage of the symbol duration. This property is available when
EnableMeasurements is true. Tunable.

RiseFallThresholds — Amplitude levels of the rise and fall transitions
[10 90] (default) | vector

Amplitude levels of the rise and fall transitions, specified as a two-element vector. These
values are expressed as a percentage of the eye amplitude. This property is available
when EnableMeasurements is true. This property is tunable but the crossing
histograms of the rise and fall thresholds reset when it is changed.

Hysteresis — Amplitude tolerance of the horizontal crossings
0 (default) | scalar

Amplitude tolerance of the horizontal crossings in V, specified as a scalar. Increase
hysteresis to provide more tolerance to spurious crossings due to noise. This property is
available when EnableMeasurements is true. This property is tunable, but the jitter
and the rise and fall histograms reset when the property changes.

BERThreshold — BER used for eye measurements
1e-12 (default) | nonnegative scalar from 0 to 0.5

BER used for eye measurements, specified as a nonnegative scalar from 0 to 0.5. The
value is used to make measurements of random jitter, total jitter, horizontal eye openings,
and vertical eye openings. This property is available when EnableMeasurements is
true. Tunable.

BathtubBER — BER values used to calculate openings of bathtub curves
[0.5 10.^-(1:12)] | vector

BER values used to calculate openings of bathtub curves, specified as a vector whose
elements range from 0 to 0.5. Horizontal and vertical eye openings are calculated for
each of the values specified by this property. This property is available when
EnableMeasurements is true and ShowBathtub is 'Both', 'Horizontal', or
'Vertical'. Tunable.

MeasurementDelay — Duration of initial data discarded from measurements
0 (default) | nonnegative scalar

Duration of initial data discarded from measurements in seconds, specified as a
nonnegative scalar. This property is available when EnableMeasurements is true.

 comm.EyeDiagram

4-701

OversamplingMethod — Oversampling method
'None' (default) | 'Input interpolation' | 'Histogram interpolation'

Oversampling method, specified as 'None', 'Input interpolation', or 'Histogram
interpolation'. This property is available when DisplayMode is '2D color
histogram'. Tunable.

To plot eye diagrams as quickly as possible, set OversamplingMethod to 'None'. The
drawback to not oversampling is that the plots look pixelated when the number of
samples per trace is small.

To create smoother, less-pixelated plots using a small number of samples per trace, set
OversamplingMethod to'Input interpolation' or 'Histogram
interpolation'. Input interpolation is the faster interpolation method and produces
good results when the signal-to-noise ratio (SNR) is high. With a lower SNR, this
oversampling method is not recommended because it introduces a bias to the centers of
the histogram ranges. Histogram interpolation is not as fast as the other techniques, but
it provides good results even when the SNR is low.

ColorScale — Color scale of the histogram
'Linear' (default) | 'Logarithmic'

Color scale of the histogram, specified as 'Linear' or 'Logarithmic'. Change this
property if certain areas of the histogram include a disproportionate number of points.
Use the 'Logarithmic' option for eye diagrams having sharp peaks, where the signal
repetitively matches specific time and amplitude values. This property is available when
DisplayMode is '2D color histogram'. Tunable.

ColorFading — Color fading
false (default) | true

Color fading, specified as a logical scalar. To fade the points in the display as the interval
of time after they are first plotted increases, set this property to true. This animation
resembles an oscilloscope. This property is available when DisplayMode is 'Line
plot'. Tunable.

ShowImaginaryEye — Show imaginary signal component
false (default) | true

Show imaginary signal component, specified as a logical scalar. To view the imaginary or
quadrature component of the input signal, set this property to true. This property is
available when EnableMeasurements is false. Tunable.

4 System Objects — Alphabetical List

4-702

YLimits — Y-axis limits
[-1.1 1.1] (default) | two-element vector

Y-axis limits of the eye diagram in V, specified as a two-element vector. The first element
corresponds to ymin and the second to ymax. The second element must be greater than
the first. Tunable.

ShowGrid — Enable grid display
false (default) | true

Enable grid display on eye diagram, specified as a logical scalar. To display a grid on the
eye diagram, set this property to true. Tunable.

Position — Scope window position
vector

Scope window position in pixels, specified as a four-element vector of the form [left
bottom width height]. Tunable.

Methods

hide Hide scope window
horizontalBathtub Horizontal bathtub curve
jitterHistogram Jitter histogram
measurements Measure eye diagram parameters
noiseHistogram Noise histogram
reset Reset states of eye diagram object
show Make scope window visible
step Plot eye diagram of input signal
verticalBathtub Vertical bathtub curve

Common to All System Objects
release Allow System object property value changes

 comm.EyeDiagram

4-703

Examples

Eye Diagram of Filtered QPSK Signal

Specify the sample rate and the number of output samples per symbol parameters.

fs = 1000;
sps = 4;

Create transmit filter and eye diagram objects.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',sps);
ed = comm.EyeDiagram('SampleRate',fs*sps,'SamplesPerSymbol',sps);

Generate random symbols and apply QPSK modulation. Then filter the modulated signal
and display the eye diagram.

data = randi([0 3],1000,1);
modSig = pskmod(data,4,pi/4);

txSig = txfilter(modSig);
ed(txSig)

4 System Objects — Alphabetical List

4-704

Effect of Interpolation on 2D Histogram Eye Diagrams

Show the effects of different interpolation methods on 2-D histograms for different signal-
to-noise ratio (SNR) conditions.

 comm.EyeDiagram

4-705

Create GMSK modulator and eye diagram System objects. Specify that the eye diagram
displays using a 2-D color histogram and plots the real and imaginary signals.

gmsk = comm.GMSKModulator('PulseLength',3);
ed = comm.EyeDiagram('DisplayMode','2D color histogram', ...
 'ShowImaginaryEye',true,'YLimits',[-2 2]);

Generate bipolar data and apply GMSK modulation.

d = 2*randi([0 1],1e4,1)-1;
x = gmsk(d);

%Pass the signal through an AWGN channel having a 25 dB SNR and with a fixed seed for repeatable results.
randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,25,'measured',randStream);

Display the eye diagram.

ed(y)

4 System Objects — Alphabetical List

4-706

For a small number of samples per trace (16), the lack of interpolation causes piecewise-
continuous behavior.

To compensate for the piecewise-continuous behavior, set the OversamplingMethod
property to 'Input interpolation'. Reset the object and display the eye diagram.

 comm.EyeDiagram

4-707

ed.OversamplingMethod = 'Input interpolation';
reset(ed)
ed(y)

The interpolation smooths the eye diagram.

4 System Objects — Alphabetical List

4-708

Now pass the GMSK-modulated signal through an AWGN channel having a 10 dB SNR.
Display the eye diagram.

y = awgn(x,10,'measured',randStream);
reset(ed)
ed(y)

 comm.EyeDiagram

4-709

The vertical striping is the result of input interpolation, which has limited accuracy in low-
SNR conditions.

Set the OversamplingMethod property to 'Histogram interpolation'. Plot the eye
diagram.

ed.OversamplingMethod = 'Histogram interpolation';
reset(ed)
ed(y)

4 System Objects — Alphabetical List

4-710

The eye diagram plot now renders accurately because the histogram interpolation method
works for all SNR values. This method results in increased execution time.

 comm.EyeDiagram

4-711

Eye Diagram Jitter Measurements and Bathtub Curve Plots

Visualize the eye diagram of a dual-dirac input signal. Compute eye measurements, and
visualize horizontal and vertical bathtub curves. Overlay the horizontal (jitter) histogram.

Specify the sample rate, the samples per symbol, and the number of traces.

fs = 10000;
sps = 200;
numTraces = 2000;

Create an eye diagram object having these properties:

• 2-D color histogram display
• Logarithmic color scale
• Jitter histogram overlay
• Horizontal and vertical bathtub curves
• Y-axis limits of [-1.3 1.3]
• Increased window height

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'OverlayHistogram','Jitter', ...
 'ShowBathtub','Both','YLimits', [-1.3 1.3]);
ed.Position = ed.Position + [0 0 0 120];

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-10e-04 10e-04],'RandomStd',5e-4);

Generate two symbols for each trace.

symbols = src.generate(numTraces*2);

Process the data in packets of 40e3 symbols, add noise, and display the eye diagram.

for idx = 1:(numTraces-1)/100
 x = symbols(1+(idx-1)*100*2*sps:idx*100*2*sps); % Read 40,000 symbols
 y = awgn(x,30); % Add noise

4 System Objects — Alphabetical List

4-712

 ed(y); % Display eye diagram
end

Jitter and Noise Histogram Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Plot the
jitter and noise histograms.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

 comm.EyeDiagram

4-713

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-10e-04 10e-04],'RandomStd',5e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);
ed(y)

4 System Objects — Alphabetical List

4-714

Calculate the jitter histogram count for each bin by using the jitterHistogram method.
Plot the histogram.

jbins = jitterHistogram(ed);
plot(jbins)

 comm.EyeDiagram

4-715

Calculate the noise histogram count for each bin by using the noiseHistogram method.
Plot the histogram.

nbins = noiseHistogram(ed);
plot(nbins)

4 System Objects — Alphabetical List

4-716

Horizontal and Vertical Bathtub Curve Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Generate
and plot the horizontal and vertical bathtub curves.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

 comm.EyeDiagram

4-717

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'ShowBathtub','Both','YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-5e-04 5e-04],'RandomStd',2e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Display the eye diagram.

ed(y)

4 System Objects — Alphabetical List

4-718

Generate the horizontal bathtub data for the eye diagram. Plot the curve.

hb = horizontalBathtub(ed)
semilogy([hb.LeftThreshold],[hb.BER],'b',[hb.RightThreshold],[hb.BER],'b')
grid

hb =

 1x13 struct array with fields:

 BER
 LeftThreshold
 RightThreshold

 comm.EyeDiagram

4-719

Generate the vertical bathtub data for the eye diagram. Plot the curve.

vb = verticalBathtub(ed)
semilogx([vb.BER],[vb.LowerThreshold],'b',[vb.BER],[vb.UpperThreshold],'b')
grid

vb =

 1x13 struct array with fields:

 BER
 UpperThreshold

4 System Objects — Alphabetical List

4-720

 LowerThreshold

Rise and Fall Time of NRZ Signal

Create a combined jitter object having random jitter with a 2e-4 standard deviation.

jtr = commsrc.combinedjitter('RandomJitter','on','RandomStd',2e-4);

Generate an NRZ signal having random jitter and 3 ms rise and fall times.

genNRZ = commsrc.pattern('Jitter',jtr,'RiseTime',3e-3,'FallTime',3e-3);
x = generate(genNRZ,2000);

 comm.EyeDiagram

4-721

Pass the signal through an AWGN channel with fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Create an eye diagram object. Enable the measurements.

ed = comm.EyeDiagram('SamplesPerSymbol',genNRZ.SamplesPerSymbol, ...
 'SampleRate',genNRZ.SamplingFrequency,'SampleOffset',genNRZ.SamplesPerSymbol/2, ...
 'EnableMeasurements',true,'DisplayMode','2D color histogram', ...
 'OversamplingMethod','Input interpolation','ColorScale','Logarithmic','YLimits',[-1.2 1.2]);

To compute the rise and fall times, determine the rise and fall thresholds from the eye
level and eye amplitude measurements. Plot the eye diagram to calculate these
parameters.

ed(y)

4 System Objects — Alphabetical List

4-722

Pass the signal through the eye diagram object again to measure the rise and fall times.

ed(y)
hide(ed)

Display the data by using the measurements method.

eyestats = measurements(ed);
riseTime = eyestats.RiseTime
fallTime = eyestats.FallTime

riseTime =

 0.0030

fallTime =

 0.0030

The measured values match the 3 ms specification.

Measurements
To open the measurements panel, click on the Eye Measurements button or select Tools
> Measurements > Eye Measurements from the toolbar menu.

Note

• For amplitude measurements, at least one bin per vertical histogram must reach 10
hits before the measurement is taken, ensuring higher accuracy.

• For time measurements, at least one bin per horizontal histogram must reach 10 hits
before the measurement is taken.

• When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval,
the time measurement wraps to the end of the eye diagram, i.e., the measurement
wraps by 2*Ts seconds (where Ts is the symbol time). For a complex signal case, the
analyze method issues a warning if the crossing time measurement of the in-phase
branch wraps while that of the quadrature branch does not (or vice versa). To avoid

 comm.EyeDiagram

4-723

the time-wrapping or a warning, add a half-symbol duration delay to the current value
in the MeasurementDelay property of the eye diagram object. This additional delay
repositions the eye in the approximate center of the scope.

Eye Levels — Amplitude level used to represent data bits

Eye level is the amplitude level used to represent data bits. For the displayed NRZ signal,
the levels are –1 V and +1 V. The eye levels are calculated by averaging the 2-D histogram
within the eye level boundaries.

Eye Amplitude — Distance between eye levels

Eye amplitude is the distance in V between the mean value of two eye levels.

4 System Objects — Alphabetical List

4-724

Eye Height — Statistical minimum distance between eye levels

Eye height is the distance between μ – 3σ of the upper eye level and μ + 3σ of the lower
eye level. μ is the mean of the eye level and σ is the standard deviation.

 comm.EyeDiagram

4-725

Vertical Opening — Distance between BER threshold points

The vertical opening is the distance between the two points that correspond to the BER
threshold. For example, for a BER threshold of 10–12, these points correspond to the 7σ
distance from each eye level.

4 System Objects — Alphabetical List

4-726

Eye SNR — Signal-to-noise ratio

The eye SNR is the ratio of the eye level difference to the difference of the vertical
standard deviations corresponding to each eye level:

SNR =
L1− L0
σ1− σ0

,

where L1 and L0 represent the means of the upper and lower eye levels and σ1 and σ0
represent their standard deviations.

Q Factor — Quality factor

The Q factor is calculated using the same formula as the Eye SNR. However, the standard
deviations of the vertical histograms are replaced with those computed with the dual-
Dirac analysis.

Crossing Levels — Amplitude levels for eye crossings

The crossing levels are the amplitude levels at which the eye crossings occur.

 comm.EyeDiagram

4-727

Crossing Times — Times for which crossings occur

The crossing times are the times at which the crossings occur. The times are computed as
the mean values of the horizontal (jitter) histograms.

4 System Objects — Alphabetical List

4-728

Eye Delay — Mean time between eye crossings

Eye delay is the midpoint between the two crossing times.

 comm.EyeDiagram

4-729

Eye Width — Statistical minimum time between eye crossings

Eye width is the horizontal distance between μ + 3σ of the left crossing time and μ – 3σ of
the right crossing time. μ is the mean of the jitter histogram and σ is the standard
deviation.

4 System Objects — Alphabetical List

4-730

Horizontal Opening — Time between BER threshold points

The horizontal opening is the distance between the two points that correspond to the BER
threshold. For example, for a 10–12 BER, these two points correspond to the 7σ distance
from each crossing time.

 comm.EyeDiagram

4-731

Rise Time — Time to transition from low to high

Rise time is the mean time between the low and high thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

4 System Objects — Alphabetical List

4-732

Fall Time — Time to transition from high to low

Fall time is the mean time between the high and low thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

 comm.EyeDiagram

4-733

Deterministic Jitter — Deterministic deviation from ideal signal timing

The deterministic jitter (DJ) is the distance between the two peaks of the dual-Dirac
histograms. The probability density function (PDF) of DJ is composed of two delta
functions.

4 System Objects — Alphabetical List

4-734

Random Jitter — Random deviation from ideal signal timing

The random jitter (RJ) is the Gaussian unbounded jitter component. The random
component of jitter is modeled as a zero-mean Gaussian random variable with a specified
standard-deviation, σ. The random jitter is computed as:

RJ = (QL + QR)σ ,

where

Q = 2erfc−1 2BER
ρ .

BER is the specified BER threshold. ρ is the amplitude of the left and right Dirac function,
which is determined from the bin counts of the jitter histograms.

 comm.EyeDiagram

4-735

Total Jitter — Deviation from ideal signal timing

Total jitter (TJ) is the sum of the deterministic and random jitter, such that TJ = DJ + RJ.

4 System Objects — Alphabetical List

4-736

The total jitter PDF is the convolution of the DJ PDF and the RJ PDF.

 comm.EyeDiagram

4-737

RMS Jitter — Standard deviation of jitter

RMS jitter is the standard deviation of the jitter calculated in the horizontal (jitter)
histogram at the decision boundary.

4 System Objects — Alphabetical List

4-738

Peak-to-Peak Jitter — Distance between extreme data points of histogram

Peak-to-peak jitter is the maximum horizontal distance between the left and right nonzero
values in the horizontal histogram of each crossing time.

 comm.EyeDiagram

4-739

Programmatic Configuration
You can programmatically configure the scope properties with callbacks or within scripts
by using a scope configuration object as describe in “Control Scope Blocks
Programmatically” (Simulink).

References
[1] Stephens, Ransom. "Jitter Analysis: The Dual-Dirac Model, RJ/DJ, and Q-Scale." Agilent

Technologies Whitepaper. December 2004.

4 System Objects — Alphabetical List

4-740

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does
not support code generation for standalone applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.ConstellationDiagram

Blocks
Eye Diagram

Functions
eyediagram

Introduced in R2016b

 comm.EyeDiagram

4-741

hide
System object: comm.EyeDiagram
Package: comm

Hide scope window

Syntax
hide(ed)

Description
hide(ed) hides the eye diagram window associated with System object ed.

See Also
show

Introduced in R2016b

4 System Objects — Alphabetical List

4-742

horizontalBathtub
System object: comm.EyeDiagram
Package: comm

Horizontal bathtub curve

Syntax
s = horizontalBathtub(ed)

Description
s = horizontalBathtub(ed) returns a structure array, s, for eye diagram object ed.
Each structure in s contains a BER level and the corresponding left and right thresholds
between jitter and horizontal eye opening.

Note This method is available when both of these conditions apply:

• EnableMeasurements is true
• ShowBathtub is 'Horizontal' or 'Both'

Examples

Horizontal and Vertical Bathtub Curve Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Generate
and plot the horizontal and vertical bathtub curves.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

 horizontalBathtub

4-743

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'ShowBathtub','Both','YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-5e-04 5e-04],'RandomStd',2e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Display the eye diagram.

ed(y)

4 System Objects — Alphabetical List

4-744

Generate the horizontal bathtub data for the eye diagram. Plot the curve.

hb = horizontalBathtub(ed)
semilogy([hb.LeftThreshold],[hb.BER],'b',[hb.RightThreshold],[hb.BER],'b')
grid

hb =

 1x13 struct array with fields:

 BER
 LeftThreshold
 RightThreshold

 horizontalBathtub

4-745

Generate the vertical bathtub data for the eye diagram. Plot the curve.

vb = verticalBathtub(ed)
semilogx([vb.BER],[vb.LowerThreshold],'b',[vb.BER],[vb.UpperThreshold],'b')
grid

vb =

 1x13 struct array with fields:

 BER
 UpperThreshold

4 System Objects — Alphabetical List

4-746

 LowerThreshold

Introduced in R2016b

 horizontalBathtub

4-747

jitterHistogram
System object: comm.EyeDiagram
Package: comm

Jitter histogram

Syntax
jh = jitterHistogram(ed)

Description
jh = jitterHistogram(ed) returns the bin counts for decision boundary crossings set
in eye diagram object ed.

Note This method is available when EnableMeasurements is true.

Examples

Jitter and Noise Histogram Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Plot the
jitter and noise histograms.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

4 System Objects — Alphabetical List

4-748

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-10e-04 10e-04],'RandomStd',5e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);
ed(y)

 jitterHistogram

4-749

Calculate the jitter histogram count for each bin by using the jitterHistogram method.
Plot the histogram.

jbins = jitterHistogram(ed);
plot(jbins)

4 System Objects — Alphabetical List

4-750

Calculate the noise histogram count for each bin by using the noiseHistogram method.
Plot the histogram.

nbins = noiseHistogram(ed);
plot(nbins)

 jitterHistogram

4-751

Introduced in R2016b

4 System Objects — Alphabetical List

4-752

measurements
System object: comm.EyeDiagram
Package: comm

Measure eye diagram parameters

Syntax
m = measurements(ed)

Description
m = measurements(ed) returns the amplitude, time, and jitter measurements
calculated by eye diagram object ed.

Note This method is available when EnableMeasurements is true.

Examples

Rise and Fall Time of NRZ Signal

Create a combined jitter object having random jitter with a 2e-4 standard deviation.

jtr = commsrc.combinedjitter('RandomJitter','on','RandomStd',2e-4);

Generate an NRZ signal having random jitter and 3 ms rise and fall times.

genNRZ = commsrc.pattern('Jitter',jtr,'RiseTime',3e-3,'FallTime',3e-3);
x = generate(genNRZ,2000);

Pass the signal through an AWGN channel with fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

 measurements

4-753

Create an eye diagram object. Enable the measurements.

ed = comm.EyeDiagram('SamplesPerSymbol',genNRZ.SamplesPerSymbol, ...
 'SampleRate',genNRZ.SamplingFrequency,'SampleOffset',genNRZ.SamplesPerSymbol/2, ...
 'EnableMeasurements',true,'DisplayMode','2D color histogram', ...
 'OversamplingMethod','Input interpolation','ColorScale','Logarithmic','YLimits',[-1.2 1.2]);

To compute the rise and fall times, determine the rise and fall thresholds from the eye
level and eye amplitude measurements. Plot the eye diagram to calculate these
parameters.

ed(y)

Pass the signal through the eye diagram object again to measure the rise and fall times.

ed(y)
hide(ed)

4 System Objects — Alphabetical List

4-754

Display the data by using the measurements method.

eyestats = measurements(ed);
riseTime = eyestats.RiseTime
fallTime = eyestats.FallTime

riseTime =

 0.0030

fallTime =

 0.0030

The measured values match the 3 ms specification.

Introduced in R2016b

 measurements

4-755

noiseHistogram
System object: comm.EyeDiagram
Package: comm

Noise histogram

Syntax
nh = noiseHistogram(ed)

Description
nh = noiseHistogram(ed) returns the bin counts for the signal values at the vertical
opening (eye delay) as set in eye diagram object ed.

Note This method is available when both of these conditions apply:

• EnableMeasurements is true
• DisplayMode is '2D color histogram'

Examples

Jitter and Noise Histogram Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Plot the
jitter and noise histograms.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

4 System Objects — Alphabetical List

4-756

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-10e-04 10e-04],'RandomStd',5e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);
ed(y)

 noiseHistogram

4-757

Calculate the jitter histogram count for each bin by using the jitterHistogram method.
Plot the histogram.

jbins = jitterHistogram(ed);
plot(jbins)

4 System Objects — Alphabetical List

4-758

Calculate the noise histogram count for each bin by using the noiseHistogram method.
Plot the histogram.

nbins = noiseHistogram(ed);
plot(nbins)

 noiseHistogram

4-759

Introduced in R2016b

4 System Objects — Alphabetical List

4-760

reset
System object: comm.EyeDiagram
Package: comm

Reset states of eye diagram object

Syntax
reset(ed)

Description
reset(ed) resets the states of the EyeDiagram object, ed.

Introduced in R2016b

 reset

4-761

show
System object: comm.EyeDiagram
Package: comm

Make scope window visible

Syntax
show(ed)

Description
show(ed) makes the eye diagram window associated with System object ed visible.

See Also
hide

Introduced in R2016b

4 System Objects — Alphabetical List

4-762

step
System object: comm.EyeDiagram
Package: comm

Plot eye diagram of input signal

Syntax
step(ed,x)
ed(x)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

step(ed,x) plots the eye diagram of input signal x using comm.EyeDiagram object ed.

ed(x) is equivalent to the first syntax.

Note ed specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-763

Examples

Eye Diagram of Filtered QPSK Signal

Specify the sample rate and the number of output samples per symbol parameters.

fs = 1000;
sps = 4;

Create transmit filter and eye diagram objects.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',sps);
ed = comm.EyeDiagram('SampleRate',fs*sps,'SamplesPerSymbol',sps);

Generate random symbols and apply QPSK modulation. Then filter the modulated signal
and display the eye diagram.

data = randi([0 3],1000,1);
modSig = pskmod(data,4,pi/4);

txSig = txfilter(modSig);
ed(txSig)

4 System Objects — Alphabetical List

4-764

Introduced in R2016b

 step

4-765

verticalBathtub
System object: comm.EyeDiagram
Package: comm

Vertical bathtub curve

Syntax
s = verticalBathtub(ed)

Description
s = verticalBathtub(ed) returns a structure array, s, for eye diagram object ed.
Each structure in s contains a BER level and the corresponding upper and lower
thresholds between noise and vertical eye opening.

Note This method is available when both of these conditions apply:

• EnableMeasurements is true
• ShowBathtub is 'Vertical' or 'Both'

Examples

Horizontal and Vertical Bathtub Curve Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Generate
and plot the horizontal and vertical bathtub curves.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

4 System Objects — Alphabetical List

4-766

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps,'SampleOffset',sps/2, ...
 'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
 'EnableMeasurements',true,'ShowBathtub','Both','YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall
times.

src = commsrc.pattern('SamplesPerSymbol',sps,'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on','DiracJitter','on', ...
 'DiracDelta',[-5e-04 5e-04],'RandomStd',2e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Display the eye diagram.

ed(y)

 verticalBathtub

4-767

Generate the horizontal bathtub data for the eye diagram. Plot the curve.

hb = horizontalBathtub(ed)
semilogy([hb.LeftThreshold],[hb.BER],'b',[hb.RightThreshold],[hb.BER],'b')
grid

hb =

 1x13 struct array with fields:

 BER
 LeftThreshold
 RightThreshold

4 System Objects — Alphabetical List

4-768

Generate the vertical bathtub data for the eye diagram. Plot the curve.

vb = verticalBathtub(ed)
semilogx([vb.BER],[vb.LowerThreshold],'b',[vb.BER],[vb.UpperThreshold],'b')
grid

vb =

 1x13 struct array with fields:

 BER
 UpperThreshold

 verticalBathtub

4-769

 LowerThreshold

Introduced in R2016b

4 System Objects — Alphabetical List

4-770

comm.FMBroadcastDemodulator
Package: comm

Demodulate broadcast FM signal

Description
The comm.FMBroadcastDemodulator System object demodulates a complex baseband
FM signal and filters the signal with a de-emphasis filter to produce an audio signal. If the
Stereo property is set to true, the object performs stereo decoding. If the RBDS
property is set to true, the object also demodulates the RDS/RBDS waveform. For more
details, see “Algorithms” on page 4-777.

To demodulate a complex baseband FM signal:

1 Define and set up the comm.FMBroadcastDemodulator object. See “Construction”
on page 4-771.

2 Call step to demodulate the complex baseband FM signal according to the
properties of comm.FMBroadcastDemodulator.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
fmbDemod = comm.FMBroadcastDemodulator creates a demodulator System object,
fmbDemod, that frequency demodulates an input signal.

fmbDemod = comm.FMBroadcastDemodulator(Name,Value) creates an FM
demodulator object, fmbDemod, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.FMBroadcastDemodulator

4-771

fmbDemod = comm.FMBroadcastDemodulator(MOD) creates an FM demodulator
object, fmbDemod, whose properties are determined by the corresponding FM modulator
object, MOD.

Properties
SampleRate

Input signal sample rate (Hz)

Specify the sample rate of the input signal in Hz as a positive real scalar. The default
value is 240e3. This property is nontunable.

FrequencyDeviation

Peak deviation of the output signal frequency (Hz)

Specify the frequency deviation of the FM demodulator in Hz as a positive real scalar. The
default value is 75e3. System bandwidth is equal to twice the sum of the frequency
deviation and the message bandwidth. FM broadcast standards specify a value of 75 kHz
in the United States and 50 kHz in Europe. This property is nontunable.

FilterTimeConstant

Time constant of the de-emphasis filter (s)

Specify the de-emphasis lowpass filter time constant as a positive real scalar. The default
value is 7.5e-05. FM broadcast standards specify a value of 75 μs in the United States
and 50 μs in Europe. This property is nontunable.

AudioSampleRate

Audio sample rate of the output signal (Hz)

Specify the output audio sample rate as a positive real scalar. The default value is 48000.
This property is nontunable.

PlaySound

Flag to enable or disable audio playback

4 System Objects — Alphabetical List

4-772

To playback the output signal on the default audio device, set this property to true. The
default is false. This property is nontunable.

BufferSize

Buffer size of the audio device

Specify the size of the buffer (in samples) that the object uses to communicate with an
audio device as a positive scalar integer. The default is 4096. This property is available
only when PlaySound is true. This property is nontunable.

Stereo

Flag to enable or disable stereo audio

Set this property to true to demodulate a stereophonic audio signal. Set to false if the
input signal is monophonic. The default is false. This property is nontunable.

RBDS

Flag to demodulate RDS/RBDS waveform

If RBDS is set to true, the second output of the step method is the baseband RDS/RBDS
waveform. The default value is false. This property is nontunable.

RBDSSamplesPerSymbol

Oversampling factor of RDS/RBDS output

Specify the number of samples of the RDS/RBDS output as a positive integer. The RDS/
RBDS sample rate is given by RBDSSamplesPerSymbol × 1187.5 Hz. According to the
RDS/RBDS standard, the sample rate of each bit is 1187.5 Hz.

This property applies only when you set RBDS to true.

The default is 10.

RBDSCostasLoop

Option to recover phase of RDS/RBDS signal

Specify whether a Costas loop is used to recover the phase of the RDS/RBDS signal. Set
this option to true for radio stations that do not lock the 57 kHz RDS/RBDS signal in
phase with the third harmonic of the 19 kHz pilot tone.

 comm.FMBroadcastDemodulator

4-773

This property applies only when you set RBDS to true.

The default value is false.

Methods
info Filter information about FM broadcast demodulator
reset Reset states of the FM broadcast demodulator object
step Apply FM broadcast demodulation

Common to All System Objects
release Allow System object property value changes

Examples

FM Broadcast a Streaming Audio Signal

Modulate and demodulate a streaming audio signal with the FM broadcast modulator and
demodulator objects. Play the audio signal using a default audio device.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example,
myObject(x) becomes step(myObject,x).

Create an audio file reader System object™ and read the file guitartune.wav.

audio = dsp.AudioFileReader('guitartune.wav','SamplesPerFrame',4410);

Create FM broadcast modulator and demodulator objects. Set the AudioSampleRate
property to match the sample rate of the input signal. Set the SampleRate property of
the demodulator to match the specified sample rate of the modulator. Set the PlaySound
property of the demodulator to true to enable audio playback.

fmbMod = comm.FMBroadcastModulator('AudioSampleRate',audio.SampleRate, ...
 'SampleRate',240e3);
fmbDemod = comm.FMBroadcastDemodulator(...

4 System Objects — Alphabetical List

4-774

 'AudioSampleRate',audio.SampleRate, ...
 'SampleRate',240e3,'PlaySound',true);

Read the audio data in frames of length 4410, apply FM broadcast modulation,
demodulate the FM signal and playback the audio input.

while ~isDone(audio)
 audioData = audio();
 modData = fmbMod(audioData);
 demodData = fmbDemod(modData);
end

FM Modulate and Demodulate an RBDS Waveform

Generate a basic RBDS waveform, FM modulate it with an audio signal, and then
demodulate it.

Note: This example runs only in R2017a or later.

Create a RBDS waveform with 19 groups per frame and 10 samples per symbol. The
sample rate of the RBDS waveform is given by 1187.5 x 10. Set the audio sample rate to
1187.5 x 40.

groupLen = 104;
sps = 10;
groupsPerFrame = 19;
rbdsFrameLen = groupLen*sps*groupsPerFrame;
afrRate = 40*1187.5;
rbdsRate = 1187.5*sps;
outRate = 4*57000;

afr = dsp.AudioFileReader('rbds_capture_47500.wav','SamplesPerFrame',rbdsFrameLen*afrRate/rbdsRate);
rbds = comm.RBDSWaveformGenerator('GroupsPerFrame',groupsPerFrame,'SamplesPerSymbol',sps);

fmMod = comm.FMBroadcastModulator('AudioSampleRate',afr.SampleRate,'SampleRate',outRate,...
 'Stereo',true,'RBDS',true,'RBDSSamplesPerSymbol',sps);
fmDemod = comm.FMBroadcastDemodulator('SampleRate',outRate,...
 'Stereo',true,'RBDS',true,'PlaySound',true);
scope = dsp.TimeScope('SampleRate',outRate,'YLimits',10^-2*[-1 1]);

Get the current audio input. Generate RBDS information at the same configured rate as
audio. FM modulate the stereo audio with RBDS information. Add additive white Gaussian

 comm.FMBroadcastDemodulator

4-775

noise. FM demodulate the audio and RBDS waveforms. View the waveforms in a time
scope.

for idx = 1:7
 input = afr();
 rbdsWave = rbds();
 yFM = fmMod([input input], rbdsWave);
 rcv = awgn(yFM, 40);
 [audioRcv, rbdsRcv] = fmDemod(rcv);
 scope(rbdsRcv);
end

Warning: File: B:\matlab\toolbox\dsp\dsp\+dsp\FilterCascade.m Line: 562 Column:
92
Unrecognized pragma "%#okgrow".
Warning: File: B:\matlab\toolbox\dsp\dsp\+dsp\FilterCascade.m Line: 949 Column:
124
Unrecognized pragma "%#okgrow".

4 System Objects — Alphabetical List

4-776

Algorithms
The FM Broadcast demodulator includes the functionality of the baseband FM
demodulator, de-emphasis filtering, and the ability to receive stereophonic signals. The

 comm.FMBroadcastDemodulator

4-777

algorithms which govern basic FM modulation and demodulation are covered in
comm.FMDemodulator.

Filtering
FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To
compensate, FM broadcasters insert a pre-emphasis filter prior to FM modulation to
amplify the high-frequency content. The FM receiver has a reciprocal de-emphasis filter
after the FM demodulator to attenuate high-frequency noise and restore a flat signal
spectrum.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 50 μs in Europe and 75 μs in the
United States. Similarly, the transfer function for the lowpass de-emphasis filter is given
by

Hd(f) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the following response.

4 System Objects — Alphabetical List

4-778

Stereo and RDS/RBDS FM — Multiplex Signal
The FM broadcast demodulator supports stereophonic and monophonic operations. To
support stereo transmission, the left (L) and right (R) channel information (L+R) is
assigned to the mono portion of the spectrum (0 to 15 kHz). The (L-R) information is
amplitude modulated onto the 23 to 53 kHz region of the baseband spectrum using a 38
kHz subcarrier signal. A pilot tone at 19 kHz in the multiplexed signal enables the FM
receiver to coherently demodulate the stereo and RDS/RBDS signals.

Here is the spectrum of the multiplex baseband signal, m(t).

 comm.FMBroadcastDemodulator

4-779

m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t)− R(t) cos(2π × 38kHz × t)
+ C2RBDS(t)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains
scale the amplitudes of the (L(t)±R(t)) signals, the 19 kHz pilot tone, and the RDS/RBDS
subcarrier, respectively.

The demodulator applies m(t) to three bandpass filters with center frequencies at 19, 38,
and 57 kHz, and to a lowpass filter with a 3-dB cutoff frequency of 15 kHz. The 19 kHz
bandpass filter extracts the pilot tone from the modulated signal. The recovered pilot tone
is doubled and tripled in frequency to produce the 38 kHz and 57 kHz signals, which
demodulate the (L – R) and RDS/RBDS signals, respectively. To generate a scaled version
of the left and right channels that produce the stereo sound, the (L + R) and (L – R)
signals are added and subtracted. The RDS/RBDS signal is recovered by mixing with the
57 kHz signal.

Here is the block diagram of the FM broadcast demodulator.

4 System Objects — Alphabetical List

4-780

Limitations
The input length must be an integer multiple of the AudioDecimationFactor property.
If RBDS is set to true, the input length in addition must be an integer multiple of
RBDSDecimationFactor. For more information on these two properties, see the info
method.

References
[1] Chakrabarti, I. H., and Hatai, I. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

 comm.FMBroadcastDemodulator

4-781

[3] Der, Lawrence. “Frequency Modulation (FM) Tutorial”. FM Tutorial. Silicon
Laboratories Inc., pp. 4–8.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.FMBroadcastModulator | comm.FMDemodulator | comm.FMModulator |
comm.RBDSWaveformGenerator

Blocks
FM Broadcast Demodulator Baseband | FM Broadcast Modulator Baseband

Introduced in R2015a

4 System Objects — Alphabetical List

4-782

https://www.silabs.com/Marcom%20Documents/Resources/FMTutorial.pdf

info
System object: comm.FMBroadcastDemodulator
Package: comm

Filter information about FM broadcast demodulator

Syntax
S = info(fmbDemod)

Description
S = info(fmbDemod) returns a structure, S, containing this information for the
comm.FMBroadcastDemodulator System object, fmbDemod:

Field Description
AudioDecimationFactor Decimation factor of the audio demodulator

filter.
AudioInterpolationFactor Interpolation factor of the audio

demodulator filter.
RBDSDecimationFactor Decimation factor of the RDS/RBDS

demodulator filter.
RBDSInterpolationFactor Interpolation factor of the RDS/RBDS

demodulator filter.

Note When RBDS is true, the demodulator input sequence length must be a multiple of
AudioDecimationFactor and RBDSDecimationFactor.

When RBDS is false, the demodulator input sequence length must be a multiple of
AudioDecimationFactor.

Introduced in R2015a

 info

4-783

reset
System object: comm.FMBroadcastDemodulator
Package: comm

Reset states of the FM broadcast demodulator object

Syntax
reset(fmbDemod)

Description
reset(fmbDemod) resets the states of the comm.FMBroadcastDemodulator object,
fmbDemod.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

Introduced in R2015a

4 System Objects — Alphabetical List

4-784

step
System object: comm.FMBroadcastDemodulator
Package: comm

Apply FM broadcast demodulation

Syntax
audioSig = step(fmbDemod,X)
[audioSig,rbdsSig] = step(fmbDemod,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

audioSig = step(fmbDemod,X) demodulates the complex baseband FM signal, X, and
filters this signal with a de-emphasis filter to produce an audio signal, audioSig. If the
Stereo property is set to true, stereo decoding is also performed. The output,
audioSig, is a real vector with length equal to (AudioSampleRate/
SampleRate) × length(X).

[audioSig,rbdsSig] = step(fmbDemod,X) also demodulates the baseband RBDS
signal, rbdsSig. The step method outputs the RBDS signal only if the RBDS property is
set to true. The output, rbdsSig, is a real vector with length equal to
(RBDSSamplesPerSymbol × 1187.5/SampleRate) × length(X).

Note fmbDemod specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-785

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2015a

4 System Objects — Alphabetical List

4-786

comm.FMBroadcastModulator
Package: comm

Modulate broadcast FM signal

Description
The comm.FMBroadcastModulator System object pre-emphasizes an audio signal and
modulates it onto a baseband FM signal. If the Stereo property is set to true, the object
modulates the audio input (L–R) in the 38 kHz band, in addition to modulating it in the
baseband (L+R). If the RBDS property is set to true, the object modulates a baseband
RDS/RBDS signal at 57 kHz. For more details, see “Algorithms” on page 4-792.

To FM modulate an audio signal:

1 Define and set up the comm.FMBroadcastModulator object. See “Construction” on
page 4-787.

2 Call step to apply broadcast FM modulation to an audio signal according to the
properties of comm.FMBroadcastModulator.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
fmbMod = comm.FMBroadcastModulator creates a modulator System object, fmbMod,
that frequency modulates an input signal.

fmbMod = comm.FMBroadcastModulator(demod) creates a broadcast FM modulator
object whose properties are determined by the corresponding broadcast FM demodulator
object, demod.

fmbMod = comm.FMBroadcastModulator(Name,Value) creates a broadcast FM
modulator object with each specified property Name set to the specified Value. You can

 comm.FMBroadcastModulator

4-787

specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SampleRate

Output signal sample rate (Hz)

Specify the sample rate of the output signal in Hz as a positive real scalar. The default
value is 240e3. This property is nontunable.

FrequencyDeviation

Peak deviation of the output signal frequency (Hz)

Specify the frequency deviation of the FM modulator in Hz as a positive real scalar. The
default value is 75e3. The system bandwidth is equal to twice the sum of the frequency
deviation and the message bandwidth. FM broadcast standards specify a value of 75 kHz
in the United States and 50 kHz in Europe. This property is nontunable.

FilterTimeConstant

Filter time constant (s)

Specify the pre-emphasis highpass filter time constant as a positive real scalar. FM
broadcast standards specify a value of 75 μs in the United States and 50 μs in Europe.
The default value is 7.5e-05. The property is nontunable.

AudioSampleRate

Sample rate of the input audio signal (Hz)

Specify the audio sample rate as a positive real scalar. The default value is 48000. This
property is nontunable.

Stereo

Flag to set stereo operations

Set this property to true if the input is a stereophonic audio signal. Set to false if the
input signal is monophonic. The default is false. This property is nontunable.

4 System Objects — Alphabetical List

4-788

RBDS

Flag to modulate RDS/RBDS waveform

If RBDS is set to true, the step method accepts the baseband RDS/RBDS waveform as its
second input and the object modulates the signal at 57 kHz. The default value is false.
This property is nontunable.

RBDSSamplesPerSymbol

Oversampling factor of RDS/RBDS input

Specify the number of samples per RDS/RBDS symbol as a positive integer. The RDS/
RBDS sample rate is given by RBDSSamplesPerSymbol × 1187.5 Hz. According to the
RDS/RBDS standard, the sample rate of each bit is 1187.5 Hz.

This property applies only when you set RBDS to true.

The default is 10.

Methods
info Filter information about FM broadcast modulator
reset Reset states of the FM broadcast modulator object
step Apply FM broadcast modulation

Common to All System Objects
release Allow System object property value changes

Examples

FM Broadcast a Streaming Audio Signal

Modulate and demodulate a streaming audio signal with the FM broadcast modulator and
demodulator objects. Play the audio signal using a default audio device.

 comm.FMBroadcastModulator

4-789

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example,
myObject(x) becomes step(myObject,x).

Create an audio file reader System object™ and read the file guitartune.wav.

audio = dsp.AudioFileReader('guitartune.wav','SamplesPerFrame',4410);

Create FM broadcast modulator and demodulator objects. Set the AudioSampleRate
property to match the sample rate of the input signal. Set the SampleRate property of
the demodulator to match the specified sample rate of the modulator. Set the PlaySound
property of the demodulator to true to enable audio playback.

fmbMod = comm.FMBroadcastModulator('AudioSampleRate',audio.SampleRate, ...
 'SampleRate',240e3);
fmbDemod = comm.FMBroadcastDemodulator(...
 'AudioSampleRate',audio.SampleRate, ...
 'SampleRate',240e3,'PlaySound',true);

Read the audio data in frames of length 4410, apply FM broadcast modulation,
demodulate the FM signal and playback the audio input.

while ~isDone(audio)
 audioData = audio();
 modData = fmbMod(audioData);
 demodData = fmbDemod(modData);
end

FM Modulate and Demodulate an RBDS Waveform

Generate a basic RBDS waveform, FM modulate it with an audio signal, and then
demodulate it.

Note: This example runs only in R2017a or later.

Create a RBDS waveform with 19 groups per frame and 10 samples per symbol. The
sample rate of the RBDS waveform is given by 1187.5 x 10. Set the audio sample rate to
1187.5 x 40.

groupLen = 104;
sps = 10;

4 System Objects — Alphabetical List

4-790

groupsPerFrame = 19;
rbdsFrameLen = groupLen*sps*groupsPerFrame;
afrRate = 40*1187.5;
rbdsRate = 1187.5*sps;
outRate = 4*57000;

afr = dsp.AudioFileReader('rbds_capture_47500.wav','SamplesPerFrame',rbdsFrameLen*afrRate/rbdsRate);
rbds = comm.RBDSWaveformGenerator('GroupsPerFrame',groupsPerFrame,'SamplesPerSymbol',sps);

fmMod = comm.FMBroadcastModulator('AudioSampleRate',afr.SampleRate,'SampleRate',outRate,...
 'Stereo',true,'RBDS',true,'RBDSSamplesPerSymbol',sps);
fmDemod = comm.FMBroadcastDemodulator('SampleRate',outRate,...
 'Stereo',true,'RBDS',true,'PlaySound',true);
scope = dsp.TimeScope('SampleRate',outRate,'YLimits',10^-2*[-1 1]);

Get the current audio input. Generate RBDS information at the same configured rate as
audio. FM modulate the stereo audio with RBDS information. Add additive white Gaussian
noise. FM demodulate the audio and RBDS waveforms. View the waveforms in a time
scope.

for idx = 1:7
 input = afr();
 rbdsWave = rbds();
 yFM = fmMod([input input], rbdsWave);
 rcv = awgn(yFM, 40);
 [audioRcv, rbdsRcv] = fmDemod(rcv);
 scope(rbdsRcv);
end

Warning: File: B:\matlab\toolbox\dsp\dsp\+dsp\FilterCascade.m Line: 562 Column:
92
Unrecognized pragma "%#okgrow".
Warning: File: B:\matlab\toolbox\dsp\dsp\+dsp\FilterCascade.m Line: 949 Column:
124
Unrecognized pragma "%#okgrow".

 comm.FMBroadcastModulator

4-791

Algorithms
The FM Broadcast modulator includes the functionality of the baseband FM modulator,
pre-emphasis filtering, and the ability to transmit stereophonic signals. The algorithms

4 System Objects — Alphabetical List

4-792

which govern basic FM modulation and demodulation are covered in
comm.FMModulator.

Filtering
FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To
compensate, FM broadcasters insert a pre-emphasis filter prior to FM modulation to
amplify the high-frequency content. The FM receiver has a reciprocal de-emphasis filter
after the FM demodulator to attenuate high-frequency noise and restore a flat signal
spectrum.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 50 μs in Europe and 75 μs in the
United States. Similarly, the transfer function for the lowpass de-emphasis filter is given
by

Hd(f) = 1
1 + j2πfτs

.

Irrespective of the audio sampling rate, the signal is converted to a 152 kHz output
sampling rate. For an audio sample rate of 44.1 kHz, the pre-emphasis filter has the
following response.

 comm.FMBroadcastModulator

4-793

Stereo and RDS/RBDS FM – Multiplex Signal
The FM broadcast modulator supports stereophonic and monophonic operations. To
support stereo transmission, the left (L) and right (R) channel information (L+R) is
assigned to the mono portion of the spectrum (0 to 15 kHz). The (L-R) information is
amplitude modulated onto the 23 to 53 kHz region of the baseband spectrum using a 38
kHz subcarrier signal. A pilot tone at 19 kHz in the multiplexed signal enables the FM
receiver to coherently demodulate the stereo and RDS/RBDS signals. Here is the
spectrum of the multiplex baseband signal.

4 System Objects — Alphabetical List

4-794

Here is the block diagram of the FM broadcast modulator, which is used to generate the
multiplex baseband signal. L(t) and R(t) denote the time-domain waveforms from the left
and right channels. RBDS(t) denotes the time-domain waveform of the RDS/RBDS signal.

 comm.FMBroadcastModulator

4-795

The multiplex message signal, m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t)− R(t) cos(2π × 38kHz × t)
+ C2RBDS(t)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains
scale the amplitudes of the (L(t)±R(t)) signals, the 19 kHz pilot tone, and the RDS/RBDS
subcarrier, respectively.

Limitations
• If RBDS is true, both the audio and RDS/RBDS inputs must satisfy the following

equation:

audioLength
audioSampleRate = RBDSLength

RBDSSampleRate
• The input length of the audio signal must be an integer multiple of the

AudioDecimationFactor property. The input length of the RDS/RBDS signal must
be an integer multiple of the RBDSDecimationFactor property. For more information
on these two properties, see the info method.

4 System Objects — Alphabetical List

4-796

References
[1] Chakrabarti, I. H., and Hatai, I. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

[3] Der, Lawrence. “Frequency Modulation (FM) Tutorial”. FM Tutorial. Silicon
Laboratories Inc., pp. 4–8.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.FMBroadcastDemodulator | comm.FMDemodulator | comm.FMModulator |
comm.RBDSWaveformGenerator

Blocks
FM Broadcast Demodulator Baseband | FM Broadcast Modulator Baseband

Introduced in R2015a

 comm.FMBroadcastModulator

4-797

https://www.silabs.com/Marcom%20Documents/Resources/FMTutorial.pdf

info
System object: comm.FMBroadcastModulator
Package: comm

Filter information about FM broadcast modulator

Syntax
S = info(fmbMod)

Description
S = info(fmbMod) returns a structure, S, containing this information for the
comm.FMBroadcastModulator System object, fmbMod:

Field Description
AudioDecimationFactor Decimation factor of the audio modulator

filter.
AudioInterpolationFactor Interpolation factor of the audio modulator

filter.
RBDSDecimationFactor Decimation factor of the RDS/RBDS

modulator filter.
RBDSInterpolationFactor Interpolation factor of the RDS/RBDS

modulator filter.

Note The modulator input sequence length for the audio input must be a multiple of
AudioDecimationFactor.

The modulator input sequence length for the RDS/RBDS input must be a multiple of
RBDSDecimationFactor.

Introduced in R2015a

4 System Objects — Alphabetical List

4-798

reset
System object: comm.FMBroadcastModulator
Package: comm

Reset states of the FM broadcast modulator object

Syntax
reset(fmbMod)

Description
reset(fmbMod) resets the states of the comm.FMBroadcastModulator object,
fmbMod.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

Introduced in R2015a

 reset

4-799

step
System object: comm.FMBroadcastModulator
Package: comm

Apply FM broadcast modulation

Syntax
modSig = step(fmbMod,audioSig)
modSig = step(fmbMod,audioSig,rbdsSig)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

modSig = step(fmbMod,audioSig) pre-emphasizes the audio signal, audioSig, and
modulates it onto a baseband FM signal. The audio signal can be real or complex with a
single-precision or a double-precision data type. If the Stereo property of fmbMod is set
to true, stereo encoding is performed after pre-emphasis and the audio signal must have
at least two channels. If Stereo is false, the audio signal must be a column vector. The
length of the modulated signal, modSig, is (SampleRate/
AudioSampleRate) × length(audioSig).

modSig = step(fmbMod,audioSig,rbdsSig) also modulates a baseband RBDS
signal at 57 kHz. You can pass rbdsSig as an input only if you set the RBDS property to
true. The length of output vector modSig is (SampleRate/
AudioSampleRate) × length(audioSig).

Note fmbMod specifies the System object on which to run this step method.

4 System Objects — Alphabetical List

4-800

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2015a

 step

4-801

comm.FMDemodulator
Package: comm

Demodulate using FM method

Description
The FMDemodulator System object demodulates an FM modulated signal.

To FM demodulate a signal:

1 Define and set up the FMDemodulator object. See “Construction” on page 4-802.
2 Call step to FM demodulate a signal according to the properties of

comm.FMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.FMDemodulator creates a demodulator System object, H, that frequency
demodulates an input signal.

H = comm.FMDemodulator(mod) creates an FM demodulator object whose properties
are determined by the corresponding FM modulator object, mod.

H = comm.FMDemodulator(Name,Value) creates an FM demodulator object with each
specified property Name set to the specified Value. Name must appear inside single
quotes. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-802

Properties
FrequencyDeviation

Peak deviation of the output signal frequency (Hz)

Specify the frequency deviation of the FM demodulator in Hz as a positive real scalar. The
default value is 75e3. The system bandwidth is equal to twice the sum of the frequency
deviation and the message bandwidth. This property is nontunable.

SampleRate

Sample rate of input signal (Hz)

Specify the sample rate in Hz as a positive real scalar. The default value is 240e3. The
output sample rate is equal to the input sample rate. This property is nontunable.

Methods
reset Reset states of the FM demodulator object
step Applies FM baseband demodulation

Common to All System Objects
release Allow System object property value changes

Examples

FM Modulate and Demodulate a Sinusoidal Signal

Modulate and demodulate a sinusoidal signal. Plot the demodulated signal and compare it
to the original signal.

Set the example parameters.

fs = 100; % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 25; % Frequency deviation (Hz)

 comm.FMDemodulator

4-803

Create a sinusoidal input signal with duration 0.5s and frequency 4 Hz.

t = (0:ts:0.5-ts)';
x = sin(2*pi*4*t);

Create an FM modulator System object™.

MOD = comm.FMModulator('SampleRate',fs,'FrequencyDeviation',fd);

FM modulate the input signal and plot its real part. You can see that the frequency of the
modulated signal changes with the amplitude of the input signal.

y = step(MOD,x);
plot(t,[x real(y)])

4 System Objects — Alphabetical List

4-804

Demodulate the FM modulated signal.

DEMOD = comm.FMDemodulator('SampleRate',fs,'FrequencyDeviation',fd);
z = step(DEMOD,y);

Plot the input and demodulated signals. The demodulator output signal exactly aligns
with the input signal.

plot(t,x,'r',t,z,'ks')
legend('Input Signal','Demod Signal')
xlabel('Time (s)')
ylabel('Amplitude')

 comm.FMDemodulator

4-805

Create an FM Demodulator from an FM Modulator

Create an FM demodulator System object? from an FM modulator object. Modulate and
demodulate audio data loaded from a file and compare its spectrum with that of the input
data.

Set the example parameters.

fd = 50e3; % Frequency deviation (Hz)
fs = 300e3; % Sample rate (Hz)

Create an FM modulator System object.

MOD = comm.FMModulator('FrequencyDeviation',fd,'SampleRate',fs);

Create a companion demodulator object based on the modulator.

DEMOD = comm.FMDemodulator(MOD);

Verify that the properties are identical in the two System objects.

MOD
DEMOD

MOD =

 comm.FMModulator with properties:

 SampleRate: 300000
 FrequencyDeviation: 50000

DEMOD =

 comm.FMDemodulator with properties:

 SampleRate: 300000
 FrequencyDeviation: 50000

Load audio data into structure variable, S.

S = load('handel.mat');
data = S.y;
fsamp = S.Fs;

4 System Objects — Alphabetical List

4-806

Create a spectrum analyzer System object.

SA = dsp.SpectrumAnalyzer('SampleRate',fsamp,'ShowLegend',true);

FM modulate and demodulate the audio data.

modData = step(MOD,data);
demodData = step(DEMOD,modData);

Verify that the spectrum plot of the input data (Channel 1) is aligned with that of the
demodulated data (Channel 2).

step(SA,[data demodData])

 comm.FMDemodulator

4-807

FM Modulate and Demodulate an Audio File

Playback an audio file after applying FM modulation and demodulation. The example
takes advantage of the characteristics of System objects™ to process the data in
streaming mode.

Load the audio file, guitartune.wav, using an audio file reader object.

AUDIO = dsp.AudioFileReader...
 ('guitartune.wav','SamplesPerFrame',4410);

Create an audio device writer object for audio playback.

AUDIOPLAYER = audioDeviceWriter;

Create modulator and demodulator objects having default properties.

MOD = comm.FMModulator;
DEMOD = comm.FMDemodulator;

Read audio data, FM modulate, FM demodulate, and playback the demodulated signal, z.

while ~isDone(AUDIO)
 x = step(AUDIO); % Read audio data
 y = step(MOD,x); % FM modulate
 z = step(DEMOD,y); % FM demodulate
 step(AUDIOPLAYER,z); % Playback the demodulated signal
end

Selected Bibliography

[1] Chakrabarti, I. H., and Hatai, I. “A New High-Performance Digital FM Modulator and
Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

4 System Objects — Alphabetical List

4-808

Algorithms
Represent a frequency modulated passband signal, Y(t), as

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where A is the carrier amplitude, fc is the carrier frequency, x(τ) is the baseband input
signal, and fΔ is the frequency deviation in Hz. The frequency deviation is the maximum
shift from fc in one direction, assuming |x(t)| ≤ 1.

A baseband FM signal can be derived from the passband representation by
downconverting it by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from ys(t) leaves the baseband signal representation, y(t),
which is expressed as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) is rewritten as

y(t) = A
2 e jϕ(t) ,

where ϕ(t) = 2πfΔ∫0 t
x(τ)dτ, which implies that the input signal is a scaled version of the

derivative of the phase, ϕ(t).

A baseband delay demodulator is used to recover the input signal from y(t).

 comm.FMDemodulator

4-809

z-1 ()*

X angle()
y(t) w(t) v(t)

A delayed and conjugated copy of the received signal is subtracted from the signal itself,

w(t) = A2

4 e jϕ(t)e− jϕ(t − T) = A2

4 e j ϕ(t)− ϕ(t − T) ,

where T is the sample period. In discrete terms, wn=w(nT), and

wn = A2

4 e j ϕn− ϕn− 1 ,

vn = ϕn− ϕn− 1 .

The signal vn is the approximate derivative of ϕn, such that vn ≈ xn.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.FMBroadcastDemodulator | comm.FMBroadcastModulator |
comm.FMModulator

Introduced in R2015a

4 System Objects — Alphabetical List

4-810

reset
System object: comm.FMDemodulator
Package: comm

Reset states of the FM demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the FMDemodulator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

 reset

4-811

step
System object: comm.FMDemodulator
Package: comm

Applies FM baseband demodulation

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) frequency demodulates an input signal, X, and returns an output signal,
Y. The input X is real or complex and can be either a scalar or a column vector. Double-
and single-precision data types are supported. The output Y is real and has the same data
type and dimensions as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-812

comm.FMModulator
Package: comm

Modulate using FM method

Description
The FMModulator System object applies FM modulation to an input signal.

To FM modulate a signal:

1 Define and set up the FMModulator object. See “Construction” on page 4-813.
2 Call step to apply FM modulation to a signal according to the properties of

comm.FMModulator. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.FMModulator creates a modulator System object, H, that frequency
modulates an input signal.

H = comm.FMModulator(demod) creates an FM modulator object whose properties are
determined by the corresponding FM demodulator object, demod.

H = comm.FMModulator(Name,Value) creates an FM modulator object with each
specified property Name set to the specified Value. Name must appear inside single
quotes. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.FMModulator

4-813

Properties
FrequencyDeviation

Peak deviation of the output signal frequency (Hz)

Specify the frequency deviation of the FM modulator in Hz as a positive real scalar. The
default value is 75e3. The system bandwidth is equal to twice the sum of the frequency
deviation and the message bandwidth. This property is nontunable.

SampleRate

Sample rate of the input signal (Hz)

Specify the sample rate in Hz as a positive real scalar. The default value is 240e3. The
output sample rate is equal to the input sample rate. This property is nontunable.

Methods
reset Reset states of the FM modulator object
step Applies FM baseband modulation

Common to All System Objects
release Allow System object property value changes

Examples

FM Modulate a Sinusoidal Signal

Apply baseband modulation to a sine wave input signal and plot its response.

Set the example parameters.

fs = 1e3; % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 50; % Frequency deviation (Hz)

4 System Objects — Alphabetical List

4-814

Create a sinusoidal input signal with duration 0.5s and frequency 4 Hz.

t = (0:ts:0.5-ts)';
x = sin(2*pi*4*t);

Create an FM modulator System object™.

MOD = comm.FMModulator('SampleRate',fs,'FrequencyDeviation',fd);

FM modulate the input signal and plot its real part. You can see that the frequency of the
modulated signal changes with the amplitude of the input signal.

y = step(MOD,x);
plot(t,[x real(y)])

 comm.FMModulator

4-815

Plot Spectrum of FM Modulated Baseband Signal

Apply FM baseband modulation to a white Gaussian noise source and plot its spectrum.

Set the example parameters.

fs = 1e3; % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 10; % Frequency deviation (Hz)

Create a white Gaussian noise source having a duration of 5s.

t = (0:ts:5-ts)';
x = wgn(length(t),1,0);

Create an FM modulator System object? and modulate the input signal.

MOD1 = comm.FMModulator('SampleRate',fs,'FrequencyDeviation',fd);
y = step(MOD1,x);

Create another modulator object, MOD2, whose frequency deviation is five times larger
and apply FM modulation.

MOD2 = comm.FMModulator('SampleRate',fs,'FrequencyDeviation',5*fd);
z = step(MOD2,x);

Plot the spectra of the two modulated signals. The larger frequency deviation associated
with channel 2 results in a noise level that is 10 dB higher.

SA = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true);
step(SA,[y z])

4 System Objects — Alphabetical List

4-816

Selected Bibliography
[1] Chakrabarti, I. H., and Hatai, I. “A New High-Performance Digital FM Modulator and

Demodulator for Software-Defined Radio and Its FPGA Implementation.”
International Journal of Reconfigurable Computing. Vol. 2011, No. 10.1155/2011,
2011, p. 10.

[2] Taub, Herbert, and Donald L. Schilling. Principles of Communication Systems. New
York: McGraw-Hill, 1971, pp. 142–155.

 comm.FMModulator

4-817

Algorithms
Represent a frequency modulated passband signal, Y(t), as

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where A is the carrier amplitude, fc is the carrier frequency, x(τ) is the baseband input
signal, and fΔ is the frequency deviation in Hz. The frequency deviation is the maximum
shift from fc in one direction, assuming |x(t)| ≤ 1.

A baseband FM signal can be derived from the passband representation by
downconverting it by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from ys(t) leaves the baseband signal representation, y(t),
which is expressed as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) is rewritten as

y(t) = A
2 e jϕ(t) ,

where ϕ(t) = 2πfΔ∫0 t
x(τ)dτ, which implies that the input signal is a scaled version of the

derivative of the phase, ϕ(t).

A baseband delay demodulator is used to recover the input signal from y(t).

4 System Objects — Alphabetical List

4-818

z-1 ()*

X angle()
y(t) w(t) v(t)

A delayed and conjugated copy of the received signal is subtracted from the signal itself,

w(t) = A2

4 e jϕ(t)e− jϕ(t − T) = A2

4 e j ϕ(t)− ϕ(t − T) ,

where T is the sample period. In discrete terms, wn=w(nT), and

wn = A2

4 e j ϕn− ϕn− 1 ,

vn = ϕn− ϕn− 1 .

The signal vn is the approximate derivative of ϕn, such that vn ≈ xn.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.FMBroadcastDemodulator | comm.FMBroadcastModulator |
comm.FMDemodulator

Introduced in R2015a

 comm.FMModulator

4-819

reset
System object: comm.FMModulator
Package: comm

Reset states of the FM modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the FMModulator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

4 System Objects — Alphabetical List

4-820

step
System object: comm.FMModulator
Package: comm

Applies FM baseband modulation

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) frequency modulates an input signal, X, and returns a modulated signal,
Y. The input X is real or complex and can be either a scalar or a column vector. Double-
and single-precision data types are supported. The output Y has the same data type and
dimensions as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-821

comm.FSKDemodulator
Package: comm

Demodulate using M-ary FSK method

Description
The FSKDemodulator object demodulates a signal that was modulated using the M-ary
frequency shift keying method. The input is a baseband representation of the modulated
signal. The input and output for this object are discrete-time signals.

To demodulate a signal that was modulated using frequency shift keying:

1 Define and set up your FSK demodulator object. See “Construction” on page 4-822.
2 Call step to demodulate a signal according to the properties of FSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.FSKDemodulator creates a demodulator System object, H. This object
demodulates an M-ary frequency shift keying (M-FSK) signal using a noncoherent energy
detector.

H = comm.FSKDemodulator(Name,Value) creates an M-FSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.FSKDemodulator(M,FREQSEP,RS,Name,Value) creates an M-FSK
demodulator object, H. This object has the ModulationOrder property set to M, the

4 System Objects — Alphabetical List

4-822

FrequencySeparation property set to FREQSEP, the SymbolRate property set to RS,
and the other specified properties set to the specified values.

Properties
ModulationOrder

Number of frequencies in modulated signal

Specify the number of frequencies in the modulated signal as a numeric, positive, integer
scalar value that is a power of two. The default is 8.

BitOutput

Output data as bits

Specify whether the output is groups of bits or integer values. The default is false.

When you set this property to false, the step method outputs a column vector of length
equal to N/SamplesPerSymbol on page 4-0 . N is the length of the input data vector
to the step method. The elements of the output vector are integers between 0 and
ModulationOrder on page 4-0 –1. When you set this property to true, the step
method outputs a column vector of length equal to log2(ModulationOrder)×(N/
SamplesPerSymbol). The property's elements are bit representations of integers
between 0 and ModulationOrder–1.

SymbolMapping

Symbol encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) bits to the corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses Gray-coded ordering.

When you set this property to Binary, the object uses natural binary-coded ordering.

For either type of mapping, the object maps the lowest frequency to the integer 0 and
maps the highest frequency to the integer M–1. In baseband simulation, the lowest
frequency is the negative frequency with the largest absolute value.

 comm.FSKDemodulator

4-823

FrequencySeparation

Frequency separation between successive tones

Specify the frequency separation between successive symbols in the modulated signal in
Hertz as a positive, real scalar value. The default is 6 Hz.

SamplesPerSymbol

Number of samples per input symbol

Specify the number of samples per input symbol as a positive, integer scalar value. The
default is 17.

SymbolRate

Symbol duration

Specify the symbol rate in symbols per second as a positive, double-precision, real scalar
value. The default is 100. To avoid output signal aliasing, specify an output sampling rate,
Fs = SamplesPerSymbol on page 4-0 ×SymbolRate, which is greater than
ModulationOrder on page 4-0 × FrequencySeparation on page 4-0 . The
symbol duration remain the same, regardless of whether the input is bits or integers.

OutputDataType

Data type of output

Specify the output data type as one of logical | int8 | uint8 | int16 | uint16 | int32
| uint32 | double. The default is double. The logical type is valid only when you set
the BitOutput on page 4-0 property to false and the ModulationOrder on page 4-
0 property to two. When you set the BitOutput property to true, the output data
requires a type of logical | double.

Methods

reset Reset states of M-FSK demodulator object
step Demodulate using M-ary FSK method

4 System Objects — Alphabetical List

4-824

Common to All System Objects
release Allow System object property value changes

Examples

FSK Modulation and Demodulation in AWGN

Modulate and demodulate a signal using 8-FSK modulation with a frequency separation of
100 Hz.

Set the modulation order and frequency separation parameters.

M = 8;
freqSep = 100;

Create FSK modulator and demodulator System objects™ with modulation order 8 and
100 Hz frequency separation.

fskMod = comm.FSKModulator(M,freqSep);
fskDemod = comm.FSKDemodulator(M,freqSep);

Create an additive white Gaussian noise channel, where the noise is specified as a signal-
to-noise ratio.

ch = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',-2);

Create an error rate calculator object.

err = comm.ErrorRate;

Transmit one hundred 50-symbol frames using 8-FSK in an AWGN channel.

for counter = 1:100
 data = randi([0 M-1],50,1);
 modSignal = step(fskMod,data);
 noisySignal = step(ch,modSignal);
 receivedData = step(fskDemod,noisySignal);
 errorStats = step(err,data,receivedData);
end

 comm.FSKDemodulator

4-825

Display the error statistics.

es = 'Error rate = %4.2e\nNumber of errors = %d\nNumber of symbols = %d\n';
fprintf(es,errorStats)

Error rate = 1.40e-02
Number of errors = 70
Number of symbols = 5000

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-FSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters, except:

• The Symbol set ordering parameter corresponds to the SymbolMapping on page 4-
0 property.

• The SymbolRate on page 4-0 property replaces the block sample rate capability.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKDemodulator | comm.CPFSKModulator | comm.FSKModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-826

reset
System object: comm.FSKDemodulator
Package: comm

Reset states of M-FSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the FSKDemodulator object, H.

 reset

4-827

step
System object: comm.FSKDemodulator
Package: comm

Demodulate using M-ary FSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the FSK demodulator System object, H,
and returns Y. X must be a double or single precision data type column vector of length
equal to an integer multiple of the number of samples per symbol that you specify in the
SamplesPerSymbol property. Depending on the BitOutput property value, output Y
can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-828

comm.FSKModulator
Package: comm

Modulate using M-ary FSK method

Description
The FSKModulator object modulates using the M-ary frequency shift keying method. The
output is a baseband representation of the modulated signal.

To modulate a signal using frequency shift keying:

1 Define and set up your FSK modulator object. See “Construction” on page 4-829.
2 Call step to modulate a signal according to the properties of comm.FSKModulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.FSKModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary frequency shift keying (M-FSK) method.

H = comm.FSKModulator(Name,Value) creates an M-FSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.FSKModulator(M,FREQSEP,RS,Name,Value) creates an M-FSK modulator
object, H. This object has the ModulationOrder property set to M, the
FrequencySeparation property set to FREQSEP, the SymbolRate property set to RS,
and the other specified properties set to the specified values.

 comm.FSKModulator

4-829

Properties
ModulationOrder

Number of frequencies in modulated signal

Specify the number of frequencies in the modulated signal as a numeric positive integer
scalar value that is a power of two. The default is 8.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false.

When you set this property to false, the step method input requires a numeric (except
single precision data type) column vector of integer values between 0 and
ModulationOrder on page 4-0 –1. In this case, the input vector can also be of data
type logical if ModulationOrder equals 2.

When you set this property to true, the step method input requires a double-precision
or logical data type column vector of bit values. The length of this vector is an integer
multiple of log2(ModulationOrder). This vector contains bit representations of integers
between 0 and ModulationOrder–1.

SymbolMapping

Symbol encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) bits to the corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses Gray-coded ordering.

When you set this property to Binary, the object uses natural binary-coded ordering. For
either type of mapping, the object maps the lowest frequency to the integer 0 and maps
the highest frequency to the integer M–1. In baseband simulation, the lowest frequency is
the negative frequency with the largest absolute value.

FrequencySeparation

Frequency separation between successive tones

4 System Objects — Alphabetical List

4-830

Specify the frequency separation between successive tones in the modulated signal in
Hertz as a positive, real scalar value. The default is 6 Hz. To avoid output signal aliasing,
specify an output sampling rate, Fs = SamplesPerSymbol on page 4-0 ×SymbolRate
on page 4-0 , which is greater than ModulationOrder on page 4-0 multiplied by
FrequencySeparation on page 4-0 .

ContinuousPhase

Phase continuity

Specify if the phase of the output modulated signal is continuous or discontinuous. The
default is true.

When you set this property to true, the modulated signal maintains continuous phase
even when its frequency changes.

When you set this property to false, the modulated signal comprises portions of
ModulationOrder on page 4-0 sinusoids of different frequencies. In this case, a
change in the input value can cause a discontinuous change in the phase of the modulated
signal.

SamplesPerSymbol

Number of samples per output symbol

Specify the number of output samples that the object produces for each integer or binary
word in the input as a positive, integer scalar value. The default is 17.

SymbolRate

Symbol duration

Specify the symbol rate in symbols per second as a positive, double-precision, real scalar.
The default is 100. To avoid output signal aliasing, specify an output sampling rate, Fs =
SamplesPerSymbol on page 4-0 ×SymbolRate, which is greater than
ModulationOrder on page 4-0 × FrequencySeparation on page 4-0 . The
symbol duration remain the same, regardless of whether the input is bits or integers.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

 comm.FSKModulator

4-831

Methods
reset Reset states of M-FSK modulator object
step Modulate using M-ary FSK method

Common to All System Objects
release Allow System object property value changes

Examples

FSK Modulation and Demodulation in AWGN

Modulate and demodulate a signal using 8-FSK modulation with a frequency separation of
100 Hz.

Set the modulation order and frequency separation parameters.

M = 8;
freqSep = 100;

Create FSK modulator and demodulator System objects™ with modulation order 8 and
100 Hz frequency separation.

fskMod = comm.FSKModulator(M,freqSep);
fskDemod = comm.FSKDemodulator(M,freqSep);

Create an additive white Gaussian noise channel, where the noise is specified as a signal-
to-noise ratio.

ch = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',-2);

Create an error rate calculator object.

err = comm.ErrorRate;

Transmit one hundred 50-symbol frames using 8-FSK in an AWGN channel.

for counter = 1:100
 data = randi([0 M-1],50,1);

4 System Objects — Alphabetical List

4-832

 modSignal = step(fskMod,data);
 noisySignal = step(ch,modSignal);
 receivedData = step(fskDemod,noisySignal);
 errorStats = step(err,data,receivedData);
end

Display the error statistics.

es = 'Error rate = %4.2e\nNumber of errors = %d\nNumber of symbols = %d\n';
fprintf(es,errorStats)

Error rate = 1.40e-02
Number of errors = 70
Number of symbols = 5000

Visualize FSK Modulated Symbol Mapping

Visualize symbol mapping of an FSK modulated signal with a spectrogram.

Specify 20 samples for each symbol. 0 maps to -50 kHz (negative phase slope) and 1 maps
to +50 kHz (positive phase slope).

mod = comm.FSKModulator;
mod.ModulationOrder = 2;
mod.FrequencySeparation = 100000;
mod.SamplesPerSymbol = 20;
mod.SymbolMapping = 'Gray';
mod.SymbolRate = 1e4

mod =
 comm.FSKModulator with properties:

 ModulationOrder: 2
 BitInput: false
 SymbolMapping: 'Gray'
 FrequencySeparation: 100000
 ContinuousPhase: true
 SamplesPerSymbol: 20
 SymbolRate: 10000
 OutputDataType: 'double'

 comm.FSKModulator

4-833

x = mod([0 1 0 1 0 1]');
figure; subplot(1,2,1); plot(unwrap(angle(x)),0:length(x)-1);
grid on; xlabel('Phase'); ylabel('Samples')
subplot(1,2,2);
spectrogram(x,20,0,[],mod.SymbolRate*mod.SamplesPerSymbol,'centered')

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-FSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters, except:

4 System Objects — Alphabetical List

4-834

• The Symbol set ordering parameter corresponds to the SymbolMapping on page 4-
0 property.

• The SymbolRate on page 4-0 property takes the place of the block sample rate
capability.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKModulator | comm.FSKDemodulator

Introduced in R2012a

 comm.FSKModulator

4-835

reset
System object: comm.FSKModulator
Package: comm

Reset states of M-FSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the FSKModulator object, H.

4 System Objects — Alphabetical List

4-836

step
System object: comm.FSKModulator
Package: comm

Modulate using M-ary FSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the FSK modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit- valued column vector with numeric or logical
data types. The length of output vector, Y, is equal to the number of input samples times
the number of samples per symbol you specify in the SamplesPerSymbol property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-837

comm.GeneralQAMDemodulator
Package: comm

Demodulate using arbitrary QAM constellation

Description
The GeneralQAMDemodulator object demodulates a signal that was modulated using
quadrature amplitude modulation. The input is a baseband representation of the
modulated signal.

To demodulate a signal that was modulated using quadrature amplitude modulation:

1 Define and set up your QAM demodulator object. See “Construction” on page 4-838.
2 Call step to demodulate a signal according to the properties of

comm.GeneralQAMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GeneralQAMDemodulator creates a demodulator System object, H. This
object demodulates the input signal using a general quadrature amplitude modulation
(QAM) method.

H = comm.GeneralQAMDemodulator(Name,Value) creates a general QAM
demodulator object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-838

H = comm.GeneralQAMDemodulator(CONST,Name,Value) creates a general QAM
demodulator object, H. This object has the Constellation property set to CONST, and
the other specified properties set to the specified values.

Properties
Constellation

Signal constellation

Specify the constellation points as a real or complex, double-precision data type vector.
The default is exp(2 × π × 1i × (0:7) 8). The length of the vector determines the
modulation order.

When you set the BitOutput on page 4-0 property to false, the step method
outputs a vector with integer values. These integers are between 0 and M–1, where M is
the length of this property vector. The length of the output vector equals the length of the
input signal.

When you set the BitOutput property to true, the output signal contains bits. For bit
outputs, the size of the signal constellation requires an integer power of two and the
output length is an integer multiple of the number of bits per symbol.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false.

When you set this property to true the step method outputs a column vector of bit
values with length equal to log2(M) times the number of demodulated symbols, where M
is the length of the signal constellation specified in the Constellation on page 4-0
property. The length M determines the modulation order.

When you set this property to false, the step method outputs a column vector, of length
equal to the input data vector. The vector contains integer symbol values between 0 and
M–1.

 comm.GeneralQAMDemodulator

4-839

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as one of Hard decision | Log-
likelihood ratio | Approximate log-likelihood ratio. The default is Hard
decision. When you set the BitOutput on page 4-0 property to false the object
always performs hard decision demodulation. This property applies when you set the
BitOutput property to true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the DecisionMethod on page 4-0
property to Log-likelihood ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a nonzero, real scalar value. The default is 1. If this
value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations may
yield Inf or -Inf. This result occurs because the LLR algorithm would compute the
exponential of very large or very small numbers using finite-precision arithmetic. In such
cases, using approximate LLR is recommended because its algorithm does not compute
exponentials. This property applies when you set the VarianceSource on page 4-0
property to Property. This property is tunable.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The
default is Full precision .

This property applies only when you set the BitOutput on page 4-0 property to
false or when you set the BitOutput property to true and the DecisionMethod on
page 4-0 property to Hard decision or Approximate log-likelihood ratio.
In this case, when you set the OutputDataType on page 4-0 property to Full

4 System Objects — Alphabetical List

4-840

precision, the output data type is the same as that of the input when the input data has
a single or double-precision data type.

When the input data is of a fixed-point type, the output data type works as if you had set
the OutputDataType property to Smallest unsigned integer.

When the input signal is an integer data type, you must have a Fixed-Point Designer user
license to use this property in Smallest unsigned integer or Full precision
mode.

When you set the BitOutput property to true, and the DecisionMethod property to
Hard Decision the data type logical becomes a valid option.

When you set the BitOutput property to true and the DecisionMethod property to
Approximate log-likelihood ratio you may only set this property to Full
precision | Custom.

If you set the BitOutput property to true and the DecisionMethod property to Log-
likelihood ratio, the output data has the same type as that of the input. In this case,
that value can be only single or double precision.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true,
which is the default, the object computes all internal arithmetic and output data types
using full precision rules. These rules provide the most accurate fixed-point numerics. It
also turns off the display of other fixed-point properties because they do not apply
individually. These rules guarantee that no quantization occurs within the object. Bits are
added, as needed, to ensure that no roundoff or overflow occurs. If you set
FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects” on page 4-846.

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as one of Ceiling | Convergent | Floor | Nearest |
Round | Simplest | Zero. The default is Floor. This property applies when the object is

 comm.GeneralQAMDemodulator

4-841

not in a full precision configuration. This property does not apply when you set
BitOutput on page 4-0 to true and DecisionMethod on page 4-0 to Log-
likelihood ratio.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property applies when the object is not in a full precision configuration. This property
does not apply when you set the BitOutput on page 4-0 property to true and the
DecisionMethod on page 4-0 property to Log-likelihood ratio.

ConstellationDataType

Data type of signal constellation

Specify the constellation fixed-point data type as one of Same word length as input |
Custom. The default is Same word length as input. This property does not apply
when you set the BitOutput on page 4-0 property to true and the DecisionMethod
on page 4-0 property to Log-likelihood ratio.

CustomConstellationDataType

Fixed-point data type of signal constellation

Specify the constellation fixed-point type as an unscaled numerictype object with a
Signedness of Auto. The default is numerictype([],16). This property applies when
you set the ConstellationDataType on page 4-0 property to Custom.

Accumulator1DataType

Data type of accumulator 1

Specify the accumulator 1 fixed-point data type as one of Full precision | Custom.
The default is Full precision. This property applies when you set the
FullPrecisionOverride on page 4-0 property to false. This property does not
apply when you set the BitOutput on page 4-0 property to true and the
DecisionMethod on page 4-0 property to Log-likelihood ratio.

CustomAccumulator1DataType

Fixed-point data type of accumulator 1

4 System Objects — Alphabetical List

4-842

Specify the accumulator 1 fixed-point type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the Accumulator1DataType on page 4-0 property to Custom.

ProductInputDataType

Data type of product

Specify the product input fixed-point data type as one of Same as accumulator 1 |
Custom. The default is Same as accumulator 1. This property applies when you set
the FullPrecisionOverride on page 4-0 property to false, the BitOutput on page
4-0 property to true and the DecisionMethod on page 4-0 property to Log-
likelihood ratio.

CustomProductInputDataType

Fixed-point data type of product

Specify the product input fixed-point type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the FullPrecisionOverride on page 4-0 property to false and the
ProductInputDataType on page 4-0 property to Custom.

ProductOutputDataType

Data type of product output

Specify the product output fixed-point data type as one of Full precision | Custom.
The default is Full precision . This property applies when you set the
FullPrecisionOverride on page 4-0 property to false, the BitOutput on page 4-
0 property to true and the DecisionMethod on page 4-0 property to Log-
likelihood ratio.

CustomProductOutputDataType

Fixed-point data type of product output

Specify the product output fixed-point type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the FullPrecisionOverride on page 4-0 property to false and the
ProductOutputDataType on page 4-0 property to Custom.

 comm.GeneralQAMDemodulator

4-843

Accumulator2DataType

Data type of accumulator 2

Specify the accumulator 2 fixed-point data type as one of Full precision | Custom.
The default is Full precision . This property applies when you set the
FullPrecisionOverride on page 4-0 property to false, the BitOutput on page 4-
0 property to true and the DecisionMethod on page 4-0 property to Log-
likelihood ratio.

CustomAccumulator2DataType

Fixed-point data type accumulator 2

Specify the accumulator 2 fixed-point data type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the FullPrecisionOverride on page 4-0 property to false and the
Accumulator2DataType on page 4-0 property to Custom.

Accumulator3DataType

Data type of accumulator 3

Specify the accumulator 3 fixed-point data type as one of Full precision | Custom.
The default is Full precision . This property applies when you set the
FullPrecisionOverride on page 4-0 property to false, the BitOutput on page 4-
0 property to true and the DecisionMethod on page 4-0 property to
Approximate log-likelihood ratio.

CustomAccumulator3DataType

Fixed-point data type of accumulator 3

Specify the accumulator 3 fixed-point type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the FullPrecisionOverride on page 4-0 property to false and the
Accumulator3DataType on page 4-0 property to Custom.

NoiseScalingInputDataType

Data type of noise-scaling input

Specify the noise-scaling input fixed-point data type as one of Same as accumulator 3
| Custom. The default is Same as accumulator 3. This property applies when you set

4 System Objects — Alphabetical List

4-844

the FullPrecisionOverride on page 4-0 property to false, the BitOutput on page
4-0 property to true and the DecisionMethod on page 4-0 property to
Approximate log-likelihood ratio.

CustomNoiseScalingInputDataType

Fixed-point data type of noise-scaling input

Specify the noise-scaling input fixed-point type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the FullPrecisionOverride on page 4-0 property to false and the
NoiseScalingInputDataType on page 4-0 property to Custom.

InverseVarianceDataType

Data type of inverse noise variance

Specify the inverse noise variance fixed-point data type as one of Same word length
as input | Custom. The default is Same word length as input. This property
applies when you set the BitOutput on page 4-0 property to true, the
DecisionMethod on page 4-0 property to Approximate log-likelihood ratio,
and the VarianceSource on page 4-0 property to Property.

CustomInverseVarianceDataType

Fixed-point data type of inverse noise variance

Specify the inverse noise variance fixed-point type as a numerictype object with a
Signedness of Auto. The default is numerictype([],16,8). This property applies when
you set the InverseVarianceDataType on page 4-0 property to Custom.

CustomOutputDataType

Data type of output

Specify the output fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride on page 4-0 property to false and the OutputDataType
on page 4-0 property to Custom.

 comm.GeneralQAMDemodulator

4-845

Methods
step Demodulate using arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes

Examples
Modulate and demodulate data using an arbitrary three-point constellation.

 % Setup a three point constellation
 c = [1 1i -1];
 hQAMMod = comm.GeneralQAMModulator(c);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',15, 'SignalPower', 0.89);
 hQAMDemod = comm.GeneralQAMDemodulator(c);

 %Create an error rate calculator
 hError = comm.ErrorRate;
 for counter = 1:100
 % Transmit a 50-symbol frame
 data = randi([0 2],50,1);
 modSignal = step(hQAMMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hQAMDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

More About

Full Precision for Fixed-Point System Objects
FullPrecisionOverride is a convenience property that, when you set to true,
automatically sets the appropriate properties for an object to use full-precision to process
fixed-point input.

4 System Objects — Alphabetical List

4-846

For System objects, full precision, fixed-point operation refers to growing just enough
additional bits to compute the ideal full precision result. This operation has no minimum
or maximum range overflow nor any precision loss due to rounding or underflow. It is also
independent of any hardware-specific settings. The data types chosen are based only on
known data type ranges and not on actual numeric values. Full precision for System
objects does not optimize coefficient values. When you set the FullPrecisionOverride
property to true, the other fixed-point properties it controls no longer apply and any of
their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

Algorithms
This object implements the algorithm, inputs, and outputs described on the General QAM
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
genqamdemod | qamdemod | qammod

Objects
comm.GeneralQAMModulator | comm.RectangularQAMDemodulator

Introduced in R2012a

 comm.GeneralQAMDemodulator

4-847

step
System object: comm.GeneralQAMDemodulator
Package: comm

Demodulate using arbitrary QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates the input data, X, with the general QAM demodulator
System object, H, and returns Y. Input X must be a scalar or a column vector with double
or single precision data type. When you set the BitOutput property to true and the
DecisionMethod property to 'Log-likelihood ratio' the input data type must be single or
double precision. Depending on the BitOutput property value, output Y can be integer
or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratio or Log-likelihood ratio, and
the VarianceSource property to 'Input port'.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

4 System Objects — Alphabetical List

4-848

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-849

comm.GeneralQAMModulator
Package: comm

Modulate using arbitrary QAM constellation

Description
The GeneralQAMModulator object modulates using quadrature amplitude modulation.
The output is a baseband representation of the modulated signal.

To modulate a signal using quadrature amplitude modulation:

1 Define and set up your QAM modulator object. See “Construction” on page 4-850.
2 Call step to modulate a signal according to the properties of

comm.GeneralQAMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GeneralQAMModulator creates a modulator System object, H. This object
modulates the input signal using a general quadrature amplitude modulation (QAM)
method.

H = comm.GeneralQAMModulator(Name,Value) creates a QAM modulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMModulator(CONST,Name,Value) creates a General QAM
modulator object, H. This object has the Constellation property set to CONST, and the
other specified properties set to the specified values.

4 System Objects — Alphabetical List

4-850

Properties
Constellation

Signal constellation

Specify the constellation points as a vector of real or complex double-precision data type.
The default is exp(2 × π × 1i × (0:7) 8). The length of the vector determines the
modulation order. The step method inputs requires integers between 0 and M–1, where
M indicates the length of this property vector. The object maps an input integer m to the
(m+1)st value in the Constellation vector.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of Auto.
The default is numerictype([],16). This property applies when you set the
OutputDataType on page 4-0 property to Custom.

Methods

step Modulate using arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes

 comm.GeneralQAMModulator

4-851

Examples
Modulate data using an arbitrary 3-point constellation. Then, visualize the data in a
scatter plot

 hQAMMod = comm.GeneralQAMModulator;
 % Setup a three point constellation
 hQAMMod.Constellation = [1 1i -1];
 data = randi([0 2],100,1);
 modData = step(hQAMMod, data);
 scatterplot(modData)

Algorithms
This object implements the algorithm, inputs, and outputs described on the General QAM
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
genqamdemod | qamdemod | qammod

Objects
comm.GeneralQAMDemodulator

4 System Objects — Alphabetical List

4-852

Introduced in R2012a

 comm.GeneralQAMModulator

4-853

step
System object: comm.GeneralQAMModulator
Package: comm

Modulate using arbitrary QAM constellation

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the general QAM modulator System
object, H. It returns the baseband modulated output, Y. The input must be an integer
scalar or an integer-valued column vector. The data type of the input can be numeric or
unsigned fixed point of word length ceil(log2(ModulationOrder)) (fi object).

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-854

comm.GeneralQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Description
The GeneralQAMTCMDemodulator object uses the Viterbi algorithm to decode a trellis-
coded modulation (TCM) signal that was previously modulated using an arbitrary signal
constellation.

To demodulate a signal that was modulated using a trellis-coded, general quadrature
amplitude modulator:

1 Define and set up your general QAM TCM modulator object. See “Construction” on
page 4-855.

2 Call step to demodulate a signal according to the properties of
comm.GeneralQAMTCMDemodulator. The behavior of step is specific to each object
in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GeneralQAMTCMDemodulator creates a trellis-coded, general quadrature
amplitude (QAM TCM) demodulator System object, H. This object demodulates
convolutionally encoded data that has been mapped to an arbitrary QAM constellation.

H = comm.GeneralQAMTCMDemodulator(Name,Value) creates a general QAM TCM
demodulator object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.GeneralQAMTCMDemodulator

4-855

H = comm.GeneralQAMTCMDemodulator(TRELLIS,Name,Value) creates a general
QAM TCM demodulator object, H. This object has the TrellisStructure property set to
TRELLIS, and the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. The default is the value that results from poly2trellis([1 3], [1 0 0; 0
5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object saves the internal state metric at
the end of each frame. The next frame uses the same state metric. The object treats each
traceback path independently. If the input signal contains only one symbol, use
Continuous mode.

When you set this property to Truncated, the object treats each input vector
independently. The traceback path starts at the state with the best metric and always
ends in the all-zeros state.

When you set this property to Terminated, the object treats each input vector
independently, and the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path.
The default is 21. The Traceback depth parameter influences the decoding accuracy and

4 System Objects — Alphabetical List

4-856

delay. The decoding delay indicates the number of zero symbols that precede the first
decoded symbol in the output.

When you set the TerminationMethod on page 4-0 property to Continuous, the
decoding delay consists of TracebackDepth zero symbols or TracebackDepth×K zero
bits for a rate K/N convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, no
output delay occurs and the traceback depth must be less than or equal to the number of
symbols in each input vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default is
false. When this additional reset input is a nonzero value, the internal states of the
encoder reset to their initial conditions. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

Constellation

Signal constellation

Specify a double- or single-precision complex vector. This vector lists the points in the
signal constellation that were used to map the convolutionally encoded data. The
constellation must be specified in set-partitioned order. See documentation for the
General TCM Encoder block for more information on set-partitioned order. The length of
the constellation vector must equal the number of possible input symbols to the
convolutional decoder of the general QAM TCM demodulator object. This corresponds to
2N for a rate K/N convolutional code. The default corresponds to a set-partitioned order
for the points of an 8-PSK signal constellation. This value is expressed as
exp(2 × π × j × [0 4 2 6 1 5 3 7] 8).

OutputDataType

Data type of output

Specify output data type as one of logical | double. The default is double.

 comm.GeneralQAMTCMDemodulator

4-857

Methods
reset Reset states of the general QAM TCM demodulator object
step Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes

Examples

Modulate and Demodulate Data Using QAM TCM

Modulate and demodulate noisy data using QAM TCM modulation with an arbitrary 4-
point constellation. Estimate the resultant BER.

Define a trellis structure with two input symbols and four output symbols using a [171
133] generator polynomial. Define an arbitrary four-point constellation.

qamTrellis = poly2trellis(7,[171 133]);
refConst = exp(pi*1i*[1 2 3 6]/4);

Create a QAM TCM modulator and demodulator System object™ pair using qamTrellis
and refConst.

hMod = comm.GeneralQAMTCMModulator(qamTrellis,'Constellation', refConst);
hDemod = comm.GeneralQAMTCMDemodulator(qamTrellis,'Constellation',refConst);

Create an AWGN channel object in which the noise is set by using a signal-to-noise ratio.

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...
 'SNR',4);

Create an error rate calculator with delay (in bits) equal to the product of
TracebackDepth and the number of bits per symbol

hError = comm.ErrorRate(...
 'ReceiveDelay', hDemod.TracebackDepth*log2(qamTrellis.numInputSymbols));

Generate random binary data and apply QAM TCM modulation. Pass the signal through
an AWGN channel and demodulate. Collect the error statistics.

4 System Objects — Alphabetical List

4-858

for counter = 1:10
 % Generate binary data
 data = randi([0 1],500,1);
 % Modulate
 modSignal = step(hMod,data);
 % Pass through an AWGN channel
 noisySignal = step(hAWGN,modSignal);
 % Demodulate
 receivedData = step(hDemod,noisySignal);
 % Calculate the error statistics
 errorStats = step(hError,data,receivedData);
end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 1.16e-02
Number of errors = 58

Algorithms
This object implements the algorithm, inputs, and outputs described on the General TCM
Decoder block reference page. The object properties correspond to the block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.GeneralQAMTCMDemodulator

4-859

See Also
comm.GeneralQAMTCMModulator | comm.RectangularQAMTCMDemodulator |
comm.ViterbiDecoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-860

reset
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Reset states of the general QAM TCM demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the GeneralQAMTCMDemodulator object, H.

 reset

4-861

step
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates the general QAM modulated input data, X, and uses the
Viterbi algorithm to decode the resulting demodulated convolutionally encoded bits. X
must be a complex double or single precision column vector. The step method outputs a
demodulated binary column data vector, Y. When the convolutional encoder represents a
rate K/N code, the length of the output vector equals K×L, where L is the length of the
input vector, X.

Y = step(H,X,R) resets the decoder states of the general QAM TCM demodulator
System object to the all-zeros state when you input a non-zero reset signal, R. R must be a
double precision or logical scalar integer. This syntax applies when you set the
ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

4 System Objects — Alphabetical List

4-862

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-863

comm.GeneralQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using arbitrary QAM constellation

Description
The GeneralQAMTCMModulator object implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal. The object then maps the result to an
arbitrary signal constellation. The Signal constellation property lists the signal
constellation points in set-partitioned order.

To modulate a signal using a trellis-coded, general quadrature amplitude modulator:

1 Define and set up your general QAM TCM modulator object. See “Construction” on
page 4-864.

2 Call step to modulate a signal according to the properties of
comm.GeneralQAMTCMModulator. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GeneralQAMTCMModulator creates a trellis-coded, general quadrature
amplitude (QAM TCM) modulator System object, H. This object convolutionally encodes a
binary input signal and maps the result using QAM modulation with a signal constellation
specified in the Constellation property.

H = comm.GeneralQAMTCMModulator(Name,Value) creates a general QAM TCM
modulator System object, H, with each specified property set to the specified value. You

4 System Objects — Alphabetical List

4-864

can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMTCMModulator(TRELLIS,Name,Value) creates a general
QAM TCM modulator System object, H. This object has the TrellisStructure property
set to TRELLIS, and the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. The default is the result of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently. The encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder to the
all-zeros state at the end of the vector. For a rate K/N code, the step method outputs the
vector with length y = N × (L + S) K, where S = constraintLength–1. In the case of
multiple constraint lengths, S = sum(constraintLength(i)–1)). L represents the length of
the input to the step method.

ResetInputPort

Enable modulator reset input

 comm.GeneralQAMTCMModulator

4-865

Set this property to true to enable an additional input to the step method. The default is
false. When this additional reset input is a nonzero value, the internal states of the
encoder reset to their initial conditions. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

Constellation

Signal constellation

Specify a double- or single-precision complex vector that lists the points in the signal
constellation that were used to map the convolutionally encoded data. You must specify
the constellation in set-partitioned order. See documentation for the General TCM
Encoder block for more information on set-partitioned order. The length of the
constellation vector must equal the number of possible input symbols to the convolutional
decoder of the general QAM TCM demodulator object. This corresponds to 2N for a rate
K/N convolutional code. The default corresponds to a set-partitioned order for the points
of an 8-PSK signal constellation. This value is expressed
exp(2 × π × j × [0 4 2 6 1 5 3 7] 8).

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods
reset Reset states of the general QAM TCM modulator object
step Convolutionally encode binary data and map using arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-866

Modulate Data using QAM TCM with an Arbitrary Constellation

Modulate data using QAM TCM modulation with an arbitrary 4-point constellation.
Display a scatter plot of the modulated data.

Create binary data.

data = randi([0 1],1000,1);

Use the trellis structure with generating polynomial [171 133] and 4-point arbitrary
constellation { e jπ/4, e jπ/2, e j3π/4, e j3π/2 } to perform QAM TCM modulation.

t = poly2trellis(7,[171 133]);
hMod = comm.GeneralQAMTCMModulator(t,...
 'Constellation',exp(pi*1i*[1 2 3 6]/4));

Modulate and plot the data.

modData = step(hMod,data);
scatterplot(modData);

 comm.GeneralQAMTCMModulator

4-867

Algorithms
This object implements the algorithm, inputs, and outputs described on the General TCM
Encoder block reference page. The object properties correspond to the block parameters.

4 System Objects — Alphabetical List

4-868

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalEncoder | comm.GeneralQAMModulator |
comm.GeneralQAMTCMDemodulator | comm.PSKTCMModulator

Introduced in R2012a

 comm.GeneralQAMTCMModulator

4-869

reset
System object: comm.GeneralQAMTCMModulator
Package: comm

Reset states of the general QAM TCM modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the GeneralQAMTCMModulator object, H.

4 System Objects — Alphabetical List

4-870

step
System object: comm.GeneralQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using arbitrary QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) convolutionally encodes and modulates the input data, X, and returns
the encoded and modulated data, Y. X must be of data type numeric, logical, or unsigned
fixed point of word length 1 (fi object). When the convolutional encoder represents a rate
K/N code, the length of the input vector, X, must be K×L, for some positive integer L. The
step method outputs a complex column vector, Y, of length L.

Y = step(H,X,R) resets the encoder of the general QAM TCM modulator object to the
all-zeros state when you input a non-zero reset signal, R. R must be a double precision or
logical scalar integer. This syntax applies when you set the ResetInputPort property to
true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-871

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-872

comm.GMSKDemodulator
Package: comm

Demodulate using GMSK method and the Viterbi algorithm

Description
The GMSKDemodulator object uses a Viterbi algorithm to demodulate a signal that was
modulated using the Gaussian minimum shift keying method. The input is a baseband
representation of the modulated signal.

To demodulate a signal that was modulated using Gaussian minimum shift keying:

1 Define and set up your GMSK demodulator object. See “Construction” on page 4-822.
2 Call step to demodulate a signal according to the properties of GMSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GMSKDemodulator creates a demodulator System object, H. This object
demodulates the input Gaussian minimum shift keying (GMSK) modulated data using the
Viterbi algorithm.

H = comm.GMSKDemodulator(Name,Value) creates a GMSK demodulator object, H.
This object has each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.GMSKDemodulator

4-873

Properties
BitOutput

Output data as bits

Specify whether the output is groups of bits or integer values. The default is false.

When you set the BitOutput on page 4-0 property to false, the step method
outputs a column vector of length equal to N/SamplesPerSymbol on page 4-0 . N is
the length of the input signal, which is the number of input baseband modulated symbols.
The elements of the output vector are –1 or 1.

When you set the BitOutput property to true, the step method outputs a binary
column vector of length equal to N/SamplesPerSymbol with bit values of 0 or 1.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of bandwidth and symbol time for the Gaussian pulse shape as a real,
positive scalar. The default 0.3.

PulseLength

Pulse length

Specify the length of the Gaussian pulse shape in symbol intervals as a real positive
integer. The default 4.

SymbolPrehistory

Symbol prehistory

Specify the data symbols used by the modulator prior to the first call to the step method.
The default is 1. This property requires a scalar or vector with elements equal to -1 or 1.
If the value is a vector, its length must be one less than the value you set in the
PulseLength on page 4-0 property.

InitialPhaseOffset

Initial phase offset

4 System Objects — Alphabetical List

4-874

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar value. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar
value. The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar value. The value of this property is also the
output delay, and the number of zero symbols that precede the first meaningful
demodulated symbol in the output. The default is 16.

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set the
BitOutput on page 4-0 property to false.

When you set the BitOutput property to true, specify the output data type as one of
logical | double. The default is double.

Methods

reset Reset states of the GMSK demodulator object
step Demodulate using GMSK method and the Viterbi algorithm

Common to All System Objects
release Allow System object property value changes

 comm.GMSKDemodulator

4-875

Examples

Demodulate a GMSK signal with bit inputs and phase offset

% Create a GMSK modulator, an AWGN channel, and a GMSK demodulator. Use a phase offset of pi/4.
 hMod = comm.GMSKModulator('BitInput', true, 'InitialPhaseOffset', pi/4);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.GMSKDemodulator('BitOutput', true, ...
 'InitialPhaseOffset', pi/4);
% Create an error rate calculator, account for the delay caused by the Viterbi algorithm
 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);
 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000133
Number of errors = 4

Map Binary Data to GMSK Signal

This example illustrates the mapping of binary sequences of zeros and ones to the output
of a GMSK modulator. The relationship also applies for MSK modulation.

Create a GMSK modulator that accepts binary inputs. Specify the pulse length and
samples per symbol to be 1.

gmsk = comm.GMSKModulator('BitInput',true,'PulseLength',1,'SamplesPerSymbol',1);

Create an input sequence of all zeros. Modulate the sequence.

x = zeros(5,1);
y = gmsk(x)

4 System Objects — Alphabetical List

4-876

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 - 1.0000i
 -1.0000 + 0.0000i
 0.0000 + 1.0000i
 1.0000 - 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

theta = 5×1

 0
 -1.5708
 -3.1416
 -4.7124
 -6.2832

A sequence of zeros causes the phase to shift by -π/2 between samples.

Reset the modulator. Modulate an input sequence of all ones.

reset(gmsk)
x = ones(5,1);
y = gmsk(x)

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 + 1.0000i
 -1.0000 - 0.0000i
 0.0000 - 1.0000i
 1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

 comm.GMSKDemodulator

4-877

theta = 5×1

 0
 1.5708
 3.1416
 4.7124
 6.2832

A sequence of ones causes the phase to shift by +π/2 between samples.

Algorithms
This object implements the algorithm, inputs, and outputs described on the GMSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters. For GMSK the phase shift per symbol is π/2, which is a modulation
index of 0.5.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPMDemodulator | comm.CPMModulator | comm.GMSKModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-878

reset
System object: comm.GMSKDemodulator
Package: comm

Reset states of the GMSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the GMSKDemodulator object, H.

 reset

4-879

step
System object: comm.GMSKDemodulator
Package: comm

Demodulate using GMSK method and the Viterbi algorithm

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the GMSK demodulator object, H, and
returns Y. X must be a double or single precision column vector with a length equal to an
integer multiple of the number of samples per symbol you specify in the
SamplesPerSymbol property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-880

comm.GMSKModulator
Package: comm

Modulate using GMSK method

Description
The GMSKModulator object modulates using the Gaussian minimum shift keying method.
The output is a baseband representation of the modulated signal.

To modulate a signal using Gaussian minimum shift keying:

1 Define and set up your GMSK modulator object. See “Construction” on page 4-881.
2 Call step to modulate a signal according to the properties of

comm.GMSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GMSKModulator creates a modulator System object, H. This object modulates
the input signal using the Gaussian minimum shift keying (GMSK) modulation method.

H = comm.GMSKModulator(Name,Value) creates a GMSK modulator object, H. This
object has each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.GMSKModulator

4-881

Properties
BitInput

Assume input is bits

Specify whether the input is bits or integers. The default is false.

When you set the BitInput on page 4-0 property to false, the step method input
requires a double-precision or signed integer data type column vector with values of -1
or 1.

When you set the BitInput property to true, step method input requires a double-
precision or logical data type column vector of 0s and 1s.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of the bandwidth and symbol time for the Gaussian pulse shape as a
real, positive scalar value. The default is 0.3.

PulseLength

Pulse length

Specify the length of the Gaussian pulse shape in symbol intervals as a real, positive
integer. The default is 4.

SymbolPrehistory

Symbol prehistory

Specify the data symbols the modulator uses prior to the first call to the step method in
reverse chronological order. The default is 1. This property requires a scalar or vector
with elements equal to -1 or 1. If the value is a vector, then its length must be one less
than the value in the PulseLength on page 4-0 property.

InitialPhaseOffset

Initial phase offset

4 System Objects — Alphabetical List

4-882

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar
value. The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar value. The
default is 8. The upsampling factor is the number of output samples that the step method
produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods
reset Reset states of the GMSK modulator object
step Modulate using GMSK method

Common to All System Objects
release Allow System object property value changes

Examples

Modulate a GMSK signal with bit inputs and phase offset

% Create a GMSK modulator, an AWGN channel, and a GMSK demodulator. Use a phase offset of pi/4.
 hMod = comm.GMSKModulator('BitInput', true, 'InitialPhaseOffset', pi/4);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.GMSKDemodulator('BitOutput', true, ...
 'InitialPhaseOffset', pi/4);
% Create an error rate calculator, account for the delay caused by the Viterbi algorithm
 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);

 comm.GMSKModulator

4-883

 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000133
Number of errors = 4

Map Binary Data to GMSK Signal

This example illustrates the mapping of binary sequences of zeros and ones to the output
of a GMSK modulator. The relationship also applies for MSK modulation.

Create a GMSK modulator that accepts binary inputs. Specify the pulse length and
samples per symbol to be 1.

gmsk = comm.GMSKModulator('BitInput',true,'PulseLength',1,'SamplesPerSymbol',1);

Create an input sequence of all zeros. Modulate the sequence.

x = zeros(5,1);
y = gmsk(x)

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 - 1.0000i
 -1.0000 + 0.0000i
 0.0000 + 1.0000i
 1.0000 - 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

4 System Objects — Alphabetical List

4-884

theta = 5×1

 0
 -1.5708
 -3.1416
 -4.7124
 -6.2832

A sequence of zeros causes the phase to shift by -π/2 between samples.

Reset the modulator. Modulate an input sequence of all ones.

reset(gmsk)
x = ones(5,1);
y = gmsk(x)

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 + 1.0000i
 -1.0000 - 0.0000i
 0.0000 - 1.0000i
 1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

theta = 5×1

 0
 1.5708
 3.1416
 4.7124
 6.2832

A sequence of ones causes the phase to shift by +π/2 between samples.

 comm.GMSKModulator

4-885

Algorithms
This object implements the algorithm, inputs, and outputs described on the GMSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters. For GMSK the phase shift per symbol is π/2, which is a modulation index of
0.5.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPMDemodulator | comm.CPMModulator | comm.GMSKDemodulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-886

reset
System object: comm.GMSKModulator
Package: comm

Reset states of the GMSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the GMSKModulator object, H.

 reset

4-887

step
System object: comm.GMSKModulator
Package: comm

Modulate using GMSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the GMSK modulator object, H. It returns
the baseband modulated output in Y. Depending on the BitInput property value, input X
can be a double precision, signed integer, or logical column vector. The length of vector Y
is equal to the number of input samples times the number of samples per symbol that you
specify in the SamplesPerSymbol property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-888

comm.GMSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Description
The GMSKTimingSynchronizer object recovers the symbol timing phase of the input
signal using a fourth-order nonlinearity method. This block implements a general non-
data-aided feedback method. This timing synchronization is a non-data-aided feedback
method that is independent of carrier phase recovery, but requires prior compensation for
the carrier frequency offset. You can use this block for systems that use Gaussian
minimum shift keying (GMSK) modulation.

To recover the symbol timing phase of the input signal:

1 Define and set up your GMSK timing synchronizer object. See “Construction” on page
4-889.

2 Call step to recover the symbol timing phase of the input signal according to the
properties of comm.GMSKTimingSynchronizer. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.GMSKTimingSynchronizer creates a timing phase synchronizer System
object, H. This object recovers the symbol timing phase of the GMSK input signal using a
fourth-order nonlinearity method.

H = comm.GMSKTimingSynchronizer(Name,Value) creates a GMSK timing
synchronizer object, H, with each specified property set to the specified value. You can

 comm.GMSKTimingSynchronizer

4-889

specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SamplesPerSymbol

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar value greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive real
scalar value. Typically, this number is less than 1/SamplesPerSymbol on page 4-0 ,
which corresponds to a slowly varying timing phase. The default is 0.05. This property is
tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on
an input argument value. The default is false.

When you set this property to true, you must specify a reset input value to the step
method.

When you specify a nonzero value as the reset input, the object restarts the timing phase
recovery process. When you set this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never |
Every frame. The default is Never.

4 System Objects — Alphabetical List

4-890

When you set this property to Never, the phase recovery process never restarts. The
object operates continuously, retaining information from one symbol to the next.

When you set this property to Every frame, the timing phase recovery restarts at the
start of each frame of data. In this case, the restart occurs at each step method call. This
property applies when you set the ResetInputPort on page 4-0 property to false.

Methods
reset Reset states of GMSK timing phase synchronizer object
step Recover symbol timing phase using fourth-order nonlinearity method

Common to All System Objects
release Allow System object property value changes

Examples

Recover Timing Phase of GMSK Signal

Create GMSK modulator, variable fractional delay, and GMSK timing synchronizer System
objects.

gmskMod = comm.GMSKModulator('BitInput', true, ...
 'SamplesPerSymbol', 14);
timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;
gmskTimingSync = comm.GMSKTimingSynchronizer('SamplesPerSymbol', 14, ...
 'ErrorUpdateGain', 0.05);

Main processing loop:

phEst = zeros(50,1);
for i = 1:50
 data = randi([0 1],100,1); % Generate data
 modData = gmskMod(data); % Modulate data

 % Apply timing offset error
 impairedData = varDelay(modData,timingOffset*14);

 comm.GMSKTimingSynchronizer

4-891

 % Perform timing phase recovery
 [~,phase] = gmskTimingSync(impairedData);
 phEst(i) = phase(1)/14;
end

Plot the results.

plot(1:50,[0.2*ones(50,1) phEst])
legend('Original','Estimated')
title('Original and Estimated timing phases')

4 System Objects — Alphabetical List

4-892

Algorithms
This object implements the algorithm, inputs, and outputs described on the MSK-Type
Signal Timing Recovery block reference page. The object properties correspond to the
block parameters, except:

• The object corresponds to the MSK-Type Signal Timing Recovery block with the
Modulation type parameter set to GMSK.

• The Reset parameter corresponds to the ResetInputPort on page 4-0 and
ResetCondition on page 4-0 properties.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.SymbolSynchronizer

Introduced in R2012a

 comm.GMSKTimingSynchronizer

4-893

reset
System object: comm.GMSKTimingSynchronizer
Package: comm

Reset states of GMSK timing phase synchronizer object

Syntax
reset(H)

Description
reset(H) resets the states for the GMSKTimingSynchronizer object H.

4 System Objects — Alphabetical List

4-894

step
System object: comm.GMSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Syntax
[Y,PHASE] = step(H,X)
[Y,PHASE] = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[Y,PHASE] = step(H,X) performs timing phase recovery and returns the time-
synchronized signal, Y, and the estimated timing phase, PHASE, for input signal X. X must
be a double or single precision complex column vector.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you input
a reset signal, R, that is non-zero. R must be a logical or double scalar. This syntax applies
when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

4-895

nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-896

comm.GoldSequence
Package: comm

Generate Gold sequence

Description
The GoldSequence object generates a Gold sequence. Gold sequences form a large class
of sequences that have good periodic cross-correlation properties.

To generate a Gold sequence:

1 Define and set up your Gold sequence object. See “Construction” on page 4-897.
2 Call step to generate the Gold sequence according to the properties of

comm.GoldSequence. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Construction
H = comm.GoldSequence creates a Gold sequence generator System object, H. This
object generates a pseudo-random Gold sequence.

H = comm.GoldSequence(Name,Value) creates a Gold sequence generator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
FirstPolynomial

Generator polynomial for first preferred PN sequence

 comm.GoldSequence

4-897

Specify the polynomial that determines the feedback connections for the shift register of
the first preferred PN sequence generator. The default is 'z^6 + z + 1'. You can
specify the polynomial as a character vector. You can also specify the generator
polynomial as a numeric, binary vector that lists the coefficients of the polynomial in
descending order of powers. The first and last elements must equal 1, and the length of
this vector requires a value of n+1, where n is the degree of the generator polynomial.
Lastly, you can specify the generator polynomial as a numeric vector containing the
exponents of z for the nonzero terms of the polynomial in descending order of powers.
The last entry must be 0. For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent
the same polynomial, g(z) = z8 + z2 + 1. The degree of the first generator polynomial must
equal the degree of the second generator polynomial specified in the
SecondPolynomial on page 4-0 property.

FirstInitialConditions

Initial conditions for first PN sequence generator

Specify the initial conditions for the shift register of the first preferred PN sequence
generator. The default is [0 0 0 0 0 1]. The initial conditions require a numeric,
binary scalar, or a numeric, binary vector with length equal to the degree of the first
generator polynomial specified in the FirstPolynomial on page 4-0 property. If you
set this property to a vector, each element of the vector corresponds to the initial value of
the corresponding cell in the shift register. If you set this property to a scalar, the initial
conditions of all shift register cells are the specified scalar value.

SecondPolynomial

Generator polynomial for second preferred PN sequence

Specify the polynomial that determines the feedback connections for the shift register of
the second preferred PN sequence generator. The default is 'z^6 + z^5 + z^2 + z +
1'. You can specify the polynomial as a character vector. You can also specify the
generator polynomial as a binary, numeric vector that lists the coefficients of the
polynomial in descending order of powers. The first and last elements must equal 1 and
the length of this vector requires a value of n+1, where n is the degree of the generator
polynomial. Lastly, you can specify the generator polynomial as a numeric vector
containing the exponents of z for the nonzero terms of the polynomial in descending order
of powers. The last entry must be 0. For example, [1 0 0 0 0 0 1 0 1] and [8 2 0]
represent the same polynomial, g(z) = z8 + z2 + 1. The degree of the second generator
polynomial must equal the degree of the first generator polynomial specified in the
FirstPolynomial on page 4-0 property.

4 System Objects — Alphabetical List

4-898

SecondInitialConditionsSource

Source of initial conditions for second PN sequence

Specify the source of the initial conditions that determines the start of the second PN
sequence as one of Property | Input port. The default is Property. When you set this
property to Property, you can specify the initial conditions as a scalar or binary vector
using the SecondInitialConditions property. When you set this property to Input
port, you specify the initial conditions as an input to the stepmethod. The object accepts
a binary scalar or a binary vector input. The length of the input must equal the degree of
the generator polynomial that the SecondPolynomial on page 4-0 property
specifies.

SecondInitialConditions

Initial conditions for second PN sequence generator

Specify the initial conditions for the shift register of the second preferred PN sequence
generator as a numeric, binary scalar, or as a numeric, binary vector. The length must
equal the degree of the second generator polynomial. You set the second generator
polynomial in the SecondPolynomial on page 4-0 property.

When you set this property to a vector, each element of the vector corresponds to the
initial value of the corresponding cell in the shift register. The default is [0 0 0 0 0 1].

When you set this property to a scalar, the initial conditions of all shift register cells are
the specified scalar value.

Index

Index of output sequence of interest

Specify the index of the output sequence of interest from the set of available sequences as
a scalar integer. The default is 0. The scalar integer must be in the range [–2, 2n–2],
where n is the degree of the generator polynomials you specify in the FirstPolynomial
on page 4-0 and SecondPolynomial on page 4-0 properties.

The index values -2 and -1 correspond to the first and second preferred PN sequences as
generated by the FirstPolynomial and SecondPolynomial, respectively.

The set G(u, v) of available Gold sequences is defined by G(u,v) = {u, v, (uxor Tv), (u xor
T2v), ..., (u xor T((N–1)v))}.In this case, T represents the operator that shifts vectors

 comm.GoldSequence

4-899

cyclically to the left by one place, and u, v represent the two preferred PN sequences.
Also, G(u,v) contains N+2 Gold sequences of period N. You select the desired sequence
from this set using the Index on page 4-0 property.

Shift

Sequence offset from initial time

Specify the offset of the Gold sequence from its starting point as a numeric, integer scalar
value that can be positive or negative. The default is 0. The Gold sequence has a period of
N = 2n− 1, where n is the degree of the generator polynomials specified in the
FirstPolynomial on page 4-0 and SecondPolynomial on page 4-0 properties.
The shift value is wrapped with respect to the sequence period.

VariableSizeOutput

Enable variable-size outputs

Set this property to true to enable an additional input to the step method. The default is
false. When you set this property to true, the enabled input specifies the output size of the
Gold sequence used for the step. The input value must be less than or equal to the value
of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the
number of output samples.

MaximumOutputSize

Maximum output size

Specify the maximum output size of the Gold sequence as a positive integer 2-element
row vector. The second element of the vector must be 1. The default is [10 1].

This property applies when you set the VariableSizeOutput property to true.

SamplesPerFrame

Number of output samples per frame

Specify the number of Gold sequence samples that the step method outputs as a
numeric, integer scalar value. The default is 1. If you set this property to a value of M,
then the step method outputs M samples of a Gold sequence with a period of N = 2n− 1.

4 System Objects — Alphabetical List

4-900

The value of n represents the degree of the generator polynomials that you specify in the
FirstPolynomial on page 4-0 and SecondPolynomial on page 4-0 properties.

ResetInputPort

Enable generator reset input

Set this property to true to enable an additional reset input to the step method. The
default is false. This input resets the states of the two shift registers of the Gold
sequence generator to the initial conditions specified in the FirstInitialConditions
on page 4-0 and SecondInitialConditions on page 4-0 properties.

OutputDataType

Data type of output

Specify the output data type as one of double | logical | Smallest unsigned
integer. The default is double.

You must have a Fixed-Point Designer user license to use this property in Smallest
unsigned integer mode.

Methods
reset Reset states of Gold sequence generator object
step Generate a Gold sequence

Common to All System Objects
release Allow System object property value changes

Examples

Generate Gold Sequence Samples

Generate 10 samples of a Gold sequence having period 25− 1.

 comm.GoldSequence

4-901

goldseq = comm.GoldSequence('FirstPolynomial','x^5+x^2+1',...
 'SecondPolynomial','x^5+x^4+x^3+x^2+1',...
 'FirstInitialConditions',[0 0 0 0 1],...
 'SecondInitialConditions',[0 0 0 0 1],...
 'Index',4,'SamplesPerFrame',10);
x = goldseq()

x = 10×1

 1
 1
 1
 0
 0
 0
 0
 0
 0
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Gold
Sequence Generator block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects — Alphabetical List

4-902

See Also
comm.KasamiSequence | comm.PNSequence

 comm.GoldSequence

4-903

reset
System object: comm.GoldSequence
Package: comm

Reset states of Gold sequence generator object

Syntax
reset(H)

Description
reset(H) resets the states of the GoldSequence object, H.

4 System Objects — Alphabetical List

4-904

step
System object: comm.GoldSequence
Package: comm

Generate a Gold sequence

Syntax
Y = step(H)
Y = step(H,RESET)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Y = step(H) outputs a frame of the Gold sequence in column vector Y. Specify the
frame length with the SamplesPerFrame property. The object uses two PN sequence
generators to generate a preferred pair of sequences with period N = 2^n-1. Then the
object XORs these sequences to produce the output Gold sequence. The value in n is the
degree of the generator polynomials that you specify in the FirstPolynomial and
SecondPolynomial properties.

Y = step(H,RESET) uses RESET as the reset signal when you set the ResetInputPort
property to true. The data type of the RESET input must be double precision or logical.
RESET can be a scalar value or a column vector with length equal to the number of
samples per frame specified in the SamplesPerFrame property. When the RESET input is
a non-zero scalar, the object resets to the initial conditions that you specify in the
FirstInitialConditions and SecondInitialConditions properties. It then
generates a new output frame. A column vector RESET input allows multiple resets within
an output frame. A non-zero value at the ith element of the vector causes a reset at the ith
output sample time.

 step

4-905

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-906

comm.gpu.AWGNChannel
Package: comm

Add white Gaussian noise to input signal with GPU

Description
The GPU AWGNChannel object adds white Gaussian noise to an input signal using a
graphics processing unit (GPU).

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

To add white Gaussian noise to an input signal:

1 Define and set up your additive white Gaussian noise channel object. See
“Construction” on page 4-908.

2 Call step to add white Gaussian noise to the input signal according to the properties
of comm.gpu.AWGNChannel. The behavior of step is specific to each object in the
toolbox.

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

 comm.gpu.AWGNChannel

4-907

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.AWGNChannel creates a GPU-based additive white Gaussian noise
(AWGN) channel System object, H. This object adds white Gaussian noise to a real or
complex input signal.

H = comm.gpu.AWGNChannel(Name,Value) creates a GPU-based AWGN channel
object, H, with the specified property name set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

Properties
NoiseMethod

Method to specify noise level

Select the method to specify the noise level as one of Signal to noise ratio
(Eb/No) | Signal to noise ratio (Es/No) | Signal to noise ratio (SNR) |
Variance. The default is Signal to noise ratio (Eb/No).

4 System Objects — Alphabetical List

4-908

EbNo

Energy per bit to noise power spectral density ratio (Eb/No)

Specify the Eb/No ratio in decibels. Set this property to a numeric, real scalar or row
vector with a length equal to the number of channels. This property applies when you set
the NoiseMethod property to Signal to noise ratio (Eb/No). The default is 10.
This property is tunable.

EsNo

Energy per symbol to noise power spectral density ratio (Es/No)

Specify the Es/No ratio in decibels. Set this property to a numeric, real scalar or row
vector with a length equal to the number of channels. This property applies when you set
the NoiseMethod property to Signal to noise ratio (Es/No). The default is 10.
This property is tunable.

SNR

Signal to noise ratio (SNR)

Specify the SNR value in decibels. Set this property to a numeric, real scalar or row
vector with a length equal to the number of channels. This property applies when you set
the NoiseMethod property to Signal to noise ratio (SNR). The default is 10. This
property is tunable.

BitsPerSymbol

Number of bits in one symbol

Specify the number of bits in each input symbol. You can set this property to a numeric,
positive, integer scalar or row vector with a length equal to the number of channels. This
property applies when you set the NoiseMethod property to Signal to noise ratio
(Eb/No). The default is 1 bit.

SignalPower

Input signal power in Watts

Specify the mean square power of the input signal in Watts. Set this property to a
numeric, positive, real scalar or row vector with a length equal to the number of
channels. This property applies when you set the NoiseMethod property to Signal to

 comm.gpu.AWGNChannel

4-909

noise ratio (Eb/No), Signal to noise ratio (Es/No) or Signal to noise
ratio (SNR). The default is 1 Watt. The object assumes a nominal impedance of 1 Ohm.
This property is tunable.

SamplesPerSymbol

Number of samples per symbol

Specify the number of samples per symbol. Set this property to a numeric, positive,
integer scalar or row vector with a length equal to the number of channels. This property
applies when you set the NoiseMethod property to Signal to noise ratio (Eb/No)
or Signal to noise ratio (Es/No). The default is 1 sample.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. Set VarianceSource to Input port to specify the noise variance value
via an input to the step method. Set VarianceSource to Property to specify the noise
variance value using the Variance property. This property applies when you set the
NoiseMethod property to Variance.

Variance

Noise variance

Specify the variance of the white Gaussian noise. You can set this property to a numeric,
positive, real scalar or row vector with a length equal to the number of channels. This
property applies when you set the NoiseMethod property to Variance and the
VarianceSource property to Property. The default is 1. This property is tunable.

RandomStream

Source of random number stream

Specify the source of random number stream. The only valid setting for this property is
Global stream. The object generates the normally distributed random numbers from
the current global random number stream.

Seed

Initial seed of mt19937ar random number stream

4 System Objects — Alphabetical List

4-910

The GPU version of the AWGN Channel System object does not use this property.

Methods
step Add white Gaussian noise to input signal

Common to All System Objects
release Allow System object property value changes

Algorithm
This object uses the same algorithm as the comm.AWGNChannel System object. See the
Algorithms section of the comm.AWGNChannel help page for more details. The object
properties correspond to the related block parameters, except that:

• This object uses parallel.gpu.RandStream to provide an interface for controlling
the properties of one or more random number streams that the GPU uses. Usage is the
same as RandStream with the following restrictions:

• Only the combRecursive (MRG32K3A) generator is supported.
• Only the Inversion normal transform is supported.
• Setting the substream property is not allowed.

Enter help parallel.gpu.RandStream at the MATLAB command line for more
information.

Examples

GPU AWGN Channel

Specify the modulation order and generate PSK-modulated random data.

M = 8;
modData = pskmod(randi([0 M-1],1000,1),M,pi/M);

 comm.gpu.AWGNChannel

4-911

Create an AWGN channel object that uses a GPU. Pass the modulated data through the
channel.

gpuChannel = comm.gpu.AWGNChannel('EbNo',15,'BitsPerSymbol', ...
 log2(M));
channelOutput = gpuChannel(modData);

Visualize the noiseless and noisy data in scatter plots.

scatterplot(modData)
scatterplot(channelOutput)

4 System Objects — Alphabetical List

4-912

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

 comm.gpu.AWGNChannel

4-913

See Also
comm.AWGNChannel

Introduced in R2012a

4 System Objects — Alphabetical List

4-914

step
System object: comm.gpu.AWGNChannel
Package: comm

Add white Gaussian noise to input signal

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) adds white Gaussian noise to input X and returns the result in Y. The
input X can be a double or single precision data type scalar, vector, or matrix with real or
complex values. The dimensions of input X determine single or multichannel processing.
For an M-by-N matrix input, M represents the number of time samples per channel and N
represents the number of channels. M and N can be equal to 1. The object adds frames of
length M of Gaussian noise to each of the N channels independently.

Y = step(H,X,VAR) uses input VAR as the variance of the white Gaussian noise. This
applies when you set the NoiseMethod property to Variance and the VarianceSource
property to Input port. Input VAR can be a positive scalar or row vector with a length
equal to the number of channels. VAR must be of the same data type as input X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-915

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-916

comm.gpu.BlockDeinterleaver
Package: comm

Restore original ordering of block interleaved sequence with GPU

Description
The BlockDeinterleaver System object restores the original ordering of a sequence
that was interleaved using the block interleaver System object.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To deinterleave the input vector:

1 Define and set up your block deinterleaver object. See “Construction” on page 4-
918.

2 Call step to rearrange the elements of the input vector according to the properties
of comm.gpu.BlockDeinterleaver. The behavior of step is specific to each object
in the toolbox.

 comm.gpu.BlockDeinterleaver

4-917

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.BlockDeinterleaver creates a GPU-based block deinterleaver System
object, H. This object restores the original ordering of a sequence that was interleaved
using the BlockInterleaver System object

H = comm.gpu.BlockDeinterleaver(Name,Value) creates a GPU-based block
deinterleaver object, H, with the specified property name set to the specified value.

H = comm.gpu.BlockDeinterleaver(PERMVEC) creates a GPU-based block
deinterleaver object, H, with the PermutationVector property set to PERMVEC.

Properties
PermutationVector

Permutation vector

Specify the mapping used to permute the input symbols as a column vector of integers.
The default is [5;4;3;2;1]. The mapping is a vector where the number of elements is
equal to the length, N, of the input to the step method. Each element must be an integer
between 1 and N, with no repeated values.

Methods
step Deinterleave input sequence

Common to All System Objects
release Allow System object property value changes

4 System Objects — Alphabetical List

4-918

Algorithm
This object uses the same algorithm as the comm.BlockDeinterleaver System object.
See Algorithms on the comm.BlockDeinterleaver help page for details.

Examples

Block Interleaving and Deinterleaving with GPU

Create interleaver and deinterleaver objects.

interleaver = comm.gpu.BlockInterleaver([3 4 1 2]');
deinterleaver = comm.gpu.BlockDeinterleaver([3 4 1 2]');

Pass random data through the interleaver and deinterleaver.

data = randi(7,4,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intData deIntData]

ans =

 6 1 6
 7 7 7
 1 6 1
 7 7 7

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans =

 1

 comm.gpu.BlockDeinterleaver

4-919

Generate a random vector of unique integers as a permutation vector.

permVec = randperm(7)';

Specify permVec as the permutation vector for the interleaver and deinterleaver objects.

interleaver = comm.gpu.BlockInterleaver(permVec);
deinterleaver = comm.gpu.BlockDeinterleaver(permVec);

Pass random data through the interleaver and deinterleaver.

data = randi(10,7,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans =

 1

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.BlockDeinterleaver | comm.gpu.BlockInterleaver

4 System Objects — Alphabetical List

4-920

Introduced in R2012a

 comm.gpu.BlockDeinterleaver

4-921

step
System object: comm.gpu.BlockDeinterleaver
Package: comm

Deinterleave input sequence

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a block interleaver. The step method forms the output, Y, based on the mapping
specified by the PermutationVector property as
Output(PermutationVector(k))=Input(k), for k = 1:N, where N is the length of the
permutation vector. The input X must be a column vector of the same length, N. The data
type of X can be numeric, logical, or fixed-point (fi objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-922

comm.gpu.BlockInterleaver
Package: comm

Create block interleaved sequence with GPU

Description
The GPU BlockInterleaver object permutes the symbols in the input signal using a
graphics processing unit (GPU).

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To interleave the input signal:

1 Define and set up your block interleaver object. See “Construction” on page 4-924.
2 Call step to reorder the input symbols according to the properties of

comm.gpu.BlockInterleaver. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a

 comm.gpu.BlockInterleaver

4-923

function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.BlockInterleaver creates a GPU-based block interleaver System
object, H. This object permutes the symbols in the input signal based on a permutation
vector.

H = comm.gpu.BlockInterleaver(Name,Value) creates a GPU-based block
interleaver object, H, with the specified property Name set to the specified Value.

H = comm.gpu.BlockInterleaver(PERMVEC) creates a GPU-based block
deinterleaver object, H, with the PermutationVector property set to PERMVEC.

Properties
PermutationVector

Permutation vector

Specify the mapping used to permute the input symbols as a column vector of integers.
The default is [5;4;3;2;1]. The mapping is a vector where the number of elements is
equal to the length, N, of the input to the step method. Each element must be an integer
between 1 and N, with no repeated values.

Methods

step Permute input symbols using a permutation vector

Common to All System Objects
release Allow System object property value changes

4 System Objects — Alphabetical List

4-924

Algorithm
The GPU Block Interleaver System object uses the same algorithm as the
comm.BlockInterleaver System object. See Algorithms on the
comm.BlockInterleaver help page for details.

Examples

Block Interleaving and Deinterleaving with GPU

Create interleaver and deinterleaver objects.

interleaver = comm.gpu.BlockInterleaver([3 4 1 2]');
deinterleaver = comm.gpu.BlockDeinterleaver([3 4 1 2]');

Pass random data through the interleaver and deinterleaver.

data = randi(7,4,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intData deIntData]

ans =

 6 1 6
 7 7 7
 1 6 1
 7 7 7

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans =

 comm.gpu.BlockInterleaver

4-925

 1

Generate a random vector of unique integers as a permutation vector.

permVec = randperm(7)';

Specify permVec as the permutation vector for the interleaver and deinterleaver objects.

interleaver = comm.gpu.BlockInterleaver(permVec);
deinterleaver = comm.gpu.BlockDeinterleaver(permVec);

Pass random data through the interleaver and deinterleaver.

data = randi(10,7,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans =

 1

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.BlockInterleaver | comm.gpu.BlockDeinterleaver

4 System Objects — Alphabetical List

4-926

Introduced in R2012a

 comm.gpu.BlockInterleaver

4-927

step
System object: comm.gpu.BlockInterleaver
Package: comm

Permute input symbols using a permutation vector

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
step method forms the output Y, based on the mapping defined by the
PermutationVector property as Output(k)=Input(PermutationVector(k)), for k
= 1:N, where N is the length of the PermutationVector property. The input X must be a
column vector of length N. The data type of X can be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-928

comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Convolutionally encode binary data with GPU

Description
The GPU ConvolutionalEncoder object encodes a sequence of binary input vectors to
produce a sequence of binary output vectors.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To convolutionally encode a binary signal:

1 Define and set up your convolutional encoder object. See “Construction” on page 4-
930.

2 Call step to encode a sequence of binary input vectors to produce a sequence of
binary output vectors according to the properties of
comm.gpu.ConvolutionalEncoder. The behavior of step is specific to each object
in the toolbox.

 comm.gpu.ConvolutionalEncoder

4-929

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.ConvolutionalEncoder creates a System object, H, that
convolutionally encodes binary data.

H = comm.gpu.ConvolutionalEncoder(Name,Value) creates a convolutional
encoder object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.gpu.ConvolutionalEncoder(TRELLIS,Name,Value) creates a
convolutional encoder object, H. This object has the TrellisStructure on page 4-0
property set to TRELLIS, and the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. The default is the result of poly2trellis(7, [171 133]). Use the
istrellis function to check if a structure is a valid trellis structure.

TerminationMethod

Termination method of encoded frame

Specify how the encoded frame is terminated as one of Continuous | Truncated |
Terminated. The default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently and resets its states to the all-zeros state.

4 System Objects — Alphabetical List

4-930

When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder states
to the all-zeros state at the end of the vector. For a rate K/N code, the step method
outputs a vector with length N × (L + S) K, where S = constraintLength–1. In the case of
multiple constraint lengths, S = sum(constraintLength(i)–1)). L is the length of the input
to the step method.

ResetInputPort

Enable encoder reset input

You cannot reset this encoder object using an input port. The only valid property setting is
false.

DelayedResetAction

Delay output reset

You cannot reset this encoder object using an input port. The only valid property setting is
false.

InitialStateInputPort

You cannot set the initial state of this encoder object. The only valid property setting is
false.

FinalStateOutputPort

You cannot output the final state of this encoder object. The only valid property setting is
false.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. When you set this property to None the object does not apply puncturing. When
you set this property to Property, the object punctures the code. This puncturing is
based on the puncture pattern vector that you specify in the PuncturePattern on page
4-0 property. This property applies when you set the TerminationMethod on page 4-
0 property to Continuous or Truncated.

 comm.gpu.ConvolutionalEncoder

4-931

PuncturePattern

Puncture pattern vector

Specify the puncture pattern that the object uses to puncture the encoded data as a
column vector. The default is [1; 1; 0; 1; 0; 1]. The vector contains 1s and 0s,
where 0 indicates a punctured, or excluded, bit. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous or Truncated and the
PuncturePatternSource on page 4-0 property to Property.

NumFrames

Number of independent frames present in the input and output data vectors.

Specify the number of independent frames contained in a single data input/output vector.
The default value of this property is 1. The objects segments the input vector into
NumFrames segments and encodes them independently. The output contains NumFrames
encoded segments. This property is applicable when you set the TerminationMethod on
page 4-0 to Terminated or Truncated.

Methods
reset Reset states of the convolutional encoder object
step Convolutionally encode binary data

Common to All System Objects
release Allow System object property value changes

Examples

8-PSK-Modulation With Convolutional Encoding

Transmit a Convolutionally Encoded, 8-PSK-Modulated Bit Stream Through an AWGN
Channel.

Create a GPU-based Convolutional Encoder System object.

4 System Objects — Alphabetical List

4-932

hConEnc = comm.gpu.ConvolutionalEncoder;

Create a GPU-based PSK Modulator System object that accepts a bit input signal.

hMod = comm.gpu.PSKModulator('BitInput',true);

Create a GPU-based AWGN Channel System object with a signal-to-noise ratio of seven.

hChan = comm.gpu.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)',...
 'SNR',7);

Create a GPU-based PSK Demodulator System object that outputs a column vector of bit
values.

hDemod = comm.gpu.PSKDemodulator('BitOutput',true);

Create a GPU-based Viterbi Decoder System object that accepts an input vector of hard
decision values, which are zeros or ones.

hDec = comm.gpu.ViterbiDecoder('InputFormat','Hard');

Create an Error Rate System object that ignores 3 data samples before makings
comparisons. The received data lags behind the transmitted data by 34 samples.

hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay', 34);

Run the simulation by using the step method to process data.

for counter = 1:20
 data = randi([0 1],30,1);
 encodedData = step(hConEnc, gpuArray(data));
 modSignal = step(hMod, encodedData);
 receivedSignal = step(hChan, modSignal);
 demodSignal = step(hDemod, receivedSignal);
 receivedBits = step(hDec, demodSignal);
 errors = step(hError, data, gather(receivedBits));
end

Display the errors.

 comm.gpu.ConvolutionalEncoder

4-933

disp(errors)

Algorithms
This object implements the algorithm, inputs, and outputs described on the Convolutional
Encoder block reference page. The object properties correspond to the block parameters.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.ConvolutionalEncoder | comm.gpu.ConvolutionalDeinterleaver |
comm.gpu.ConvolutionalInterleaver | comm.gpu.ViterbiDecoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-934

reset
System object: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Reset states of the convolutional encoder object

Syntax
reset(H)

Description
reset(H) resets the states of the GPU ConvolutionalEncoder object, H.

 reset

4-935

step
System object: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Convolutionally encode binary data

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes the binary data, X, using the convolutional encoding that you
specify in the TrellisStructure property. It returns the encoded data, Y. Both X and Y are
column vectors of data type single, double, or logical. When the convolutional encoder
represents a rate K/N code, the length of the input vector equals K × L, for a positive
integer, L. The step method sets the length of the output vector, Y, to L × N.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-936

comm.gpu.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers with GPU

Description
The GPU ConvolutionalInterleaver object permutes the symbols in the input signal
using a graphics processing unit (GPU). Internally, this class uses a set of shift registers.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To convolutionally interleave binary data:

1 Define and set up your convolutional interleaver object. See “Construction” on page
4-938.

2 Call step to convolutionally interleave according to the properties of
comm.gpu.ConvolutionalInterleaver. The behavior of step is specific to each
object in the toolbox.

 comm.gpu.ConvolutionalInterleaver

4-937

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.ConvolutionalInterleaver creates a GPU-based convolutional
interleaver System object, H. This object permutes the symbols in the input signal using a
set of shift registers.

H = comm.gpu.ConvolutionalInterleaver(Name,Value) creates a GPU-based
convolutional interleaver System object, H, with the specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.gpu.ConvolutionalInterleaver(M,B,IC) creates a GPU-based
convolutional interleaver System object H, with the NumRegisters property set to M, the
RegisterLengthStep property set to B, and the InitialConditions property set to
IC. M, B, and IC are value-only arguments. To specify a value-only argument, you must
also specify all preceding value-only arguments.

Properties
NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is 6.

RegisterLengthStep

Number of additional symbols that fit in each successive shift register

Specify the number of additional symbols that fit in each successive shift register as a
positive, scalar integer. The default is 2. The first register holds zero symbols.

InitialConditions

Initial conditions of shift registers

4 System Objects — Alphabetical List

4-938

Specify the values that are initially stored in each shift register as a numeric scalar or
vector. You do not need to specify a value for the first shift register, which has zero delay.
The default is 0. The value of the first element of this property is unimportant because the
first shift register has zero delay. If you set this property to a scalar, then all shift
registers, except the first one, store the same specified value. If you set it to a column
vector with length equal to the value of the NumRegisters on page 4-0 property, then
the i-th shift register stores the i-th element of the specified vector.

Methods
reset Reset states of the convolutional interleaver object
step Permute input symbols using shift registers

Common to All System Objects
release Allow System object property value changes

Examples

Convolutional Interleaving and Deinterleaving with GPU

Create convolutional interleaver and deinterleaver objects.

interleaver = comm.gpu.ConvolutionalInterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);
deinterleaver = comm.gpu.ConvolutionalDeinterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);

Generate data, and pass the data through the convolutional interleaver. Pass the
interleaved data through the convolutional deinterleaver.

data = (0:20)';
intrlvData = interleaver(data);
deintrlvData = deinterleaver(intrlvData);

Display the original sequence, interleaved sequence and restored sequence.

[data intrlvData deintrlvData]

 comm.gpu.ConvolutionalInterleaver

4-939

ans =

 0 0 0
 1 0 0
 2 2 0
 3 0 0
 4 4 0
 5 0 0
 6 6 0
 7 1 1
 8 8 2
 9 3 3
 10 10 4
 11 5 5
 12 12 6
 13 7 7
 14 14 8
 15 9 9
 16 16 10
 17 11 11
 18 18 12
 19 13 13
 20 20 14

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties. After accounting for this delay,
confirm that the original and deinterleaved data are identical.

intrlvDelay = interleaver.NumRegisters * interleaver.RegisterLengthStep
numSymErrors = symerr(data(1:end-intrlvDelay),deintrlvData(1+intrlvDelay:end))

intrlvDelay =

 6

numSymErrors =

4 System Objects — Alphabetical List

4-940

 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Convolutional
Interleaver block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.ConvolutionalInterleaver | comm.gpu.ConvolutionalDeinterleaver

Introduced in R2012a

 comm.gpu.ConvolutionalInterleaver

4-941

reset
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Reset states of the convolutional interleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the GPU ConvolutionalInterleaver object, H.

4 System Objects — Alphabetical List

4-942

step
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector. The data type can be of type double, single, uint32,
int32, or logical. Y has the same data type as X. The convolutional interleaver object
uses a set of N shift registers, where N is the value specified by the NumRegisters
property. The object sets the delay value of the kth shift register to the product of (k-1)
and the RegisterLengthStep property value. With each new input symbol, a commutator
switches to a new register and the new symbol shifts in while the oldest symbol in that
register shifts out. When the commutator reaches the Nth register and the next new input
occurs, it returns to the first register.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

4-943

nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-944

comm.gpu.ConvolutionalDeinterleaver
Package: comm

Restore ordering of symbols using shift registers with GPU

Description
The GPU ConvolutionalDeinterleaver object recovers a signal that was interleaved
using the GPU-based convolutional interleaver object. The parameters in the two blocks
should have the same values.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To recover convolutionally interleaved binary data:

1 Define and set up your convolutional deinterleaver object. See “Construction” on
page 4-946.

2 Call step to convolutionally deinterleave according to the properties of
comm.gpu.ConvolutionalDeinterleaver. The behavior of step is specific to
each object in the toolbox.

 comm.gpu.ConvolutionalDeinterleaver

4-945

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.ConvolutionalDeinterleaver creates a GPU-based convolutional
deinterleaver System object, H. This object restores the original ordering of a sequence
that was interleaved using a convolutional interleaver.

H = comm.gpu.ConvolutionalDeinterleaver(Name,Value) creates a GPU-based
convolutional deinterleaver System object, H, with the specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.gpu.ConvolutionalDeinterleaver(M,B,IC) creates a convolutional
deinterleaver System object H, with the NumRegisters property set to M, the
RegisterLengthStep property set to B, and the InitialConditions property set to
IC. M, B, and IC are value-only arguments. To specify a value-only argument, you must
also specify all preceding value-only arguments.

Properties
NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is 6.

RegisterLengthStep

Number of additional symbols that fit in each successive shift register

Specify the number of additional symbols that fit in each successive shift register as a
positive, scalar integer. The default is 2. The first register holds zero symbols.

InitialConditions

Initial conditions of shift registers

4 System Objects — Alphabetical List

4-946

Specify the values that are initially stored in each shift register (except the first shift
register, which has zero delay) as a numeric scalar or vector. The default is 0. If you set
this property to a scalar, then all shift registers, except the first one, store the same
specified value. If you set it to a column vector with length equal to the value of the
NumRegisters on page 4-0 property, then the i-th shift register stores the i-th
element of the specified vector. The value of the first element of this property is
unimportant, since the first shift register has zero delay.

Methods
step Permute input symbols using shift registers
reset Reset states of the convolutional deinterleaver object

Common to All System Objects
release Allow System object property value changes

Examples

Convolutional Interleaving and Deinterleaving with GPU

Create convolutional interleaver and deinterleaver objects.

interleaver = comm.gpu.ConvolutionalInterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);
deinterleaver = comm.gpu.ConvolutionalDeinterleaver('NumRegisters',2, ...
 'RegisterLengthStep',3);

Generate data, and pass the data through the convolutional interleaver. Pass the
interleaved data through the convolutional deinterleaver.

data = (0:20)';
intrlvData = interleaver(data);
deintrlvData = deinterleaver(intrlvData);

Display the original sequence, interleaved sequence and restored sequence.

[data intrlvData deintrlvData]

 comm.gpu.ConvolutionalDeinterleaver

4-947

ans =

 0 0 0
 1 0 0
 2 2 0
 3 0 0
 4 4 0
 5 0 0
 6 6 0
 7 1 1
 8 8 2
 9 3 3
 10 10 4
 11 5 5
 12 12 6
 13 7 7
 14 14 8
 15 9 9
 16 16 10
 17 11 11
 18 18 12
 19 13 13
 20 20 14

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties. After accounting for this delay,
confirm that the original and deinterleaved data are identical.

intrlvDelay = interleaver.NumRegisters * interleaver.RegisterLengthStep
numSymErrors = symerr(data(1:end-intrlvDelay),deintrlvData(1+intrlvDelay:end))

intrlvDelay =

 6

numSymErrors =

4 System Objects — Alphabetical List

4-948

 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Convolutional
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.ConvolutionalDeinterleaver | comm.gpu.ConvolutionalInterleaver

Introduced in R2012a

 comm.gpu.ConvolutionalDeinterleaver

4-949

step
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Permute input symbols using shift registers

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a convolutional interleaver and returns Y. The input X must be a column vector. The
data type can be numeric, logical, or fixed-point (fi objects). Y has the same data type as
X. The convolutional deinterleaver object uses a set of N shift registers, where N
represents the value specified by the NumRegisters property. The object sets the delay
value of the kth shift register to the product of (k-1) and the RegisterLengthStep property
value. With each new input symbol, a commutator switches to a new register and the new
symbol shifts in while the oldest symbol in that register shifts out. When the commutator
reaches the Nth register and the next new input occurs, it returns to the first register.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-950

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-951

reset
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Reset states of the convolutional deinterleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the GPU ConvolutionalDeinterleaver object, H.

4 System Objects — Alphabetical List

4-952

comm.gpu.LDPCDecoder
Package: comm

Decode binary low-density parity-check (LPDC) code with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to
an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel Computing
Toolbox).

Description
A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

The comm.gpu.LDPCDecoder System object uses the belief propagation algorithm to
decode a binary LDPC code, which is input to the object as the soft-decision output (log-
likelihood ratio of received bits) from demodulation. The object decodes generic binary
LDPC codes where no patterns in the parity-check matrix are assumed. For more
information, see “Belief Propagation Decoding” on page 4-961.

To decode an LDPC-encoded signal:

1 Create the comm.gpu.LDPCDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 comm.gpu.LDPCDecoder

4-953

Creation

Syntax
gpu_ldpcdecoder = comm.gpu.LDPCDecoder
gpu_ldpcdecoder = comm.gpu.LDPCDecoder(parity)
gpu_ldpcdecoder = comm.gpu.LDPCDecoder(___ ,Name,Value)

Description
gpu_ldpcdecoder = comm.gpu.LDPCDecoder creates a GPU-based binary LDPC
decoder System object. This object performs LDPC decoding based on the specified
parity-check matrix.

gpu_ldpcdecoder = comm.gpu.LDPCDecoder(parity) sets the
ParityCheckMatrix property to parity and creates a GPU-based LDPC decoder
System object. The parity input must be specified as described by the
ParityCheckMatrix property.

gpu_ldpcdecoder = comm.gpu.LDPCDecoder(___ ,Name,Value) sets properties
using one or more name-value pairs, in addition to inputs from any of the prior syntaxes.
For example, comm.LDPCDecoder('DecisionMethod','Soft decision')
configures an LDPC decoder System object to decode data using the soft-decision method
and output log-likelihood ratios of data type double. Enclose each property name in
quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

4 System Objects — Alphabetical List

4-954

ParityCheckMatrix — Parity-check matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the
length of the received signal and must be in the range (0, 231). K is the length of the
uncoded message and must be less than N. The last (N – K) columns in the parity-check
matrix must be an invertible matrix in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I,
that defines the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This property accepts numeric data types. When you set this property to a sparse binary
matrix, this property also accepts the logical data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix
for half-rate LDPC coding, as specified in the DVB-S.2 standard.
Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2
standard, where R is the code rate, and 'indices' specifies the output format of
dvbs2ldpc as a two-column double-precision matrix that defines the row and column
indices of the 1s in the parity-check matrix.
Data Types: double | logical

OutputValue — Output value format
'Information part' (default) | 'Whole codeword'

Output value format, specified as one of these values:

• 'Information part' — The object outputs a K-by-1 column vector containing only
the information-part of the received log-likelihood ratio vector. K is the length of the
uncoded message.

• 'Whole codeword' — The object outputs an N-by-1 column vector containing the
whole log-likelihood ratio vector. N is the length of the received signal.

N and K must align with the dimension of the (N–K)-by-K parity-check matrix.

Data Types: char

DecisionMethod — Decision method
'Hard decision' (default) | 'Soft decision'

 comm.gpu.LDPCDecoder

4-955

Decision method used for decoding, specified as one of these values:

• 'Hard decision' — The object outputs decoded data of data type logical.
• 'Soft decision' — The object outputs log-likelihood ratios of data type double.

Data Types: char

IterationTerminationCondition — Condition for iteration termination
'Maximum iteration count' (default) | 'Parity check satisfied'

Condition for iteration termination, specified as one of these values:

• 'Maximum iteration count' — Decoding terminates after the number of
iterations specified by the MaximumIterationCount property.

• 'Parity check satisfied' — Decoding terminates after all parity checks are
satisfied. If not all parity checks are satisfied, decoding terminates after the number of
iterations specified by the MaximumIterationCount property.

Data Types: char

MaximumIterationCount — Maximum number of decoding iterations
50 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

NumIterationsOutputPort — Output number of iterations performed
false (default) | true

Output number of iterations executed, specified as false or true. To output the number
of iterations executed, set this property to true.
Data Types: logical

FinalParityChecksOutputPort — Output final parity checks
false (default) | true

Output final parity checks, specified as false or true. To output the final calculated
parity checks, set this property to true.
Data Types: logical

4 System Objects — Alphabetical List

4-956

Usage

Syntax
y = gpu_ldpcdecoder(x)
[y,numiter] = gpu_ldpcdecoder(x)
[y,parity] = gpu_ldpcdecoder(x)
[y,numiter,parity] = gpu_ldpcdecoder(x)

Description
y = gpu_ldpcdecoder(x) decodes input data using an LDPC code based on the default
parity-check matrix.

[y,numiter] = gpu_ldpcdecoder(x) returns the decoded data, y, and number of
iterations performed, numiter. To use this syntax, set the NumIterationsOutputPort
property to true.

[y,parity] = gpu_ldpcdecoder(x) returns the decoded data, y, and final parity
checks, parity. To use this syntax, set the FinalParityChecksOutputPort property
to true.

[y,numiter,parity] = gpu_ldpcdecoder(x) returns the decoded data, number of
iterations performed, and final parity checks. To use this syntax, set the
NumIterationsOutputPort and FinalParityChecksOutputPort properties to
true.

Input Arguments
x — Log-likelihood ratios
column vector

Log-likelihood ratios, specified as an N-by-1 column vector containing the soft-decision
output from demodulation. N is the number of bits in the LDPC codeword before
modulation. Each element is the log-likelihood ratio for a received bit. Element values are
more likely to be 0 if the log-likelihood ratio is positive. The first K elements correspond
to the information-part of the input message.
Data Types: double

 comm.gpu.LDPCDecoder

4-957

Output Arguments
y — Decoded data
column vector

Decoded data, returned as a column vector. The DecisionMethod property specifies
whether the object outputs hard decisions or soft decisions (log-likelihood ratios).

• If the OutputValue property is set to 'Information part', the output includes
only the information-part of the received log-likelihood ratio vector.

• If the OutputValue property is set to 'Whole codeword', the output includes the
whole log-likelihood ratio vector.

Data Types: double | logical

numiter — Number of executed decoding iterations
positive integer

Number of executed decoding iterations, returned as a positive integer.

Dependencies

To enable this output, set the NumIterationsOutputPort property to true.

parity — Final parity checks
column vector

Final parity checks after decoding the input LDPC code, returned as an (N-K)-by-1 column
vector. N is the number of bits in the LDPC codeword before modulation. K is the length
of the uncoded message.

Dependencies

To enable this output, set the FinalParityChecksOutputPort property to true.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects — Alphabetical List

4-958

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

LDPC Encode and Decode QPSK-Modulated Signal Using GPU

Using a comm.gpu.LDPCDecoder System Object™ to decode the signal, transmit an
LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. After adding
AWGN, demodulate and decode the received signal. Compute the error statistics for the
reception of uncoded and LDPC-coded signals. For more information, see “Simulation
Acceleration Using GPUs”.

Define simulation variables. Create System objects for the LDPC encoder, LDPC decoder,
QPSK modulator, and QPSK demodulators.

M = 4; % Modulation order (QPSK)
snr = [0.25,0.5,0.75,1.0,1.25];
numFrames = 10;
ldpcEncoder = comm.LDPCEncoder;
gpuldpcDecoder = comm.gpu.LDPCDecoder;
pskMod = comm.PSKModulator(M,'BitInput',true);
pskDemod = comm.PSKDemodulator(M,'BitOutput',true,...
 'DecisionMethod','Approximate log-likelihood ratio');
pskuDemod = comm.PSKDemodulator(M,'BitOutput',true,...
 'DecisionMethod','Hard decision');
errRate = zeros(1,length(snr));
uncErrRate = zeros(1,length(snr));

For each SNR setting and all frames, compute the error statistics for uncoded and LDPC-
coded signals.

for ii = 1:length(snr)
 ttlErr = 0;
 ttlErrUnc = 0;
 pskDemod.Variance = 1/10^(snr(ii)/10); % Set variance using current SNR
 for counter = 1:numFrames

 comm.gpu.LDPCDecoder

4-959

 data = logical(randi([0 1],32400,1));
 % Transmit and receiver uncoded signal data
 mod_uncSig = pskMod(data);
 rx_uncSig = awgn(mod_uncSig,snr(ii),'measured');
 demod_uncSig = pskuDemod(rx_uncSig);
 numErrUnc = biterr(data,demod_uncSig);
 ttlErrUnc = ttlErrUnc + numErrUnc;
 % Transmit and receive LDPC coded signal data
 encData = ldpcEncoder(data);
 modSig = pskMod(encData);
 rxSig = awgn(modSig,snr(ii),'measured');
 demodSig = pskDemod(rxSig);
 rxBits = gpuldpcDecoder(demodSig);
 numErr = biterr(data,rxBits);
 ttlErr = ttlErr + numErr;
 end
 ttlBits = numFrames*length(rxBits);
 uncErrRate(ii) = ttlErrUnc/ttlBits;
 errRate(ii) = ttlErr/ttlBits;
end

Plot the error statistics for uncoded and LDPC-coded data.

plot(snr,uncErrRate,snr,errRate)
legend('Uncoded','LDPC coded')
xlabel('SNR (dB)')
ylabel('BER')

4 System Objects — Alphabetical List

4-960

Algorithms
This object performs LDPC decoding using the belief propagation algorithm, also known
as a message-passing algorithm.

Belief Propagation Decoding
The implementation of the belief propagation algorithm is based on the decoding
algorithm presented by Gallager.

 comm.gpu.LDPCDecoder

4-961

message LDPC

Encoder

LDPC

Decoder
Modulator Channel Demodulator

0 1 1(, , ,)
n

c c c
-

=c ... LLR ()
i

L c=

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC
decoder is the log-likelihood ratio (LLR) value

L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these
equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for
transmitted bit ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-
decision output for ci is 1. Otherwise, the hard-decision output for ci is 0.

If configured to stop when all parity checks are satisfied, the algorithm verifies the parity-
check equation (H c' = 0) at the end of each iteration. When all parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj
correspond to all nonzero elements in column i and row j of the PCM, respectively.

This figure highlights the computation of these index sets in a given PCM for i = 5 and j =
3.

4 System Objects — Alphabetical List

4-962

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(-1) are set to
19.07 and –19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07)
and –1 for tanh(-19.07).

References
[1] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

 comm.gpu.LDPCDecoder

4-963

See Also
Objects
comm.BCHDecoder | comm.LDPCDecoder | comm.LDPCEncoder

Functions
dvbs2ldpc

Blocks
LDPC Decoder

Topics
“Simulation Acceleration Using GPUs”

Introduced in R2012a

4 System Objects — Alphabetical List

4-964

comm.gpu.PSKDemodulator
Package: comm

Demodulate using M-ary PSK method with GPU

Description
The GPU PSKDemodulator object demodulates an input signal using the M-ary phase
shift keying (M-PSK) method.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To demodulate a signal that was modulated using phase shift keying:

1 Define and set up your PSK demodulator object. See “Construction” on page 4-966.
2 Call step to demodulate the signal according to the properties of

comm.gpu.PSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a

 comm.gpu.PSKDemodulator

4-965

function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.PSKDemodulator returns a GPU-based demodulator System object, H.
This object demodulates the input signal using the M-ary phase shift keying (M-PSK)
method.

H = comm.gpu.PSKDemodulator(Name,Value) creates a GPU-based M-PSK
demodulator object, H, with the specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN)

H = comm.gpu.PSKDemodulator(M,PHASE,Name,Value) creates a GPU-based M-
PSK demodulator object, H, with the ModulationOrder property set to M, the PhaseOffset
property set to PHASE and other specified property names set to the specified values. M
and PHASE are value-only arguments. To specify a value-only argument, you must also
specify all preceding value-only arguments. You can specify name-value pair arguments in
any order.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar. The
default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real
scalar. The default is π/8.

BitOutput

Output data as bits

4 System Objects — Alphabetical List

4-966

Specify whether the output consists of groups of bits or integer symbol values. When you
set this property to true, the step method outputs a column vector of bit values with
length equal to log2(ModulationOrder) times the number of demodulated symbols. When
you set this property to false, the step method outputs a column vector, with a length
equal to the input data vector that contains integer symbol values between 0 and
ModulationOrder-1. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder) bits to the
corresponding symbol as Binary | Gray | Custom. The default is Gray. When you set this
property to Gray, the object uses a Gray-encoded signal constellation. When you set this
property to Binary, the integer m (0 ≤ m ≤ModulationOrder-1) maps to the complex
value. This value is represented as exp(j*PhaseOffset + j*2*pi*m/ModulationOrder). When
you set this property to Custom, the object uses the signal constellation defined in the
CustomSymbolMapping property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:7. This property
must be a row or column vector of size ModulationOrder with unique integer values in the
range [0, ModulationOrder-1]. The values must be of data type double. The first element
of this vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with
subsequent elements running counterclockwise. The last element corresponds to the
constellation point at an angle of -π/ModulationOrder + PhaseOffset. This property
applies when you set the SymbolMapping property to Custom.

DecisionMethod

Demodulation decision method

Specify the decision method that the object uses as one of Hard decision | Log-
likelihood ratio | Approximate log-likelihood ratio. The default is Hard
decision. When you set DecisionMethod to false, the object always performs hard
decision demodulation. This property applies when you set the BitOutput property to true.

VarianceSource

Source of noise variance

 comm.gpu.PSKDemodulator

4-967

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the BitOutput property to true and the
DecisionMethod property to Log-likelihood ratio or Approximate log-
likelihood ratio.

Variance

Specify the variance of the noise as a positive, real scalar. The default is 1. If this value is
very small (i.e., SNR is very high), then log-likelihood ratio (LLR) computations may yield
Inf or -Inf. This occurs because the LLR algorithm computes the exponential value of very
large or very small numbers using finite precision arithmetic. In such cases, use
approximate LLR is recommended because its algorithm does not compute exponentials.
This property applies when you set the BitOutput property to true, the DecisionMethod
property to Log-likelihood ratio or Approximate log-likelihood ratio, and
the VarianceSource property to Property. This property is tunable.

OutputDataType

Data type of output

When you set this property to Full precision, the output signal inherits its data type
from the input signal.

Methods

constellation Calculate or plot ideal signal constellation
step Demodulate using M-ary PSK method

Common to All System Objects
release Allow System object property value changes

Algorithm
The GPU PSK Demodulator System object uses the same algorithm as the
comm.PSKDemodulator System object. See Decoding Algorithm for details.

4 System Objects — Alphabetical List

4-968

Examples
Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. Then
demodulate, decode, and count errors.

16-PSK Modulation and Demodulation
Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel.

Create a GPU-based PSK Modulator System object.

hMod = comm.gpu.PSKModulator(16, 'PhaseOffset',pi/16);

Create a GPU-based AWGN Channel System object with a signal-to-noise ratio of 15.

hAWGN = comm.gpu.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',15);

Create a GPU-based PSK Demodulator System object.

 hDemod = comm.gpu.PSKDemodulator(16, 'PhaseOffset',pi/16);

Create an error rate calculator System object.

hError = comm.ErrorRate;

Transmit a frame of data containing 50 symbols.

for counter = 1:100
data = gpuArray.randi([0 hMod.ModulationOrder-1], 50, 1);

Run the simulation by using the step method to process data.

modSignal = step(hMod, data);
noisySignal = step(hAWGN, modSignal);
receivedData = step(hDemod, noisySignal);
errorStats = step(hError, gather(data), gather(receivedData));
end

Compute the error rate results.

 comm.gpu.PSKDemodulator

4-969

fprintf('Error rate = %f\nNumber of errors = %d\n',...
 errorStats(1), errorStats(2))

GPU PSK Demodulator
Create GPU PSK modulator and demodulator pair.

gpuMod = comm.gpu.PSKModulator;
gpuDemod = comm.gpu.PSKDemodulator;

Generate random data symbols. Modulate the data.

txData = randi([0 7],1000,1);
txSig = gpuMod(txData);

Pass the signal through an AWGN channel.

rxSig = awgn(txSig,20);

Demodulate the received signal.

rxData = gpuDemod(rxSig);

Determine the number of symbol errors.

numSymErrors = symerr(txData,rxData)

numSymErrors =

 736

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

4 System Objects — Alphabetical List

4-970

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.PSKDemodulator | comm.gpu.PSKModulator

Introduced in R2012a

 comm.gpu.PSKDemodulator

4-971

constellation
Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for
comm.gpu.PSKDemodulator
Create a comm.gpu.PSKDemodulator System object, and then calculate its ideal signal
constellation.

Create a comm.gpu.PSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKDemodulator

Calculate and display the ideal signal constellation by calling the constellation
method.

4 System Objects — Alphabetical List

4-972

a = constellation(h)

Plot Ideal Signal Constellation for comm.gpu.PSKDemodulator
Create a comm.gpu.PSKDemodulator System object, and then plot the ideal signal
constellation.

Create a comm.gpu.PSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKDemodulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

 constellation

4-973

step
Demodulate using M-ary PSK method

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates data, X, with the GPU PSK Demodulator System object,
H, and returns Y. Input X must be a scalar or a column vector with double- or single-
precision data type. Depending on the BitOutput property value, output Y can be integer
or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod property
to Approximate log-likelihood ratio or Log-likelihood ratio, and the
VarianceSource property to Input port. The data type of input VAR must be double or
single precision.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-974

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-975

comm.gpu.PSKModulator
Package: comm

Modulate using M-ary PSK method with GPU

Description
The GPU PSKModulator object modulates a signal using the M-ary phase shift keying
method implemented on a graphics processing unit (GPU). The input is a baseband
representation of the modulated signal. The input and output for this object are discrete-
time signals. This object accepts a scalar-valued or column vector input signal.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To modulate a signal using phase shift keying:

1 Define and set up your PSK modulator object. See “Construction” on page 4-977.
2 Call step to modulate the signal according to the properties of

comm.gpu.PSKModulator. The behavior of step is specific to each object in the
toolbox.

4 System Objects — Alphabetical List

4-976

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.PSKModulator returns a GPU-based demodulator System object, H. This
object modulates the input signal using the M-ary phase shift keying (M-PSK) method
with soft decision using the approximate log-likelihood ratio algorithm.

H = comm.gpu.PSKModulator(Name,Value) creates a GPU-based M-PSK modulator
object, H, with the specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN)

H = comm.gpu.PSKModulator(M,PHASE,Name,Value) creates a GPU-based M-PSK
modulator object, H, with the ModulationOrder property set to M, the PhaseOffset
property set to PHASE and other specified property Names set to the specified Values. M
and PHASE are value-only arguments. To specify a value-only argument, you must also
specify all preceding value-only arguments. You can specify name-value pair arguments in
any order.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar. The
default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real
scalar. The default is π/8.

 comm.gpu.PSKModulator

4-977

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values whose
length is an integer multiple of log2(ModulationOrder). This vector contains bit
representations of integers between 0 and ModulationOrder-1. The input data type can be
numeric or logical. When you set the BitInput property to false, the step method input
must be a column vector of integer symbol values between 0 and ModulationOrder-1. The
data type of the input must be numeric.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder) bits to the
corresponding symbol as one of Binary | Gray | Custom. The default is Gray. When you
set this property to Gray, the object uses a Gray-encoded signal constellation. When you
set this property to Binary, the integer m (0 ≤ m ≤ ModulationOrder-1) maps to the
complex value exp(j*PhaseOffset + j*2*pi*m/ModulationOrder). When you set this
property to Custom, the object uses the signal constellation defined in the
CustomSymbolMapping property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. This property must be a row or
column vector of size ModulationOrder with unique integer values in the range [0,
ModulationOrder-1]. The values must be of data type double. The first element of this
vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with
subsequent elements running counterclockwise. The last element corresponds to the
constellation point at an angle of -π/ModulationOrder + PhaseOffset. This property
applies when you set the SymbolMapping property to Custom. The default is 0:7.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

4 System Objects — Alphabetical List

4-978

Methods

constellation Calculate or plot ideal signal constellation
step Modulate using M-ary PSK method with GPU

Common to All System Objects
release Allow System object property value changes

Algorithm
The GPU PSK Modulator System object supports floating-point and integer input data
types. This object uses the same algorithm as the comm.PSKModulator System object.
See the Algorithms section of the comm.PSKModulator help page for details.

Examples

GPU PSK Modulator

Create binary data for 100, 4-bit symbols

data = randi([0 1],400,1);

Create a 16-PSK modulator System object with bits as inputs and Gray-coded signal
constellation. Change the phase offset to .

gpuMod = comm.gpu.PSKModulator(16,'BitInput',true);
gpuMod.PhaseOffset = pi/16;

Modulate and plot the data

modData = gpuMod(data);
scatterplot(modData)

 comm.gpu.PSKModulator

4-979

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

4 System Objects — Alphabetical List

4-980

See Also
comm.gpu.PSKDemodulator

Introduced in R2012a

 comm.gpu.PSKModulator

4-981

constellation
Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for
comm.gpu.PSKModulator
Create a comm.gpu.PSKModulator System object, and then calculate its ideal signal
constellation.

Create a comm.gpu.PSKModulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKModulator

Calculate and display the ideal signal constellation by calling the constellation
method.

4 System Objects — Alphabetical List

4-982

a = constellation(h)

Plot Ideal Signal Constellation for comm.gpu.PSKModulator
Create a comm.gpu.PSKModulator System object, and then plot the ideal signal
constellation.

Create a comm.gpu.PSKModulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKModulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

 constellation

4-983

step
Modulate using M-ary PSK method with GPU

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates the input data, X, using the GPU-based PSK modulator
System object, H. The object returns the baseband modulated output Y. Depending upon
the value of the BitInput property, input X can be an integer or bit-valued column vector
with numeric or logical data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-984

comm.gpu.TurboDecoder
Package: comm.gpu

Decode input signal using parallel concatenation decoding with GPU

Description
The GPU Turbo Decoder System object decodes the input signal using a parallel
concatenated decoding scheme. This scheme uses the a-posteriori probability (APP)
decoder as the constituent decoder. Both constituent decoders use the same trellis
structure and algorithm.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To decode an input signal using a turbo decoding scheme:

1 Define and set up your turbo decoder object. See “Construction” on page 4-986.
2 Call step to decode a binary signal according to the properties of

comm.gpu.TurboDecoder. The behavior of step is specific to each object in the
toolbox.

 comm.gpu.TurboDecoder

4-985

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.TurboDecoder creates a GPU-based turbo decoder System object, H.
This object uses the a-posteriori probability (APP) constituent decoder to iteratively
decode the parallel-concatenated convolutionally encoded input data.

H = comm.gpu.TurboDecoder(Name, Value) creates a GPU-based turbo decoder
object, H, with the specified property name set to the specified value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,…,NameN,ValueN.

H = comm.gpu.TurboDecoder(TRELLIS, INTERLVRINDICES, NUMITER) creates a
GPU-based turbo decoder object, H. In this object, the TrellisStructure property is
set to TRELLIS, the InterleaverIndices property set to INTERLVRINDICES, and the
NumIterations property set to NUMITER.

Properties
TrellisStructure

Trellis structure of constituent convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. The default is the result of poly2trellis(4, [13
15], 13). Use the istrellis function to check if a structure is a valid trellis structure.

InterleaverIndicesSource

Source of interleaver indices

Specify the source of the interleaver indices. The only valid setting for this property is
Property.

4 System Objects — Alphabetical List

4-986

InterleaverIndices

Interleaver indices

Specify the mapping used to permute the input bits at the encoder as a column vector of
integers. The default is (64:-1:1).'. This mapping is a vector with the number of
elements equal to the length, L, of the output of the step method. Each element must be
an integer between 1 and L, with no repeated values.

Algorithm

Decoding algorithm

Specify the decoding algorithm. This object implements true a posteriori probability
decoding. The only valid setting is True APP.

NumScalingBits

Number of scaling bits

The GPU version of the Turbo Decoder does not use this property.

NumIterations

Number of decoding iterations

Specify the number of decoding iterations used for each call to the step method. The
default is 6. The object iterates and provides updates to the log-likelihood ratios (LLR) of
the uncoded output bits. The output of the step method is the hard-decision output of the
final LLR update.

NumFrames

Number of independent frames present in the input and output data vectors.

Specify the number of independent frames that a single data input/output vector contains.
The default value of this property is 1. This object segments the input vector into
NumFrames segments and decodes the segments independently. The output contains
NumFrames decoded segments.

 comm.gpu.TurboDecoder

4-987

Methods
reset Reset states of the turbo decoder object
step Decode input signal using parallel concatenated decoding scheme

Common to All System Objects
release Allow System object property value changes

Examples

Transmit and decode using turbo coding

Transmit turbo-encoded blocks of data over a BPSK-modulated AWGN channel. Then,
decode using an iterative turbo decoder and display errors.

Define a noise variable, establish a frame length of 256, and use the random stream
property so that the results are repeatable.

noiseVar = 4; frmLen = 256;
s = RandStream('mt19937ar', 'Seed', 11);
intrlvrIndices = randperm(s, frmLen);

Create a Turbo Encoder System object. The trellis structure for the constituent
convolutional code is poly2trellis(4, [13 15 17], 13). The InterleaverIndices property
specifies the mapping the object uses to permute the input bits at the encoder as a
column vector of integers.

turboEnc = comm.TurboEncoder('TrellisStructure', poly2trellis(4, ...
 [13 15 17], 13), 'InterleaverIndices', intrlvrIndices);

Create a BPSK Modulator System object.

bpsk = comm.BPSKModulator;

Create an AWGN Channel System object.

channel = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance', ...
 noiseVar);

4 System Objects — Alphabetical List

4-988

Create a GPU-Based Turbo Decoder System object. The trellis structure for the
constituent convolutional code is poly2trellis(4, [13 15 17], 13). The
InterleaverIndicies property specifies the mapping the object uses to permute the
input bits at the encoder as a column vector of integers.

turboDec = comm.gpu.TurboDecoder('TrellisStructure', poly2trellis(4, ...
 [13 15 17], 13), 'InterleaverIndices', intrlvrIndices, ...
 'NumIterations', 4);

Create an Error Rate System object.

errorRate = comm.ErrorRate;

Run the simulation.

for frmIdx = 1:8
 data = randi(s, [0 1], frmLen, 1);
 encodedData = turboEnc(data);
 modSignal = bpsk(encodedData);
 receivedSignal = channel(modSignal);

Convert the received signal to log-likelihood ratios for decoding.

receivedBits = turboDec(-2/(noiseVar/2))*real(receivedSignal));

Compare original the data to the received data and then calculate the error rate results.

errorStats = errorRate(data,receivedBits);
end
fprintf('Error rate = %f\nNumber of errors = %d\nTotal bits = %d\n', ...
errorStats(1), errorStats(2), errorStats(3))

Algorithms
This object implements the inputs and outputs described on the Turbo Decoder block
reference page. The object properties correspond to the block parameters.

 comm.gpu.TurboDecoder

4-989

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.TurboDecoder | comm.TurboEncoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-990

reset
System object: comm.gpu.TurboDecoder
Package: comm.gpu

Reset states of the turbo decoder object

Syntax
reset(H)

Description
reset(H) resets the states of the GPU TurboDecoder object, H.

 reset

4-991

step
System object: comm.gpu.TurboDecoder
Package: comm.gpu

Decode input signal using parallel concatenated decoding scheme

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) decodes the input data, X, using the parallel concatenated convolutional
coding scheme. You specify this scheme using the TrellisStructure and InterleaverIndices
properties. It returns the binary decoded data, Y. Both X and Y are column vectors of
double-precision data type. When the constituent convolutional code represents a rate
1/N code, the step method sets the length of the output vector, Y, to (M-2*NTails)/(2*N-1).
M represents the input vector length and NTails is given by
log2(TrellisStructure.numStates)*N. The output length, L, is the same as the
length of the interleaver indices.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-992

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-993

comm.gpu.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm with GPU

Description
The GPU ViterbiDecoder System object decodes input symbols to produce binary
output symbols using a graphics processing unit (GPU). This object processes variable-
size signals; however, variable-size signals cannot be applied for erasure inputs.

Note To use this object, you must install a Parallel Computing Toolbox license and have
access to an appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

A GPU-based System object accepts typical MATLAB arrays or objects created using the
gpuArray class. A GPU-based System object supports input signals with double- or
single-precision data types. The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between
the CPU and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a
gpuArray. When the object is given a gpuArray, calculations take place entirely on
the GPU, and no data transfer occurs. Passing gpuArray arguments provides
increased performance by reducing simulation time. For more information, see
“Establish Arrays on a GPU” (Parallel Computing Toolbox).

To decode input symbols and produce binary output symbols:

1 Define and set up your Viterbi decoder object. See “Construction” on page 4-995.
2 Call step to decode input symbols according to the properties of

comm.gpu.ViterbiDecoder. The behavior of step is specific to each object in the
toolbox.

4 System Objects — Alphabetical List

4-994

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.gpu.ViterbiDecoder creates a Viterbi decoder System object, H. This
object uses the Viterbi algorithm to decode convolutionally encoded input data.

H = comm.gpu.ViterbiDecoder(Name,Value) creates a Viterbi decoder object, H,
with the specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN.

H = comm.gpu.ViterbiDecoder(TRELLIS,Name,Value) creates a Viterbi decoder
object, H, with the TrellisStructure property set to TRELLIS, and other specified
property Names set to the specified Values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. This object supports rate 1/2, 1/3 and 1/4 trellises from simple feedforward
encoders. The default value is the result of poly2trellis(7, [171 133]).

InputFormat

Input format

Specify the format of the input to the decoder as one of Unquantized | Hard | Soft. The
default is Unquantized.

When you set this property to Unquantized, the input must be a real vector of double or
single precision unquantized soft values. The object considers negative numbers to be
ones and positive numbers to be zeros. When you set this property to Hard, the input

 comm.gpu.ViterbiDecoder

4-995

must be a vector of hard decision values, which are zeros or ones. The data type of the
inputs can be double precision or single precision. When you set this property to Soft,
the input must be a vector of quantized soft values represented as integers between 0 and
2^SoftInputWordLength-1. The data type of the inputs can be double precision or
single precision.

SoftInputWordLength

Soft input word length

Specify the number of bits used to represent each quantized soft input value as a positive,
integer scalar. This property applies when you set the InputFormat property to Soft. The
default is 4 bits.

InvalidQuantizedInputAction

Action when input values are out of range

The only valid setting is Ignore which ignores out of range inputs.

TracebackDepth

Traceback depth

Specify the number of trellis branches used to construct each traceback path as a
positive, integer scalar less than or equal to 256. The traceback depth influences the
decoding accuracy and delay. The number of zero symbols that precede the first decoded
symbol in the output represent a decoding delay. When you set the TerminationMethod
property to Continuous, the decoding delay consists of TracebackDepth zero symbols,
or TracebackDepth zero bits for a rate 1/N convolutional code. When you set the
TerminationMethod property to Truncated or Terminated, there is no output delay and
TracebackDepth must be less than or equal to the number of symbols in each input. If
the code rate is 1/2, a typical traceback depth value is about five times the constraint
length of the code. The default is 34.

TerminationMethod

Termination method of encoded frame

Specify TerminationMethod as one of Continuous | Truncated | Terminated. The
default is Continuous. In Continuous mode, the object saves its internal state metric at
the end of each frame for use with the next frame. The object treats each traceback path

4 System Objects — Alphabetical List

4-996

independently. Select Continuous mode when the input signal contains only one symbol.
In Truncated mode, the object treats each frame independently. The traceback path
starts at the state with the best metric and always ends in the all-zeros state. In
Terminated mode, the object treats each frame independently, and the traceback path
always starts and ends in the all-zeros state.

ResetInputPort

Enable decoder reset input

Set this property to true to enable an additional step method input. When the reset input
is a non-zero value, the object resets the internal states of the decoder to initial
conditions. This property applies when you set the TerminationMethod property to
Continuous. The default is false.

DelayedResetAction

Delay output reset

Delaying the output reset is not supported. The only valid setting is false.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. When you set this property to None the object assumes no puncturing. Set this
property to Property to decode punctured codewords based on a puncture pattern
vector specified via the PuncturePattern property.

PuncturePattern

Puncture pattern vector

Specify puncture pattern used to puncture the encoded data. The default is [1; 1; 0;
1; 0; 1]. The puncture pattern is a column vector of ones and zeros, where the zeros
indicate where to insert dummy bits. The puncture pattern must match the puncture
pattern used by the encoder. This property applies when you set the
PuncturePatternSource property to Property.

ErasuresInputPort

Enable erasures input

 comm.gpu.ViterbiDecoder

4-997

Erasures are not supported. The only valid setting is false.

OutputDataType

Data type of output

The only valid setting is Full precision which makes the output data type match the
input data type.

NumFrames

Number of independent frames present in the input and output data vectors.

Specify the number of independent frames contained in a single data input/output vector.
The input vector will be segmented into NumFrames segments and decoded
independently. The output will contain NumFrames decoded segments. The default value
of this property is 1. This property is applies when you set the TerminationMethod is set
to Terminated or Truncated.

Methods
info Display information about GPU-based Viterbi Decoder object
reset Reset states of the GPU-based Viterbi Decoder modulator object
step Decode convolutionally encoded data using Viterbi algorithm

Common to All System Objects
release Allow System object property value changes

Examples
Transmit a convolutionally encoded 8-DPSK-modulated bit stream through an AWGN
channel. Then, demodulate, decode using a Viterbi decoder, and count errors.

hConEnc = comm.ConvolutionalEncoder;
hMod = comm.DPSKModulator('BitInput',true);
hChan = comm.gpu.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)', 'SNR',10);
hDemod = comm.DPSKDemodulator('BitOutput',true);

4 System Objects — Alphabetical List

4-998

hDec = comm.gpu.ViterbiDecoder('InputFormat','Hard');
% Delay in bits is TracebackDepth times the number of
% bits per symbol
 delay = hDec.TracebackDepth*...
 log2(hDec.TrellisStructure.numInputSymbols);
hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay',delay);
 for counter = 1:20
 data = randi([0 1],30,1);
 encodedData = step(hConEnc, data);
 modSignal = step(hMod, encodedData);
 receivedSignal = step(hChan, modSignal);
 demodSignal = step(hDemod, receivedSignal);
 receivedBits = step(hDec, demodSignal);
 errorStats = step(hError, data, receivedBits);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

References

[1] Fettweis, G., H. Meyr. "Feedforward Architecture for Parallel Viterbi Decoding,”
Journal of VLSI Signal Processing, Vol. 3, June 1991.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more
information, see “Simulation Acceleration Using GPUs”.

See Also
comm.ViterbiDecoder

 comm.gpu.ViterbiDecoder

4-999

Introduced in R2012a

4 System Objects — Alphabetical List

4-1000

info
System object: comm.gpu.ViterbiDecoder
Package: comm

Display information about GPU-based Viterbi Decoder object

Syntax
S = info(OBJ)

Description
S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

 info

4-1001

reset
System object: comm.gpu.ViterbiDecoder
Package: comm

Reset states of the GPU-based Viterbi Decoder modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the GPU-based ViterbiDecoder object, H.

4 System Objects — Alphabetical List

4-1002

step
System object: comm.gpu.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) decodes encoded data, X, using the Viterbi algorithm and returns Y. X,
must be a column vector with data type and values that depend on how you set the
InputFormat property. If the convolutional code uses an alphabet of 2^N possible
symbols, the length of the input vector, X, must be L*N for some positive integer L.
Similarly, if the decoded data uses an alphabet of 2^K possible output symbols, the length
of the output vector, Y, is L*K.

Y = step(H,X,R) resets the internal states of the decoder when you input a non-zero
reset signal, R. R must be a double precision, single precision or logical scalar. This syntax
applies when you set the TerminationMethod property to Continuous and the
ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-1003

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1004

gsmDownlinkConfig
Create GSM downlink TDMA frame configuration object

Description
The gsmDownlinkConfig object is a GSM downlink TDMA frame configuration object.
Use gsmDownlinkConfig objects to create GSM downlink waveforms.

Creation

Syntax
cfggsmdl = gsmDownlinkConfig
cfggsmdl = gsmDownlinkConfig(sps)
cfggsmdl = gsmDownlinkConfig(___ ,Name,Value)

Description
cfggsmdl = gsmDownlinkConfig creates a GSM downlink TDMA frame configuration
object.

cfggsmdl = gsmDownlinkConfig(sps) sets the SamplesPerSymbol property to
sps.

cfggsmdl = gsmDownlinkConfig(___ ,Name,Value) sets one or more name-value
pair arguments using any of the previous syntaxes. For example, 'RiseTime',4 sets the
burst rise time to 4 symbols. Enclose each property in quotes. Specify name-value pair
arguments after all other input arguments.

Properties
SamplesPerSymbol — Samples per symbol
16 (default) | positive integer multiple of 4

 gsmDownlinkConfig

4-1005

Samples per symbol, specified as a positive integer multiple of 4.
Data Types: double

BurstType — Burst types
["NB" "NB" "NB" "NB" "NB" "NB" "NB" "NB"] (default) | string row vector with 8
elements | "NB" | "FB" | "SB" | "Dummy" | "Off"

Burst types for time slots 0–7 in the TDMA frame, specified as one of these options:

• Eight-element row vector where each value is "NB", "FB", "SB", "Dummy", or "Off"
— Each element specifies the burst type for the corresponding time slot.

• "NB" — Transmit data using a normal burst for every time slot.
• "FB" — Transmit data using a frequency correction burst for every time slot.
• "SB" — Transmit data using a time synchronization burst for every time slot.
• "Dummy" — Transmit data using a dummy burst for every time slot.
• "Off" — All eight time slots contain no data.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1024.

Note The BurstType property is an enumeration. To perform code generation, see
“Code Generation” on page 4-1053 and the “MEX Generation for GSM Downlink
Waveform” on page 4-1016 example.

Example: ["NB" "AB" "AB" "NB" "Off" "NB" "AB" "Off"] configures the frame
to use normal bursts in time slots 0, 3, and 5, use access bursts in time slots 1, 2, and 6,
and transmit no data in time slots 4 and 7.

TSC — Training sequence code
[0 1 2 3 4 5 6 7] (default) | eight-element row vector | integer in the range [0, 7]

Training sequence code (TSC) for normal bursts in time slots 0–7 in the TDMA frame,
specified as one of these options:

• Eight-element row vector of integers in the range [0, 7] — Each element specifies the
TSC value for the corresponding normal burst time slot.

• Integer in the range [0, 7] — Specifies the TSC value for every normal burst time slot.

For more information, see “Training Sequence Code (TSC)” on page 4-1026.

4 System Objects — Alphabetical List

4-1006

Example: [5 7 0 0 0 0 0 0] configures the frame to use training sequence 5 in time
slot 0, training sequence 7 in time slot 1, and training sequence 0 in time slots 2 through
7.
Dependencies

To enable this property for a time slot, set the corresponding element of BurstType to
"NB".
Data Types: double

Attenuation — Power attenuation
[0 0 0 0 0 0 0 0] (default) | eight-element row vector | nonnegative integer

Power attenuation in dB for time slots 0–7 in the TDMA frame, specified as one of these
options:

• Eight-element row vector of nonnegative integers — Each element specifies the
attenuation power value for the corresponding time slot.

• Nonnegative integer — Specifies the power attenuation value for every time slot.

Example: [0 0 0 0 0 0 0 3] configures the frame to apply 0 dB attenuation to the
burst signal power in time slot 0 through 6 and 3 dB of attenuation to the burst signal
power in time slot 7.
Data Types: double

RiseTime — Burst rise time
2 (default) | positive scalar

Burst rise time in symbols, specified as a positive scalar in the range [1/
SamplesPerSymbol, 29], where the increment resolution is 1/SamplesPerSymbol. The
total ramp-up and ramp-down duration (RiseTime - RiseDelay + FallTime +
FallDelay) must be less than 9.25 symbols. The characteristic shape of the rising edge
of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1024.
Data Types: double

RiseDelay — Burst rise delay
0 (default) | positive scalar

Burst rise delay in symbols, specified as a positive scalar in the range [–10, 10], where the
increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down

 gsmDownlinkConfig

4-1007

duration (RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25
symbols. The burst rise delay is measured with respect to the start of the useful part of
the burst. For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-
1024.

When the burst rise delay is 0, the burst reaches full amplitude at the start of the useful
part of the burst. When the burst rise delay is positive, the burst reaches full amplitude
RiseDelay symbols after the start of the useful part. When the burst rise delay is
negative, the burst reaches full amplitude RiseDelay symbols before the start of the
useful part.
Data Types: double

FallTime — Burst fall time
2 (default) | positive scalar

Burst fall time in symbols, specified as a positive scalar in the range [1/
SamplesPerSymbol, 29], where the increment resolution is 1/SamplesPerSymbol. The
total ramp-up and ramp-down duration (RiseTime - RiseDelay + FallTime +
FallDelay) must be less than 9.25 symbols. The characteristic shape of the falling edge
of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1024.
Data Types: double

FallDelay — Burst fall delay
0 (default) | positive scalar

Burst fall delay in symbols, specified as a positive scalar in the range [–10, 10], where the
increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down
duration (RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25
symbols. The burst fall delay is measured with respect to the end of the useful part of the
burst. For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1024.

When the burst fall delay is 0, the burst begins decreasing from full amplitude at the end
of the useful part of the burst. When the burst fall delay is positive, the burst begins
decreasing from full amplitude FallDelay symbols after the end of the useful part. When
the burst fall delay is negative, the burst begins decreasing from full amplitude
FallDelay symbols before the end of the useful part.
Data Types: double

4 System Objects — Alphabetical List

4-1008

Examples

Create GSM Downlink Waveform

Create a GSM downlink TDMA frame configuration object with default settings, and then
create a GSM waveform containing one TDMA frame. The GSM TDMA frame has eight
time slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms.
Plot the GSM waveform.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmdl = gsmDownlinkConfig

cfggsmdl =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

 gsmDownlinkConfig

4-1009

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform.

waveform = gsmFrame(cfggsmdl);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

4 System Objects — Alphabetical List

4-1010

Create GSM Downlink Waveform with Specified Samples per Symbol

Create a GSM downlink TDMA frame configuration object that specifies 8 samples per
symbol, and then create a GSM waveform containing one GSM downlink TDMA frame.
The GSM TDMA frame are eight time slots, each separated by a guard period of 8.25
symbols or about 30.46x10e-3 ms separates each time slot. Plot the GSM waveform.

Create a GSM downlink TDMA frame configuration object, specifying 8 samples per
symbols.

 gsmDownlinkConfig

4-1011

sps = 8;
cfggsmdl = gsmDownlinkConfig(sps)

cfggsmdl =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 8
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 2.1667e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 1250
 FrameLengthInSamples: 10000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform.

waveform = gsmFrame(cfggsmdl);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')

4 System Objects — Alphabetical List

4-1012

xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

 gsmDownlinkConfig

4-1013

Create GSM Downlink Waveform with Specified Attenuation

Create two GSM downlink TDMA frame configuration objects. Specify default settings for
the first gsmDownlinkConfig object and adjust the signal power per time slot for the
second. Generate GSM waveforms for both configurations. Plot the waveforms to show
the signal attenuation per time slot in the second waveform.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmdl = gsmDownlinkConfig

cfggsmdl =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Create another GSM downlink TDMA frame configuration object, adjusting the signal
attenuation settings per time slot.

cfggsmdl2 = gsmDownlinkConfig('Attenuation',[1 0 3 4 5 6 4 2])

cfggsmdl2 =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [1 0 3 4 5 6 4 2]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

4 System Objects — Alphabetical List

4-1014

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveforms, containing one TDMA frame, by using the gsmFrame
function. GSM TDMA frames have are eight time slots, each separated by a guard period
of 8.25 symbols or about 30.46x10e-3 ms separates each time slot. Plot each GSM
waveform.

waveform = gsmFrame(cfggsmdl);
waveform2 = gsmFrame(cfggsmdl2);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,[abs(waveform),abs(waveform2)])
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,[unwrap(angle(waveform)),unwrap(angle(waveform2))])
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

 gsmDownlinkConfig

4-1015

MEX Generation for GSM Downlink Waveform

Generate and run a GSM waveform MEX function from the helper function
createDownlinkWaveform. The createDownlinkWaveform helper function creates a
GSM downlink waveform.

Write MATLAB Function

Open createDownlinkWaveform.m to see the code. The createDownlinkWaveform
helper function generates a GSM downlink waveform by using the gsmDownlinkConfig
object and the gsmInfo and gsmFrame functions.

4 System Objects — Alphabetical List

4-1016

https://localhost:31522/toolbox/matlab/codetools/liveeditor/%3Cmatlab:openExample('comm/MEXGenerationForGSMDownlinkWaveformExample%E2%80%99,%E2%80%98supportingFile%E2%80%99,%E2%80%98createDownlinkWaveform.m%E2%80%99)%20%3E)

Generate GSM Waveform

Use the createDownlinkWaveform helper function to create a GSM waveform
containing two TDMA frames, and then plot the waveform.

[x,t] = createDownlinkWaveform(2);

figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('GSM Downlink Waveform - Amplitude');
xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('GSM Downlink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

 gsmDownlinkConfig

4-1017

Generate MEX Function

Code generation defaults to MEX code generation when you do not specify a build target.
By default, codegen names the generated MEX function
createDownlinkWaveform_mex. Generate a MEX function from the
createDownlinkWaveform helper function, and then run the MEX function to create
two TDMA frames.

codegen createDownlinkWaveform -args 3

4 System Objects — Alphabetical List

4-1018

Generate Waveform Using MEX Function

Run the MEX function and plot the results. Since the waveform is created using random
data, the phase plot changes each time you run the generateDownlinkFrame helper
function or createDownlinkWaveform_mex function.

[x,t] = createDownlinkWaveform_mex(2);

figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('MEX - GSM Downlink Waveform - Amplitude');
xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('MEX - GSM Downlink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

 gsmDownlinkConfig

4-1019

GSM Downlink Waveform Generation in Simulink

Model a GSM® waveform generator in Simulink® by using the MATLAB Function block
and Communications Toolbox™ functions.

GSM Downlink Waveform Generation

The MATLAB Function block contains the gsmDownlinkWaveform function code. The
code in the MATLAB Function block creates a GSM waveform by using the
gsmDownlinkConfig object and the gsmFrame function.

4 System Objects — Alphabetical List

4-1020

The gsmDownlinkConfig object specifies 16 samples per symbol and the time slot
configuration for the GSM downlink TDMA frame shown is this table.

The output waveform has 16 samples for each GMSK symbol. The gsmFrame function
generates the samples of the waveform.

Explore the Model

In compliance with GSM standards 3GPP TS 45.001 and 3GPP TS 45.002, the sample time
of the MATLAB Function block that contains the gsmDownlinkWaveform function code is
set to the GSM symbol rate of 1625e3/6 symbols per second. Display the current
gsmDownlinkConfig object settings by using the gsmInfo function.

 gsmDownlinkConfig

4-1021

wfInfo =

 struct with fields:

 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

The model sample time of the MATLAB Function block is set to
wfInfo.FrameLengthInSamples/wfInfo.SampleRate. To view the Sample time
parameter, open the Block Parameters dialog box by right-clicking the MATLAB Function
block and selecting Block Parameters (Subsystem).

Before the simulation runs, you must configure the sample rate of the MATLAB Function
block. The PreLoadFcn and InitFcn callback functions configure the MATLAB Function
block by creating a gsmDownlinkConfig object and wfInfo structure. To view the
callback functions, on the Modeling tab, in the Setup section, select Model Settings >
Model Properties. Then, on the Callbacks tab, select the PreLoadFcn or InitFcn
callback function in the Model callbacks pane.

Results

Display the time domain signal and the spectrogram by running the simulation.

4 System Objects — Alphabetical List

4-1022

 gsmDownlinkConfig

4-1023

More About
GSM Frames, Time Slots, and Bursts
In GSM, transmissions consist of TDMA frames. Each GSM TDMA frame consists of eight
time slots. The transmission data content of a time slot is called a burst. As described in

4 System Objects — Alphabetical List

4-1024

Section 5.2 of 3GPP TS 45.011, a GSM time slot has a 156.25-symbol duration when using
the normal symbol period, which is a time interval of 15/26 ms or about 576.9
microseconds. A guard period of 8.25 symbols or about 30.46 microseconds separates
each time slot. The GSM standards describes a symbol as one bit period. Since GSM uses
GMSK modulation, there is one bit per bit period. The transmission timing of a burst
within a time slot is defined in terms of the bit number (BN). The BN refers to a particular
bit period within a time slot. The bit with the lowest BN is transmitted first. BN0 is the
first bit period, and BN156 is the last quarter-bit period.

This image from 3GPP TS 45.011 shows the relationship between different frame types
and the relationship between different burst types.

This table shows the supported burst types and their characteristics.

Burst Type Description Link Direction Useful Duration
NB Normal burst Uplink/Downlink 147
FB Frequency correction

burst
Downlink 147

 gsmDownlinkConfig

4-1025

Burst Type Description Link Direction Useful Duration
SB Synchronization

burst
Downlink 147

Dummy Dummy burst Downlink 147
AB Access burst Uplink 87
Off No burst sent Uplink/Downlink 0

Useful duration, described in Section 5.2.2 of 3GPP TS 45.002, is a characteristic of GSM
bursts. The useful duration, or useful part, of a burst is defined as beginning halfway
through BN0 and ending half a bit period before the start of the guard period. The guard
period is the period between bursts in successive time slots. This figure, from Section 2.2
of 3GPP TS 45.004, shows the leading and trailing ½ bit difference between the useful
and active parts of the burst.

For more information, see “GSM TDMA Frame Parameterization for Waveform
Generation”.

Training Sequence Code (TSC)
Normal bursts include a training sequence bits field assigned a bit pattern based on the
specified TSC. For GSM, you can select one of these eight training sequences for normal
burst type time slots.

4 System Objects — Alphabetical List

4-1026

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62,
…, BN86)

0 (0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,
1,1,1)

1 (0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,
1,1,1)

2 (0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,
1,1,0)

3 (0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,
1,1,0)

4 (0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,
0,1,1)

5 (0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,
0,1,0)

6 (1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,
1,1,1)

7 (1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,
1,0,0)

For more information, see Section 5.2.3 in 3GPP TS 45.002.

References
[1] 3GPP TS 45.001. "GSM/EDGE Physical layer on the radio path. General description."

3rd Generation Partnership Project; Technical Specification Group Radio Access
Network.

[2] 3GPP TS 45.002. "GSM/EDGE Multiplexing and multiple access on the radio path." 3rd
Generation Partnership Project; Technical Specification Group Radio Access
Network.

[3] 3GPP TS 45.004. "GSM/EDGE Modulation." 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

 gsmDownlinkConfig

4-1027

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The SamplesPerSymbol, RiseTime, RiseDelay, FallTime, and FallDelay
properties must be set when creating the object, and their settings are static in the
generated code.

• The BurstType [property must be set using the enumeration type instead of the
string representation. Use these gsmDownlinkBurstType enumerations:
gsmDownlinkBurstType.NB, gsmDownlinkBurstType.FB,
gsmDownlinkBurstType.SB, gsmDownlinkBurstType.Dummy, and
gsmUplinkBurstType.Off. For example, this code assigns a frequency correction
burst in time slot 2 and 5.

cfg = gsmDownlinkConfig

cfg =

 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

cfg.BurstType([2 5] +1) = gsmDownlinkBurstType.FB

cfg =

 gsmDownlinkConfig with properties:

 BurstType: [NB NB FB NB NB FB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]

4 System Objects — Alphabetical List

4-1028

 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

See Also
Objects
gsmUplinkConfig

Functions
gsmCheckTimeMask | gsmFrame | gsmInfo

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”

Introduced in R2019b

 gsmDownlinkConfig

4-1029

gsmUplinkConfig
Create GSM uplink TDMA frame configuration object

Description
The gsmUplinkConfig object is a GSM uplink TDMA frame configuration object. Use
gsmUplinkConfig objects to create GSM uplink waveforms.

Creation

Syntax
cfggsmul = gsmUplinkConfig
cfggsmul = gsmUplinkConfig(sps)
cfggsmul = gsmUplinkConfig(___ ,Name,Value)

Description
cfggsmul = gsmUplinkConfig creates a GSM uplink TDMA frame configuration
object.

cfggsmul = gsmUplinkConfig(sps) sets the SamplesPerSymbol property to sps.

cfggsmul = gsmUplinkConfig(___ ,Name,Value) sets one or more name-value pair
arguments using any of the previous syntaxes. For example, 'RiseTime',4 sets the
burst rise time to 4 symbols. Enclose each property in quotes. Specify name-value pair
arguments after all other input arguments.

Properties
SamplesPerSymbol — Samples per symbol
16 (default) | positive integer multiple of 4

4 System Objects — Alphabetical List

4-1030

Samples per symbol, specified as a positive integer multiple of 4.
Data Types: double

BurstType — Burst types
["NB" "NB" "NB" "NB" "NB" "NB" "NB" "NB"] (default) | string row vector with 8
elements | "NB" | "AB" | "Off"

Burst types for time slots 0–7 in the TDMA frame, specified as one of these options:

• Eight-element row vector where each value is "NB", "AB", or "Off" — Each element
specifies the burst type for the corresponding time slot.

• "NB" — Transmit data using a normal burst for every time slot.
• "AB" — Transmit data using an access burst for every time slot.
• "Off" — All eight time slots contain no data.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1049

Note The BurstType property is an enumeration. To perform code generation, see
“Code Generation” on page 4-1053 and the “MEX Generation for GSM Uplink Waveform”
on page 4-1041 example.

Example: ["NB" "AB" "AB" "NB" "Off" "NB" "AB" "Off"] configures the frame
to use normal bursts in time slots 0, 3, and 5, use access bursts in time slots 1, 2, and 6,
and transmit no data in time slots 4 and 7.

TSC — Training sequence code
[0 1 2 3 4 5 6 7] (default) | eight-element row vector | integer in the range [0, 7]

Training sequence code (TSC) for normal bursts in time slots 0–7 in the TDMA frame,
specified as one of these options:

• Eight-element row vector of integers in the range [0, 7] — Each element specifies the
TSC value for the corresponding normal burst time slot.

• Integer in the range [0, 7] — Specifies the TSC value for every normal burst time slot.

For more information, see “Training Sequence Code (TSC)” on page 4-1051.
Example: [5 7 0 0 0 0 0 0] configures the frame to use training sequence 5 in time
slot 0, training sequence 7 in time slot 1, and training sequence 0 in time slots 2 through
7.

 gsmUplinkConfig

4-1031

Dependencies

To enable this property for a time slot, set the corresponding element of BurstType to
"NB".
Data Types: double

Attenuation — Power attenuation
[0 0 0 0 0 0 0 0] (default) | eight-element row vector | nonnegative integer

Power attenuation in dB for time slots 0–7 in the TDMA frame, specified as one of these
options:

• Eight-element row vector of nonnegative integers — Each element specifies the
attenuation power value for the corresponding time slot.

• Nonnegative integer — Specifies the power attenuation value for every time slot.

Example: [0 0 0 0 0 0 0 3] configures the frame to apply 0 dB of attenuation to the
burst signal power in time slot 0 through 6 and 3 dB of attenuation to the burst signal
power in time slot 7.
Data Types: double

RiseTime — Burst rise time
2 (default) | positive scalar

Burst rise time in symbols, specified as a positive scalar in the range [1/
SamplesPerSymbol, 29], where the increment resolution is 1/SamplesPerSymbol. The
total ramp-up and ramp-down duration (RiseTime - RiseDelay + FallTime +
FallDelay) must be less than 9.25 symbols. The characteristic shape of the rising edge
of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1049.
Data Types: double

RiseDelay — Burst rise delay
0 (default) | positive scalar

Burst rise delay in symbols, specified as a positive scalar in the range [–10, 10], where the
increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down
duration (RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25
symbols. The burst rise delay is measured with respect to the start of the useful part of

4 System Objects — Alphabetical List

4-1032

the burst. For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-
1049.

When the burst rise delay is 0, the burst reaches full amplitude at the start of the useful
part of the burst. When the burst rise delay is positive, the burst reaches full amplitude
RiseDelay symbols after the start of the useful part. When the burst rise delay is
negative, the burst reaches full amplitude RiseDelay symbols before the start of the
useful part.
Data Types: double

FallTime — Burst fall time
2 (default) | positive scalar

Burst fall time in symbols, specified as a positive scalar in the range [1/
SamplesPerSymbol, 29], where the increment resolution is 1/SamplesPerSymbol. The
total ramp-up and ramp-down duration (RiseTime - RiseDelay + FallTime +
FallDelay) must be less than 9.25 symbols. The characteristic shape of the falling edge
of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1049.
Data Types: double

FallDelay — Burst fall delay
0 (default) | positive scalar

Burst fall delay in symbols, specified as a positive scalar in the range [–10, 10], where the
increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down
duration (RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25
symbols. The burst fall delay is measured with respect to the end of the useful part of the
burst. For more information, see “GSM Frames, Time Slots, and Bursts” on page 4-1049.

When the burst fall delay is 0, the burst begins decreasing from full amplitude at the end
of the useful part of the burst. When the burst fall delay is positive, the burst begins
decreasing from full amplitude FallDelay symbols after the end of the useful part. When
the burst fall delay is negative, the burst begins decreasing from full amplitude
FallDelay symbols before the end of the useful part.
Data Types: double

 gsmUplinkConfig

4-1033

Examples

Create GSM Uplink Waveform

Create a GSM uplink TDMA frame configuration object with default settings, and then
create a GSM waveform containing one TDMA frame. GSM TDMA frames have eight time
slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the
GSM waveform.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

4 System Objects — Alphabetical List

4-1034

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform.

waveform = gsmFrame(cfggsmul);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

 gsmUplinkConfig

4-1035

Create GSM Uplink Waveform with Specified Samples per Symbol

Create a GSM uplink TDMA frame configuration object that specifies 4 samples per
symbol, and then create a GSM waveform containing one GSM downlink TDMA frame.
The GSM TDMA frame are eight time slots, each separated by a guard period of 8.25
symbols or about 30.46x10e-3 ms separates each time slot. Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object, specifying 4 samples per symbols.

sps = 4;
cfggsmul = gsmUplinkConfig(sps)

4 System Objects — Alphabetical List

4-1036

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 4
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05
 SampleRate: 1.0833e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 625
 FrameLengthInSamples: 5000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM
waveform.

waveform = gsmFrame(cfggsmul);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)

 gsmUplinkConfig

4-1037

plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

Create GSM Uplink Waveform with Specified Attenuation

Create two GSM uplink TDMA frame configuration objects. Specify default settings for
the first gsmUplinkConfig object and adjust the signal power per time slot for the

4 System Objects — Alphabetical List

4-1038

second. Generate GSM waveforms for both configurations. Plot the waveforms to show
the signal attenuation per time slot in the second waveform.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig

cfggsmul =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Create another GSM uplink TDMA frame configuration object, adjusting the signal
attenuation settings per time slot.

cfggsmul2 = gsmUplinkConfig('Attenuation',[1 2 3 4 5 4 3 2])

cfggsmul2 =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [1 2 3 4 5 4 3 2]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the
gsmInfo function. Assign the sample rate to a variable, Rs, for use in computing the plot
timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
 SymbolRate: 2.7083e+05

 gsmUplinkConfig

4-1039

 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveforms, containing one TDMA frame, by using the gsmFrame
function. GSM TDMA frames are eight time slots, each separated by a guard period of
8.25 symbols or about 30.46x10e-3 ms. Plot each GSM waveform.

waveform = gsmFrame(cfggsmul);
waveform2 = gsmFrame(cfggsmul2);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,[abs(waveform),abs(waveform2)])
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,[unwrap(angle(waveform)),unwrap(angle(waveform2))])
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

4 System Objects — Alphabetical List

4-1040

MEX Generation for GSM Uplink Waveform

Generate and run a GSM waveform MEX function from the helper function
createUplinkWaveform. The createUplinkWaveform helper function creates a GSM
uplink waveform.

Write MATLAB Function

Open createUplinkWaveform.m to see the code. The createUplinkWaveform helper
function generates a GSM uplink waveform by using the gsmUplinkConfig object and
the gsmInfo and gsmFrame functions.

 gsmUplinkConfig

4-1041

Generate GSM Waveform

Use the createUplinkWaveform helper function to create a GSM waveform containing
three TDMA frames, and then plot the waveform.

[x,t] = createUplinkWaveform(3);

figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('GSM Uplink Waveform - Amplitude');
xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('GSM Uplink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

4 System Objects — Alphabetical List

4-1042

Generate MEX Function

Code generation defaults to MEX code generation when you do not specify a build target.
By default, codegen names the generated MEX function createUplinkWaveform_mex.
Generate a MEX function from the createUplinkWaveform helper function, and then
run the MEX function to create three TDMA frames.

codegen createUplinkWaveform -args 3

Generate Waveform Using MEX Function

Run the MEX function and plot the results. Since the waveform is created using random
data, the phase plot changes each time you run the generateUplinkFrame helper
function or createUplinkWaveform_mex function.

 gsmUplinkConfig

4-1043

[x,t] = createUplinkWaveform_mex(3);

figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('MEX - GSM Uplink Waveform - Amplitude');
xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('MEX - GSM Uplink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

4 System Objects — Alphabetical List

4-1044

GSM Uplink Waveform Generation in Simulink

Model a GSM® waveform generator in Simulink® by using the MATLAB Function block
and Communications Toolbox™ functions.

GSM Uplink Waveform Generation

The MATLAB Function block contains the gsmUplinkWaveform function code. The code
in the MATLAB Function block creates a GSM waveform by using the gsmUplinkConfig
object and the gsmFrame function.

 gsmUplinkConfig

4-1045

The gsmUplinkConfig object specifies 16 samples per symbol and the time slot
configuration for the GSM uplink TDMA frame shown is this table.

The output waveform has 16 samples for each GMSK symbol. The gsmFrame function
generates the samples of the waveform.

Explore the Model

In compliance with GSM standards 3GPP TS 45.001 and 3GPP TS 45.002, the sample time
of the MATLAB Function block that contains the gsmUplinkWaveform function code is
set to the GSM symbol rate of 1625e3/6 symbols per second. Display the current
gsmUplinkConfig object settings by using the gsmInfo function.

4 System Objects — Alphabetical List

4-1046

wfInfo =

 struct with fields:

 SymbolRate: 2.7083e+05
 SampleRate: 4.3333e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 2500
 FrameLengthInSamples: 20000

The model sample time of the MATLAB Function block is set to
wfInfo.FrameLengthInSamples/wfInfo.SampleRate. To view the Sample time
parameter, open the Block Parameters dialog box by right-clicking the MATLAB Function
block and selecting Block Parameters (Subsystem).

Before the simulation runs, you must configure the sample rate of the MATLAB Function
block. The PreLoadFcn and InitFcn callback functions configure the MATLAB Function
block by creating a gsmUplinkConfig object and wfInfo structure. To view the callback
functions, on the Modeling tab, in the Setup section, select Model Settings > Model
Properties. Then, on the Callbacks tab, select the PreLoadFcn or InitFcn callback
function in the Model callbacks pane.

Results

Displays the time domain signal and the spectrogram by running the simulation.

 gsmUplinkConfig

4-1047

4 System Objects — Alphabetical List

4-1048

More About
GSM Frames, Time Slots, and Bursts
In GSM, transmissions consist of TDMA frames. Each GSM TDMA frame consists of eight
time slots. The transmission data content of a time slot is called a burst. As described in

 gsmUplinkConfig

4-1049

Section 5.2 of 3GPP TS 45.011, a GSM time slot has a 156.25-symbol duration when using
the normal symbol period, which is a time interval of 15/26 ms or about 576.9
microseconds. A guard period of 8.25 symbols or about 30.46 microseconds separates
each time slot. The GSM standards describes a symbol as one bit period. Since GSM uses
GMSK modulation, there is one bit per bit period. The transmission timing of a burst
within a time slot is defined in terms of the bit number (BN). The BN refers to a particular
bit period within a time slot. The bit with the lowest BN is transmitted first. BN0 is the
first bit period, and BN156 is the last quarter-bit period.

This image from 3GPP TS 45.011 shows the relationship between different frame types
and the relationship between different burst types.

This table shows the supported burst types and their characteristics.

Burst Type Description Link Direction Useful Duration
NB Normal burst Uplink/Downlink 147
FB Frequency correction

burst
Downlink 147

4 System Objects — Alphabetical List

4-1050

Burst Type Description Link Direction Useful Duration
SB Synchronization

burst
Downlink 147

Dummy Dummy burst Downlink 147
AB Access burst Uplink 87
Off No burst sent Uplink/Downlink 0

Useful duration, described in Section 5.2.2 of 3GPP TS 45.002, is a characteristic of GSM
bursts. The useful duration, or useful part, of a burst is defined as beginning halfway
through BN0 and ending half a bit period before the start of the guard period. The guard
period is the period between bursts in successive time slots. This figure, from Section 2.2
of 3GPP TS 45.004, shows the leading and trailing ½ bit difference between the useful
and active parts of the burst.

For more information, see “GSM TDMA Frame Parameterization for Waveform
Generation”.

Training Sequence Code (TSC)
Normal bursts include a training sequence bits field assigned a bit pattern based on the
specified TSC. For GSM, you can select one of these eight training sequences for normal
burst type time slots.

 gsmUplinkConfig

4-1051

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62,
…, BN86)

0 (0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,
1,1,1)

1 (0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,
1,1,1)

2 (0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,
1,1,0)

3 (0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,
1,1,0)

4 (0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,
0,1,1)

5 (0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,
0,1,0)

6 (1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,
1,1,1)

7 (1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,
1,0,0)

For more information, see Section 5.2.3 in 3GPP TS 45.002.

References
[1] 3GPP TS 45.001. "GSM/EDGE Physical layer on the radio path. General description."

3rd Generation Partnership Project; Technical Specification Group Radio Access
Network.

[2] 3GPP TS 45.002. "GSM/EDGE Multiplexing and multiple access on the radio path." 3rd
Generation Partnership Project; Technical Specification Group Radio Access
Network.

[3] 3GPP TS 45.004. "GSM/EDGE Modulation." 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

4 System Objects — Alphabetical List

4-1052

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The SamplesPerSymbol, RiseTime, RiseDelay, FallTime, and FallDelay
properties must be set when creating the object, and their settings are static in the
generated code.

• The BurstType property must be set using the enumeration type instead of the string
representation. Use these gsmDownlinkBurstType enumerations:
gsmDownlinkBurstType.NB, gsmDownlinkBurstType.AB, and
gsmUplinkBurstType.Off. For example, this code assigns an access burst in time
slot 2 and 5.

cfg = gsmUplinkConfig

cfg =

 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

cfg.BurstType([2 5] +1) = gsmUplinkBurstType.AB

cfg =

 gsmUplinkConfig with properties:

 BurstType: [NB NB AB NB NB AB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]

 gsmUplinkConfig

4-1053

 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

See Also
Objects
gsmDownlinkConfig

Functions
gsmCheckTimeMask | gsmFrame | gsmInfo

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”

Introduced in R2019b

4 System Objects — Alphabetical List

4-1054

comm.HadamardCode
Package: comm

Generate Hadamard code

Description
The HadamardCode object generates a Hadamard code from a Hadamard matrix, whose
rows form an orthogonal set of codes. You can use orthogonal codes for spreading in
communication systems in which the receiver is perfectly synchronized with the
transmitter. In these systems, the despreading operation is ideal, because the codes
decorrelate completely.

To generate a Hadamard code:

1 Define and set up your Hadamard code object. See “Construction” on page 4-1055.
2 Call step to generate a Hadamard according to the properties of

comm.HadamardCode. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Construction
H = comm.HadamardCode creates a Hadamard code generator System object, H. This
object generates Hadamard codes from a set of orthogonal codes.

H = comm.HadamardCode(Name,Value) creates a Hadamard code generator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.HadamardCode

4-1055

Properties
Length

Length of generated code

Specify the length of the generated code as a numeric, integer scalar value with a power
of two. The default is 64.

Index

Row index of Hadamard matrix

Specify the row index of the Hadamard matrix as a numeric, integer scalar value in the
range [0, 1, ... , N-1]. N is the value of the Length on page 4-0 property. The
default is 60. An N×N Hadamard matrix, denoted as P(N), is defined recursively as
follows: P(1) = [1] P(2N) = [P(N) P(N); P(N) –P(N)] The NxN Hadamard matrix has the
property that P(N)×P(N)' = N×eye(N). The step method outputs code samples from the
row of the Hadamard matrix that you specify in this property.

When you set this property to an integer k, the output code has exactly k zero crossings,
for k = 0, 1, ... , N–1.

SamplesPerFrame

Number of output samples per frame

Specify the number of Hadamard code samples that the step method outputs as a
numeric, positive, integer scalar value. The default is 1.

When you set this property to a value of M, the step method outputs M samples of a
Hadamard code of length N. N equals the length of the code that you specify in the
Length on page 4-0 property.

OutputDataType

Data type of output

Specify the output data type as one of double | int8. The default is double.

4 System Objects — Alphabetical List

4-1056

Methods
reset Reset states of Hadamard code generator object
step Generate Hadamard code

Common to All System Objects
release Allow System object property value changes

Examples

Hadamard Code Sequence

Generate 10 samples of a Hadamard code sequence having a length of 128.

hadamard = comm.HadamardCode('Length',128,'SamplesPerFrame',10)

hadamard =
 comm.HadamardCode with properties:

 Length: 128
 Index: 60
 SamplesPerFrame: 10
 OutputDataType: 'double'

seq = hadamard()

seq = 10×1

 1
 1
 1
 1
 -1
 -1
 -1
 -1
 -1
 -1

 comm.HadamardCode

4-1057

Algorithms
This object implements the algorithm, inputs, and outputs described on the Hadamard
Code Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.OVSFCode | comm.WalshCode

Introduced in R2012a

4 System Objects — Alphabetical List

4-1058

reset
System object: comm.HadamardCode
Package: comm

Reset states of Hadamard code generator object

Syntax
reset(H)

Description
reset(H) resets the states of the HadamardCode object, H.

 reset

4-1059

step
System object: comm.HadamardCode
Package: comm

Generate Hadamard code

Syntax
Y = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Y = step(H) outputs a frame of the Hadamard code in column vector Y. Specify the
frame length with the SamplesPerFrame property. The Hadamard code corresponds to
one of the rows of an NxN Hadamard matrix, where N is a nonnegative power of 2, which
you specify in the Length property. Use the Index property to choose the row of the
Hadamard matrix. The step method outputs the code in a bi-polar format with 0 and 1
mapped to 1 and -1, respectively.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1060

comm.HDLCRCDetector
Package: comm

Detect errors in input data using CRC

Description
This HDL-optimized cyclic redundancy code (CRC) detector System object computes a
checksum on the input data and compares the result against the input checksum. Instead
of frame processing, the HDLCRCDetector System object processes streaming data. The
object has frame synchronization control signals for both input and output data streams.

To compute and compare checksums:

1 Create the comm.HDLCRCDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
CRCDet = comm.HDLCRCDetector
CRCDet = comm.HDLCRCDetector(Name,Value)
CRCDet = comm.HDLCRCDetector(poly,Name,Value)

Description
CRCDet = comm.HDLCRCDetector creates an HDL-optimized CRC detector System
object, CRCDet, that detects errors in the input data according to a specified generator
polynomial.

 comm.HDLCRCDetector

4-1061

CRCDet = comm.HDLCRCDetector(Name,Value)sets properties using one or more
name-value pairs. Enclose each property name in single quotes. For example,

CRCDet = comm.HDLCRCDetector('Polynomial',[1 0 0 0 1 0 0 0 0], ...
'FinalXORValue',[1 1 0 0 0 0 0 0]);

specifies a CRC8 polynomial and an 8-bit value to XOR with the final checksum.

CRCDet = comm.HDLCRCDetector(poly,Name,Value) creates an HDL-optimized
CRC detector System object, CRCDet, with the Polynomial property set to poly, and
the other specified property names set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Polynomial — Generator polynomial
[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] (default) | binary vector

Generator polynomial, specified as a binary vector, with coefficients in descending order
of powers. The vector length must be equal to the degree of the polynomial plus 1.

InitialState — Initial conditions of shift register
0 (default) | binary scalar | binary vector

Initial conditions of the shift register, specified as a binary, double-precision or single-
precision scalar or vector. If you specify this property as a vector, the vector length is the
degree of the generator polynomial that you specify in the Polynomial property. If you
specify this property as a scalar, the object expands the value to a vector of length equal
to the degree of the generator polynomial.

DirectMethod — Method of calculating checksum
false (default) | true

4 System Objects — Alphabetical List

4-1062

Method of calculating checksum, specified as a logical scalar. When this property is true,
the object uses the direct algorithm for CRC checksum calculations.

To learn about direct and non-direct algorithms, see “Cyclic Redundancy Check Codes”.

ReflectInput — Input byte order
false (default) | true

Input byte order, specified as a logical scalar. When this property is true, the object flips
the input data on a bytewise basis before it enters the shift register.

ReflectCRCChecksum — Checksum byte order
false (default) | true

Checksum byte order, specified as a logical scalar. When this property is true, the object
flips the output CRC checksum around its center.

FinalXORValue — Checksum mask
0 (default) | binary scalar | binary vector

Checksum mask, specified as a binary, double- or single-precision data type scalar or
vector. The object XORs the checksum with this value before appending the checksum to
the input data. If you specify this property as a vector, the vector length is the degree of
the generator polynomial that you specify in the Polynomial property. If you specify this
property as a scalar, the object expands the value to a vector of length equal to the degree
of the generator polynomial.

Usage

Syntax
[Y,startOut,endOut,validOut,err] = CRCn(X,startIn,endIn,validIn)

Description
[Y,startOut,endOut,validOut,err] = CRCn(X,startIn,endIn,validIn)
computes CRC checksums for an input message X based on the control signals and
compares the computed checksum with input checksum. If the two checksums are not
equal, the output err is set to 1 true).

 comm.HDLCRCDetector

4-1063

Input Arguments
X — Input message and appended checksum
binary column vector | scalar integer

Input message and appended checksum, specified as a binary vector or a scalar integer
representing several bits. For example, vector input [0,0,0,1,0,0,1,1] is equivalent
to uint8 input 19.

If the input is a vector, the data type can be double or logical. If the input is a scalar, the
data type can be unsigned integer or unsigned fixed-point with 0 fractional bits
(fi([],0,N,0)).

X can be part or all of the message to be checked.

The length of X must be less than or equal to the CRC length, and the CRC length must be
divisible by the length of X.

The CRC length is the order of the polynomial that you specify in the Polynomial
property.
Data Types: double | uint8 | uint16 | uint32 | logical | unsigned fi

startIn — Start of input message
logical scalar

Start of the input message, specified as a logical scalar.

endIn — End of input message
logical scalar

End of the input message, specified as a logical scalar.

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar. When validIn is 1 (true), the object
computes the CRC checksum for input X.

4 System Objects — Alphabetical List

4-1064

Output Arguments
Y — Message with checksum removed
binary column vector | scalar integer

Message with checksum removed, returned as a scalar integer or binary column vector
with the same width and data type as input X.

startOut — Start of input message
logical scalar

Start of the input message, returned as a logical scalar.

endOut — End of input message
logical scalar

End of the input message, returned as a logical scalar.

validOut — Validity of input data
logical scalar

Validity of input data, returned as a logical scalar. When validOut is 1 (true), the output
data Y is valid.

err — Checksum mismatch
logical scalar

Checksum mismatch, returned as a logical scalar. err is 1 (true) when the input
checksum does not match the calculated checksum.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

 comm.HDLCRCDetector

4-1065

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

CRC Encode and Decode for HDL

Encode and decode a signal using the HDL-optimized CRC generator and detector System
objects. This example shows how to include each object in a function for HDL code
generation.

Create a 32-bit message to be encoded, in two 16-bit columns.

msg = randi([0 1],16,2);

Run for 12 steps to accommodate the latency of both objects. Assign control signals for all
steps. The first two samples are the valid data, and the remainder are processing latency.

numSteps = 12;
startIn = logical([1 0 0 0 0 0 0 0 0 0 0 0]);
endIn = logical([0 1 0 0 0 0 0 0 0 0 0 0]);
validIn = logical([1 1 0 0 0 0 0 0 0 0 0 0]);

Pass random input to the HDLCRCGenerator System object™ while it is processing the
input message. The random data is not encoded because the input valid signal is 0 for
steps 3 to 10.

randIn = randi([0, 1],16,numSteps-2);
dataIn = [msg randIn];

Write a function that creates and calls each System object™. You can generate HDL from
these functions. The generator and detector objects both have a CRC length of 16 and use
the default polynomial.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

function [dataOut,startOut,endOut,validOut] = HDLCRC16Gen(dataIn,startIn,endIn,validIn)

4 System Objects — Alphabetical List

4-1066

%HDLCRC16Gen
% Generates CRC checksum using the comm.HDLCRCGenerator System object(TM)
% dataIn is a binary column vector.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent crcg16;
 if isempty(crcg16)
 crcg16 = comm.HDLCRCGenerator()
 end
 [dataOut,startOut,endOut,validOut] = crcg16(dataIn,startIn,endIn,validIn);
end

function [dataOut,startOut,endOut,validOut,err] = HDLCRC16Det(dataIn,startIn,endIn,validIn)
%HDLCRC16Det
% Checks CRC checksum using the comm.HDLCRCDetector System object(TM)
% dataIn is a binary column vector.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent crcd16;
 if isempty(crcd16)
 crcd16 = comm.HDLCRCDetector()
 end
 [dataOut,startOut,endOut,validOut,err] = crcd16(dataIn,startIn,endIn,validIn);
end

Call the CRC generator function. The encoded message is the original message plus a 16
bit checksum.

 for i = 1:numSteps
 [dataOutGen(:,i),startOutGen(i),endOutGen(i),validOutGen(i)] = ...
 HDLCRC16Gen(logical(dataIn(:,i)),startIn(i),endIn(i),validIn(i));
 end

crcg16 =

 comm.HDLCRCGenerator with properties:

 comm.HDLCRCDetector

4-1067

 Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
 InitialState: 0
 DirectMethod: false
 ReflectInput: false
 ReflectCRCChecksum: false
 FinalXORValue: 0

Add noise by flipping a bit in the message.

dataOutNoise = dataOutGen;
dataOutNoise(2,4) = ~dataOutNoise(2,4);

Call the CRC detector function. The output of the detector is the input message with the
checksum removed. If the input checksum was not correct, the err flag is set with the
last word of the output.

for i = 1:numSteps
[dataOut(:,i),startOut(i),endOut(i),validOut(i),err(i)] = ...
 HDLCRC16Det(logical(dataOutNoise(:,i)),startOutGen(i),endOutGen(i),validOutGen(i));
end

crcd16 =

 comm.HDLCRCDetector with properties:

 Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
 InitialState: 0
 DirectMethod: false
 ReflectInput: false
 ReflectCRCChecksum: false
 FinalXORValue: 0

Use the Logic Analyzer to view the input and output signals.

channels = {'validIn','startIn','endIn',...
 {'dataIn','Radix','Hexadecimal'},...
 'validOutGen','startOutGen','endOutGen',...
 {'dataOutGen','Radix','Hexadecimal'},...
 {'dataOutNoise','Radix','Hexadecimal'},...
 'validOut','startOut','endOut','err',...
 {'dataOut','Radix','Hexadecimal'}};
la = dsp.LogicAnalyzer('Name','CRC Encode and Decode','NumInputPorts',length(channels),...

4 System Objects — Alphabetical List

4-1068

 'BackgroundColor','Black','DisplayChannelHeight',8);

 for ii = 1:length(channels)
 if iscell(channels{ii})
 % Display data signals as hexadecimal integers
 c = channels{ii};
 modifyDisplayChannel(la,ii,'Name',c{1},c{2},c{3})
 % Convert binary column vector to integer
 dat2 = uint16(bi2de(eval(c{1})'));
 chanData{ii} = squeeze(dat2);
 else
 modifyDisplayChannel(la,ii,'Name',channels{ii})
 chanData{ii} = squeeze(eval(channels{ii})');
 end
 end
la(chanData{:})

 comm.HDLCRCDetector

4-1069

Algorithms

Timing Diagram
This waveform shows streaming data and the accompanying control signals for a CRC16
with 8-bit binary vector input. The input frames are contiguous, and the output frames
show space between them because the detector block removes the checksum word.

4 System Objects — Alphabetical List

4-1070

This waveform diagram shows continuous input data. Non-continuous data is also
supported.

Initial Delay
The HDLCRCDetector System object introduces a latency on the output. You can
compute the latency as follows, assuming the input data is continuous:

initialDelay = 3 * (CRCLength/inputDataWidth) + 2

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CRCDetector | comm.HDLCRCGenerator

Blocks
General CRC Syndrome Detector HDL Optimized

 comm.HDLCRCDetector

4-1071

Introduced in R2012b

4 System Objects — Alphabetical List

4-1072

comm.HDLCRCGenerator
Package: comm

Generate CRC code bits and append to input data

Description
This HDL-optimized cyclic redundancy code (CRC) generator System object generates
cyclic redundancy code (CRC) bits. Instead of frame processing, the HDLCRCGenerator
System object processes streaming data. The object has frame synchronization control
signals for both input and output data streams.

To generate cyclic redundancy code bits:

1 Create the comm.HDLCRCGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
CRCGen = comm.HDLCRCGenerator
CRCGen = comm.HDLCRCGenerator(Name,Value)
CRCGen = comm.HDLCRCGenerator(poly,Name,Value)

Description
CRCGen = comm.HDLCRCGenerator creates an HDL-optimized CRC generator System
object, CRCGen. This object generates CRC bits according to a specified generator
polynomial and appends them to the input data.

 comm.HDLCRCGenerator

4-1073

CRCGen = comm.HDLCRCGenerator(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in single quotes. For example,

CRCGen = comm.HDLCRCGenerator('Polynomial',[1 0 0 0 1 0 0 0 0], ...
'FinalXORValue',[1 1 0 0 0 0 0 0]);

specifies a CRC8 polynomial and an 8-bit value to XOR with the final checksum.

CRCGen = comm.HDLCRCGenerator(poly,Name,Value) sets the Polynomial
property to poly, and the other specified property names to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Polynomial — Generator polynomial
[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] (default) | binary vector

Generator polynomial, specified as a binary vector, with coefficients in descending order
of powers. The vector length must be equal to the degree of the polynomial plus 1.

InitialState — Initial conditions of shift register
0 (default) | binary scalar | binary vector

Initial conditions of the shift register, specified as a binary, double-precision or single-
precision scalar or vector. If you specify this property as a vector, the vector length is the
degree of the generator polynomial that you specify in the Polynomial property. If you
specify this property as a scalar, the object expands the value to a vector of length equal
to the degree of the generator polynomial.

DirectMethod — Method of calculating checksum
false (default) | true

Method of calculating checksum, specified as a logical scalar. When this property is true,
the object uses the direct algorithm for CRC checksum calculations.

4 System Objects — Alphabetical List

4-1074

To learn about direct and non-direct algorithms, see “Cyclic Redundancy Check Codes”.

ReflectInput — Input byte order
false (default) | true

Input byte order, specified as a logical scalar. When this property is true, the object flips
the input data on a bytewise basis before it enters the shift register.

ReflectCRCChecksum — Checksum byte order
false (default) | true

Checksum byte order, specified as a logical scalar. When this property is true, the object
flips the output CRC checksum around its center.

FinalXORValue — Checksum mask
0 (default) | binary scalar | binary vector

Checksum mask, specified as a binary, double- or single-precision data type scalar or
vector. The object XORs the checksum with this value before appending the checksum to
the input data. If you specify this property as a vector, the vector length is the degree of
the generator polynomial that you specify in the Polynomial property. If you specify this
property as a scalar, the object expands the value to a vector of length equal to the degree
of the generator polynomial.

Usage

Syntax
[Y,startOut,endOut,validOut] = CRCn(X,startIn,endIn, validIn)

Description
[Y,startOut,endOut,validOut] = CRCn(X,startIn,endIn, validIn)
generates CRC checksums for input message X based on control signals and appends the
checksums to X.

 comm.HDLCRCGenerator

4-1075

Input Arguments
X — Input message
binary column vector | scalar integer

Input message, specified as a binary vector or a scalar integer representing several bits.
For example, vector input [0,0,0,1,0,0,1,1] is equivalent to uint8 input 19.

If the input is a vector, the data type can be double or logical. If the input is a scalar, the
data type can be unsigned integer or unsigned fixed-point with 0 fractional bits
(fi([],0,N,0)).

X can be part or all of the message to be encoded.

The length of X must be less than or equal to the CRC length, and the CRC length must be
divisible by the length of X.

The CRC length is the order of the polynomial that you specify in the Polynomial
property.
Data Types: double | uint8 | uint16 | uint32 | logical | unsigned fi

startIn — Start of input message
logical scalar

Start of the input message, specified as a logical scalar.

endIn — End of input message
logical scalar

End of the input message, specified as a logical scalar.

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar. When validIn is 1 (true), the object
computes the CRC checksum for input X.

Output Arguments
Y — Output message with appended checksum
binary column vector | scalar integer

4 System Objects — Alphabetical List

4-1076

Output message, consisting of X with appended checksum, returned as a scalar integer or
binary column vector with the same width and data type as input X.

startOut — Start of input message
logical scalar

Start of the input message, returned as a logical scalar.

endOut — End of input message
logical scalar

End of the input message, returned as a logical scalar.

validOut — Validity of input data
logical scalar

Validity of input data, returned as a logical scalar. When validOut is 1 (true), the output
data Y is valid.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

 comm.HDLCRCGenerator

4-1077

CRC Encode and Decode for HDL

Encode and decode a signal using the HDL-optimized CRC generator and detector System
objects. This example shows how to include each object in a function for HDL code
generation.

Create a 32-bit message to be encoded, in two 16-bit columns.

msg = randi([0 1],16,2);

Run for 12 steps to accommodate the latency of both objects. Assign control signals for all
steps. The first two samples are the valid data, and the remainder are processing latency.

numSteps = 12;
startIn = logical([1 0 0 0 0 0 0 0 0 0 0 0]);
endIn = logical([0 1 0 0 0 0 0 0 0 0 0 0]);
validIn = logical([1 1 0 0 0 0 0 0 0 0 0 0]);

Pass random input to the HDLCRCGenerator System object™ while it is processing the
input message. The random data is not encoded because the input valid signal is 0 for
steps 3 to 10.

randIn = randi([0, 1],16,numSteps-2);
dataIn = [msg randIn];

Write a function that creates and calls each System object™. You can generate HDL from
these functions. The generator and detector objects both have a CRC length of 16 and use
the default polynomial.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

function [dataOut,startOut,endOut,validOut] = HDLCRC16Gen(dataIn,startIn,endIn,validIn)
%HDLCRC16Gen
% Generates CRC checksum using the comm.HDLCRCGenerator System object(TM)
% dataIn is a binary column vector.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent crcg16;
 if isempty(crcg16)
 crcg16 = comm.HDLCRCGenerator()

4 System Objects — Alphabetical List

4-1078

 end
 [dataOut,startOut,endOut,validOut] = crcg16(dataIn,startIn,endIn,validIn);
end

function [dataOut,startOut,endOut,validOut,err] = HDLCRC16Det(dataIn,startIn,endIn,validIn)
%HDLCRC16Det
% Checks CRC checksum using the comm.HDLCRCDetector System object(TM)
% dataIn is a binary column vector.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent crcd16;
 if isempty(crcd16)
 crcd16 = comm.HDLCRCDetector()
 end
 [dataOut,startOut,endOut,validOut,err] = crcd16(dataIn,startIn,endIn,validIn);
end

Call the CRC generator function. The encoded message is the original message plus a 16
bit checksum.

 for i = 1:numSteps
 [dataOutGen(:,i),startOutGen(i),endOutGen(i),validOutGen(i)] = ...
 HDLCRC16Gen(logical(dataIn(:,i)),startIn(i),endIn(i),validIn(i));
 end

crcg16 =

 comm.HDLCRCGenerator with properties:

 Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
 InitialState: 0
 DirectMethod: false
 ReflectInput: false
 ReflectCRCChecksum: false
 FinalXORValue: 0

Add noise by flipping a bit in the message.

 comm.HDLCRCGenerator

4-1079

dataOutNoise = dataOutGen;
dataOutNoise(2,4) = ~dataOutNoise(2,4);

Call the CRC detector function. The output of the detector is the input message with the
checksum removed. If the input checksum was not correct, the err flag is set with the
last word of the output.

for i = 1:numSteps
[dataOut(:,i),startOut(i),endOut(i),validOut(i),err(i)] = ...
 HDLCRC16Det(logical(dataOutNoise(:,i)),startOutGen(i),endOutGen(i),validOutGen(i));
end

crcd16 =

 comm.HDLCRCDetector with properties:

 Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
 InitialState: 0
 DirectMethod: false
 ReflectInput: false
 ReflectCRCChecksum: false
 FinalXORValue: 0

Use the Logic Analyzer to view the input and output signals.

channels = {'validIn','startIn','endIn',...
 {'dataIn','Radix','Hexadecimal'},...
 'validOutGen','startOutGen','endOutGen',...
 {'dataOutGen','Radix','Hexadecimal'},...
 {'dataOutNoise','Radix','Hexadecimal'},...
 'validOut','startOut','endOut','err',...
 {'dataOut','Radix','Hexadecimal'}};
la = dsp.LogicAnalyzer('Name','CRC Encode and Decode','NumInputPorts',length(channels),...
 'BackgroundColor','Black','DisplayChannelHeight',8);

 for ii = 1:length(channels)
 if iscell(channels{ii})
 % Display data signals as hexadecimal integers
 c = channels{ii};
 modifyDisplayChannel(la,ii,'Name',c{1},c{2},c{3})
 % Convert binary column vector to integer
 dat2 = uint16(bi2de(eval(c{1})'));
 chanData{ii} = squeeze(dat2);

4 System Objects — Alphabetical List

4-1080

 else
 modifyDisplayChannel(la,ii,'Name',channels{ii})
 chanData{ii} = squeeze(eval(channels{ii})');
 end
 end
la(chanData{:})

Algorithms

Timing Diagram
This waveform shows streaming data and the accompanying control signals for a CRC16
with 8-bit binary vector input. There must be enough space between the input frames to
insert the checksum word.

 comm.HDLCRCGenerator

4-1081

This waveform diagram shows continuous input data. Non-continuous data is also
supported. The output valid signal matches the input valid pattern.

Initial Delay
The HDLCRCGeneratorSystem object introduces a latency on the output. You can
compute the latency as follows, assuming the input data is continuous:

initialDelay = (CRCLength/inputDataWidth) + 2

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CRCGenerator | comm.HDLCRCDetector

Blocks
General CRC Generator HDL Optimized

4 System Objects — Alphabetical List

4-1082

Introduced in R2012a

 comm.HDLCRCGenerator

4-1083

comm.HDLRSDecoder
Package: comm

Decode message using Reed-Solomon decoder

Description
The HDL-optimized HDLRSDecoder System object recovers a message vector from a
Reed-Solomon (RS) codeword vector. For proper decoding, the code and polynomial
property values for this object must match those values in the corresponding encoder.

To recover a message vector from a Reed-Solomon codeword vector:

1 Create the comm.HDLRSDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Troubleshooting
• Each input frame must contain more than (N-K)*2 symbols and fewer than or exactly

N symbols. The object infers a shortened code when the number of valid data samples
between startIn and endIn is less than N. A shortened code still requires N cycles to
perform the Chien search. If the input message is less than N symbols, leave a guard
interval of at least N - size inactive cycles before starting the next frame, where
sizeis the message length.

• The decoder can operate on up to four messages at a time. If the object receives the
start of a fifth message before completely decoding the first message, the object drops
data samples from the first message. To avoid this issue, increase the number of
inactive cycles between input messages.

• The generator polynomial is not specified explicitly. However, it is defined by the
codeword length, the message length, and the B value for the starting exponent of the
roots. To get the value of B from a generator polynomial, use the genpoly2b function.

4 System Objects — Alphabetical List

4-1084

Creation

Syntax
RSDec = comm.HDLRSDecoder
RSDec = comm.HDLRSDecoder(Name,Value)
RSDec = comm.HDLRSDecoder(N,K,Name,Value)

Description
RSDec = comm.HDLRSDecoder creates an HDL-optimized RS decoder System object,
RSDec, that performs Reed-Solomon decoding.

RSDec = comm.HDLRSDecoder(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in single quotes. For example,

comm.HDLRSDecoder('BSource','Property','B',2)

sets a starting power of 2 for the roots of the primitive polynomial.

RSDec = comm.HDLRSDecoder(N,K,Name,Value) sets the CodewordLength
property to N, the MessageLength property to K, and other specified property names to
the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

B — Starting power for roots of primitive polynomial
1 (default) | positive integer

Starting power for roots of the primitive polynomial, specified as a positive integer.

 comm.HDLRSDecoder

4-1085

Dependencies

The object uses this value when you set BSource to 'Property'.

BSource — Source of starting power for roots of primitive polynomial
'Auto' (default) | 'Property'

Source of the starting power for roots of the primitive polynomial, specified as either
'Property' or 'Auto'. When you select 'Auto', the object uses B = 1.

CodewordLength — Number of symbols, N, in RS codeword
7 (default) | positive integer

Number of symbols, N, in the RS codeword, specified as a positive integer. This value is
rounded up to 2M–1. M is the degree of the primitive polynomial, as specified by the
PrimitivePolynomialSource and PrimitivePolynomial properties. The difference
of CodewordLength – MessageLength must be an even integer.

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

If you set PrimitivePolynomialSource to 'Auto', then CodewordLength must be in
the range 3 < CodewordLength ≤ 216 – 1.

If you set PrimitivePolynomialSource to 'Property', then CodewordLength must
be in the range 3 ≤ CodewordLength ≤ 2M– 1. M must be in the range 3 ≤ M ≤ 16.

MessageLength — Message length, K
3 (default) | positive integer

Message length, K, specified as a positive integer. The difference of CodewordLength –
MessageLength must be an even integer.

NumErrorsOutputPort — Enable number of errors output argument
false (default) | true

When you set this property to true, the object returns the number of corrected errors.
The number of corrected errors is not valid when errOut is true, since there were more
errors than could be corrected.

PrimitivePolynomialSource — Source of primitive polynomial
'Auto' (default) | 'Property'

Source of the primitive polynomial, specified as either 'Property' or 'Auto'.

4 System Objects — Alphabetical List

4-1086

• When you set this property to 'Auto', the object uses a primitive polynomial of
degree M = ceil(log2(CodewordLength+1)), which is the result of
fliplr(de2bi(primpoly(M))).

• When you set this property to 'Property', you must specify a polynomial using the
PrimitivePolynomial property.

PrimitivePolynomial — Primitive polynomial
[1 0 1 1] (default) | binary row vector

Primitive polynomial, specified as a binary row vector that represents a primitive
polynomial over gf(2) of degree M, in descending order of powers. The polynomial
defines the finite field gf(2M) corresponding to the integers that form messages and
codewords.
Dependencies

The object uses this value when you set PrimitivePolynomialSource to 'Property'.

Usage

Syntax
[Y,startOut,endOut,validOut,errOut] = RSDec(X,startIn,endIn,validIn)
[Y,startOut,endOut,validOut,errOut,numErrors] = RSDec(X,startIn,
endIn,validIn)

Description
[Y,startOut,endOut,validOut,errOut] = RSDec(X,startIn,endIn,validIn)
decodes one encoded message symbol, X, and returns the decoded symbol Y. The start
and end signals indicate the message frame boundaries. If errOut is 1 (true), then the
object detected uncorrectable errors in the input frame.

[Y,startOut,endOut,validOut,errOut,numErrors] = RSDec(X,startIn,
endIn,validIn) decodes the input data, and also returns the number of errors detected
and corrected. To use this syntax, set the NumErrorsOutputPort property to true. If
errOut is 1 (true), then the object detected uncorrectable errors in the output frame,
and numErrors is invalid.

 comm.HDLRSDecoder

4-1087

Input Arguments
X — Input message data or parity symbols
integer

Input message data and parity symbols, one symbol at a time, specified as an unsigned
integer or fi() with any binary point scaling.

double type is allowed for simulation but not supported for HDL code generation.
Data Types: double | uint8 | uint16 | uint32 | fi

startIn — Start of input data frame
logical scalar

Start of input data frame, specified as a logical scalar.
Data Types: logical

endIn — End of input data frame
logical scalar

End of input data frame, specified as a logical scalar.
Data Types: logical

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar.
Data Types: logical

Output Arguments
Y — Message data symbols
integer

Message data symbols, returned one symbol at a time, as an integer with the same data
type as the input message, X.
Data Types: double | uint8 | uint16 | uint32 | fi

4 System Objects — Alphabetical List

4-1088

startOut — Start of output data frame
logical scalar

Start of output data frame, returned as a logical scalar.
Data Types: logical

endOut — End of output data frame
logical scalar

End of output data frame, returned as a logical scalar.
Data Types: logical

validOut — Validity of output data
logical scalar

Validity of output data, returned as a logical scalar.
Data Types: logical

errOut — Uncorrectable error in output data frame
logical scalar

Uncorrectable error in output data frame, returned as a logical scalar. This signal is 1
(true) when the message frame contains uncorrectable errors. In this case, the output
data symbols are corrupted. This value is valid when endOut is 1 (true).
Data Types: logical

numErrors — Number of errors detected and corrected
integer

Number of errors detected and corrected, returned as an integer. This value is valid when
endOut is 1 (true) and errOut is 0 (false).
Data Types: uint8

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

 comm.HDLRSDecoder

4-1089

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Reed-Solomon Coding and Error Detection for HDL

Encode and decode a signal using Reed Solomon encoder and decoder System objects.
This example shows how to include each object in a function for HDL code generation.

Create a random message to encode. This message is smaller than the codeword length to
show how the objects support shortened codes. Pad the message with zeros to
accommodate the latency of the decoder, including the Chien search.

messageLength = 188;
dataIn = [randi([0,255],1,messageLength,'uint8') zeros(1,1024-messageLength)];

Write a function that creates and calls a HDLRSEncoder System object™ with an
RS(255,239) code. This code is used in the IEEE® 802.16 Broadband Wireless Access
standard. B is the starting power of the roots of the primitive polynomial. You can
generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

function [dataOut,startOut,endOut,validOut] = HDLRSEnc80216(dataIn,startIn,endIn,validIn)
%HDLRSEnc80216
% Processes one sample of data using the comm.HDLRSEncoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent rsEnc80216;
 if isempty(rsEnc80216)
 rsEnc80216 = comm.HDLRSEncoder(255,239,'BSource','Property','B',0)

4 System Objects — Alphabetical List

4-1090

 end
 [dataOut,startOut,endOut,validOut] = rsEnc80216(dataIn,startIn,endIn,validIn);
end

Call the function to encode the message.

for ii = 1:1024
 messageStart = (ii==1);
 messageEnd = (ii==messageLength);
 validIn = (ii<=messageLength);
 [encOut(ii),startOut(ii),endOut(ii),validOut(ii)] = ...
 HDLRSEnc80216(dataIn(ii),messageStart,messageEnd,validIn);
end

rsEnc80216 =

 comm.HDLRSEncoder with properties:

 CodewordLength: 255
 MessageLength: 239
 PrimitivePolynomialSource: 'Auto'
 PuncturePatternSource: 'None'
 BSource: 'Property'
 B: 0

Inject errors at random locations in the encoded message. Reed-Solomon can correct up
to (N – K)/2 errors in each N symbols. So, in this example, the error correction capability
is (255 – 239)/2=8 symbols.

numErrors = 8;
loc = randperm(messageLength,numErrors);
% encOut is qualified by validOut, use an offset for injecting errors
vi = find(validOut==true,1);
for i = 1:numErrors
 idx = loc(i)+vi;
 symbol = encOut(idx);
 encOut(idx) = randi([0 255],'uint8');
 fprintf('Symbol(%d): was 0x%x, now 0x%x\n',loc(i),symbol,encOut(idx))
end

Symbol(147): was 0x1f, now 0x82
Symbol(16): was 0x6b, now 0x82

 comm.HDLRSDecoder

4-1091

Symbol(173): was 0x3, now 0xd1
Symbol(144): was 0x66, now 0xcb
Symbol(90): was 0x13, now 0xa4
Symbol(80): was 0x5a, now 0x60
Symbol(82): was 0x95, now 0xcf
Symbol(56): was 0xf5, now 0x88

Write a function that creates and calls a HDLRSDecoder System object™. This object
must have the same code and polynomial as the encoder. You can generate HDL from this
function.

function [dataOut,startOut,endOut,validOut,err] = HDLRSDec80216(dataIn,startIn,endIn,validIn)
%HDLRSDec80216
% Processes one sample of data using the comm.HDLRSDecoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent rsDec80216;
 if isempty(rsDec80216)
 rsDec80216 = comm.HDLRSDecoder(255,239,'BSource','Property','B',0)
 end
 [dataOut,startOut,endOut,validOut,err] = rsDec80216(dataIn,startIn,endIn,validIn);
end

Call the function to detect errors in the encoded message.

for ii = 1:1024
 [decOut(ii),decStartOut(ii),decEndOut(ii),decValidOut(ii),decErrOut(ii)] = ...
 HDLRSDec80216(encOut(ii),startOut(ii),endOut(ii),validOut(ii));
end

rsDec80216 =

 comm.HDLRSDecoder with properties:

 CodewordLength: 255
 MessageLength: 239
 PrimitivePolynomialSource: 'Auto'
 BSource: 'Property'
 B: 0

4 System Objects — Alphabetical List

4-1092

 NumErrorsOutputPort: false

Select the valid decoder output and compare the decoded symbols to the original
message.

decOut = decOut(decValidOut==1);
originalMessage = dataIn(1:messageLength);
if all(originalMessage==decOut)
 fprintf('All %d message symbols were correctly decoded.\n',messageLength)
else
 for jj = 1:messageLength
 if dataIn(jj)~=decOut(jj)
 fprintf('Error in decoded symbol(%d). Original 0x%x, Decoded 0x%x.\n',jj,dataIn(jj),decOut(jj))
 end
 end
end

All 188 message symbols were correctly decoded.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation, these usage notes and limitations apply:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.HDLRSEncoder | comm.RSDecoder

Blocks
Integer-Output RS Decoder HDL Optimized

 comm.HDLRSDecoder

4-1093

Introduced in R2012b

4 System Objects — Alphabetical List

4-1094

comm.HDLRSEncoder
Package: comm

Encode message using Reed-Solomon encoder

Description
The HDL-optimized HDLRSEncoder System object creates a Reed-Solomon (RS) code
with message and codeword lengths that you specify.

To encode a message using a Reed-Solomon code:

1 Create the comm.HDLRSEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
RSEnc = comm.HDLRSEncoder
RSEnc = comm.HDLRSEncoder(Name,Value)
RSEnc = comm.HDLRSEncoder(N,K,Name,Value)

Description
RSEnc = comm.HDLRSEncoder creates an HDL-optimized block encoder System object,
RSEnc, that performs Reed-Solomon encoding in a streaming fashion for HDL.

RSEnc = comm.HDLRSEncoder(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in single quotes. For example,

comm.HDLRSEncoder('BSource','Property','B',2)

 comm.HDLRSEncoder

4-1095

sets a starting power of 2 for the roots of the primitive polynomial.

RSEnc = comm.HDLRSEncoder(N,K,Name,Value) sets the CodewordLength
property to N, the MessageLength property to K, and other specified property names to
the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

B — Starting power for roots of primitive polynomial
1 (default) | positive integer

Starting power for roots of the primitive polynomial, specified as a positive integer.

Dependencies

The object uses this value when you set BSource to 'Property'.

BSource — Source of starting power for roots of primitive polynomial
'Auto' (default) | 'Property'

Source of the starting power for roots of the primitive polynomial, specified as either
'Property' or 'Auto'. When you select 'Auto', the object uses B = 1.

CodewordLength — Number of symbols, N, in RS codeword
7 (default) | positive integer

Number of symbols, N, in the RS codeword, specified as a positive integer. This value is
rounded up to 2M–1. M is the degree of the primitive polynomial, as specified by the
PrimitivePolynomialSource and PrimitivePolynomial properties. The difference
of CodewordLength – MessageLength must be an even integer.

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

4 System Objects — Alphabetical List

4-1096

If you set PrimitivePolynomialSource to 'Auto', then CodewordLength must be in
the range 3 < CodewordLength ≤ 216 – 1.

If you set PrimitivePolynomialSource to 'Property', then CodewordLength must
be in the range 3 ≤ CodewordLength ≤ 2M– 1. M must be in the range 3 ≤ M ≤ 16.

MessageLength — Message length, K
3 (default) | positive integer

Message length, K, specified as a positive integer. The difference of CodewordLength –
MessageLength must be an even integer.

PrimitivePolynomialSource — Source of primitive polynomial
'Auto' (default) | 'Property'

Source of the primitive polynomial, specified as either 'Property' or 'Auto'.

• When you set this property to 'Auto', the object uses a primitive polynomial of
degree M = ceil(log2(CodewordLength+1)), which is the result of
fliplr(de2bi(primpoly(M))).

• When you set this property to 'Property', you must specify a polynomial using the
PrimitivePolynomial property.

PrimitivePolynomial — Primitive polynomial
[1 0 1 1] (default) | binary row vector

Primitive polynomial, specified as a binary row vector that represents a primitive
polynomial over gf(2) of degree M, in descending order of powers. The polynomial
defines the finite field gf(2M) corresponding to the integers that form messages and
codewords.

Dependencies

The object uses this value when you set PrimitivePolynomialSource to 'Property'.

PuncturePatternSource — Source of puncture pattern
'None' (default) | 'Property'

Source of the puncture pattern, specified as 'None' or 'Property'. If you set this
property to 'None', then the object does not apply puncturing to the code. If you set this
property to 'Property', then the object punctures the code based on a puncture pattern
vector specified in the PuncturePattern property.

 comm.HDLRSEncoder

4-1097

PuncturePattern — Pattern used to puncture encoded data
[ones(2,1); zeros(2,1)] (default) | binary column vector

Pattern used to puncture the encoded data, specified as a double-precision, binary column
vector with a length of CodewordLength – MessageLength. The default is
[ones(2,1); zeros(2,1)]. Zeros in the puncture pattern vector indicate the position
of the parity symbols that are punctured or excluded from each codeword.

Dependencies

This property applies when you set the PuncturePatternSource property to
'Property'.

Usage

Syntax
[Y,startOut,endOut,validOut] = RSEnc(X,startIn,endIn,validIn)

Description
[Y,startOut,endOut,validOut] = RSEnc(X,startIn,endIn,validIn) encodes
one input message symbol, X, and returns one symbol of encoded data, Y. The start and
end signals indicate the message frame boundaries. The object returns associated parity
symbols at the end of each message frame.

Input Arguments
X — Input message symbol
integer

Input message data, one symbol at a time, specified as an unsigned integer or fi() with
any binary point scaling. The word length of each symbol must be
ceil(log2(CodewordLength+1)).

double type is allowed for simulation but not supported for HDL code generation.
Data Types: double | uint8 | uint16 | uint32 | fi

4 System Objects — Alphabetical List

4-1098

startIn — Start of input data frame
logical scalar

Start of input data frame, specified as a logical scalar.
Data Types: logical

endIn — End of input data frame
logical scalar

End of input data frame, specified as a logical scalar.
Data Types: logical

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar.
Data Types: logical

Output Arguments
Y — Output message data and parity symbols
integer

Message data and parity symbols, returned one symbol at a time, as an integer with the
same data type as the input message, X.
Data Types: double | uint8 | uint16 | uint32 | fi

startOut — Start of output data frame
logical scalar

Start of output data frame, returned as a logical scalar.
Data Types: logical

endOut — End of output data frame
logical scalar

End of output data frame, returned as a logical scalar.
Data Types: logical

 comm.HDLRSEncoder

4-1099

validOut — Validity of output data
logical scalar

Validity of output data, returned as a logical scalar.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Reed-Solomon Coding and Error Detection for HDL

Encode and decode a signal using Reed Solomon encoder and decoder System objects.
This example shows how to include each object in a function for HDL code generation.

Create a random message to encode. This message is smaller than the codeword length to
show how the objects support shortened codes. Pad the message with zeros to
accommodate the latency of the decoder, including the Chien search.

messageLength = 188;
dataIn = [randi([0,255],1,messageLength,'uint8') zeros(1,1024-messageLength)];

Write a function that creates and calls a HDLRSEncoder System object™ with an
RS(255,239) code. This code is used in the IEEE® 802.16 Broadband Wireless Access
standard. B is the starting power of the roots of the primitive polynomial. You can
generate HDL from this function.

4 System Objects — Alphabetical List

4-1100

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

function [dataOut,startOut,endOut,validOut] = HDLRSEnc80216(dataIn,startIn,endIn,validIn)
%HDLRSEnc80216
% Processes one sample of data using the comm.HDLRSEncoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent rsEnc80216;
 if isempty(rsEnc80216)
 rsEnc80216 = comm.HDLRSEncoder(255,239,'BSource','Property','B',0)
 end
 [dataOut,startOut,endOut,validOut] = rsEnc80216(dataIn,startIn,endIn,validIn);
end

Call the function to encode the message.

for ii = 1:1024
 messageStart = (ii==1);
 messageEnd = (ii==messageLength);
 validIn = (ii<=messageLength);
 [encOut(ii),startOut(ii),endOut(ii),validOut(ii)] = ...
 HDLRSEnc80216(dataIn(ii),messageStart,messageEnd,validIn);
end

rsEnc80216 =

 comm.HDLRSEncoder with properties:

 CodewordLength: 255
 MessageLength: 239
 PrimitivePolynomialSource: 'Auto'
 PuncturePatternSource: 'None'
 BSource: 'Property'
 B: 0

 comm.HDLRSEncoder

4-1101

Inject errors at random locations in the encoded message. Reed-Solomon can correct up
to (N – K)/2 errors in each N symbols. So, in this example, the error correction capability
is (255 – 239)/2=8 symbols.

numErrors = 8;
loc = randperm(messageLength,numErrors);
% encOut is qualified by validOut, use an offset for injecting errors
vi = find(validOut==true,1);
for i = 1:numErrors
 idx = loc(i)+vi;
 symbol = encOut(idx);
 encOut(idx) = randi([0 255],'uint8');
 fprintf('Symbol(%d): was 0x%x, now 0x%x\n',loc(i),symbol,encOut(idx))
end

Symbol(147): was 0x1f, now 0x82
Symbol(16): was 0x6b, now 0x82
Symbol(173): was 0x3, now 0xd1
Symbol(144): was 0x66, now 0xcb
Symbol(90): was 0x13, now 0xa4
Symbol(80): was 0x5a, now 0x60
Symbol(82): was 0x95, now 0xcf
Symbol(56): was 0xf5, now 0x88

Write a function that creates and calls a HDLRSDecoder System object™. This object
must have the same code and polynomial as the encoder. You can generate HDL from this
function.

function [dataOut,startOut,endOut,validOut,err] = HDLRSDec80216(dataIn,startIn,endIn,validIn)
%HDLRSDec80216
% Processes one sample of data using the comm.HDLRSDecoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data.
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

 persistent rsDec80216;
 if isempty(rsDec80216)
 rsDec80216 = comm.HDLRSDecoder(255,239,'BSource','Property','B',0)
 end
 [dataOut,startOut,endOut,validOut,err] = rsDec80216(dataIn,startIn,endIn,validIn);
end

4 System Objects — Alphabetical List

4-1102

Call the function to detect errors in the encoded message.

for ii = 1:1024
 [decOut(ii),decStartOut(ii),decEndOut(ii),decValidOut(ii),decErrOut(ii)] = ...
 HDLRSDec80216(encOut(ii),startOut(ii),endOut(ii),validOut(ii));
end

rsDec80216 =

 comm.HDLRSDecoder with properties:

 CodewordLength: 255
 MessageLength: 239
 PrimitivePolynomialSource: 'Auto'
 BSource: 'Property'
 B: 0
 NumErrorsOutputPort: false

Select the valid decoder output and compare the decoded symbols to the original
message.

decOut = decOut(decValidOut==1);
originalMessage = dataIn(1:messageLength);
if all(originalMessage==decOut)
 fprintf('All %d message symbols were correctly decoded.\n',messageLength)
else
 for jj = 1:messageLength
 if dataIn(jj)~=decOut(jj)
 fprintf('Error in decoded symbol(%d). Original 0x%x, Decoded 0x%x.\n',jj,dataIn(jj),decOut(jj))
 end
 end
end

All 188 message symbols were correctly decoded.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.HDLRSEncoder

4-1103

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.HDLRSDecoder | comm.RSEncoder

Blocks
Integer-Input RS Encoder HDL Optimized

Introduced in R2012b

4 System Objects — Alphabetical List

4-1104

comm.HelicalDeinterleaver
Package: comm

Restore ordering of symbols using helical array

Description
The HelicalDeinterleaver object permutes the symbols in the input signal by placing
them in a row-by-row array and then selecting groups helically to send to the output port.

To helically deinterleave input symbols:

1 Define and set up your helical deinterleaver object. See “Construction” on page 4-
1105.

2 Call step to deinterleave input symbols according to the properties of
comm.HelicalDeinterleaver. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.HelicalDeinterleaver creates a helical deinterleaver System object, H.
This object restores the original ordering of a sequence that was interleaved using the
helical interleaver System object.

H = comm.HelicalDeinterleaver(Name,Value) creates a helical deinterleaver
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.HelicalDeinterleaver

4-1105

Properties
NumColumns

Number of columns in helical array

Specify the number of columns in the helical array as a positive integer scalar value. The
default is 6.

GroupSize

Size of each group of input symbols

Specify the size of each group of input symbols as a positive integer scalar value. The
default is 4.

StepSize

Helical array step size

Specify number of rows of separation between consecutive input groups in their
respective columns of the helical array. This property requires a positive integer scalar
value. The default is 1.

InitialConditions

Initial conditions of helical array

Specify the value that is initially stored in the helical array as a numeric scalar value. The
default is 0.

Methods
reset Reset states of the helical deinterleaver object
step Restore ordering of symbols using a helical array

Common to All System Objects
release Allow System object property value changes

4 System Objects — Alphabetical List

4-1106

Examples

Helical Interleaving and Deinterleaving

Create helical interleaver and deinterleaver objects.

interleaver = comm.HelicalInterleaver('GroupSize',2,'NumColumns',3, ...
 'InitialConditions',-1);
deinterleaver = comm.HelicalDeinterleaver('GroupSize',2,'NumColumns',3, ...
 'InitialConditions',-1);

Generate random data. Interleave and then deinterleave the data.

[dataIn,dataOut] = deal([]);

for k = 1:10
 data = randi(7,6,1);
 intData = interleaver(data);
 deIntData = deinterleaver(intData);

 dataIn = cat(1,dataIn,data);
 dataOut = cat(1,dataOut,deIntData);
end

Determine the delay through the interleaver and deinterleaver pair.

intlvDelay = finddelay(dataIn,dataOut)

intlvDelay = 6

After taking the interleaving delay into account, confirm that the original and
deinterleaved data are identical.

isequal(dataIn(1:end-intlvDelay),dataOut(1+intlvDelay:end))

ans = logical
 1

 comm.HelicalDeinterleaver

4-1107

Algorithms
This object implements the algorithm, inputs, and outputs described on the Helical
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.HelicalInterleaver | comm.MultiplexedDeinterleaver

Introduced in R2012a

4 System Objects — Alphabetical List

4-1108

reset
System object: comm.HelicalDeinterleaver
Package: comm

Reset states of the helical deinterleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the HelicalDeinterleaver object, H.

 reset

4-1109

step
System object: comm.HelicalDeinterleaver
Package: comm

Restore ordering of symbols using a helical array

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a helical interleaver and returns Y. The input X must be a column vector. The data
type must be numeric, logical, or fixed-point (fi objects). Y has the same data type as X.
The helical deinterleaver object uses an array for its computations. If you set the
NumColumns property of the object to C, then the array has C columns and unlimited
rows. If you set the GroupSize property to N, then the object accepts an input of length
C×N and inserts it into the next N rows of the array. The object also places the value of
the InitialConditions property into certain positions in the top few rows of the array. This
accommodates the helical pattern and also preserves the vector indices of symbols that
pass through the HelicalInterleaver and HelicalDeinterleaver objects. The
output consists of consecutive groups of N symbols. The object selects the k-th output
group in the array from column k mod C. This selection is of type helical because of the
reduction modulo C and because the first symbol in the k-th group is in row 1+(k-1)×s,
where s is the value for the StepSize property.

Note obj specifies the System object on which to run this step method.

4 System Objects — Alphabetical List

4-1110

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1111

comm.HelicalInterleaver
Package: comm

Permute input symbols using helical array

Description
The HelicalInterleaver object permutes the symbols in the input signal by placing
them in an array in a helical arrangement and then sending rows of the array to the
output port.

To helically interleave input symbols:

1 Define and set up your helical interleaver object. See “Construction” on page 4-1112.
2 Call step to interleave input symbols according to the properties of

comm.HelicalInterleaver. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.HelicalInterleaver creates a helical interleaver System object, H. This
object permutes the input symbols in the input signal by placing them in an array in a
helical arrangement.

H = comm.HelicalInterleaver(Name,Value) creates a helical interleaver object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1112

Properties
NumColumns

Number of columns in helical array

Specify the number of columns in the helical array as a positive integer scalar value. The
default is 6.

GroupSize

Size of each group of input symbols

Specify the size of each group of input symbols as a positive integer scalar value. The
default is 4.

StepSize

Helical array step size

Specify the number of rows of separation between consecutive input groups in their
respective columns of the helical array. This property requires as a positive integer scalar
value . The default is 1.

InitialConditions

Initial conditions of helical array

Specify the value that is initially stored in the helical array as a numeric scalar value. The
default is 0.

Methods
reset Reset states of the helical interleaver object
step Permute input symbols using a helical array

Common to All System Objects
release Allow System object property value changes

 comm.HelicalInterleaver

4-1113

Examples

Helical Interleaving and Deinterleaving

Create helical interleaver and deinterleaver objects.

interleaver = comm.HelicalInterleaver('GroupSize',2,'NumColumns',3, ...
 'InitialConditions',-1);
deinterleaver = comm.HelicalDeinterleaver('GroupSize',2,'NumColumns',3, ...
 'InitialConditions',-1);

Generate random data. Interleave and then deinterleave the data.

[dataIn,dataOut] = deal([]);

for k = 1:10
 data = randi(7,6,1);
 intData = interleaver(data);
 deIntData = deinterleaver(intData);

 dataIn = cat(1,dataIn,data);
 dataOut = cat(1,dataOut,deIntData);
end

Determine the delay through the interleaver and deinterleaver pair.

intlvDelay = finddelay(dataIn,dataOut)

intlvDelay = 6

After taking the interleaving delay into account, confirm that the original and
deinterleaved data are identical.

isequal(dataIn(1:end-intlvDelay),dataOut(1+intlvDelay:end))

ans = logical
 1

4 System Objects — Alphabetical List

4-1114

Algorithms
This object implements the algorithm, inputs, and outputs described on the Helical
Interleaver block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.HelicalDeinterleaver | comm.MultiplexedInterleaver

Introduced in R2012a

 comm.HelicalInterleaver

4-1115

reset
System object: comm.HelicalInterleaver
Package: comm

Reset states of the helical interleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the HelicalInterleaver object, H.

4 System Objects — Alphabetical List

4-1116

step
System object: comm.HelicalInterleaver
Package: comm

Permute input symbols using a helical array

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector. The data type must be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X. The helical interleaver object places the elements
of X in an array in a helical fashion. If you set the NumColumns property of the object to
C, then the array has C columns and unlimited rows. If you set the GroupSize property to
N, then the object accepts an input of length C×N and partitions the input into
consecutive groups of N symbols. The object places the k-th group in the array along
column k mod C. This placement is of type helical because of the reduction modulo C and
because the first symbol in the k-th group is in the row 1+(k-1)×s, where s is the value for
the StepSize property. Positions in the array that do not contain input symbols have
default contents specified by the InitialConditions property. The object outputs C×N
symbols from the array by reading the next N rows sequentially.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-1117

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1118

comm.IntegerToBit
Package: comm

(To be removed) Convert vector of integers to vector of bits

Note will be removed in a future release. Use de2bi instead. For more information, see
“Compatibility Considerations”.

Description
The IntegerToBit object maps each integer (or fixed-point value) in the input vector to
a group of bits in the output vector.

To map integers to bits:

1 Define and set up your integer to bit object. See “Construction” on page 4-1119.
2 Call step to map integers in the input vector to groups of bits in the output vector

according to the properties of comm.IntegerToBit. The behavior of step is specific
to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.IntegerToBit creates an integer-to-bit converter System object, H. This
object maps a vector of integer-valued or fixed-point inputs to a vector of bits.

H = comm.IntegerToBit(Name,Value) creates an integer-to-bit converter object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.IntegerToBit

4-1119

H = comm.IntegerToBit(NUMBITS,Name,Value) creates an integer-to-bit converter
object, H. This object has the BitsPerInteger property set to NUMBITS and the other
specified properties set to the specified values.

Properties
BitsPerInteger

Number of bits per integer

Specify the number of bits the System object uses to represent each input integer. You
must set this property to a scalar integer between 1 and 32. The default is 3.

MSBFirst

Output bit words with first bit as most significant bit

Set this property to true to indicate that the first bit of the output bit words is the most
significant bit (MSB). The default is true. Set this property to false to indicate that the
first bit of the output bit words is the least significant bit (LSB).

SignedIntegerInput

Assume inputs are signed integers

Set this property to true if the integer inputs are signed. The default is false. Set this
property to false if the integer inputs are unsigned. If the SignedIntegerInput on
page 4-0 property is false, the input values must be between 0 and (2^N)–1. In this
case, N is the value you specified in the BitsPerInteger on page 4-0 property.
When you set this property to true, the input values must be between –(2(N–1)) and (2(N–
1))–1.

OutputDataType

Data type of output

Specify output data type as one of Full precision | Smallest unsigned integer |
Same as input | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
logical. The default is Full precision.

4 System Objects — Alphabetical List

4-1120

When the input signal is an integer data type, you must have a Fixed-Point Designer user
license to use this property in Smallest unsigned integer or Full precision
mode.

When you set this property to Full precision, the object determines the output data
type based on the input data type. If the input data type is double- or single-precision, the
output data has the same data type as the input data. Otherwise, the output data type is
determined in the same way as when you set this property to Smallest unsigned
integer.

When you set this property to Same as input, and the input data type is numeric or
fixed-point integer (fi object), the output data has the same data type as the input data.

Methods
step (To be removed) Convert vector of integers to vector of bits

Common to All System Objects
release Allow System object property value changes

Examples

Convert random integers to 4-bit words

 hIntToBit = comm.IntegerToBit(4);
 intData = randi([0 2^hIntToBit.BitsPerInteger-1],3,1);
 bitData = step(hIntToBit,intData)

bitData = 12×1

 1
 1
 0
 1
 1
 1
 1
 0

 comm.IntegerToBit

4-1121

 0
 0
 ⋮

Algorithms
This object implements the algorithm, inputs, and outputs described on the Integer to Bit
Converter block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.IntegerToBit will be removed in a future release. Use
de2bi instead.
Not recommended starting in R2019b

Data types as supported by comm.IntegerToBit are not inherently supported by functions.
This code shows decimal to binary conversion for various data types using this function.

Examples Using de2bi for Various Data Types
function compde2bi

% Number of integers
n = randi([1 100]);

% Default
h1 = comm.IntegerToBit;
bpi = h1.BitsPerInteger;
x = randi([0,2^bpi-1],n,1);
y1 = h1(x);
y2 = reshape(de2bi(x,bpi,'left-msb')',[],1);
isequal(y1,y2)

% Right MSB, logical input
h2 = comm.IntegerToBit(...
 'BitsPerInteger',5, ...
 'MSBFirst',false);
bpi = h2.BitsPerInteger;
x = randi([0,2^bpi-1],n,1);
y1 = h2(x);
y2 = reshape(de2bi(x,bpi,'right-msb')',[],1);
isequal(y1,y2)

4 System Objects — Alphabetical List

4-1122

% Right MSB, signed input, single input
h3 = comm.IntegerToBit(...
 'BitsPerInteger',8, ...
 'MSBFirst',false, ...
 'SignedIntegerInput',true);
bpi = h3.BitsPerInteger;
N = 2^bpi;
x = randi([-N/2,N/2-1],n,1);
y1 = h3(x);
y2 = reshape(de2bi(x+(x<0)*N,bpi,'right-msb')',[],1);
isequal(y1,y2)
end

See Also
bi2de | dec2bin

Introduced in R2012a

 comm.IntegerToBit

4-1123

step
System object: comm.IntegerToBit
Package: comm

(To be removed) Convert vector of integers to vector of bits

Note comm.IntegerToBit will be removed in a future release. Use de2bi instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) converts integer input, X, to corresponding bits, Y. The input must be
scalar or a column vector and the data type can be numeric or fixed-point (fi objects). The
output is a column vector with length equal to length(X)×N, where N is the value of the
BitsPerInteger property. If any input value is outside the range of N, the object issues
an error. If the SignedIntegerInput property is false, the input values must be
between 0 and (2N)-1. If you set the SignedIntegerInput property to true, the input
values must be between -(2(N-1)) and (2(N-1))-1.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

4 System Objects — Alphabetical List

4-1124

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1125

comm.IntegrateAndDumpFilter
Package: comm

Integrate discrete-time signal with periodic resets

Description
The IntegrateAndDumpFilter object creates a cumulative sum of the discrete-time
input signal, while resetting the sum to zero according to a fixed schedule. When the
simulation begins, the object discards the number of samples specified in the Offset
property. After this initial period, the object sums the input signal along columns and
resets the sum to zero every Ninput samples, set by the integration period property. The
reset occurs after the object produces output at that time step.

To integrate discrete-time signals with periodic resets:

1 Define and set up your integrate and dump filter object. See “Construction” on page
4-1126.

2 Call step to integrate discrete-time signals according to the properties of
comm.IntegrateAndDumpFilter. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.IntegrateAndDumpFilter creates an integrate and dump filter System
object, H. this object integrates over a number of samples in an integration period, and
then resets at the end of that period.

4 System Objects — Alphabetical List

4-1126

H = comm.IntegrateAndDumpFilter(Name,Value) creates an integrate and dump
filter object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.IntegrateAndDumpFilter(PERIOD,Name,Value) creates an integrate
and dump filter object, H. This object has the IntegrationPeriod property set to
PERIOD and the other specified properties set to the specified values.

Properties
IntegrationPeriod

Integration period

Specify the integration period, in samples, as a positive, integer scalar value greater than
1. The integration period defines the length of the sample blocks that the object
integrates between resets. The default is 8.

Offset

Number of offset samples

Specify a nonnegative, integer vector or scalar specifying the number of input samples
that the object discards from each column of input data at the beginning of data
processing. Discarding begins when you call the step method for the first time. The
default is 0.

When you set the Offset on page 4-0 property to a nonzero value, the object outputs
one or more zeros during the initial period while discarding input samples.

When you specify this property as a vector of length L, the i-th element of the vector
corresponds to the offset for the i-th column of the input data matrix, which has L
columns.

When you specify this property as a scalar value, the object applies the same offset to
each column of the input data matrix. The offset creates a transient effect, rather than a
persistent delay.

DecimateOutput

Decimate output

 comm.IntegrateAndDumpFilter

4-1127

Specify whether the step method returns intermediate cumulative sum results or
decimates intermediate results. The default is true.

When you set this property to true, the step method returns one output sample,
consisting of the final integration value, for each block of IntegrationPeriod on page
4-0 input samples. If the inputs are (K×IntegrationPeriod)×L matrices, then the
outputs are K×L matrices.

When you set this property to false, the step method returns IntegrationPeriod
output samples, comprising the intermediate cumulative sum values, for each block of
IntegrationPeriod input samples. In this case, inputs and outputs have the same
dimensions.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true,
which is the default, the object computes all internal arithmetic and output data types
using full precision rules. These rules provide the most accurate fixed-point numerics. It
also turns off the display of other fixed-point properties because they do not apply
individually. These rules guarantee that no quantization occurs within the object. Bits are
added, as needed, to ensure that no roundoff or overflow occurs. If you set
FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects” on page 4-1131.

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as one of Ceiling | Convergent | Floor | Nearest |
Round | Simplest | Zero. The default is Floor. This property applies only if the object is
not in full precision mode.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property applies only if the object is not in full precision mode.

4 System Objects — Alphabetical List

4-1128

AccumulatorDataType

Data type of accumulator

Specify the accumulator data type as one of Full precision | Same as input |
Custom. The default is Full precision. When you set this property to Full
precision the object automatically calculates the accumulator output word and fraction
lengths. Set this property to Custom to specify the accumulator data type using the
CustomAccumulatorDataType on page 4-0 property. This property applies when
you set the FullPrecisionOverride on page 4-0 property to false.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator fixed-point type as a scaled numerictype object with a
signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the FullPrecisionOverride on page 4-0 property to false and the
AccumulatorDataType on page 4-0 property to Custom.

OutputDataType

Data type of output

Specify the output fixed-point type as one of Same as accumulator | Same as input |
Custom. The default is Same as accumulator. This property applies when you set the
FullPrecisionOverride on page 4-0 property to false.

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride on page 4-0 property to false and the OutputDataType
on page 4-0 property to Custom.

Methods
step Integrate discrete-time signal with periodic resets

 comm.IntegrateAndDumpFilter

4-1129

Common to All System Objects
release Allow System object property value changes

Examples

Pass Noisy Pulses Through Integrate and Dump Filter

Create an integrate and dump filter having an integration period of 20 samples.

intdump = comm.IntegrateAndDumpFilter(20);

Generate binary data.

d = randi([0 1],50,1);

Upsample the data, and pass it through an AWGN channel.

x = upsample(d,20);
y = awgn(x,25,'measured');

Pass the noisy data through the filter.

z = intdump(y);

Plot the original and filtered data. The integrate and dump filter removes most of the
noise effects.

stairs([d z])
legend('Original Data','Filtered Data')
xlabel('Samples')
ylabel('Amplitude')
grid

4 System Objects — Alphabetical List

4-1130

More About

Full Precision for Fixed-Point System Objects
FullPrecisionOverride is a convenience property that, when you set to true,
automatically sets the appropriate properties for an object to use full-precision to process
fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough
additional bits to compute the ideal full precision result. This operation has no minimum

 comm.IntegrateAndDumpFilter

4-1131

or maximum range overflow nor any precision loss due to rounding or underflow. It is also
independent of any hardware-specific settings. The data types chosen are based only on
known data type ranges and not on actual numeric values. Full precision for System
objects does not optimize coefficient values. When you set the FullPrecisionOverride
property to true, the other fixed-point properties it controls no longer apply and any of
their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Integrate and
Dump block reference page. The object properties correspond to the block parameters,
except:
The Output intermediate values parameter corresponds to the DecimateOutput on
page 4-0 property.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

4 System Objects — Alphabetical List

4-1132

step
System object: comm.IntegrateAndDumpFilter
Package: comm

Integrate discrete-time signal with periodic resets

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) periodically integrates blocks of N samples from the input data, X, and
returns the result in Y. N is the number of samples that you specify in the
IntegrationPeriod property. X is a column vector or a matrix and the data type is
double, single or fixed-point (fi objects). X must have K*N rows for some positive integer
K, with one or more columns. The object treats each column as an independent channel
with integration occurring along every column. The dimensions of output Y depend on the
value you set for the DecimateOutput property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

4-1133

nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1134

comm.KasamiSequence
Package: comm

Generate Kasami sequence

Description
The KasamiSequence object generates a sequence from the set of Kasami sequences.
The Kasami sequences are a set of sequences that have good cross-correlation properties.

To generate a Kasami sequence:

1 Define and set up your Kasami sequence object. See “Construction” on page 4-1135.
2 Call step to generate a Kasami sequence according to the properties of

comm.KasamiSequence. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Construction
H = comm.KasamiSequence creates a KasamiSequence System object, H. This object
generates a Kasami sequence.

H = comm.KasamiSequence(Name,Value) creates a Kasami sequence generator
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.KasamiSequence

4-1135

Properties
Polynomial

Generator polynomial

Specify the polynomial that determines the shift register's feedback connections. The
default is 'z^6 + z + 1'.

You can specify the generator polynomial as a character vector or as a binary numeric
vector that lists the coefficients of the polynomial in descending order of powers. The first
and last elements must equal 1. Specify the length of this vector as n+1, where n is the
degree of the generator polynomial and must be even.

Lastly, you can specify the generator polynomial as a vector containing the exponents of z
for the nonzero terms of the polynomial in descending order of powers. The last entry
must be 0. For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same
polynomial, g(z) = z8 + z2 + 1.

InitialConditions

Initial conditions of shift register

Specify the initial values of the shift register as a binary numeric scalar or as binary
numeric vector. The default is [0 0 0 0 0 1]. Set the vector length equal to the degree
of the generator polynomial.

When you set this property to a vector value, each element of the vector corresponds to
the initial value of the corresponding cell in the shift register.

When you set this property to a scalar value, that value specifies the initial conditions of
all the cells of the shift register. The scalar, or at least one element of the specified vector,
requires a nonzero value for the object to generate a nonzero sequence.

Index

Sequence index

Specify the index to select a Kasami sequence of interest from the set of possible
sequences. The default is 0. Kasami sequences have a period equal to N = 2n –1, where n
indicates a nonnegative, even integer equal to the degree of the generator polynomial
that you specify in the Polynomial on page 4-0 property.

4 System Objects — Alphabetical List

4-1136

There are two classes of Kasami sequences: those obtained from a small set and those
obtained from a large set. You choose a Kasami sequence from the small set by setting
this property to a numeric, scalar, integer value in the range [0...2n/2–2]. You choose a
sequence from the large set by setting this property to a numeric 1×2 integer vector [k
m] for k in [–2,..., 2n–2], and m in [–1,..., 2n/2–2].

Shift

Sequence offset from initial time

Specify the offset of the Kasami sequence from its starting point as a numeric, integer
scalar value that can be positive or negative. The default is 0. The Kasami sequence has a
period of N = 2n–1, where n is the degree of the generator polynomial that you specify in
the Polynomial on page 4-0 property. The shift value is wrapped with respect to the
sequence period.

VariableSizeOutput

Enable variable-size outputs

Set this property to true to enable an additional input to the step method. The default is
false. When you set this property to true, the enabled input specifies the output size of the
Kasami sequence used for the step. The input value must be less than or equal to the
value of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the
number of output samples.

MaximumOutputSize

Maximum output size

Specify the maximum output size of the Kasami sequence as a positive integer 2-element
row vector. The second element of the vector must be 1. The default is [10 1].

This property applies when you set the VariableSizeOutput property to true.

SamplesPerFrame

Number of output samples per frame

Specify the number of Kasami sequence samples that the step method outputs as a
numeric, positive, integer scalar value . The default value is 1.

 comm.KasamiSequence

4-1137

When you set this property to a value of M, then the step method outputs M samples of a
Kasami sequence that has a period of N = 2n–1. The value n equals the degree of the
generator polynomial that you specify in the Polynomial on page 4-0 property.

ResetInputPort

Enable generator reset input

Set this property to true to enable an additional input to the step method. The default is
false. The additional input resets the states of the Kasami sequence generator to the
initial conditions that you specify in the InitialConditions on page 4-0 property.

OutputDataType

Data type of output

Specify the output data type as one of double | logical. The default is double.

Methods
reset Reset states of Kasami sequence generator object
step Generate a Kasami sequence

Common to All System Objects
release Allow System object property value changes

Examples

Spread BPSK Data with a Kasami Sequence

Spread BPSK data with a Kasami sequence of length 255 by using the Kasami sequence
System object.

Generate binary data and apply BPSK modulation.

data = randi([0 1],10,1);
modData = pskmod(data,2);

4 System Objects — Alphabetical List

4-1138

Create a Kasami sequence object of length 255 using generator polynomial
x8 + x7 + x4 + 1.

kasamiSequence = comm.KasamiSequence('Polynomial',[8 7 4 0], ...
 'InitialConditions',[0 0 0 0 0 0 0 1],'SamplesPerFrame',255);

Generate the Kasami sequence and convert it to bipolar form.

kasSeq = kasamiSequence();
kasSeq = 2*kasSeq - 1;

Apply a gain of 1/ 255 to ensure that the spreading operation does not increase the
overall signal power.

kasSeq = kasSeq/sqrt(255);

Spread the BPSK data using the Kasami sequence.

spreadData = modData*kasSeq';
spreadData = spreadData(:);

Verify that the spread data sequence is 255 times longer than the input data sequence.

spreadingFactor = length(spreadData)/length(data)

spreadingFactor = 255

Verify that the spreading operation did not increase the signal power.

spreadSigPwr = sum(abs(spreadData).^2)/length(data)

spreadSigPwr = 1.0000

Change the generator polynomial of the Kasami sequence generator to x8 + x3 + 1 after
first releasing the object. Use the character representation of the polynomial.

release(kasamiSequence)
kasamiSequence.Polynomial = 'x^8 + x^3 + 1';

Generate a new sequence and convert it to bipolar form.

kasSeq = kasamiSequence();
kasSeq = 2*kasSeq - 1;

 comm.KasamiSequence

4-1139

Algorithms
This object implements the algorithm, inputs, and outputs described on the Kasami
Sequence Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.GoldSequence | comm.PNSequence

4 System Objects — Alphabetical List

4-1140

reset
System object: comm.KasamiSequence
Package: comm

Reset states of Kasami sequence generator object

Syntax
reset(H)

Description
reset(H) resets the states of the KasamiSequence object, H.

 reset

4-1141

step
System object: comm.KasamiSequence
Package: comm

Generate a Kasami sequence

Syntax
Y = step(H)
Y = step(H,RESET)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Y = step(H) outputs a frame of the Kasami sequence in column vector Y. Specify the
frame length with the SamplesPerFrame property. The Kasami sequence has a period of
N = 2n-1, where n is the degree of the generator polynomial that you specify in the
Polynomial property.

Y = step(H,RESET) uses RESET as the reset signal when you set the ResetInputPort
property to true. The data type of the RESET input must be double precision or logical.
RESET can be a scalar value or a column vector with a length equal to the number of
samples per frame that you specify in the SamplesPerFrame property. When the RESET
input is a non-zero scalar, the object resets to the initial conditions that you specify in the
InitialConditions property. It then generates a new output frame. A column vector
RESET input allows multiple resets within an output frame. A non-zero value at the i-th
element of the vector causes a reset at the i-th output sample time.

Note obj specifies the System object on which to run this step method.

4 System Objects — Alphabetical List

4-1142

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1143

comm.LDPCDecoder
Package: comm

Decode binary low-density parity-check (LDPC) code

Description
The comm.LDPCDecoder System object uses the belief propagation algorithm to decode a
binary LDPC code, which is input to the object as the soft-decision output (log-likelihood
ratio of received bits) from demodulation. The object decodes generic binary LDPC codes
where no patterns in the parity-check matrix are assumed. For more information, see
“Belief Propagation Decoding” on page 4-1152.

To decode an LDPC-encoded signal:

1 Create the comm.LDPCDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
ldpcdecoder = comm.LDPCDecoder
ldpcdecoder = comm.LDPCDecoder(parity)
ldpcdecoder = comm.LDPCDecoder(___ ,Name,Value)

Description
ldpcdecoder = comm.LDPCDecoder creates a binary LDPC decoder System object.
This object performs LDPC decoding based on the specified parity-check matrix.

4 System Objects — Alphabetical List

4-1144

ldpcdecoder = comm.LDPCDecoder(parity) sets the ParityCheckMatrix
property to parity and creates an LDPC decoder System object. The parity input must
be specified as described by the ParityCheckMatrix property.

ldpcdecoder = comm.LDPCDecoder(___ ,Name,Value) sets properties using one or
more name-value pairs, in addition to inputs from any of the prior syntaxes. For example,
comm.LDPCDecoder('DecisionMethod','Soft decision') configures an LDPC
decoder System object to decode data using the soft-decision method and output log-
likelihood ratios of data type double. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ParityCheckMatrix — Parity-check matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the
length of the received signal and must be in the range (0, 231). K is the length of the
uncoded message and must be less than N. The last (N – K) columns in the parity-check
matrix must be an invertible matrix in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I,
that defines the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This property accepts numeric data types. When you set this property to a sparse binary
matrix, this property also accepts the logical data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix
for half-rate LDPC coding, as specified in the DVB-S.2 standard.
Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2
standard, where R is the code rate, and 'indices' specifies the output format of

 comm.LDPCDecoder

4-1145

dvbs2ldpc as a two-column double-precision matrix that defines the row and column
indices of the 1s in the parity-check matrix.
Data Types: double | logical

OutputValue — Output value format
'Information part' (default) | 'Whole codeword'

Output value format, specified as one of these values:

• 'Information part' — The object outputs a K-by-1 column vector containing only
the information-part of the received log-likelihood ratio vector. K is the length of the
uncoded message.

• 'Whole codeword' — The object outputs an N-by-1 column vector containing the
whole log-likelihood ratio vector. N is the length of the received signal.

N and K must align with the dimension of the (N–K)-by-K parity-check matrix.

Data Types: char

DecisionMethod — Decision method
'Hard decision' (default) | 'Soft decision'

Decision method used for decoding, specified as one of these values:

• 'Hard decision' — The object outputs decoded data of data type logical.
• 'Soft decision' — The object outputs log-likelihood ratios of data type double.

Data Types: char

IterationTerminationCondition — Condition for iteration termination
'Maximum iteration count' (default) | 'Parity check satisfied'

Condition for iteration termination, specified as one of these values:

• 'Maximum iteration count' — Decoding terminates after the number of
iterations specified by the MaximumIterationCount property.

• 'Parity check satisfied' — Decoding terminates after all parity checks are
satisfied. If not all parity checks are satisfied, decoding terminates after the number of
iterations specified by the MaximumIterationCount property.

Data Types: char

4 System Objects — Alphabetical List

4-1146

MaximumIterationCount — Maximum number of decoding iterations
50 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

NumIterationsOutputPort — Output number of iterations executed
false (default) | true

Output number of iterations performed, specified as false or true. To output the
number of iterations executed, set this property to true.
Data Types: logical

FinalParityChecksOutputPort — Output final parity checks
false (default) | true

Output final parity checks, specified as false or true. To output the final calculated
parity checks, set this property to true.
Data Types: logical

Usage

Syntax
y = ldpcdecoder(x)
[y,numiter] = ldpcdecoder(x)
[y,parity] = ldpcdecoder(x)
[y,numiter,parity] = ldpcdecoder(x)

Description
y = ldpcdecoder(x) decodes input data using an LDPC code based on the default
parity-check matrix.

[y,numiter] = ldpcdecoder(x) returns the decoded data, y, and number of
iterations performed, numiter. To use this syntax, set the NumIterationsOutputPort
property to true.

 comm.LDPCDecoder

4-1147

[y,parity] = ldpcdecoder(x) returns the decoded data, y, and final parity checks,
parity. To use this syntax, set the FinalParityChecksOutputPort property to true.

[y,numiter,parity] = ldpcdecoder(x) returns the decoded data, number of
iterations performed, and final parity checks. To use this syntax, set the
NumIterationsOutputPort and FinalParityChecksOutputPort properties to
true.

Input Arguments
x — Log-likelihood ratios
column vector

Log-likelihood ratios, specified as an N-by-1 column vector containing the soft-decision
output from demodulation. N is the number of bits in the LDPC codeword before
modulation. Each element is the log-likelihood ratio for a received bit. Element values are
more likely to be 0 if the log-likelihood ratio is positive. The first K elements correspond
to the information-part of the input message.
Data Types: double

Output Arguments
y — Decoded data
column vector

Decoded data, returned as a column vector. The DecisionMethod property specifies
whether the object outputs hard decisions or soft decisions (log-likelihood ratios).

• If the OutputValue property is set to 'Information part', the output includes
only the information-part of the received log-likelihood ratio vector.

• If the OutputValue property is set to 'Whole codeword', the output includes the
whole log-likelihood ratio vector.

Data Types: double | logical

numiter — Number of executed decoding iterations
positive integer

Number of executed decoding iterations, returned as a positive integer.

4 System Objects — Alphabetical List

4-1148

Dependencies

To enable this output, set the NumIterationsOutputPort property to true.

parity — Final parity checks
column vector

Final parity checks after decoding the input LDPC code, returned as an (N-K)-by-1 column
vector. N is the number of bits in the LDPC codeword before modulation. K is the length
of the uncoded message.

Dependencies

To enable this output, set the FinalParityChecksOutputPort property to true.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

LDPC Encode and Decode QPSK-Modulated Signal

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel.
Demodulate and decode the received signal. Compute the error statistics for the
reception of uncoded and LDPC-coded signals.

Define simulation variables. Create System objects for the LDPC encoder, LDPC decoder,
QPSK modulator, and QPSK demodulators.

 comm.LDPCDecoder

4-1149

M = 4; % Modulation order (QPSK)
snr = [0.25,0.5,0.75,1.0,1.25];
numFrames = 10;
ldpcEncoder = comm.LDPCEncoder;
ldpcDecoder = comm.LDPCDecoder;
pskMod = comm.PSKModulator(M,'BitInput',true);
pskDemod = comm.PSKDemodulator(M,'BitOutput',true,...
 'DecisionMethod','Approximate log-likelihood ratio');
pskuDemod = comm.PSKDemodulator(M,'BitOutput',true,...
 'DecisionMethod','Hard decision');
errRate = zeros(1,length(snr));
uncErrRate = zeros(1,length(snr));

For each SNR setting and all frames, compute the error statistics for uncoded and LDPC-
coded signals.

for ii = 1:length(snr)
 ttlErr = 0;
 ttlErrUnc = 0;
 pskDemod.Variance = 1/10^(snr(ii)/10); % Set variance using current SNR
 for counter = 1:numFrames
 data = logical(randi([0 1],32400,1));
 % Transmit and receiver uncoded signal data
 mod_uncSig = pskMod(data);
 rx_uncSig = awgn(mod_uncSig,snr(ii),'measured');
 demod_uncSig = pskuDemod(rx_uncSig);
 numErrUnc = biterr(data,demod_uncSig);
 ttlErrUnc = ttlErrUnc + numErrUnc;
 % Transmit and receive LDPC coded signal data
 encData = ldpcEncoder(data);
 modSig = pskMod(encData);
 rxSig = awgn(modSig,snr(ii),'measured');
 demodSig = pskDemod(rxSig);
 rxBits = ldpcDecoder(demodSig);
 numErr = biterr(data,rxBits);
 ttlErr = ttlErr + numErr;
 end
 ttlBits = numFrames*length(rxBits);
 uncErrRate(ii) = ttlErrUnc/ttlBits;
 errRate(ii) = ttlErr/ttlBits;
end

Plot the error statistics for uncoded and LDPC-coded data.

4 System Objects — Alphabetical List

4-1150

plot(snr,uncErrRate,snr,errRate)
legend('Uncoded', 'LDPC coded')
xlabel('SNR (dB)')
ylabel('BER')

Algorithms
This object performs LDPC decoding using the belief propagation algorithm, also known
as a message-passing algorithm.

 comm.LDPCDecoder

4-1151

Belief Propagation Decoding
The implementation of the belief propagation algorithm is based on the decoding
algorithm presented by Gallager.

message LDPC

Encoder

LDPC

Decoder
Modulator Channel Demodulator

0 1 1(, , ,)
n

c c c
-

=c ... LLR ()
i

L c=

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC
decoder is the log-likelihood ratio (LLR) value

L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these
equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for
transmitted bit ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-
decision output for ci is 1. Otherwise, the hard-decision output for ci is 0.

If configured to stop when all parity checks are satisfied, the algorithm verifies the parity-
check equation (H c' = 0) at the end of each iteration. When all parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj
correspond to all nonzero elements in column i and row j of the PCM, respectively.

This figure highlights the computation of these index sets in a given PCM for i = 5 and j =
3.

4 System Objects — Alphabetical List

4-1152

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(-1) are set to
19.07 and –19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07)
and –1 for tanh(-19.07).

References
[1] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 comm.LDPCDecoder

4-1153

• Using default settings, comm.LDPCDecoder does not support code generation. To
generate code, specify the ParityCheckMatrix property as a nonsparse index
matrix.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.BCHDecoder | comm.LDPCEncoder | comm.gpu.LDPCDecoder

Functions
dvbs2ldpc

Blocks
LDPC Decoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-1154

comm.LDPCEncoder
Package: comm

Encode binary low-density parity-check (LDPC) code

Description
The comm.LDPCEncoder System object applies LDPC coding to a binary input message.
LDPC codes are linear error control codes with sparse parity-check matrices and long
block lengths that can attain performance near the Shannon limit.

To encode a binary LDPC code:

1 Create the comm.LDPCEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
ldpcencoder = comm.LDPCEncoder
ldpcencoder = comm.LDPCEncoder(parity)
ldpcencoder = comm.LDPCEncoder(___ ,Name,Value)

Description
ldpcencoder = comm.LDPCEncoder creates a binary LDPC encoder System object.
This object performs LDPC encoding based on the default parity-check matrix.

ldpcencoder = comm.LDPCEncoder(parity) sets the ParityCheckMatrix
property to parity and creates an LDPC encoder System object. The parity input must
be specified as described by the ParityCheckMatrix property.

 comm.LDPCEncoder

4-1155

ldpcencoder = comm.LDPCEncoder(___ ,Name,Value) sets properties using one or
more name-value pairs, in addition to inputs from any of the prior syntaxes. For example,
comm.LDPCEncoder('ParityCheckMatrix',sparse(I(:,1),I(:,2),1))
configures an LDPC encoder System object to encode data using the parity matrix
sparse(I(:,1),I(:,2),1). Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ParityCheckMatrix — Parity-check matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the
length of the output codeword vector, and must be in the range (0, 231). K is the length of
the uncoded message and must be less than N. The last (N – K) columns in the parity-
check matrix must be an invertible matrix in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I,
that defines the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This property accepts numeric data types. When you set this property to a sparse binary
matrix, this property also accepts the logical data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix
for half-rate LDPC coding, as specified in the DVB-S.2 standard.

Note

• When the last (N – K) columns of the parity-check matrix form a triangular matrix,
forward or backward substitution is performed to solve the parity-check equation.

4 System Objects — Alphabetical List

4-1156

• When the last (N – K) columns of the parity-check matrix do not form a triangular
matrix, a matrix inversion is performed to solve the parity-check equation. If a large
matrix needs to be inverted, initializations or updates take more time.

Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2
standard, where R is the code rate, and 'indices' specifies the output format of
dvbs2ldpc as a two-column double-precision matrix that defines the row and column
indices of the 1s in the parity-check matrix.
Data Types: double | logical

Usage

Syntax
codeword = ldpcencoder(message)

Description
codeword = ldpcencoder(message) codes the input message using an LDPC code
based on a parity-check matrix. The LDPC codeword output is a solution to the parity-
check equation.

Input Arguments
message — Input message
binary column vector

Input message, specified as a K-by-1 column vector containing binary-valued elements. K
is the length of the uncoded message.
Data Types: double | logical

 comm.LDPCEncoder

4-1157

Output Arguments
codeword — LDPC codeword
column vector

LDPC codeword, returned as an N-by-1 column vector. N is the number of bits in the
LDPC codeword. The output signal inherits its data type from the input signal. The LDPC
codeword output is a solution to the parity-check equation. The input message comprises
the first K bits of the LDPC codeword output, and the parity check comprises the
remaining (N – K) bits.
Data Types: double | logical

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

LDPC Encode and Decode QPSK-Modulated Signal

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel.
Demodulate and decode the received signal. Compute the error statistics for the
reception of uncoded and LDPC-coded signals.

Define simulation variables. Create System objects for the LDPC encoder, LDPC decoder,
QPSK modulator, and QPSK demodulators.

4 System Objects — Alphabetical List

4-1158

M = 4; % Modulation order (QPSK)
snr = [0.25,0.5,0.75,1.0,1.25];
numFrames = 10;
ldpcEncoder = comm.LDPCEncoder;
ldpcDecoder = comm.LDPCDecoder;
pskMod = comm.PSKModulator(M,'BitInput',true);
pskDemod = comm.PSKDemodulator(M,'BitOutput',true,...
 'DecisionMethod','Approximate log-likelihood ratio');
pskuDemod = comm.PSKDemodulator(M,'BitOutput',true,...
 'DecisionMethod','Hard decision');
errRate = zeros(1,length(snr));
uncErrRate = zeros(1,length(snr));

For each SNR setting and all frames, compute the error statistics for uncoded and LDPC-
coded signals.

for ii = 1:length(snr)
 ttlErr = 0;
 ttlErrUnc = 0;
 pskDemod.Variance = 1/10^(snr(ii)/10); % Set variance using current SNR
 for counter = 1:numFrames
 data = logical(randi([0 1],32400,1));
 % Transmit and receiver uncoded signal data
 mod_uncSig = pskMod(data);
 rx_uncSig = awgn(mod_uncSig,snr(ii),'measured');
 demod_uncSig = pskuDemod(rx_uncSig);
 numErrUnc = biterr(data,demod_uncSig);
 ttlErrUnc = ttlErrUnc + numErrUnc;
 % Transmit and receive LDPC coded signal data
 encData = ldpcEncoder(data);
 modSig = pskMod(encData);
 rxSig = awgn(modSig,snr(ii),'measured');
 demodSig = pskDemod(rxSig);
 rxBits = ldpcDecoder(demodSig);
 numErr = biterr(data,rxBits);
 ttlErr = ttlErr + numErr;
 end
 ttlBits = numFrames*length(rxBits);
 uncErrRate(ii) = ttlErrUnc/ttlBits;
 errRate(ii) = ttlErr/ttlBits;
end

Plot the error statistics for uncoded and LDPC-coded data.

 comm.LDPCEncoder

4-1159

plot(snr,uncErrRate,snr,errRate)
legend('Uncoded', 'LDPC coded')
xlabel('SNR (dB)')
ylabel('BER')

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 System Objects — Alphabetical List

4-1160

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.BCHEncoder | comm.LDPCDecoder

Functions
dvbs2ldpc

Blocks
LDPC Decoder

Introduced in R2012a

 comm.LDPCEncoder

4-1161

comm.LTEMIMOChannel
Package: comm

(To be removed) Filter input signal through LTE MIMO multipath fading channel

Note comm.LTEMIMOChannel will be removed in a future release. Use
comm.MIMOChannel instead.

Description
The comm.LTEMIMOChannel System object filters an input signal through an LTE
multiple-input multiple-output (MIMO) multipath fading channel.

A specialization of the comm.MIMOChannel System object, the comm.LTEMIMOChannel
System objects offers pre-set configurations for use with LTE link level simulations. In
addition to the comm.MIMOChannel System object, the comm.LTEMIMOChannel System
object also corrects the correlation matrix to be positive semi-definite, after rounding to
4-digit precision. This System object models Rayleigh fading for each of its links.

To filter an input signal using an LTE MIMO multipath fading channel:

1 Define and set up your LTE MIMO multipath fading channel object. See
“Construction” on page 4-1163.

2 Call step to filter the input signal using an LTE MIMO multipath fading channel
according to the properties of comm.LTEMIMOChannel. The behavior of step is
specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

4 System Objects — Alphabetical List

4-1162

Construction
H = comm.LTEMIMOChannel creates a 3GPP Long Term Evolution (LTE) Release 10
specified multiple-input multiple-output (MIMO) multipath fading channel System object,
H. This object filters a real or complex input signal through the multipath LTE MIMO
channel to obtain the channel impaired signal.

H = comm.LTEMIMOChannel(Name,Value) creates an LTE MIMO multipath fading
channel object, H, with the specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SampleRate

Input signal sample rate (Hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 30.72 MHz, as defined in the LTE
specification.

Profile

Channel propagation profile

Specify the propagation conditions of the LTE multipath fading channel as one of EPA
5Hz | EVA 5Hz | EVA 70Hz | ETU 70Hz | ETU 300Hz, which are supported in the LTE
specification Release 10. The default value of this property is EPA 5Hz.

This property defines the delay profile of the channel to be one of EPA, EVA, and ETU.
This property also defines the maximum Doppler shift of the channel to be 5 Hz, 70 Hz, or
300 Hz. The Doppler spectrum always has a Jakes shape in the LTE specification. The EPA
profile has seven paths. The EVA and ETU profiles have nine paths.

The following tables list the delay and relative power per path associated with each
profile.

 comm.LTEMIMOChannel

4-1163

Extended Pedestrian A Model (EPA)

Excess tap delay [ns] Relative power [db]
0 0.0

30 -1.0
70 -2.0
90 -3.0

110 -8.0
190 -17.2
410 -20.8

Extended Vehicular A Model (EVA)

Excess tap delay [ns] Relative power [db]
0 0.0

30 -1.5
150 -1.4
310 -3.6
370 -0.6
710 -9.1

1090 -7.0
1730 -12.0
2510 -16.9

Extended Typical Urban Model (ETU)

Excess tap delay [ns] Relative power [db]
0 -1.0

50 -1.0
120 -1.0
200 0.0
230 0.0

4 System Objects — Alphabetical List

4-1164

Excess tap delay [ns] Relative power [db]
500 0.0

1600 -3.0
2300 -5.0
5000 -7.0

AntennaConfiguration

Antenna configuration

Specify the antenna configuration of the LTE MIMO channel as one of 1x2 | 2x2 | 4x2 |
4x4. These configurations are supported in the LTE specification Release 10. The default
value of this property is 2x2.

The property value is in the format of Nt-by-Nr. Nt represents the number of transmit
antennas and Nr represents the number of receive antennas.

CorrelationLevel

Spatial correlation strength

Specify the spatial correlation strength of the LTE MIMO channel as one of Low | Medium
| High. The default value of this property is Low. When you set this property to Low, the
MIMO channel is spatially uncorrelated.

The transmit and receive spatial correlation matrices are defined from this property
according to the LTE specification Release 10. See the Algorithms section for more
information.

AntennaSelection

Antenna selection

Specify the antenna selection scheme as one of Off | Tx | Rx | Tx and Rx, where Tx
represents transmit antennas and Rx represents receive antennas. When you select Tx
and/or Rx, additional input(s) are required to specify which antennas are selected for
signal transmission. The default value of this property is Off.

RandomStream

Source of random number stream

 comm.LTEMIMOChannel

4-1165

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream. When you set this
property to Global stream, the current global random number stream is used for
normally distributed random number generation. In this case, the reset method only
resets the filters. If you set RandomStream to mt19937ar with seed, the object uses
the mt19937ar algorithm for normally distributed random number generation. In this
case, the reset method resets the filters and reinitializes the random number stream to
the value of the Seed property.

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of an mt19937ar random number generator algorithm as a double-
precision, real, nonnegative integer scalar. The default value of this property is 73. This
property applies when you set the RandomStream property to mt19937ar with seed.
The Seed reinitializes the mt19937ar random number stream in the reset method.

NormalizePathGains

Normalize path gains (logical)

Set this property to true to normalize the fading processes so that the total power of the
path gains, averaged over time, is 0 dB. The default value of this property is true. When
you set this property to false, there is no normalization for path gains.

NormalizeChannelOutputs

Normalize channel outputs (logical)

Set this property to true to normalize the channel outputs by the number of receive
antennas. The default value of this property is true. When you set this property to
false, there is no normalization for channel outputs.

PathGainsOutputPort

Enable path gain output (logical)

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

4 System Objects — Alphabetical List

4-1166

Methods
reset (To be removed) Reset states of the LTEMIMOChannel object
step (To be removed) Filter input signal through LTE MIMO multipath fading channel

Common to All System Objects
release Allow System object property value changes

Examples

Configure MIMO Channel Object Using LTE MIMO Channel Object

Configure an equivalent MIMOChannel System Object using the LTEMIMOChannel
System Object. Then, verify that the channel output and the path gain output from the
two objects are the same.

Create a PSK Modulator System object™ to modulate randomly generated data.

pskModulator = comm.PSKModulator;
modData = pskModulator(randi([0 pskModulator.ModulationOrder-1],2e3,1));

Split modulated data into two spatial streams.

channelInput = reshape(modData,[2 1e3]).';

Create an LTEMIMOChannel System object with a 2-by-2 antenna configuration and a
medium correlation level.

lteChan = comm.LTEMIMOChannel(...
 'Profile', 'EVA 5Hz',...
 'AntennaConfiguration', '2x2',...
 'CorrelationLevel', 'Medium',...
 'AntennaSelection', 'Off',...
 'RandomStream', 'mt19937ar with seed',...
 'Seed', 99,...
 'PathGainsOutputPort', true);

Warning: COMM.LTEMIMOCHANNEL will be removed in a future release. Use COMM.MIMOCHANNEL or LTEFADINGCHANNEL instead. See this release note for more information.

Filter the modulated data using the LTEMIMOChannel System object, lteChan.

 comm.LTEMIMOChannel

4-1167

[LTEChanOut,LTEPathGains] = lteChan(channelInput);

Create an equivalent MIMOChannel System object, mimoChannel, using the properties of
the LTEMIMOChannel System object, lteChan.

The KFactor, DirectPathDopplerShift and DirectPathInitialPhase properties
only exist for the MIMOChannel System object. All other MIMOChannel System object
properties also exist for the LTEMIMOChannel System object; however, some properties
are hidden and read-only.

mimoChannel = comm.MIMOChannel(...
 'SampleRate',lteChan.SampleRate, ...
 'PathDelays',lteChan.PathDelays, ...
 'AveragePathGains',lteChan.AveragePathGains, ...
 'NormalizePathGains',lteChan.NormalizePathGains, ...
 'FadingDistribution',lteChan.FadingDistribution, ...
 'MaximumDopplerShift',lteChan.MaximumDopplerShift, ...
 'DopplerSpectrum',lteChan.DopplerSpectrum, ...
 'SpatialCorrelationSpecification', ...
 lteChan.SpatialCorrelationSpecification, ...
 'SpatialCorrelationMatrix',lteChan.SpatialCorrelationMatrix, ...
 'AntennaSelection',lteChan.AntennaSelection, ...
 'NormalizeChannelOutputs',lteChan.NormalizeChannelOutputs, ...
 'RandomStream',lteChan.RandomStream, ...
 'Seed',lteChan.Seed, ...
 'PathGainsOutputPort',lteChan.PathGainsOutputPort);

Filter the modulated data using the equivalent mimoChannel object.

[MIMOChanOut, MIMOPathGains] = mimoChannel(channelInput);

Verify that the channel output and the path gain output from the two objects are the
same.

sameChOutput = isequal(LTEChanOut,MIMOChanOut)

sameChOutput = logical
 1

samePathGains = isequal(LTEPathGains,MIMOPathGains)

samePathGains = logical
 1

4 System Objects — Alphabetical List

4-1168

You can repeat the preceding process with AntennaConfiguration set to 4x2 or 4x4
and CorrelationLevel set to Medium or High for lteChan.

Algorithms
This System object is a specialized implementation of the comm.MIMOChannel System
object. For additional algorithm information, see the comm.MIMOChannel System object
help page.

Spatial Correlation Matrices
The following table defines the transmitter eNodeB correlation matrix.

 One Antenna Two Antennas Four Antennas
eNodeB Correlation ReNB = 1

ReNB =
1 α
α∗ 1

ReNB =

1 α1 9 α4 9 α

α1 9* 1 α1 9 α4 9

α4 9* α1 9* 1 α1 9

α* α4 9* α1 9* 1

The following table defines the receiver UE correlation matrix.

 comm.LTEMIMOChannel

4-1169

 One Antenna Two Antennas Four Antennas
UE Correlation RUE = 1

RUE =
1 β

β∗ 1
RUE =

1 β1 9 β4 9 β

β1 9* 1 β1 9 β4 9

β4 9* β1 9* 1 β1 9

β* β4 9* β1 9* 1

The following table describes the Rspat channel spatial correlation matrix between the
transmitter and receiver antennas.

Tx-by-Rx Configuration Correlation Matrix
1-by-2

Rspat = RUE =
1 β
β* 1

2-by-2

Rspat = ReNB⊗ RUE =
1 α
α* 1

⊗
1 β
β* 1

=

1 β α αβ
β* 1 αβ* α
α* α*β 1 β

α*β* α* β* 1

4 System Objects — Alphabetical List

4-1170

Tx-by-Rx Configuration Correlation Matrix
4-by-2

Rspat = ReNB⊗ RUE

=

1 α1 9 α4 9 α

α1 9* 1 α1 9 α4 9

α4 9* α1 9* 1 α1 9

α* α4 9* α1 9* 1

⊗
1 β
β* 1

4-by-4

Rspat = ReNB⊗ RUE

=

1 α1 9 α4 9 α

α1 9* 1 α1 9 α4 9

α4 9* α1 9* 1 α1 9

α* α4 9* α1 9* 1

⊗

1 β1 9 β4 9 β

β1 9* 1 β1 9 β4 9

β4 9* β1 9* 1 β1 9

β* β4 9* β1 9* 1

Spatial Correlation Correction
Low Correlation Medium Correlation High Correlation
α β α β α β

 comm.LTEMIMOChannel

4-1171

Low Correlation Medium Correlation High Correlation
0 0 0.3 0.9 0.9 0.9

To insure the correlation matrix is positive semi-definite after round-off to 4 digit
precision, this System object uses the following equation:

Rhigh = Rspatial + aIn /(1 + a)

Where

α represents the scaling factor such that the smallest value is used to obtain a positive
semi-definite result.

For the 4-by-2 high correlation case, α=0.00010.

For the 4-by-4 high correlation case, α=0.00012.

The object uses the same method to adjust the 4-by-4 medium correlation matrix to insure
the correlation matrix is positive semi-definite after rounding to 4 digit precision with α =
0.00012.

Selected Bibliography
[1] 3rd Generation Partnership Project, Technical Specification Group Radio Access

Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Base Station (BS)
radio transmission and reception, Release 10, 2009–2010, 3GPP TS 36.104, Vol.
10.0.0.

[2] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), User Equipment
(UE) radio transmission and reception, Release 10, 2010, 3GPP TS 36.101, Vol.
10.0.0.

[3] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

[4] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

4 System Objects — Alphabetical List

4-1172

[5] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.MIMOChannel

Introduced in R2012a

 comm.LTEMIMOChannel

4-1173

reset
System object: comm.LTEMIMOChannel
Package: comm

(To be removed) Reset states of the LTEMIMOChannel object

Note comm.LTEMIMOChannel will be removed in a future release. Use
comm.MIMOChannel instead.

Syntax
reset(H)

Description
reset(H) resets the states of the LTEMIMOChannel object, H.

If you set the RandomStream property of H to Global stream, the reset method only
resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

4 System Objects — Alphabetical List

4-1174

step
System object: comm.LTEMIMOChannel
Package: comm

(To be removed) Filter input signal through LTE MIMO multipath fading channel

Note comm.LTEMIMOChannel will be removed in a future release. Use
comm.MIMOChannel instead.

Syntax
Y = step(H,X)
[Y,PATHGAINS] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) filters input signal X through an LTE MIMO multipath fading channel
and returns the result in Y. The input X can be a double- or single-precision data type
scalar, vector, or 2-D matrix with real or complex values. X is of size Ns-by-Nt. Ns
represents the number of samples and Nt represents the number of transmit antennas
that must match the AntennaConfiguration property setting of H. Y is the output signal of
size Ns-by-Nr. Nr represents the number of receive antennas that is specified by the
AntennaConfiguration property of H. Y contains complex values with same precision
as input signal.

[Y,PATHGAINS] = step(H,X) returns the LTE MIMO channel path gains of the
underlying fading process in PATHGAINS. This applies when you set the
PathGainsOutputPort property to true. PATHGAINS is of size Ns-by-Np-by-Nt-by-Nr. Np

 step

4-1175

represents the number of discrete paths of the channel implicitly defined by the Profile
property of H. PATHGAINS contains complex values with same precision as input signal.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1176

comm.MatrixDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols using permutation matrix

Compatibility
comm.MatrixDeinterleaver will be removed in a future release. Use matdeintrlv
instead. For more information, see “Compatibility Considerations” on page 4-1179.

Description
The MatrixDeinterleaver object performs block deinterleaving by filling a matrix with
the input symbols column by column and then sending the matrix contents to the output
port row by row. The number of rows and number of columns properties set the
dimensions of the matrix that the object uses internally for computations.

To deinterleave input symbols using a permutation vector:

1 Define and set up your matrix deinterleaver object. See “Construction” on page 4-
1178.

2 Call step to deinterleave the input signal according to the properties of
comm.MatrixDeinterleaver. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

 comm.MatrixDeinterleaver

4-1177

Construction
H = comm.MatrixDeinterleaver creates a matrix deinterleaver System object, H. This
object restores the original ordering of a sequence that was interleaved using the matrix
interleaver object.

H = comm.MatrixDeinterleaver(Name,Value) creates a matrix deinterleaver
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.MatrixDeinterleaver(N,M) creates a matrix deinterleaver object, H. This
object has the NumRows property set to N, the NumColumns property set to M.

Properties
NumRows

Number of rows of permutation matrix

Specify the number of permutation matrix rows as a scalar, positive integer. The default is
3.

NumColumns

Number of columns of permutation matrix

Specify the number of permutation matrix columns as a scalar, positive integer. The
default is 4.

Methods

step (To be removed) Deinterleave input symbols using permutation matrix

Common to All System Objects
release Allow System object property value changes

4 System Objects — Alphabetical List

4-1178

Examples

Matrix Interleaving and Deinterleaving

Create matrix interleaver and deinterleaver objects.

interleaver = comm.MatrixInterleaver('NumRows',2,'NumColumns', 5);

Warning: COMM.MATRIXINTERLEAVER will be removed in a future release. Use MATINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.MatrixDeinterleaver('NumRows',2,'NumColumns', 5);

Warning: COMM.MATRIXDEINTERLEAVER will be removed in a future release. Use MATDEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Generate random data, interleave, and then deinterleave the data.

data = randi(7,10,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Matrix
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.MatrixDeinterleaver will be removed
Not recommended starting in R2019b

 comm.MatrixDeinterleaver

4-1179

comm.MatrixDeinterleaver will be removed in a future release. Use matdeintrlv
instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
deintrlv | intrlv | matdeintrlv | matintrlv

Introduced in R2012a

4 System Objects — Alphabetical List

4-1180

step
System object: comm.MatrixDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols using permutation matrix

Compatibility
step will be removed in a future release. Use matdeintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a block interleaver. The object fills a permutation matrix with the input symbols
column by column and outputs the matrix contents row by row in the output, Y. The input
X must be a column vector of length equal to NumRows × NumColumns. The data type
for X can be numeric, logical, or fixed-point (fi objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

 step

4-1181

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1182

comm.MatrixInterleaver
Package: comm

(To be removed) Permute input symbols using permutation matrix

Compatibility
comm.MatrixInterleaver will be removed in a future release. Use matintrlv instead. For
more information, see “Compatibility Considerations” on page 4-1185.

Description
The MatrixInterleaver object performs block interleaving by filling a matrix with the
input symbols row by row and then outputs the matrix contents column-by-column.

To perform block interleaving using a permutation matrix:

1 Define and set up your matrix interleaver object. See “Construction” on page 4-1183.
2 Call step to interleave the input symbols according to the properties of

comm.MatrixInterleaver. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MatrixInterleaver creates a matrix interleaver System object, H. This
object permutes the input by filling a permutation matrix with the input symbols row by
row. The object then outputs the matrix contents column by column.

 comm.MatrixInterleaver

4-1183

H = comm.MatrixInterleaver(Name,Value) creates a matrix interleaver object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.MatrixInterleaver(N,M) creates a matrix interleaver object, H. This
object has the NumRows property set to N, the NumColumns property set to M.

Properties
NumRows

Number of rows of permutation matrix

Specify the number of permutation matrix rows as a scalar, positive integer. The default is
3.

NumColumns

Number of columns of permutation matrix

Specify the number of permutation matrix columns as a scalar, positive integer. The
default is 4.

Methods
step (To be removed) Permute input symbols using permutation matrix

Common to All System Objects
release Allow System object property value changes

Examples

Matrix Interleaving and Deinterleaving

Create matrix interleaver and deinterleaver objects.

4 System Objects — Alphabetical List

4-1184

interleaver = comm.MatrixInterleaver('NumRows',2,'NumColumns', 5);

Warning: COMM.MATRIXINTERLEAVER will be removed in a future release. Use MATINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.MatrixDeinterleaver('NumRows',2,'NumColumns', 5);

Warning: COMM.MATRIXDEINTERLEAVER will be removed in a future release. Use MATDEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Generate random data, interleave, and then deinterleave the data.

data = randi(7,10,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Confirm the original and deinterleaved data are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Matrix
Deinterleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.MatrixInterleaver will be removed
Not recommended starting in R2019b

comm.MatrixInterleaver will be removed in a future release. Use matintrlv instead.

 comm.MatrixInterleaver

4-1185

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
deintrlv | intrlv | matdeintrlv | matintrlv

Introduced in R2012a

4 System Objects — Alphabetical List

4-1186

step
System object: comm.MatrixInterleaver
Package: comm

(To be removed) Permute input symbols using permutation matrix

Compatibility
step will be removed in a future release. Use matintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
object fills a permutation matrix with the input symbols row by row and outputs the
matrix contents column by column. The input X must be a column vector of length
NumRows × NumColumns and the data type can be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

 step

4-1187

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1188

comm.MatrixHelicalScanDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols by filling a matrix along diagonals

Compatibility
comm.MatrixHelicalScanDeinterleaver will be removed in a future release. Use
helscandeintrlv instead. For more information, see “Compatibility Considerations” on
page 4-1192.

Description
The MatrixHelicalScanDeinterleaver object performs block deinterleaving by
filling a matrix with the input symbols helically and then outputs the matrix contents row
by row. The number of rows and number of columns properties represent the dimensions
of the matrix that the object uses internally for computations.

To deinterleave the input symbols by filling a matrix with the input symbols helically and
then outputting the matrix contents row-by-row:

1 Define and set up your matrix helical scan deinterleaver object. See “Construction”
on page 4-1190.

2 Call step to deinterleave the input signal according to the properties of
comm.MatrixHelicalScanDeinterleaver. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

 comm.MatrixHelicalScanDeinterleaver

4-1189

Construction
H = comm.MatrixHelicalScanDeinterleaver creates a matrix helical scan
deinterleaver object, H. This object restores the original ordering of a sequence that was
interleaved using the matrix helical scan interleaver System object.

H = comm.MatrixHelicalScanDeinterleaver(Name,Value) creates a matrix
helical scan deinterleaver object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
NumRows

Number of rows of permutation matrix

Specify the number of rows in the permutation matrix as a scalar, positive integer. The
default is 64.

NumColumns

Number of columns of permutation matrix

Specify the number of columns in the permutation matrix as a scalar, positive integer. The
default is 64.

StepSize

Slope of diagonals

Specify slope as a scalar integer between 0 and the value you specify in the NumRows on
page 4-0 property. The default is 1. The slope value indicates the amount by which the
row index increases as the column index increases by 1. When you set the value of this
property to 0, the object does not interleave and the output matches the input.

4 System Objects — Alphabetical List

4-1190

Methods
step (To be removed) Deinterleave input symbols by filling a matrix along diagonals

Common to All System Objects
release Allow System object property value changes

Examples

Matrix Helical Scan Interleaving and Deinterleaving

Create matrix helical scan interleaver and deinterleaver objects.

interleaver = comm.MatrixHelicalScanInterleaver('NumRows',4,'NumColumns', 4);

Warning: COMM.MATRIXHELICALSCANINTERLEAVER will be removed in a future release. Use HELSCANINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.MatrixHelicalScanDeinterleaver('NumRows',4,'NumColumns',4);

Warning: COMM.MATRIXHELICALSCANDEINTERLEAVER will be removed in a future release. Use HELSCANDEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Generate random symbols. Pass the data through the interleaver, and then pass that data
through the deinterleaver.

data = randi(7,16,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Display the original sequence, interleaved sequence and restored sequence.

[data intData deIntData]

ans = 16×3

 6 6 6
 7 1 7
 1 2 1
 7 1 7
 5 5 5
 1 7 1

 comm.MatrixHelicalScanDeinterleaver

4-1191

 2 6 2
 4 7 4
 7 7 7
 7 4 7
 ⋮

Confirm that the original and deinterleaved sequences are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Matrix Helical
Scan Deinterleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations
comm.MatrixHelicalScanDeinterleaver will be removed
Not recommended starting in R2019b

comm.MatrixHelicalScanDeinterleaver will be removed in a future release. Use
helscandeintrlv instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

4 System Objects — Alphabetical List

4-1192

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
deintrlv | helscandeintrlv | helscanintrlv | intrlv

Introduced in R2012a

 comm.MatrixHelicalScanDeinterleaver

4-1193

step
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

(To be removed) Deinterleave input symbols by filling a matrix along diagonals

Compatibility
step will be removed in a future release. Use helscandeintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X. The object fills a
permutation matrix with the input symbols in a helical fashion and output the contents
row by row, and returns Y. The input X must be a NumRows × NumColumns long column
vector and the data type can be numeric, logical, or fixed-point (fi objects). Y has the same
data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

4 System Objects — Alphabetical List

4-1194

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1195

comm.MatrixHelicalScanInterleaver
Package: comm

(To be removed) Permute input symbols by selecting matrix elements along diagonals

Compatibility
comm.MatrixHelicalScanInterleaver will be removed in a future release. Use
helscanintrlv instead. For more information, see “Compatibility Considerations” on
page 4-1199.

Description
The MatrixHelicalScanInterleaver object performs block interleaving by filling a
matrix with the input symbols row by row and then outputs the matrix contents helically.
The number of rows and number of columns properties are the dimensions of the matrix
that the object uses internally for computations.

To interleave the input signal by filling a matrix row-by-row with the input symbols and
then outputting the matrix contents helically:

1 Define and set up your matrix helical scan interleaver object. See “Construction” on
page 4-1197.

2 Call step to interleave the input signal according to the properties of
comm.MatrixHelicalScanInterleaver. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

4 System Objects — Alphabetical List

4-1196

Construction
H = comm.MatrixHelicalScanInterleaver creates a matrix helical scan interleaver
object, H. This object permutes the input by filling a permutation matrix with the input
symbols row by row and then outputs the matrix contents helically.

H = comm.MatrixHelicalScanInterleaver(Name,Value) creates a matrix helical
scan interleaver object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
NumRows

Number of rows of permutation matrix

Specify the number of rows in the permutation matrix as a scalar, positive integer. The
default is 64.

NumColumns

Number of columns of permutation matrix

Specify the number of columns in the permutation matrix as a scalar, positive integer. The
default is 64.

StepSize

Slope of diagonals

Specify slope as a scalar integer between 0 and the value you specify in the NumRows on
page 4-0 property. The slope value represents the amount by which the row index
increases as the column index increases by 1. When you set the value of this property to
0, the object does not interleave and the output matches the input. The default is 1.

 comm.MatrixHelicalScanInterleaver

4-1197

Methods
step (To be removed) Permute input symbols by selecting matrix elements along

diagonals

Common to All System Objects
release Allow System object property value changes

Examples

Matrix Helical Scan Interleaving and Deinterleaving

Create matrix helical scan interleaver and deinterleaver objects.

interleaver = comm.MatrixHelicalScanInterleaver('NumRows',4,'NumColumns', 4);

Warning: COMM.MATRIXHELICALSCANINTERLEAVER will be removed in a future release. Use HELSCANINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

deinterleaver = comm.MatrixHelicalScanDeinterleaver('NumRows',4,'NumColumns',4);

Warning: COMM.MATRIXHELICALSCANDEINTERLEAVER will be removed in a future release. Use HELSCANDEINTRLV instead. See R2019b Communications Toolbox Release Notes for more information.

Generate random symbols. Pass the data through the interleaver, and then pass that data
through the deinterleaver.

data = randi(7,16,1);
intData = interleaver(data);
deIntData = deinterleaver(intData);

Display the original sequence, interleaved sequence and restored sequence.

[data intData deIntData]

ans = 16×3

 6 6 6
 7 1 7
 1 2 1
 7 1 7
 5 5 5

4 System Objects — Alphabetical List

4-1198

 1 7 1
 2 6 2
 4 7 4
 7 7 7
 7 4 7
 ⋮

Confirm that the original and deinterleaved sequences are identical.

isequal(data,deIntData)

ans = logical
 1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Matrix Helical
Scan Deinterleaver block reference page. The object properties correspond to the block
parameters.

Compatibility Considerations

comm.MatrixHelicalScanInterleaver will be removed
Not recommended starting in R2019b

comm.MatrixHelicalScanInterleaver will be removed in a future release. Use
helscanintrlv instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.MatrixHelicalScanInterleaver

4-1199

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
deintrlv | helscandeintrlv | helscanintrlv | intrlv

Introduced in R2012a

4 System Objects — Alphabetical List

4-1200

step
System object: comm.MatrixHelicalScanInterleaver
Package: comm

(To be removed) Permute input symbols by selecting matrix elements along diagonals

Compatibility
step will be removed in a future release. Use helscanintrlv instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a NumRows × NumColumns long column vector and the data type can be
numeric, logical, or fixed-point (fi objects). Y has the same data type as X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

4-1201

nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1202

comm.MemorylessNonlinearity
Package: comm

Apply memoryless nonlinearity to input signal

Description
The MemorylessNonlinearity object applies a memoryless nonlinearity to a complex,
baseband signal. You can use the object to model radio frequency (RF) impairments to a
signal at the receiver.

To apply memoryless nonlinearity to the input signal:

1 Define and set up your memoryless nonlinearity object. See “Construction” on page
4-1203.

2 Call step to apply memoryless nonlinearity according to the properties of
comm.MemorylessNonlinearity. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MemorylessNonlinearity creates a memoryless nonlinearity System
object, H. This object models receiver radio frequency (RF) impairments.

H = comm.MemorylessNonlinearity(Name,Value) creates a memoryless
nonlinearity object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.MemorylessNonlinearity

4-1203

Properties
Method

Method used to model nonlinearity

Specify the nonlinearity method as one of Cubic polynomial | Hyperbolic tangent |
Saleh model | Ghorbani model | Rapp model|'Lookup table'. The default is
Cubic polynomial. This property is non-tunable.

InputScaling

Scale factor applied to input signal

Specify the scale factor in decibels. The object applies this factor to the input signal as a
real scalar value of double- or single-precision data type. The default is 0. This property
applies when you set the Method on page 4-0 property to Saleh model or Ghorbani
model. This property is tunable.

LinearGain

Linear gain applied to output signal

Specify the linear gain (in decibels) that the object applies to the output signal as a real
scalar value of double- or single-precision data type. The default is 0. This property
applies when you set the Method on page 4-0 property to Cubic polynomial,
Hyperbolic tangent, or Rapp model. This property is tunable.

IIP3

Third-order input intercept point

Specify the third-order input intercept point (in decibels relative to a milliwatt) as a real
scalar value of double- or single-precision data type. The default is 30. This property
applies when you set the Method on page 4-0 property to Cubic polynomial or
Hyperbolic tangent. This property is tunable.

AMPMConversion

AM/PM conversion factor

Specify the AM/PM conversion factor (in degrees per decibel) as a real scalar value of
double- or single-precision data type. The default is 10. This property applies when you

4 System Objects — Alphabetical List

4-1204

set the Method on page 4-0 property to Cubic polynomial or Hyperbolic
tangent. This property is tunable.

AMAMParameters

AM/AM conversion parameters

Specify the AM/AM conversion parameters that the object uses to compute the amplitude
gain for an input signal as a real vector of double- or single-precision data type. The
default is [2.1587 1.1517] for the Saleh model and [8.1081 1.5413 6.5202
-0.0718] for the Ghorbani model.

This property applies when you set the Method on page 4-0 property to Saleh model
or Ghorbani model.

When you set the Method property to Saleh model, this property is a two-element
vector that specifies alpha and beta values. Otherwise, this property is a four-element
vector that specifies x1, x2, x3, and x4 values. This property is tunable.

AMPMParameters

AM/PM conversion parameters

Specify the AM/PM conversion parameters used to compute the phase change for an
input signal as a real vector of double- or single-precision data type. The default is
[4.0033 9.1040] for the Saleh model and [4.6645 2.0965 10.88 -0.003] for the
Ghorbani model.

This property applies when you set the Method on page 4-0 property to Saleh model
or Ghorbani model.

When you set the Method property to Saleh model, this property is a two-element
vector that specifies alpha and beta values. Otherwise, this property is a four-element
vector that specifies y1, y2, y3, and y4 values. This property is tunable.

PowerLowerLimit

Lower input power limit

Minimum input power in decibels relative to a milliwatt, specified as a scalar, for which
AM/PM conversion scales linearly with input power value. The default is 10. Below this
value, the phase shift resulting from AM/PM conversion is zero. This property applies

 comm.MemorylessNonlinearity

4-1205

when you set the Method on page 4-0 property to Cubic polynomial or
Hyperbolic tangent. This property is tunable.

PowerUpperLimit

Upper input power limit

Specify the maximum input power (in decibels relative to a milliwatt) for which AM/PM
conversion scales linearly with input power value. The default is inf. Above this value,
the phase shift resulting from AM/PM conversion is constant. You must set the
PowerUpperLimit on page 4-0 property to a real scalar value, which is greater than
the PowerLowerLimit on page 4-0 property and of double- or single-precision data
type. This property applies when you set the Method on page 4-0 property to Cubic
polynomial or Hyperbolic tangent.This property is tunable.

OutputScaling

Scale factor applied to output signal

Specify the scale factor (in decibels) that the object applies to the output signal as a real
scalar value of double- or single-precision data type. The default is 0. This property
applies when you set the Method on page 4-0 property to Saleh model or Ghorbani
model. This property is tunable.

Smoothness

Smoothness factor

Specify the smoothness factor as a real scalar value of double- or single-precision data
type. The default is 0.5. This property applies when you set the Method on page 4-0
property to Rapp model. This property is tunable.

OutputSaturationLevel

Output saturation level

Specify the output saturation level as a real scalar value of double- or single-precision
data type. This property applies when you set the Method on page 4-0 property to
Rapp model. The default is 1. This property is tunable.

Table

Amplifier characteristics lookup table

4 System Objects — Alphabetical List

4-1206

Amplifier characteristics lookup table, specified as a [Pin,Pout,Φ]-by-N matrix of measured
power amplifier (PA) characteristics. The N rows of the matrix contain measured values of
the PA input signal, Pin, The PA output signal, Pout, and the output phase shift, Φ. The
signal levels (Pin and Pout) must be in dBm, and the phase shift (Φ) must be in degrees.
This System object uses the measured PA characteristics defined by this property to
compute the AM/AM (in dBm/dBm) and AM/PM (in deg/dBm) nonlinear impairment
characteristics. The System object distorts the input signal by the computed AM/AM (in
dBm/dBm) and AM/PM (in deg/dBm). The default PA characteristics matrix is [-25, 5.16,
-0.25; -20, 10.11, -0.47; -15, 15.11, -0.68; -10, 20.05, -0.89; -5, 24.79, -1.22; 0, 27.64, 5.59;
5, 28.49, 12.03]. This property applies when you set the Method property to 'Lookup
table'. This property is tunable.

Methods
step Apply memoryless nonlinearity to input signal

Common to All System Objects
release Allow System object property value changes

Examples

Apply Saleh Model Nonlinearity to 16-QAM Signal

Generate 16-QAM modulated data with an average power of 10 mW and pass the data
through a nonlinear power amplifier.

M = 16;
data = randi([0 M-1]',1000,1);
avgPow = 1e-2;
minD = avgPow2MinD(avgPow, M);

Create Memoryless Nonlinearity System object using the Saleh model.

saleh = comm.MemorylessNonlinearity('Method','Saleh model');

Generate modulated symbols and pass them through the nonlinearity model.

 comm.MemorylessNonlinearity

4-1207

modData = (minD/2).*qammod(data,M);
y = saleh(modData);

Plot the resultant scatter plot.

scatterplot(y)

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM

4 System Objects — Alphabetical List

4-1208

 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);
end

Nonlinear Amplifier Gain Compression

Plot the gain compression of a nonlinear amplifier for a 16-QAM signal.

Specify the modulation order and samples per symbol parameters.

M = 16;
sps = 4;

To model a nonlinear amplifier, create a memoryless nonlinearity object having a 30 dB
third order intercept point. Create a raised cosine transmit filter.

amplifier = comm.MemorylessNonlinearity('IIP3',30);

txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.3, ...
 'FilterSpanInSymbols',6, ...
 'OutputSamplesPerSymbol',sps, ...
 'Gain',sqrt(sps));

Specify the input power in dBm. Convert the input power to W and initialize the gain
vector.

pindBm = -5:25;
pin = 10.^((pindBm-30)/10);
gain = zeros(length(pindBm),1);

Execute the main processing loop, which includes these steps:

• Generating random data symbols
• Modulating the data and adjusting the average power
• Filtering the modulated signal

 comm.MemorylessNonlinearity

4-1209

• Amplifying the signal
• Measuring the gain

for k = 1:length(pin)
 data = randi([0 M-1],1000,1);
 modSig = qammod(data,M,'UnitAveragePower',true)*sqrt(pin(k));
 filtSig = txfilter(modSig);
 ampSig = amplifier(filtSig);
 gain(k) = 10*log10(var(ampSig)/var(filtSig));
end

Plot the amplifier gain as a function of the input signal power.

arrayplot = dsp.ArrayPlot('PlotType','Line','XLabel','Power In (dBm)', ...
'XOffset',-5,'YLimits',[-5 5]);

arrayplot(gain)

4 System Objects — Alphabetical List

4-1210

The 1 dB gain compression point occurs for an input power of 18.5 dBm. To increase the
point at which a 1 dB compression is observed, increase the third order intercept point,
amplifier.IIP3.

Distort 16QAM Signal with Custom Power Amplifier Nonlinearities

Apply nonlinear power amplifier (PA) characteristics to a 16-QAM signal by setting the
Method property to Lookup table.

Define parameters for the modulation order, samples per symbol, input power, and create
random data.

M = 16; % Modulation order
sps = 4; % Samples per symbol
pindBm = -2; % Input power
pin = 10.^((pindBm-30)/10); % power in Watts
data = randi([0 M-1],1000,1);
refdata = 0:M-1;
refconst = qammod(refdata,M,'UnitAveragePower',true);

Create a memoryless nonlinearity System object, a transmit filter System object, and a
constellation diagram System objects. The default lookup table values are used for the
memoryless nonlinearity System object.

amplifier = comm.MemorylessNonlinearity('Method','Lookup table');
txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.3, ...
 'FilterSpanInSymbols',6,'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));
constellation = comm.ConstellationDiagram('SamplesPerSymbol',4,'ReferenceConstellation',refconst, ...
 'Title','Amplified/Distorted Signal');

Modulate the random data. Filter and apply the nonlinear amplifier characteristics to the
modulation symbols.

modSig = qammod(data,M,'UnitAveragePower',true)*sqrt(pin);
filtSig = txfilter(modSig);
ampSig = amplifier(filtSig);

Compute input and output signal levels and the phase shift.

poutdBm = (20*log10(abs(ampSig)))+30;
simulated_pindBm = (20*log10(abs(filtSig)))+30;
phase = angle(ampSig.*conj(filtSig))*180/pi;

 comm.MemorylessNonlinearity

4-1211

Plot AM/AM characteristics, AM/PM characteristics, and the constellation results.

figure
set(gcf,'units','normalized','position',[.25 1/3 .5 1/3])
subplot(1,2,1)
plot(simulated_pindBm,poutdBm,'.');
hold on
plot(amplifier.Table(:,1),amplifier.Table(:,2),'.','Markersize',15);
xlabel('Input Power (dBm)')
ylabel('Output Power (dBm)');
grid on;
title('AM/AM Characteristic');
Legend={'Simulated Results','Measurement'};
legend (Legend,'Location','north');

subplot(1,2,2)
plot(simulated_pindBm,phase,'.');
hold on
plot(amplifier.Table(:,1),amplifier.Table(:,3),'.','Markersize',15);
legend (Legend,'Location','north');
xlabel('Input Power (dBm)');
ylabel('Output Phase Shift (deg.)');
grid on; title('AM/PM Characteristic');

4 System Objects — Alphabetical List

4-1212

Constellation compression, due to the nonlinear amplifier characteristics, is evident
compared to the reference constellation.

constellation(ampSig)

 comm.MemorylessNonlinearity

4-1213

4 System Objects — Alphabetical List

4-1214

Distort 16QAM Signal with Measured Power Amplifier Nonlinearities

Apply nonlinear power amplifier (PA) characteristics to a 16-QAM signal by setting the
Method property to Lookup table.

Define parameters for the modulation order, samples per symbol, input power, and create
random data.

M = 16; % Modulation order
sps = 4; % Samples per symbol
pindBm = -8; % Input power
pin = 10.^((pindBm-30)/10); % power in Watts
data = randi([0 M-1],1000,1);
refdata = 0:M-1;
refconst = qammod(refdata,M,'UnitAveragePower',true);
paChar = pa_performance_characteristics();

Create a memoryless nonlinearity System object, a transmit filter System object, and a
constellation diagram System object. The default lookup table values are used for the
memoryless nonlinearity System object.

amplifier = comm.MemorylessNonlinearity('Method','Lookup table','Table',paChar);
txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.3, ...
 'FilterSpanInSymbols',6,'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));
constellation = comm.ConstellationDiagram('SamplesPerSymbol',4, ...
 'Title','Amplified/Distorted Signal','NumInputPorts',2, ...
 'ReferenceConstellation', refconst,'ShowLegend',true, ...
 'ChannelNames',{'Amplified signal','Filtered signal'});

Modulate the random data. Filter and apply the nonlinear amplifier characteristics to the
modulation symbols.

modSig = qammod(data,M,'UnitAveragePower',true)*sqrt(pin);
filtSig = txfilter(modSig);
ampSig = amplifier(filtSig);

Compute input and output signal levels and the phase shift.

poutdBm = (20*log10(abs(ampSig)))+30;
simulated_pindBm = (20*log10(abs(filtSig)))+30;
phase = angle(ampSig.*conj(filtSig))*180/pi;

Plot AM/AM characteristics, AM/PM characteristics, and the constellation results.

figure
set(gcf,'units','normalized','position',[.25 1/3 .5 1/3])

 comm.MemorylessNonlinearity

4-1215

subplot(1,2,1)
plot(simulated_pindBm,poutdBm,'.');
hold on
plot(amplifier.Table(:,1),amplifier.Table(:,2),'.','Markersize',15);
xlabel('Input Power (dBm)')
ylabel('Output Power (dBm)');
grid on;
title('AM/AM Characteristic');
Legend={'Simulated Results','Measurement'};
legend (Legend,'Location','south');

subplot(1,2,2)
plot(simulated_pindBm,phase,'.');
hold on
plot(amplifier.Table(:,1),amplifier.Table(:,3),'.','Markersize',15);
legend (Legend,'Location','south');
xlabel('Input Power (dBm)');
ylabel('Output Phase Shift (deg.)');
grid on; title('AM/PM Characteristic');

4 System Objects — Alphabetical List

4-1216

For the purpose of constellation comparison, normalize the amplified signal and the
filtered signal. The nonlinear amplifier characteristics cause compression of the amplified
signal constellation compared to the filtered constellation.

filtSig = filtSig/mean(abs(filtSig)); % Normalized filtered signal
ampSig = ampSig/mean(abs(ampSig)); % Normalized amplified signal
constellation(filtSig,ampSig)

 comm.MemorylessNonlinearity

4-1217

function paChar = pa_performance_characteristics()

The pa_performance_characteristics helper function provides the amplifier
performance characteristics. The data is extracted from figure 4 of Hammi, Oualid, et al.
"Power amplifiers' model assessment and memory effects intensity quantification using

4 System Objects — Alphabetical List

4-1218

memoryless post-compensation technique." IEEE Transactions on Microwave Theory and
Techniques 56.12 (2008): 3170-3179.

The operating specification for the LDMOS-based Doherty Amplifier are:

• Frequency: 2110MHz
• Peak Power: 300w
• Small Signal Gain: 61dB

Each row in HAV08_Table specifies Pin (dBm), Gain(dB), Phase shift (Degree).

HAV08_Table =...
 [-35,60.53,0.01;
 -34,60.53,0.01;
 -33,60.53,0.08;
 -32,60.54,0.08;
 -31,60.55,0.1;
 -30,60.56,0.08;
 -29,60.57,0.14;
 -28,60.59,0.19;
 -27,60.6,0.23;
 -26,60.64,0.21;
 -25,60.69,0.28;
 -24,60.76,0.21;
 -23,60.85,0.12;
 -22,60.97,0.08;
 -21,61.12,-0.13;
 -20,61.31,-0.44;
 -19,61.52,-0.94;
 -18,61.76,-1.59;
 -17,62.01,-2.73;
 -16,62.25,-4.31;
 -15,62.47,-6.85;
 -14,62.56,-9.82;
 -13,62.47,-12.29;
 -12,62.31,-13.82;
 -11,62.2,-15.03;
 -10,62.15,-16.27;
 -9,62,-18.05;
 -8,61.53,-20.21;
 -7,60.93,-23.38;
 -6,60.2,-26.64;
 -5,59.38,-28.75];

 comm.MemorylessNonlinearity

4-1219

Convert the second column from Gain to Pout for use by the memoryless nonlinearity
System object.

paChar = HAV08_Table;
paChar(:,2) = paChar(:,1)+paChar(:,2);
end

Algorithms
This object implements the algorithm, inputs, and outputs described on the Memoryless
Nonlinearity block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.PhaseNoise

Introduced in R2012a

4 System Objects — Alphabetical List

4-1220

step
System object: comm.MemorylessNonlinearity
Package: comm

Apply memoryless nonlinearity to input signal

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) applies memoryless nonlinearity to the input, X, using the nonlinearity
method you specify in the Method property, and returns the result in Y. The input X must
be a complex scalar or column vector of data type double or single precision. The output,
Y, is of the same data type as the input, X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1221

comm.MER
Package: comm

Measure modulation error ratio

Description
The comm.MER (modulation error ratio) object measures the signal-to-noise ratio (SNR) in
digital modulation applications. You can use MER measurements to determine system
performance in communications applications. For example, determining whether a DVB-T
system conforms to applicable radio transmission standards requires accurate MER
measurements. The block measures all outputs in dB.

To measure modulation error ratio:

1 Define and set up your MER object. See “Construction” on page 4-1222.
2 Call step to measure the modulation error ratio according to the properties of

comm.MER. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
MER = comm.MER creates a modulation error ratio (MER) System object, MER. This object
measures the signal-to-noise ratio (SNR) in digital modulation applications.

MER = comm.MER(Name,Value) creates an MER object with each specified property set
to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1222

Example: MER = comm.MER('ReferenceSignalSource','Estimated from
reference constellation') creates an object, MER, that measures the MER of a
received signal by using a reference constellation.

Properties
ReferenceSignalSource

Reference signal source

Reference signal source, specified as either 'Input port' (default) or 'Estimated
from reference constellation'. To provide an explicit reference signal against
which the input signal is measured, set this property to 'Input port'. To measure the
MER of the input signal against a reference constellation, set this property to
'Estimated from reference constellation'.

ReferenceConstellation

Reference constellation

Reference constellation, specified as a vector. This property is available when the
ReferenceSignalSource property is 'Estimated from reference
constellation'.

The default is [0.7071 - 0.7071i; -0.7071 - 0.7071i; -0.7071 + 0.7071i;
0.7071 + 0.7071i], which corresponds to a standard QPSK constellation. You can
derive constellation points by using modulation functions or objects. For example, to
derive the reference constellation for a 16-QAM signal, you can use qammod(0:15,16).

MeasurementIntervalSource

Measurement interval source

Measurement interval source, specified as one of the following: 'Input length'
(default), 'Entire history', 'Custom', or 'Custom with periodic reset'. This
property affects the RMS and maximum MER outputs only.

• To calculate MER using only the current samples, set this property to 'Input
length'.

• To calculate MER for all samples, set this property to 'Entire history'.

 comm.MER

4-1223

• To calculate MER over an interval you specify and to use a sliding window, set this
property to 'Custom'.

• To calculate MER over an interval you specify and to reset the object each time the
measurement interval is filled, set this property to 'Custom with periodic
reset'.

MeasurementInterval

Measurement interval

Measurement interval over which the MER is calculated, specified in samples as a real
positive integer. This property is available when MeasurementIntervalSource is
'Custom' or 'Custom with periodic reset'. The default is 100.

AveragingDimensions

Averaging dimensions

Averaging dimensions, specified as a positive integer or row vector of positive integers.
This property determines the dimensions over which the averaging is performed. For
example, to average across the rows, set this property to 2. The default is 1.

The object supports variable-size inputs over the dimensions in which the averaging takes
place. However, the input size for the nonaveraged dimensions must remain constant
between step calls. For example, if the input has size [4 3 2] and Averaging
dimensions is [1 3], the output size is [1 3 1], and the second dimension must
remain fixed at 3.

MinimumMEROutputPort

Minimum MER measurement output port

Minimum MER measurement output port, specified as a logical scalar. To create an
output port for minimum MER measurements, set this property to true. The default is
false.

XPercentileMEROutputPort

X-percentile MER measurement output port

X-percentile MER measurement output port, specified as a logical scalar. To create an
output port for X-percentile MER measurements, set this property to true. The X-

4 System Objects — Alphabetical List

4-1224

percentile MER measurements persist until you reset the object. These measurements are
calculated by using all of the input frames since the last reset. The default is false.

XPercentileValue

X-percentile value

X-percentile value above which X% of the MER measurements fall, specified as a real
scalar from 0 to 100. This property applies when XPercentileMEROutputPort is true.
The default is 95.

SymbolCountOutputPort

Symbol count output port

Symbol count output port, specified as a logical scalar. To output the number of
accumulated symbols used to calculate the X-percentile MER measurements, set this
property to true. This property is available when XPercentileMEROutputPort
property is true. The default is false.

Methods

reset Reset states of MER measurement object
step Measure modulation error ratio

Common to All System Objects
release Allow System object property value changes

Examples

Measure MER of Noisy 16-QAM Modulated Signal

Create an MER object which outputs minimum MER, 90-percentile MER, and the number
of symbols.

 comm.MER

4-1225

mer = comm.MER('MinimumMEROutputPort',true, ...
 'XPercentileMEROutputPort',true,'XPercentileValue',90,...
 'SymbolCountOutputPort',true);

Generate random data. Apply 16-QAM modulation having unit average power. Pass the
signal through an AWGN channel.

data = randi([0 15],1000,1);
refsym = qammod(data,16,'UnitAveragePower',true);
rxsym = awgn(refsym,20);

Determine the RMS, minimum, and 90th percentile MER values.

[MERdB,MinMER,PercentileMER,NumSym] = mer(refsym,rxsym)

MERdB = 20.1071

MinMER = 11.4248

PercentileMER = 16.5850

NumSym = 1000

Measure MER Using Reference Constellation

Generate random data symbols, and apply 8-PSK modulation.

d = randi([0 7],2000,1);
txSig = pskmod(d,8,pi/8);

Pass the modulated signal through an AWGN channel.

rxSig = awgn(txSig,30);

Create an MER object. Measure the MER using the transmitted signal as the reference.

mer = comm.MER;
mer1 = mer(txSig,rxSig);

Release the MER object. Set the object to use a reference constellation for making MER
measurements.

4 System Objects — Alphabetical List

4-1226

release(mer)
mer.ReferenceSignalSource = 'Estimated from reference constellation';
mer.ReferenceConstellation = pskmod(0:7,8,pi/8);

Measure the MER using only the received signal as an input. Verify that it matches the
result obtained with a reference signal.

mer2 = mer(rxSig);
[mer1 mer2]

ans = 1×2

 30.0271 30.0271

Measure MER Using Custom Measurement Interval

Measure the MER of a noisy 8-PSK signal using two types of custom measurement
intervals. Display the results.

Set the number of frames, M, and the number of subframes per frame, K.

M = 2;
K = 5;

Set the number of symbols in a subframe. Calculate the corresponding frame length.

sfLen = 100;
frmLen = K*sfLen

frmLen = 500

Create an MER object. Configure the object to use a custom measurement interval equal
to the frame length.

mer1 = comm.MER('MeasurementIntervalSource','Custom', ...
 'MeasurementInterval',frmLen);

Configure the object to measure MER using an 8-PSK reference constellation.

mer1.ReferenceSignalSource = 'Estimated from reference constellation';
mer1.ReferenceConstellation = pskmod(0:7,8,pi/8);

 comm.MER

4-1227

Create an MER object, and configure it use a 500-symbol measurement interval with a
periodic reset. Configure the object to measure MER using an 8-PSK reference
constellation.

mer2 = comm.MER('MeasurementIntervalSource','Custom with periodic reset', ...
 'MeasurementInterval',frmLen);
mer2.ReferenceSignalSource = 'Estimated from reference constellation';
mer2.ReferenceConstellation = pskmod(0:7,8,pi/8);

Initialize the MER and signal-to-noise arrays.

merNoReset = zeros(K,M);
merReset = zeros(K,M);
snrdB = zeros(K,M);

Measure the MER for a noisy 8-PSK signal using both objects. The SNR is increases by 1
dB from subframe to subframe. For merNoReset, the 500 most recent symbols are used
to compute the estimate. In this case, a sliding window is used so that an entire data
frame is used as the basis for the estimate. For merReset, the symbols are cleared each
time a new frame is encountered.

for m = 1:M
 for k = 1:K
 data = randi([0 7],sfLen,1);
 txSig = pskmod(data,8,pi/8);
 snrdB(k,m) = k+(m-1)*K+7;
 rxSig = awgn(txSig,snrdB(k,m));
 merNoReset(k,m) = mer1(rxSig);
 merReset(k,m) = mer2(rxSig);
 end
end

Display the MER measured using the two approaches. The windowing used in the first
case provides an averaging across the subframes. In the second case, the MER object
resets after the first frame so that the calculated MER values more accurately reflect the
current SNR.

stairs(snrdB(:),[merNoReset(:) merReset(:)])
xlabel('SNR (dB)')
ylabel('MER (%)')
legend('No Reset','Periodic Reset')

4 System Objects — Alphabetical List

4-1228

Measure MER Across Different Dimensions

Create OFDM modulator and demodulator objects.

ofdmmod = comm.OFDMModulator('FFTLength',32,'NumSymbols',4);
ofdmdemod = comm.OFDMDemodulator('FFTLength',32,'NumSymbols',4);

Determine the number of subcarriers and symbols in the OFDM signal.

ofdmDims = info(ofdmmod);
numSC = ofdmDims.DataInputSize(1)

 comm.MER

4-1229

numSC = 21

numSym = ofdmDims.DataInputSize(2)

numSym = 4

Generate random symbols and apply QPSK modulation.

msg = randi([0 3],numSC,numSym);
modSig = pskmod(msg,4,pi/4);

OFDM modulate the QPSK signal. Pass the signal through an AWGN channel. Demodulate
the noisy signal.

txSig = ofdmmod(modSig);
rxSig = awgn(txSig,10,'measured');
demodSig = ofdmdemod(rxSig);

Create an MER object, where the result is averaged over the subcarriers. Measure the
MER. There are four entries corresponding to each of the 4 OFDM symbols.

mer = comm.MER('AveragingDimensions',1);
modErrorRatio = mer(demodSig,modSig)

modErrorRatio = 1×4

 11.2338 12.5315 12.8882 12.7015

Overwrite the MER object, where the result is averaged over the OFDM symbols.
Measure the MER. There are 21 entries corresponding to each of the 21 subcarriers.

mer = comm.MER('AveragingDimensions',2);
modErrorRatio = mer(demodSig,modSig)

modErrorRatio = 21×1

 10.8054
 14.9655
 14.5721
 13.6024
 13.0132
 12.1391
 10.4012
 9.5017
 8.8055

4 System Objects — Alphabetical List

4-1230

 13.3824
 ⋮

Measure the MER and average over both the subcarriers and the OFDM symbols.

mer = comm.MER('AveragingDimensions',[1 2]);
modErrorRatio = mer(demodSig,modSig)

modErrorRatio = 12.2884

Algorithms
MER is a measure of the SNR in a modulated signal calculated in dB. The MER over N
symbols is

MER = 10 · log10

∑
n = 1

N
Ik2 + Qk

2

∑
n = 1

N
ek

dB,

The MER for the kth symbol is

MERk = 10 * log10

1
N ∑n = 1

N
Ik2 + Qk

2

ek
dB.

The minimum MER represents the minimum MER value in a burst, or

MERmin = min
k ∈ [1, ..., N]

MERk ,

where:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2

• Ik = In-phase measurement of the kth symbol in the burst

 comm.MER

4-1231

• Qk = Quadrature phase measurement of the kth symbol in the burst
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received)

symbols.

The block computes the X-percentile MER by creating a histogram of all the incoming
MERk values. The output provides the MER value above which X% of the MER values fall.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ACPR | comm.CCDF | comm.EVM

Introduced in R2012a

4 System Objects — Alphabetical List

4-1232

reset
System object: comm.MER
Package: comm

Reset states of MER measurement object

Syntax
reset(H)

Description
reset(H) resets the states of the MER object, H.

 reset

4-1233

step
System object: comm.MER
Package: comm

Measure modulation error ratio

Syntax
MERDB= step(MER,REFSYM,RXSYM)
MERDB = step(MER,RXSYM)
[___ ,MINMER] = step(___)
[___ ,XMER] = step(___)
[___ ,NUMSYM] = step(___)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

MERDB= step(MER,REFSYM,RXSYM) returns the measured MER, MERDB, of the received
signal RXSYM, based on reference signal REFSYM. MER values are measured in dB.

REFSYM. REFSYM and RXSYM inputs are complex column vectors of equal dimensions and
data type. The data type can be double, single, signed integer, or signed fixed point with
power-of-two slope and zero bias. All outputs of the object are of data type double. To set
the interval over which the MER is measured, use the MeasurementIntervalSource
and MeasurementInterval properties.

MERDB = step(MER,RXSYM) returns the measured MER of received signal RXSYM based
on a reference signal specified in the ReceivedConstellation property.

[___ ,MINMER] = step(___) returns the minimum MER, MINMER, given either of the
two previous syntaxes.

4 System Objects — Alphabetical List

4-1234

To return minimum MER, set the MinimumMEROutputPort property to true. To set the
interval over which MINMER is measured, use the MeasurementIntervalSource and
MeasurementInterval properties.

[___ ,XMER] = step(___) returns the X-percentile MER, XMER.

To return the X-percentile MER, set the XPercentileMEROutputPort property to true.
XMER is the MER above which X% of the measurements fall, where X is set by the
XPercentileValue property. XMER is measured using all the input frames since the last
reset.

[___ ,NUMSYM] = step(___) returns the number of symbols, NUMSYM, used to
calculate the X-percentile MER.

To return NUMSYM, set the SymbolCountOutputPort to true. NUMSYM is measured
using all the input frames since the last reset.

Note MER specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1235

comm.MIMOChannel
Package: comm

Filter input signal through MIMO multipath fading channel

Description
A comm.MIMOChannel object filters an input signal through a multiple-input/multiple-
output (MIMO) multipath fading channel. This object models both Rayleigh and Rician
fading and employs the Kronecker model for modeling the spatial correlation between the
links. For processing details, see the Algorithms on page 4-1268 section.

To filter an input signal through a MIMO multipath fading channel:

1 Create the comm.MIMOChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
mimochan = comm.MIMOChannel
mimochan = comm.MIMOChannel(Name,Value)

Description
mimochan = comm.MIMOChannel creates a multiple-input multiple-output (MIMO)
frequency-selective or frequency-flat fading channel System object. This object filters a
real or complex input signal through the multipath MIMO channel to obtain the channel-
impaired signal.

4 System Objects — Alphabetical List

4-1236

mimochan = comm.MIMOChannel(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in single quotes.
Example: comm.MIMOChannel('SampleRate',2)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar.
Data Types: double

PathDelays — Discrete path delay
0 (default) | scalar | row vector

Discrete path delay in seconds, specified as a scalar or row vector.

• When you set PathDelays to a scalar, the MIMO channel is frequency flat.
• When you set PathDelays to a vector, the MIMO channel is frequency selective.

Data Types: double

AveragePathGains — Average path gains (dB)
0 (default) | scalar | row vector

Average path gains in decibels, specified as a scalar or row vector. AveragePathGains
must have the same size as PathDelays.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

 comm.MIMOChannel

4-1237

Normalize path gains, specified as true or false.

• When you set this property to true, the fading processes are normalized so that the
total power of the path gains, averaged over time, is 0 dB.

• When you set this property to false, there is no normalization on path gains.

The average powers of the path gains are specified by the AveragePathGains property.
Data Types: logical

FadingDistribution — Fading distribution
'Rayleigh' (default) | 'Rician'

Fading distribution to use for the channel, specified as 'Rayleigh' or 'Rician'.
Data Types: char

KFactor — K-factor of Rician fading channel
3 (default) | positive scalar | row vector

K-factor of a Rician fading channel, specified as a positive scalar or a 1-by-NP vector of
positive-valued elements. NP equals number of path delays specified by the PathDelays
property.

• If you set KFactor to a scalar, the first discrete path is a Rician fading process with a
Rician K-factor of KFactor. Any remaining discrete paths are independent Rayleigh
fading processes.

• If you set KFactor to a row vector, the discrete path corresponding to a positive
element of the KFactor vector is a Rician fading process with a Rician K-factor
specified by that element. The discrete path corresponding to a zero-valued element of
the KFactor vector is a Rayleigh fading process.

Dependencies

This property applies when FadingDistribution is Rician.
Data Types: double

DirectPathDopplerShift — Doppler shifts for line-of-sight components (Hz)
0 (default) | scalar | row vector

Doppler shifts for the line-of-sight components of the Rician fading channel in hertz,
specified as a scalar or row vector. This property must have the same size as KFactor.

4 System Objects — Alphabetical List

4-1238

• If you set DirectPathDopplerShift to a scalar, it represents the line-of-sight
component Doppler shift of the first discrete path that is a Rician fading process.

• If you set DirectPathDopplerShift to a row vector, the discrete path that is a
Rician fading process has its line-of-sight component Doppler shift specified by the
elements of DirectPathDopplerShift that correspond to positive elements in the
KFactor vector.

Dependencies

This property applies when FadingDistribution is Rician.
Data Types: double

DirectPathInitialPhase — Initial phases for line-of-sight components
(Radians)
0 (default) | scalar | row vector

Initial phases for the line-of-sight components of the Rician fading channel in radians,
specified as a scalar or row vector. This property must have the same size as KFactor.

• If you set DirectPathInitialPhase to a scalar, it represents the line-of-sight
component initial phase of the first discrete path that is a Rician fading process.

• If you set DirectPathInitialPhase to a row vector, the discrete path that is a
Rician fading process has its line-of-sight component initial phase specified by the
elements of DirectPathInitialPhase that correspond to positive elements in the
KFactor vector.

Dependencies

This property applies when FadingDistribution is Rician.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift for all channel paths (Hz)
0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths in hertz, specified as a nonnegative scalar.

The Doppler shift applies to all channel paths. When you set this property to 0, the
channel remains static for the entire input. You can use the reset object function to
generate a new channel realization.

 comm.MIMOChannel

4-1239

MaximumDopplerShift must be smaller than (SampleRate/10)/fc for each path, where fc
represents the cutoff frequency factor of the path. For more information on the cutoff
frequency, see Cutoff Frequency Factor on page 4-1268.
Data Types: double

DopplerSpectrum — Doppler spectrum shape for all channel paths
doppler('Jakes') (default) | doppler('Flat') | doppler('Rounded', ...) |
doppler('Bell', ...) | doppler('Asymmetric Jakes', ...) |
doppler('Restricted Jakes', ...) | doppler('Gaussian', ...) |
doppler('BiGaussian', ...)

Doppler spectrum shape for all channel paths, specified as a single Doppler spectrum
structure returned from the doppler function or a 1-by-NP cell array of such structures.
The default value of this property is the Jakes Doppler spectrum (doppler('Jakes')).

• If you assign a single call to doppler, all paths have the same specified Doppler
spectrum.

• If you assign a 1-by-NP cell array of calls to doppler using any of the specified
syntaxes, each path has the Doppler spectrum specified by the corresponding Doppler
spectrum structure in the array. In this case, NP equals the value of the PathDelays
property.

The maximum Doppler shift value necessary to specify the Doppler spectrum/spectra is
given by the MaximumDopplerShift property.

Dependencies

This property applies when MaximumDopplerShift is greater than zero.

If you assign the FadingTechnique property to 'Sum of sinusoids', you must set
DopplerSpectrum to doppler('Jakes').

SpatialCorrelationSpecification — Spatial correlation specification
'Separate Tx Rx' (default) | 'None' | 'Combined'

Spatial correlation specification, specified as 'Separate Tx Rx', 'None', or
'Combined'.

• Choose 'Spatial Tx Rx' to separately specify the transmit and receive spatial
correlation matrices from which the number of transmit antenna (NT) and number of
receive antennas (NR) are derived.

4 System Objects — Alphabetical List

4-1240

• Choose 'None' to specify the number of transmit and receive antennas.
• Choose 'Combined' to specify a single correlation matrix for the whole channel, from

which the product of NT and NR is derived.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
2 (default) | positive integer

Number of transmit antennas, specified as a positive integer.
Dependencies

This property applies when SpatialCorrelationSpecification is 'None' or 'Combined'.
Data Types: double

NumReceiveAntennas — Number of receive antennas
2 (default) | positive integer

Number of receive antennas, specified as a positive integer.
Dependencies

This property applies when SpatialCorrelationSpecification is 'None' or 'Combined'.
Data Types: double

TransmitCorrelationMatrix — Spatial correlation of transmitter
[1 0; 0 1] (default) | matrix | 3-D array

Specify the spatial correlation of the transmitter as an NT-by-NT matrix or NT-by-NT-by-NP
array. NT is the number of transmit antennas, and NP equals the value of the PathDelays
property.

• If PathDelays is a scalar, the channel is frequency-flat, and
TransmitCorrelationMatrix is an NT-by-NT Hermitian matrix. The magnitude of
any off-diagonal element must be no larger than the geometric mean of the two
corresponding diagonal elements.

• If PathDelays is a vector, the channel is frequency selective, and you can specify
TransmitCorrelationMatrix as a matrix. Each path has the same transmit spatial
correlation matrix.

• Alternatively, you can specify TransmitCorrelationMatrix as an NT-by-NT-by-NP
array, where each path can have its own different transmit spatial correlation matrix.

 comm.MIMOChannel

4-1241

Dependencies

This property applies when you set the SpatialCorrelationSpecification property to
'Separate Tx Rx'.
Data Types: double
Complex Number Support: Yes

ReceiveCorrelationMatrix — Spatial correlation of receiver
[1 0; 0 1] (default) | matrix | 3-D array

Specify the spatial correlation of the receiver as an NR-by-NR matrix or NR-by-NR-by-NP
array. NR is the number of receive antennas, and NP equals the value of the PathDelays
property.

• If PathDelays is a scalar, the channel is frequency flat, and
ReceiveCorrelationMatrix is an NR-by-NR Hermitian matrix. The magnitude of
any off-diagonal element must be no larger than the geometric mean of the two
corresponding diagonal elements.

• If PathDelays is a vector, the channel is frequency selective, and you can specify
ReceiveCorrelationMatrix as a matrix. Each path has the same receive spatial
correlation matrix.

• Alternatively, you can specify ReceiveCorrelationMatrix as an NR-by-NR-by-NP
array, where each path can have its own different receive spatial correlation matrix.

Dependencies

This property applies when you set the SpatialCorrelationSpecification property to
'Separate Tx Rx'.
Data Types: double
Complex Number Support: Yes

SpatialCorrelationMatrix — Combined spatial correlation matrix
[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] (default) | matrix | 3-D array

Combined spatial correlation matrix, specified as an NTR-by-NTR matrix or NTR-by-NTR-by-
NP array, where NTR = (NT ✕ NR), and NP equals the value of the PathDelays property.

• If PathDelays is a scalar, the channel is frequency flat, and
SpatialCorrelationMatrix is an NTR-by-NTR Hermitian matrix. The magnitude of
any off-diagonal element must be no larger than the geometric mean of the two
corresponding diagonal elements.

4 System Objects — Alphabetical List

4-1242

• If PathDelays is a vector, the channel is frequency selective, and you can specify
SpatialCorrelationMatrix as a matrix. Each path has the same spatial
correlation matrix.

• Alternatively, you can specify SpatialCorrelationMatrix as an NTR-by-NTR-by-NP
array, where each path can have its own different combined spatial correlation matrix.

Dependencies

This property applies when you set the SpatialCorrelationSpecification property to
'Combined'.
Data Types: double

AntennaSelection — Antenna selection scheme
'Off' (default) | 'Tx' | 'Rx' | 'Tx and Rx'

Antenna selection scheme, specified as 'Off', 'Tx', 'Rx', or 'Tx and Rx'.

Tx represents transmit antennas and Rx represents receive antennas. When you
configure any antenna selection other than the default setting, the object requires one or
more inputs to specify which antennas are selected for signal transmission. For more
information, see Antenna Selection on page 4-1269.
Data Types: char

NormalizeChannelOutputs — Normalize channel outputs
true (default) | false

Normalize channel outputs, specified as true or false.

• When you set this property to true, channel outputs are normalized by the number of
receive antennas.

• When you set this property to false, channel outputs are not normalized.

Data Types: logical

FadingTechnique — Channel model fading technique
'Filtered Gaussian noise' (default) | 'Sum of sinusoids'

Channel model fading technique, specified as 'Filtered Gaussian noise' or 'Sum
of sinusoids'.
Data Types: char

 comm.MIMOChannel

4-1243

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.

Dependencies

This property applies when FadingTechnique is 'Sum of sinusoids'.
Data Types: double

InitialTimeSource — Source to control start time of fading process
'Property' (default) | 'Input port'

Source to control the start time of the fading process, specified as 'Property' or
'Input port'.

• 'Property' -- Use the InitialTime property to set the initial time offset.
• 'Input port' -- Specify the start time of the fading process by using the

initialtime input to the object. The input value can change in consecutive calls to
the object.

Dependencies

This property applies when FadingTechnique is 'Sum of sinusoids'.

InitialTime — Initial time offset
0 (default) | nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

When InitialTime is not a multiple of 1/SampleRate, it is rounded up to the nearest
sample position.

Dependencies

This property applies when the FadingTechnique property is set to 'Sum of
sinusoids' and the InitialTimeSource property is set to 'Property'.
Data Types: double

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

4 System Objects — Alphabetical List

4-1244

Source of the random number stream, specified as 'Global stream' or 'mt19937ar
with seed'.

• 'Global stream' -- The current global random number stream is used for normally
distributed random number generation. In this case, the reset object function resets
the filters only.

• 'mt19937ar with seed' -- The mt19937ar algorithm is used for normally
distributed random number generation. In this case, the reset object function resets
the filters and also reinitializes the random number stream to the value of the Seed
property.

Data Types: char

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream, specified as a nonnegative integer.
When the reset object function is called, the mt19937ar random number stream is
reinitialized to the Seed value.
Dependencies

This property applies when you set the RandomStream property to 'mt19937ar with
seed'.
Data Types: double

PathGainsOutputPort — Option to output path gains
false (default) | true

Option to output path gains, specified as false or true. Set this property to true to
output the channel path gains of the underlying fading process.
Data Types: logical

Visualization — Channel visualization
'Off' (default) | 'Impulse response' | 'Frequency response' | 'Impulse and
frequency responses' | 'Doppler spectrum'

Channel visualization preference, specified as 'Off', 'Impulse response',
'Frequency response', 'Impulse and frequency responses', or 'Doppler
spectrum'. When visualization is on, the selected channel characteristics, such as
impulse response or Doppler spectrum, display in a separate window. For more
information, see Channel Visualization.

 comm.MIMOChannel

4-1245

Dependencies

Visualization applies only when the FadingTechnique property is set to 'Filtered
Gaussian noise'.

AntennaPairsToDisplay — Transmit-receive antenna pair to display
[1 1] (default) | row vector

Transmit-receive antenna pair to display, specified as a 1-by-2 vector, where the first
element corresponds to the desired transmit antenna and the second element
corresponds to the desired receive antenna. At this time, only a single pair can be
displayed.

Dependencies

This property applies when Visualization is not Off.

PathsForDopplerDisplay — Path for which the Doppler spectrum is displayed
1 (default) | positive integer

Path for which the Doppler spectrum is displayed, specified as a positive integer from 1 to
NP, where NP equals the value of the PathDelays property.

Dependencies

This property applies when Visualization is set to 'Doppler spectrum'.

SamplesToDisplay — Percentage of samples to display
25% (default) | 10% | 50% | 100%

Percentage of samples to display, specified as 10%, 25%, 50%, or 100%. Increasing the
percentage improves display accuracy at the expense of simulation speed.

Dependencies

This property applies when Visualization is 'Impulse response', 'Frequency
response', or 'Impulse and frequency responses'.

4 System Objects — Alphabetical List

4-1246

Usage

Syntax
outsignal = mimochan(insignal)
outsignal = mimochan(insignal,seltx)
outsignal = mimochan(insignal,selrx)
outsignal = mimochan(insignal,seltx,selrx)
outsignal = mimochan(___ ,initialtime)
[outsignal,pathgains] = mimochan(___)

Description
outsignal = mimochan(insignal) filters the input signal through the MIMO fading
channel specified by mimochan and returns the result in outsignal.

outsignal = mimochan(insignal,seltx) turns on the transmit antennas selected
by seltx for channel processing.

This syntax applies when you set the AntennaSelection property of the object to 'Tx'.

For example, to select the first and third transmit antenna index as active:

mimochan = comm.MIMOChannel('AntennaSelection','Tx');
seltx = [1 0 1];
...
outsignal = mimochan(insignal,seltx);

outsignal = mimochan(insignal,selrx) turns on receive antennas, selected by
selrx for channel processing.

This syntax applies when you set the AntennaSelection property of the object to 'Rx'.

For example, to select the second receive antenna index as active:

mimochan = comm.MIMOChannel('AntennaSelection','Rx');
selrx = [0 1];
...
outsignal = mimochan(insignal,selrx);

 comm.MIMOChannel

4-1247

outsignal = mimochan(insignal,seltx,selrx) turns on transmit and receive
antennas, selected by seltx and selrx for channel processing.

This syntax applies when you set the AntennaSelection property of the object to 'Tx and
Rx'.

For example:

mimochan = comm.MIMOChannel('AntennaSelection','Tx and Rx');
seltx = [1 1];
selrx = [0 1];
...
outsignal = mimochan(insignal,selrx);

outsignal = mimochan(___ ,initialtime) specifies a start time for the fading
process.

This syntax applies when you set the FadingTechnique property of the object to 'Sum of
sinusoids' and the InitialTimeSource property of the object to 'Input port'. The
syntax supports input options from prior syntaxes.

[outsignal,pathgains] = mimochan(___) also returns the MIMO channel path
gains for antenna selection schemes. The syntax supports input options from prior
syntaxes.

Input Arguments
insignal — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS element column vector, an NS-by-NT matrix, or an
NS-by-NST matrix.

• NS is the number of samples.
• NT is the number of transmit antennas. NT is determined by the

TransmitCorrelationMatrix or NumTransmitAntennas property values of the object.
• NST is the number of selected transmit antennas, as determined by the number of

elements set to 1 in the vector provided to the seltx input.

The number of transmit antennas is determined by the TransmitCorrelationMatrix or
NumTransmitAntennas property values of the object.

4 System Objects — Alphabetical List

4-1248

Data Types: double | single
Complex Number Support: Yes

seltx — Select active transmit antennas
binary vector

Select active transmit antennas, specified as a 1-by-NT binary vector. NT represents the
number of transmit antennas. Elements set to 1 identify selected antenna indices and 0
identify nonselected antenna indices.
Data Types: double

selrx — Select active receive antennas
binary vector

Select active receive antennas, specified as a 1-by-NR binary vector. NR represents the
number of receive antennas. Elements set to 1 identify selected antenna indices and 0
identify nonselected antenna indices.
Data Types: double

initialtime — Initial time offset
0 (default) | nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

The initial time offset must be greater than the last frame end time. When initialtime
is not a multiple of 1/SampleRate, it is rounded up to the nearest sample position.
Data Types: double

Output Arguments
outsignal — Output signal
matrix

Output data signal, returned as an NS-by-NR or NS-by-NSR matrix.

• NS is the number of samples.
• NR is the number of receive antennas. NR is determined by the

ReceiveCorrelationMatrix or NumReceiveAntennas property values of the object.
• NSR is the number of selected receive antennas, as determined by the number of

elements set to 1 in the vector provided to the selrx input.

 comm.MIMOChannel

4-1249

pathgains — Output path gains
4-D array

Output path gains, returned as an NS-by-NP-by-NT-by-NR array with NaN values for the
unselected transmit-receive antenna pairs.

• NS is the number of samples.
• NP equals the value of the PathDelays property.
• NT is the number of transmit antennas.
• NR is the number of receive antennas.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.MIMOChannel
info Characteristic information about the fading channel object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Note

• If you set the RandomStream property of the object to 'Global stream', the reset
object function resets the filters only.

• If you set RandomStream to 'mt19937ar with seed', the reset object function
resets the filters and also reinitializes the random number stream to the value of the
Seed property.

4 System Objects — Alphabetical List

4-1250

Examples

Pass QPSK Data Through 4-by-2 MIMO Channel

Create a 4-by-2 MIMO channel by using the MIMO channel System object. Pass
modulated and spatially encoded data through the channel.

Generate QPSK-modulated data.

data = randi([0 3],1000,1);
modData = pskmod(data,4,pi/4);

Create an orthogonal space-time block encoder to encode the modulated data into four
spatially separated streams. Encode the data.

ostbc = comm.OSTBCEncoder('NumTransmitAntennas',4,'SymbolRate',1/2);
txSig = ostbc(modData);

Create a MIMO channel object, using name-value pairs to set the properties. The channel
consists of two paths with a maximum Doppler shift of 5 Hz. Set the
SpatialCorrelationSpecification property to 'None', which requires that you
specify the number of transmit and receive antennas. Set the number of transmit
antennas to 4 and the number of receive antennas to 2.

mimochannel = comm.MIMOChannel(...
 'SampleRate',1000, ...
 'PathDelays',[0 2e-3], ...
 'AveragePathGains',[0 -5], ...
 'MaximumDopplerShift',5, ...
 'SpatialCorrelationSpecification','None', ...
 'NumTransmitAntennas',4, ...
 'NumReceiveAntennas',2);

Pass the modulated and encoded data through the MIMO channel.

rxSig = mimochannel(txSig);

Create a time vector, t, to use for plotting the power of the received signal.

ts = 1/mimochannel.SampleRate;
t = (0:ts:(size(txSig,1)-1)*ts)';

Calculate and plot the power of the signal received by antenna 1.

 comm.MIMOChannel

4-1251

pwrdB = 20*log10(abs(rxSig(:,1)));

plot(t,pwrdB)
xlabel('Time (s)')
ylabel('Power (dBW)')

Examine Spatial Correlation Characteristics of 2-by-2 Rayleigh Fading Channel

Without specifying antenna selection, filter PSK-modulated data through a 2-by-2
Rayleigh fading channel and examine the spatial correlation characteristics of the
channel realization. Use the release object function to unlock the object to set the

4 System Objects — Alphabetical List

4-1252

AntennaSelection property to 'Tx and Rx' and then confirm the unselected
transmit-receive antenna pairs.

Examine Spatial Correlation Characteristics Without Specifying Antenna
Selection

Create a PSK modulator System object™ to modulate randomly generated data.

pskModulator = comm.PSKModulator;
modData = pskModulator(randi([0 pskModulator.ModulationOrder-1],1e5,1));

Split the modulated data into two spatial streams.

channelInput = reshape(modData,[2 5e4]).';

Create a 2-by-2 MIMO channel System object with two discrete paths. Each path has
different transmit and receive correlation matrices, specified by the
TransmitCorrelationMatrix and ReceiveCorrelationMatrix properties.

mimoChan = comm.MIMOChannel('SampleRate',1000, 'PathDelays',[0 1e-3], ...
 'AveragePathGains',[3 5], 'NormalizePathGains',false, 'MaximumDopplerShift',5, ...
 'TransmitCorrelationMatrix',cat(3,eye(2),[1 0.1;0.1 1]), ...
 'ReceiveCorrelationMatrix',cat(3,[1 0.2;0.2 1],eye(2)), ...
 'RandomStream','mt19937ar with seed', 'Seed',33, 'PathGainsOutputPort',true);

Filter the modulated data using the MIMO channel object.

[~,pathGains] = mimoChan(channelInput);

The transmit spatial correlation for the first discrete path at the first receive antenna is
specified as an identity matrix in the TransmitCorrelationMatrix property. Confirm
that the channel output pathGains exhibits the same statistical characteristics by using
the corrcoef function.

disp('Tx spatial correlation, first path, first Rx:');

Tx spatial correlation, first path, first Rx:

disp(corrcoef(squeeze(pathGains(:,1,:,1))));

 1.0000 + 0.0000i 0.0357 - 0.0253i
 0.0357 + 0.0253i 1.0000 + 0.0000i

 comm.MIMOChannel

4-1253

The transmit spatial correlation for the second discrete path at the second receive
antenna is specified as [1 0.1;0.1 1] in the TransmitCorrelationMatrix property.
Confirm that the channel output pathGains exhibits the same statistical characteristics.

disp('Tx spatial correlation, second path, second Rx:');

Tx spatial correlation, second path, second Rx:

disp(corrcoef(squeeze(pathGains(:,2,:,2))));

 1.0000 + 0.0000i 0.0863 + 0.0009i
 0.0863 - 0.0009i 1.0000 + 0.0000i

The receive spatial correlation for the first discrete path at the second transmit antenna is
specified as [1 0.2;0.2 1] in the ReceiveCorrelationMatrix property. Confirm
that the channel output pathGains exhibits the same statistical characteristics.

disp('Rx spatial correlation, first path, second Tx:');

Rx spatial correlation, first path, second Tx:

disp(corrcoef(squeeze(pathGains(:,1,2,:))));

 1.0000 + 0.0000i 0.2236 + 0.0550i
 0.2236 - 0.0550i 1.0000 + 0.0000i

The receive spatial correlation for the second discrete path at the first transmit antenna is
specified as an identity matrix in the ReceiveCorrelationMatrix property. Confirm
that the channel output pathGains exhibits the same statistical characteristics.

disp('Rx spatial correlation, second path, first Tx:');

Rx spatial correlation, second path, first Tx:

disp(corrcoef(squeeze(pathGains(:,2,1,:))));

 1.0000 + 0.0000i -0.0088 - 0.0489i
 -0.0088 + 0.0489i 1.0000 + 0.0000i

Examine Spatial Correlation Characteristics Specifying Antenna Selection

Enable transmit and receive antenna selection for the mimoChan object. The input frame
size is shortened to 100.

4 System Objects — Alphabetical List

4-1254

release(mimoChan);
mimoChan.AntennaSelection = 'Tx and Rx';
modData = pskModulator(randi([0 pskModulator.ModulationOrder-1],100,1));

Select the first transmit antenna and second receive antenna.

[channelOutput,pathGains] = mimoChan(modData,[1 0],[0 1]);

Confirm that the path gains that MATLAB® returns have NaN values for the unselected
transmit-receive antenna pairs.

disp('Return 1 if the path gains for the second transmit antenna are NaN:');

Return 1 if the path gains for the second transmit antenna are NaN:

disp(isequal(isnan(squeeze(pathGains(:,:,2,:))), ones(100,2,2)));

 0

disp('Return 1 if the path gains for the first receive antenna are NaN:');

Return 1 if the path gains for the first receive antenna are NaN:

disp(isequal(isnan(squeeze(pathGains(:,:,:,1))), ones(100,2,2)));

 0

Display Impulse and Frequency Responses of Frequency Selective Channel

Create a frequency selective MIMO channel and display its impulse and frequency
responses.

Set the sample rate to 10 MHz and specify path delays and gains using the extended
vehicular A (EVA) channel parameters. Set the maximum Doppler shift to 70 Hz.

fs = 10e6; % Hz
pathDelays = [0 30 150 310 370 710 1090 1730 2510]*1e-9; % sec
avgPathGains = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9]; % dB
fD = 70; % Hz

Create a 2x2 MIMO channel System object with the previously defined parameters and
set the Visualization property to Impulse and frequency responses using
name-value pairs. By default, the antenna pair corresponding to transmit antenna 1 and
receive antenna 1 will be displayed.

 comm.MIMOChannel

4-1255

mimoChan = comm.MIMOChannel('SampleRate',fs, ...
 'PathDelays',pathDelays, ...
 'AveragePathGains',avgPathGains, ...
 'MaximumDopplerShift',fD, ...
 'Visualization','Impulse and frequency responses');

Generate random binary data and pass it through the MIMO channel. The impulse
response plot allows you to easily identify the individual paths and their corresponding
filter coefficients. The frequency selective nature of the EVA channel is shown by the
frequency response plot.

x = randi([0 1],1000,2);
y = mimoChan(x);

4 System Objects — Alphabetical List

4-1256

 comm.MIMOChannel

4-1257

Release mimoChan and set the AntennaPairsToDisplay property to [2 1] to view the
antenna pair corresponding to transmit antenna 2 and receive antenna 1. It is necessary
to release the object as the property is non-tunable.

release(mimoChan)
mimoChan.AntennaPairsToDisplay = [2 1];
y = mimoChan(x);

4 System Objects — Alphabetical List

4-1258

 comm.MIMOChannel

4-1259

Display Doppler for 2x2 MIMO Channel

Create and visualize the Doppler spectra of a MIMO channel having two paths.

Construct a cell array of Doppler structures to be used in creating the channel. The
Doppler spectrum of the first path is set to have a bell shape while the second path is set
to be flat.

4 System Objects — Alphabetical List

4-1260

dp{1} = doppler('Bell');
dp{2} = doppler('Flat');

Create a default 2x2 MIMO channel with two paths and a 100 Hz maximum Doppler shift
using name-value pairs. Set the Visualization property to Doppler spectrum and
set PathsForDopplerDisplay to 1. The Doppler spectrum of the first path will be
displayed.

mimoChan = comm.MIMOChannel('SampleRate',1000, ...
 'PathDelays',[0 0.002], ...
 'AveragePathGains',[0 -3], ...
 'MaximumDopplerShift',100, ...
 'DopplerSpectrum',dp, ...
 'Visualization','Doppler spectrum', ...
 'PathsForDopplerDisplay',1);

Pass random data through the MIMO channel to generate the Doppler spectrum of the
first path. Since the Doppler spectrum plot only updates when its buffer is filled, the
mimoChan function is invoked multiple times to improve the accuracy of the estimate.
Observe that the spectrum has a bell shape and that its minimum and maximum
frequencies fall within the limits set by MaximumDopplerShift.

for k = 1:25
 x = randi([0 1],10000,2);
 y = mimoChan(x);
end

 comm.MIMOChannel

4-1261

Release mimoChan and set the PathsForDopplerDisplay property to 2. It is necessary
to release the object as the property is non-tunable. Call the function multiple times to
display the Doppler spectrum of the second path. Observe that the spectrum is flat.

release(mimoChan)
mimoChan.PathsForDopplerDisplay = 2;
for k = 1:25
 x = randi([0 1],10000,2);

4 System Objects — Alphabetical List

4-1262

 y = mimoChan(x);
end

 comm.MIMOChannel

4-1263

Model MIMO Channel Using Sum-of-Sinusoids Technique

Create a MIMO channel object and pass data through it using the sum-of-sinusoids
technique. The example demonstrates how the channel state is maintained in cases in
which data is discontinuously transmitted.

Define the overall simulation time and three time segments for which data will be
transmitted. In this case, the channel is simulated for 1 s with a 1000 Hz sampling rate.
One 1000-sample, continuous data sequence is transmitted at time 0. Three 100-sample
data packets are transmitted at time 0.1 s, 0.4 s, and 0.7 s.

t0 = 0:0.001:0.999; % Transmission 0
t1 = 0.1:0.001:0.199; % Transmission 1
t2 = 0.4:0.001:0.499; % Transmission 2
t3 = 0.7:0.001:0.799; % Transmission 3

Generate random binary data corresponding to the previously defined time intervals.

d0 = randi([0 1],1000,2); % 1000 samples
d1 = randi([0 1],100,2); % 100 samples
d2 = randi([0 1],100,2); % 100 samples
d3 = randi([0 1],100,2); % 100 samples

Create a flat fading 2x2 MIMO channel System object with the Sum of sinusoids
fading technique. So that results can be repeated, specify a seed using a name-value pair.
As the InitialTime property is not specified, the fading channel will be simulated from
time 0. Enable the path gains output port.

mimoChan1 = comm.MIMOChannel('SampleRate',1000, ...
 'MaximumDopplerShift',5, ...
 'RandomStream','mt19937ar with seed', ...
 'Seed',17, ...
 'FadingTechnique','Sum of sinusoids', ...
 'PathGainsOutputPort',true);

Create a clone of the MIMO channel System object. Set the InitialTimeSource
property to Input port so that the fading channel offset time can be specified as an
input argument to the mimoChan function.

mimoChan2 = clone(mimoChan1);
mimoChan2.InitialTimeSource = 'Input port';

4 System Objects — Alphabetical List

4-1264

Pass random binary data through the first channel object, mimoChan1. Data is
transmitted over all 1000 time samples. For this example, only the complex path gain is
needed.

[~,pg0] = mimoChan1(d0);

Pass random data through the second channel object, mimoChan2, where the initial time
offsets are provided as input arguments.

[~,pg1] = mimoChan2(d1,0.1);
[~,pg2] = mimoChan2(d2,0.4);
[~,pg3] = mimoChan2(d3,0.7);

Compare the number of samples processed by the two channels using the info method.
You can see that 1000 samples were processed by mimoChan1 while only 300 were
processed by mimoChan2.

G = info(mimoChan1);
H = info(mimoChan2);
[G.NumSamplesProcessed H.NumSamplesProcessed]

ans = 1×2

 1000 300

Convert the path gains into decibels for the path corresponding to the first transmit and
first receive antenna.

pathGain0 = 20*log10(abs(pg0(:,1,1,1)));
pathGain1 = 20*log10(abs(pg1(:,1,1,1)));
pathGain2 = 20*log10(abs(pg2(:,1,1,1)));
pathGain3 = 20*log10(abs(pg3(:,1,1,1)));

Plot the path gains for the continuous and discontinuous cases. Observe that the gains for
the three segments perfectly match the gain for the continuous case. The alignment of the
two highlights that the sum-of-sinusoids technique is ideally suited to the simulation of
packetized data as the channel characteristics are maintained even when data is not
transmitted.

plot(t0,pathGain0,'r--')
hold on
plot(t1,pathGain1,'b')
plot(t2,pathGain2,'b')

 comm.MIMOChannel

4-1265

plot(t3,pathGain3,'b')
grid
xlabel('Time (sec)')
ylabel('Path Gain (dB)')
legend('Continuous','Discontinuous','location','nw')

Calculate Execution Time Advantage Using Sum of Sinusoids

Demonstrate the advantage of using the sum of sinusoids fading technique when
simulating a channel with burst data.

4 System Objects — Alphabetical List

4-1266

Set the simulation parameters such that the sampling rate is 100 kHz, the total simulation
time is 100 seconds, and the duty cycle for the burst data is 25%.

fs = 1e5; % Hz
tsim = 100; % seconds
dutyCycle = 0.25;

Create a flat fading 2x2 MIMO channel object using the default Filtered Gaussian
noise technique.

fgn = comm.MIMOChannel('SampleRate',fs);

Create a similar MIMO channel object using the Sum of sinusoids technique where
the fading process start times are given as an input argument.

sos = comm.MIMOChannel('SampleRate',fs, ...
 'FadingTechnique','Sum of sinusoids', ...
 'NumSinusoids',48, ...
 'InitialTimeSource','Input port');

Run a continuous sequence of random bits through the filtered Gaussian noise MIMO
channel object. Use the tic/toc stopwatch timer functions to measure the execution time
of the function call.

tic
y = fgn(randi([0 1],fs*tsim,2));
tFGN = toc;

To transmit a data burst each second, pass random bits through the sum of sinusoids
MIMO channel object by calling the sos function inside of a for loop. Use the tic/toc
stopwatch timer to measure the execution time.

tic
for k = 1:tsim
 z = sos(randi([0 1],fs*dutyCycle,2),0.5+(k-1));
end
tSOS = toc;

Compare the ratio of the sum of sinusoids execution time to the filtered Gaussian noise
execution time. The ratio is less than one, which indicates that the sum of sinusoids
technique is faster.

tSOS/tFGN

ans = 0.2691

 comm.MIMOChannel

4-1267

Algorithms
The fading processing per link is described in Methodology for Simulating Multipath
Fading Channels and assumes the same parameters for all (NT × NR) links of the MIMO
channel. Each link comprises all multipaths for that link.

The Kronecker Model
The Kronecker model assumes that the spatial correlations at the transmit and receive
sides are separable. Equivalently, the direction of departure (DoD) and directions of
arrival (DoA) spectra are assumed to be separable. The full correlation matrix is:

RH = E Rt⊗ Rr

• The ⊗ symbol represents the Kronecker product.
• Rt represents the correlation matrix at the transmit side: Rt = E HHH , of size NT-by-

NT.
• Rr represents the correlation matrix at the receive side: Rr = E HHH , of size NR-by-

NR.

You can obtain a realization of the MIMO channel matrix as:

H = Rr

1
2 ARt

1
2

A is an NR-by-NT matrix of independent identically distributed complex Gaussian variables
with zero mean and unit variance.

Cutoff Frequency Factor
The following information explains how the cutoff frequency factor, fc, is determined for
different Doppler spectrum types:

• For any Doppler spectrum type other than Gaussian and BiGaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals

NormalizedStandardDeviation∙sqrt(2∙log(2)).

4 System Objects — Alphabetical List

4-1268

• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are
both 0, then fc equals NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are
both 0, then fc equals NormalizedStandardDeviation(2)∙sqrt(2∙log(2)).

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• In all other cases, fc equals 1.

Antenna Selection
When the object is in antenna selection mode, it uses the following algorithms to process
an input signal:

• All random path gains are always generated and keep evolving for each link, whether
or not a given link is selected. The path gain values output for the non-selected links
are populated with NaN.

• The spatial correlation only applies to the selected transmit and/or receive antennas,
and the correlation coefficients are the corresponding entries in the transmit, receive,
or combined correlation matrices. In other words, the spatial correlation matrix for the
selected transmit or receive antennas is a submatrix of the transmit, receive, or
combined spatial correlation matrix property value.

• For signal paths associated with nonactive antennas, a signal with zero power is
transmitted to the channel filter.

• Channel output normalization happens over the number of selected receive antennas.

References
[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World

Propagation to Space-Time Code Design, Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. "A
stochastic MIMO radio channel model with experimental validation." IEEE Journal
on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp. 1211–1226.

 comm.MIMOChannel

4-1269

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York: Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. "Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms." IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

See Also
Objects
comm.AWGNChannel | comm.RayleighChannel | comm.RicianChannel

Blocks
MIMO Channel

Topics
Channel Visualization

Introduced in R2012a

4 System Objects — Alphabetical List

4-1270

info
Package: comm

Characteristic information about the fading channel object

Syntax
infostruct = info(obj)

Description
infostruct = info(obj) returns a structure containing characteristic information for
the System object.

Examples

Get comm.MIMOChannel Info

Use the info object function to get information from a comm.MIMOChannel object.

Create a MIMO channel object and some data to pass through the channel.

mimo = comm.MIMOChannel('SampleRate',1000);
data = randi([0 1],600,2);

Check the MIMO channel object information

info(mimo)

ans = struct with fields:
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 0

 info

4-1271

Pass data through the channel and check the object information again.

mimo(data);
info(mimo)

ans = struct with fields:
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 600

Release the object so you can update attributes. Add a two second path delay. Recheck
the object information.

release(mimo)
mimo.PathDelays = 2;
info(mimo)

ans = struct with fields:
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: [1x2001 double]
 NumSamplesProcessed: 0

Model MIMO Channel Using Sum-of-Sinusoids Technique

Create a MIMO channel object and pass data through it using the sum-of-sinusoids
technique. The example demonstrates how the channel state is maintained in cases in
which data is discontinuously transmitted.

Define the overall simulation time and three time segments for which data will be
transmitted. In this case, the channel is simulated for 1 s with a 1000 Hz sampling rate.
One 1000-sample, continuous data sequence is transmitted at time 0. Three 100-sample
data packets are transmitted at time 0.1 s, 0.4 s, and 0.7 s.

t0 = 0:0.001:0.999; % Transmission 0
t1 = 0.1:0.001:0.199; % Transmission 1
t2 = 0.4:0.001:0.499; % Transmission 2
t3 = 0.7:0.001:0.799; % Transmission 3

Generate random binary data corresponding to the previously defined time intervals.

4 System Objects — Alphabetical List

4-1272

d0 = randi([0 1],1000,2); % 1000 samples
d1 = randi([0 1],100,2); % 100 samples
d2 = randi([0 1],100,2); % 100 samples
d3 = randi([0 1],100,2); % 100 samples

Create a flat fading 2x2 MIMO channel System object with the Sum of sinusoids
fading technique. So that results can be repeated, specify a seed using a name-value pair.
As the InitialTime property is not specified, the fading channel will be simulated from
time 0. Enable the path gains output port.

mimoChan1 = comm.MIMOChannel('SampleRate',1000, ...
 'MaximumDopplerShift',5, ...
 'RandomStream','mt19937ar with seed', ...
 'Seed',17, ...
 'FadingTechnique','Sum of sinusoids', ...
 'PathGainsOutputPort',true);

Create a clone of the MIMO channel System object. Set the InitialTimeSource
property to Input port so that the fading channel offset time can be specified as an
input argument to the mimoChan function.

mimoChan2 = clone(mimoChan1);
mimoChan2.InitialTimeSource = 'Input port';

Pass random binary data through the first channel object, mimoChan1. Data is
transmitted over all 1000 time samples. For this example, only the complex path gain is
needed.

[~,pg0] = mimoChan1(d0);

Pass random data through the second channel object, mimoChan2, where the initial time
offsets are provided as input arguments.

[~,pg1] = mimoChan2(d1,0.1);
[~,pg2] = mimoChan2(d2,0.4);
[~,pg3] = mimoChan2(d3,0.7);

Compare the number of samples processed by the two channels using the info method.
You can see that 1000 samples were processed by mimoChan1 while only 300 were
processed by mimoChan2.

G = info(mimoChan1);
H = info(mimoChan2);
[G.NumSamplesProcessed H.NumSamplesProcessed]

 info

4-1273

ans = 1×2

 1000 300

Convert the path gains into decibels for the path corresponding to the first transmit and
first receive antenna.

pathGain0 = 20*log10(abs(pg0(:,1,1,1)));
pathGain1 = 20*log10(abs(pg1(:,1,1,1)));
pathGain2 = 20*log10(abs(pg2(:,1,1,1)));
pathGain3 = 20*log10(abs(pg3(:,1,1,1)));

Plot the path gains for the continuous and discontinuous cases. Observe that the gains for
the three segments perfectly match the gain for the continuous case. The alignment of the
two highlights that the sum-of-sinusoids technique is ideally suited to the simulation of
packetized data as the channel characteristics are maintained even when data is not
transmitted.

plot(t0,pathGain0,'r--')
hold on
plot(t1,pathGain1,'b')
plot(t2,pathGain2,'b')
plot(t3,pathGain3,'b')
grid
xlabel('Time (sec)')
ylabel('Path Gain (dB)')
legend('Continuous','Discontinuous','location','nw')

4 System Objects — Alphabetical List

4-1274

Input Arguments
obj — System object to get information from
System object

System object to get information from.

 info

4-1275

Output Arguments
infostruct — Structure containing object information
struct

Structure containing these fields with information about the System object.

ChannelFilterDelay — Channel filter delay
positive integer

Channel filter delay in samples, returned as a positive integer.

ChannelFilterCoefficients — Channel filter coefficients
matrix

Channel filter coefficients, returned as a matrix. The coefficient matrix is used to convert
path gains to channel filter tap gains for each sample and each pair of transmit and
receive antennas.

NumSamplesProcessed — Number of samples processed by the channel object
positive integer

Number of samples processed by the channel object since the last reset, returned as a
positive integer.

LastFrameTime — Last frame ending time
positive scalar

Last frame ending time in seconds, returned as a positive scalar. Use this value to confirm
the simulation time.

Dependencies

This property applies when FadingTechnique is 'Sum of sinusoids' and
InitialTimeSource is 'Input port'.

See Also
Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel

4 System Objects — Alphabetical List

4-1276

Introduced in R2012a

 info

4-1277

comm.MLSEEqualizer
Package: comm

Equalize using maximum likelihood sequence estimation

Description
The MLSEEqualizer object uses the Viterbi algorithm to equalize a linearly modulated
signal through a dispersive channel. The object processes input frames and outputs the
maximum likelihood sequence estimate (MLSE) of the signal. This processing uses an
estimate of the channel modeled as a finite impulse response (FIR) filter.

To equalize a linearly modulated signal and output the maximum likelihood sequence
estimate:

1 Define and set up your maximum likelihood sequence estimate equalizer object. See
“Construction” on page 4-1278.

2 Call step to equalize a linearly modulated signal and output the maximum likelihood
sequence estimate according to the properties of comm.MLSEEqualizer. The
behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MLSEEqualizer creates a maximum likelihood sequence estimation
equalizer (MLSEE) System object, H. This object uses the Viterbi algorithm and a channel
estimate to equalize a linearly modulated signal that has been transmitted through a
dispersive channel.

4 System Objects — Alphabetical List

4-1278

H = comm.MLSEEqualizer(Name,Value) creates an MLSEE object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.MLSEEqualizer(CHANNEL,Name,Value) creates an MLSEE object, H. This
object has the Channel property set to CHANNEL, and the other specified properties set
to the specified values.

Properties
ChannelSource

Source of channel coefficients

Specify the source of the channel coefficients as one of Input port | Property. The
default is Property.

Channel

Channel coefficients

Specify the channel as a numeric, column vector containing the coefficients of an FIR
filter. The default is [1;0.7;0.5;0.3]. The length of this vector determines the memory
length of the channel. This must be an integer multiple of the samples per symbol, that
you specify in the SamplesPerSymbol on page 4-0 property. This property applies
when you set the ChannelSource on page 4-0 property to Property.

Constellation

Input signal constellation

Specify the constellation of the input modulated signal as a complex vector. The default is
[1+1i -1+1i -1-1i 1-1i].

TracebackDepth

Traceback depth of Viterbi algorithm

Specify the number of trellis branches (the number of symbols), the Viterbi algorithm
uses to construct each traceback path. The default is 21. The traceback depth influences
the decoding accuracy and delay. The decoding delay represents the number of zero

 comm.MLSEEqualizer

4-1279

symbols that precede the first decoded symbol in the output. When you set the
TerminationMethod on page 4-0 property to Continuous, the decoding delay
equals the number of zero symbols of this property. When you set the
TerminationMethod property to Truncated, there is no output delay.

TerminationMethod

Termination method of Viterbi algorithm

Specify the termination method of the Viterbi algorithm as one of Continuous |
Truncated. The default is Truncated. When you set this property to Continuous, the
object initializes the Viterbi algorithm metrics of all the states to 0 in the first call to the
step method. Then, the object saves its internal state metric at the end of each frame, for
use with the next frame. When you set this property to Truncated, the object resets at
every frame. The Viterbi algorithm processes each frame of data independently, resetting
the state metric at the end of each frame. The traceback path always starts at the state
with the minimum metric. The initialization of the state metrics depends on whether you
specify a preamble or postamble. If you set the PreambleSource on page 4-0
property to None, the object initializes the metrics of all the states to 0 at the beginning
of each data frame. If you set the PreambleSource property to Property, the object
uses the preamble that you specify at the Preamble on page 4-0 property, to initialize
the state metrics at the beginning of each data frame. When you specify a preamble, the
traceback path ends at one of the states represented by that preamble. If you set the
PostambleSource on page 4-0 property to None, the traceback path starts at the
state with the smallest metric. If you set the PostambleSource property to Property,
the traceback path begins at the state represented by the postamble that you specify at
the Postamble on page 4-0 property. If the postamble does not decode to a unique
state, the decoder identifies the smallest of all possible decoded states that are
represented by the postamble. The decoder then begins traceback decoding at that state.
When you set this property to Truncated, the step method input data signal must
contain at least TracebackDepth on page 4-0 symbols, not including an optional
preamble.

ResetInputPort

Enable equalizer reset input

Set this property to true to enable an additional input to the step method. The default is
false. When this input is a nonzero, double-precision or logical scalar value, the object
resets the states of the equalizer. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

4 System Objects — Alphabetical List

4-1280

PreambleSource

Source of preamble

Specify the source of the preamble that is expected to precede the input signal. Choose
from None | Property. The default is None. Set this property to Property to specify a
preamble using the Preamble on page 4-0 property. This property applies when you
set the TerminationMethod on page 4-0 property to Truncated.

Preamble

Preamble that precedes input signals

Specify a preamble that is expected to precede the data in the input signal as an integer,
row vector. The default is [0 3 2 1]. The values of the preamble should be between 0
and M-1, where M is the length of the signal constellation that you specify in the
Constellation on page 4-0 property. An integer value of k–1 in the vector
corresponds to the k-th entry in the vector stored in the Constellation property. This
property applies when you set the TerminationMethod on page 4-0 property to
Truncated and the PreambleSource on page 4-0 property to Property.

PostambleSource

Source of postamble

Specify the source of the postamble that is expected to follow the input signal. Choose
from None | Property. The default is None. Set this property to Property to specify a
postamble in the Postamble on page 4-0 property. This property applies when you set
the TerminationMethod on page 4-0 property to Truncated.

Postamble

Postamble that follows input signals

Specify a postamble that is expected to follow the data in the input signal as an integer
row vector. The default is [0 2 3 1]. The values of the postamble should be between 0
and M–1. In this case, M indicates the length of the Constellation on page 4-0
property. An integer value of k–1 in the vector corresponds to the k-th entry in the vector
specified in the Constellation property. This property applies when you set the
TerminationMethod on page 4-0 property to Truncated and the
PostambleSource on page 4-0 property to Property. The default is [0 2 3 1].

 comm.MLSEEqualizer

4-1281

SamplesPerSymbol

Number of samples per symbol

Specify the number of samples per symbol in the input signal as an integer scalar value.
The default is 1.

Methods
reset Reset states of MLSEE object
step Equalize using maximum likelihood sequence estimation

Common to All System Objects
release Allow System object property value changes

Examples

MLSE Equalize QPSK Signal Through Dispersive Channel

This example shows how to use an MLSE equalizer to remove the effects of a frequency-
selective channel.

Specify static channel coefficients.

chCoeffs = [.986; .845; .237; .12345+.31i];

Create an MLSE equalizer object. Create an error rate calculator object.

mlse = comm.MLSEEqualizer('TracebackDepth',10,...
 'Channel',chCoeffs,'Constellation',pskmod(0:3,4,pi/4));
errorRate = comm.ErrorRate;

The main processing loop includes these steps:

• Data generation
• QPSK modulation

4 System Objects — Alphabetical List

4-1282

• Channel filtering
• Signal equalization
• QPSK demodulation
• Error computation

for n = 1:50
 data= randi([0 3],100,1);
 modSignal = pskmod(data,4,pi/4,'gray');

 % Introduce channel distortion.
 chanOutput = filter(chCoeffs,1,modSignal);

 % Equalize the channel output and demodulate.
 eqSignal = mlse(chanOutput);
 demodData = pskdemod(eqSignal,4,pi/4,'gray');

 % Compute BER.
 errorStats = errorRate(data,demodData);
end

Display the bit error rate and the number of errors.

ber = errorStats(1)
numErrors = errorStats(2)

ber =

 0

numErrors =

 0

Plot the signal constellation prior to equalization.

constDiagram = comm.ConstellationDiagram;
constDiagram(chanOutput)

 comm.MLSEEqualizer

4-1283

Plot the signal constellation after equalization.

constDiagram(eqSignal)

4 System Objects — Alphabetical List

4-1284

 comm.MLSEEqualizer

4-1285

The equalized symbols align perfectly with the QPSK reference constellation.

Algorithms
This object implements the algorithm, inputs, and outputs described on the MLSE
Equalizer block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
mlseeq

Objects
comm.DecisionFeedbackEqualizer | comm.LinearEqualizer |
comm.ViterbiDecoder

Blocks
MLSE Equalizer

Topics
“MLSE Equalizers”

Introduced in R2012a

4 System Objects — Alphabetical List

4-1286

reset
System object: comm.MLSEEqualizer
Package: comm

Reset states of MLSEE object

Syntax
reset(H)

Description
reset(H) resets the states of the MLSEEqualizer object, H.

 reset

4-1287

step
System object: comm.MLSEEqualizer
Package: comm

Equalize using maximum likelihood sequence estimation

Syntax
Y = step(H,X)
Y = step(H,X,CHANNEL)
Y = step(H,X,RESET)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) equalizes the linearly modulated data input, X, using the Viterbi
algorithm. The step method outputs Y, the maximum likelihood sequence estimate of the
signal. Input X must be a column vector of data type double or single.

Y = step(H,X,CHANNEL) uses CHANNEL as the channel coefficients when you set the
ChannelSource property to 'Input port'. The channel coefficients input, CHANNEL, must
be a numeric, column vector containing the coefficients of an FIR filter in descending
order of powers of z. The length of this vector is the channel memory, which must be an
integer multiple of the samples per input symbol specified in the SamplesPerSymbol
property.

Y = step(H,X,RESET) uses RESET as the reset signal when you set the
TerminationMethod property to 'Continuous' and the ResetInputPort property to
true. The object resets when RESET has a non-zero value. RESET must be a double
precision or logical scalar. You can combine optional input arguments when you set their

4 System Objects — Alphabetical List

4-1288

enabling properties. Optional inputs must be listed in the same order as the order of the
enabling properties. For example, Y = step(H,X,CHANNEL,RESET).

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1289

comm.MSKDemodulator
Package: comm

Demodulate using MSK method and the Viterbi algorithm

Description
The comm.MSKDemodulator object demodulates a signal that was modulated using the
minimum shift keying method. The object expects the input signal to be a baseband
representation of a coherent modulated signal with no precoding. The initial phase offset
property sets the initial phase of the modulated waveform.

To demodulate a signal that was modulated using minimum shift keying:

1 Define and set up your MSK demodulator object. See “Construction” on page 4-1290.
2 Call step to demodulate the signal according to the properties of

comm.MSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MSKDemodulator creates a demodulator System object, H. This object
demodulates the input minimum shift keying (MSK) modulated data using the Viterbi
algorithm.

H = comm.MSKDemodulator(Name,Value) creates an MSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1290

Properties
BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer values. The default is
false.

When you set this property to false, the step method outputs a column vector with a
length equal to N/SamplesPerSymbol on page 4-0 . N represents the length of the
input signal, which is the number of input baseband modulated symbols. The elements of
the output vector are -1 or 1.

When you set the BitOutput on page 4-0 property to true, the step method outputs
a binary column vector with a length equal to N/SamplesPerSymbol. The vector
elements are bit values of 0 or 1.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar value. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar
value. The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar value. The default is 16. The value of this
property is also the output delay This value indicates number of zero symbols that
precede the first meaningful demodulated symbol in the output.

 comm.MSKDemodulator

4-1291

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set the
BitOutput on page 4-0 property to false. The default is double.

When you set the BitOutput property to true, specify the output data type as one of
logical | double.

Methods
reset Reset states of the MSK demodulator object
step Demodulate using MSK method and the Viterbi algorithm

Common to All System Objects
release Allow System object property value changes

Examples

Demodulate an MSK signal with bit inputs and phase offset

% Create an MSK modulator, an AWGN channel, and an MSK demodulator. Use a
% phase offset of pi/4.
 hMod = comm.MSKModulator('BitInput', true, ...
 'InitialPhaseOffset', pi/4);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.MSKDemodulator('BitOutput', true, ...
 'InitialPhaseOffset', pi/4);
 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm
 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);
 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);

4 System Objects — Alphabetical List

4-1292

 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000000
Number of errors = 0

Map Binary Data to GMSK Signal

This example illustrates the mapping of binary sequences of zeros and ones to the output
of a GMSK modulator. The relationship also applies for MSK modulation.

Create a GMSK modulator that accepts binary inputs. Specify the pulse length and
samples per symbol to be 1.

gmsk = comm.GMSKModulator('BitInput',true,'PulseLength',1,'SamplesPerSymbol',1);

Create an input sequence of all zeros. Modulate the sequence.

x = zeros(5,1);
y = gmsk(x)

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 - 1.0000i
 -1.0000 + 0.0000i
 0.0000 + 1.0000i
 1.0000 - 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

theta = 5×1

 0
 -1.5708
 -3.1416

 comm.MSKDemodulator

4-1293

 -4.7124
 -6.2832

A sequence of zeros causes the phase to shift by -π/2 between samples.

Reset the modulator. Modulate an input sequence of all ones.

reset(gmsk)
x = ones(5,1);
y = gmsk(x)

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 + 1.0000i
 -1.0000 - 0.0000i
 0.0000 - 1.0000i
 1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

theta = 5×1

 0
 1.5708
 3.1416
 4.7124
 6.2832

A sequence of ones causes the phase to shift by +π/2 between samples.

Algorithms
This object implements the algorithm, inputs, and outputs described on the MSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters. For MSK the phase shift per symbol is π/2, which is a modulation index
of 0.5.

4 System Objects — Alphabetical List

4-1294

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPMDemodulator | comm.CPMModulator | comm.MSKModulator

Introduced in R2012a

 comm.MSKDemodulator

4-1295

reset
System object: comm.MSKDemodulator
Package: comm

Reset states of the MSK demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the MSKDemodulator object, H.

4 System Objects — Alphabetical List

4-1296

step
System object: comm.MSKDemodulator
Package: comm

Demodulate using MSK method and the Viterbi algorithm

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the MSK demodulator System object, H,
and returns Y. X must be a double or single precision column vector with a length equal to
an integer multiple of the number of samples per symbol you specify in the
SamplesPerSymbol property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1297

comm.MSKModulator
Package: comm

Modulate using MSK method

Description
The MSKModulator object modulates using the minimum shift keying method. The output
is a baseband representation of the modulated signal. The initial phase offset property
sets the initial phase of the output waveform, measured in radians.

To modulate a signal using minimum shift keying:

1 Define and set up your MSK modulator object. See “Construction” on page 4-1298.
2 Call step to modulate the signal according to the properties of

comm.MSKModulator. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MSKModulator creates a modulator System object, H. This object modulates
the input signal using the minimum shift keying (MSK) modulation method.

H = comm.MSKModulator(Name,Value) creates an MSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1298

Properties
BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false.

When you set the BitInput on page 4-0 property to false, the step method input
must be a column vector with a double-precision or signed integer data type and of values
equal to -1 or 1.

When you set the BitInput property to true, the step method input requires double-
precision or logical data type column vector of 0s and 1s.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar
value. The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar value. The
default is 8. The upsampling factor indicates the number of output samples that the step
method produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

 comm.MSKModulator

4-1299

Methods
reset Reset states of the MSK modulator object
step Modulate using MSK method

Common to All System Objects
release Allow System object property value changes

Examples

Modulate an MSK signal with bit inputs and phase offset

% Create an MSK modulator, an AWGN channel, and an MSK demodulator. Use a
% phase offset of pi/4.
 hMod = comm.MSKModulator('BitInput', true, ...
 'InitialPhaseOffset', pi/4);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)','SNR',0);
 hDemod = comm.MSKDemodulator('BitOutput', true, ...
 'InitialPhaseOffset', pi/4);
 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm
 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);
 for counter = 1:100
 % Transmit 100 3-bit words
 data = randi([0 1],300,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.000000
Number of errors = 0

4 System Objects — Alphabetical List

4-1300

Map Binary Data to GMSK Signal

This example illustrates the mapping of binary sequences of zeros and ones to the output
of a GMSK modulator. The relationship also applies for MSK modulation.

Create a GMSK modulator that accepts binary inputs. Specify the pulse length and
samples per symbol to be 1.

gmsk = comm.GMSKModulator('BitInput',true,'PulseLength',1,'SamplesPerSymbol',1);

Create an input sequence of all zeros. Modulate the sequence.

x = zeros(5,1);
y = gmsk(x)

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 - 1.0000i
 -1.0000 + 0.0000i
 0.0000 + 1.0000i
 1.0000 - 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

theta = 5×1

 0
 -1.5708
 -3.1416
 -4.7124
 -6.2832

A sequence of zeros causes the phase to shift by -π/2 between samples.

Reset the modulator. Modulate an input sequence of all ones.

reset(gmsk)
x = ones(5,1);
y = gmsk(x)

 comm.MSKModulator

4-1301

y = 5×1 complex

 1.0000 + 0.0000i
 -0.0000 + 1.0000i
 -1.0000 - 0.0000i
 0.0000 - 1.0000i
 1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to better show the
trend.

theta = unwrap(angle(y))

theta = 5×1

 0
 1.5708
 3.1416
 4.7124
 6.2832

A sequence of ones causes the phase to shift by +π/2 between samples.

Algorithms
This object implements the algorithm, inputs, and outputs described on the MSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters. For MSK the phase shift per symbol is π/2, which is a modulation index
of 0.5.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

4 System Objects — Alphabetical List

4-1302

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPMDemodulator | comm.CPMModulator | comm.MSKDemodulator

Introduced in R2012a

 comm.MSKModulator

4-1303

reset
System object: comm.MSKModulator
Package: comm

Reset states of the MSK modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the MSKModulator object, H.

4 System Objects — Alphabetical List

4-1304

step
System object: comm.MSKModulator
Package: comm

Modulate using MSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the MSK modulator object, H. It returns
the baseband modulated output, Y. Depending on the value of the BitInput property,
input X can be a double precision, signed integer, or logical column vector. The length of
output vector, Y, is equal to the number of input samples times the number of samples per
symbol you specify in the SamplesPerSymbol property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1305

comm.MSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Description
The MSKTimingSynchronizer object recovers the symbol timing phase of the input
signal using a fourth-order nonlinearity method. This object implements a general non-
data-aided feedback method that is independent of carrier phase recovery. This method
requires prior compensation for the carrier frequency offset. This object is suitable for
systems that use baseband minimum shift keying (MSK) modulation.

To recover the symbol timing phase of the input signal:

1 Define and set up your MSK timing synchronizer object. See “Construction” on page
4-1306.

2 Call step to recover the symbol timing phase of the input signal according to the
properties of comm.MSKTimingSynchronizer. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MSKTimingSynchronizer creates a timing phase synchronizer System
object, H. This object recovers the symbol timing phase of the input signal using a fourth-
order nonlinearity method.

H = comm.MSKTimingSynchronizer(Name,Value) creates an MSK timing
synchronizer object, H, with each specified property set to the specified value. You can

4 System Objects — Alphabetical List

4-1306

specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SamplesPerSymbol

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive, real
scalar value. The default is 0.05. Typically, this number is less than 1/
SamplesPerSymbol on page 4-0 , which corresponds to a slowly varying timing
phase. This property is tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on
an input argument value. The default is false.

When you set this property to true, you must specify a reset input value to the step
method.

When the reset input is a nonzero value, the object restarts the timing phase recovery
process. When you set this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never |
Every frame. The default is Never.

 comm.MSKTimingSynchronizer

4-1307

When you set this property to Never, the phase recovery process never restarts. The
object operates continuously, retaining information from one symbol to the next.

When you set this property to Every frame, the timing phase recovery restarts at the
start of each frame of data. Thus, each time the object calls the step method. This
property applies when you set the ResetInputPort on page 4-0 property to false.

Methods
reset Reset states of MSK timing phase synchronizer object
step Recover symbol timing phase using fourth-order nonlinearity method

Common to All System Objects
release Allow System object property value changes

Examples

Recover Timing Phase of MSK Signal

Create MSK modulator, variable fractional delay, and MSK timing synchronizer System
objects.

mskMod = comm.MSKModulator('BitInput',true,'SamplesPerSymbol',14);
timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;
mskTimingSync = comm.MSKTimingSynchronizer('SamplesPerSymbol',14,'ErrorUpdateGain', 0.05);

Main processing loop.

phEst = zeros(50,1);
for i = 1:50
 data = randi([0 1],100,1); % Generate data
 modData = mskMod(data); % Modulate data

 % Apply timing offset error.
 impairedData = varDelay(modData,timingOffset*14);
 % Perform timing phase recovery.
 [~,phase] = mskTimingSync(impairedData);

4 System Objects — Alphabetical List

4-1308

 phEst(i) = phase(1)/14;
end

Plot the results.

plot(1:50,[0.2*ones(50,1) phEst]);
legend('Original','Estimated')
title('Original and Estimated timing phases');

 comm.MSKTimingSynchronizer

4-1309

Algorithms
This object implements the algorithm, inputs, and outputs described on the MSK-Type
Signal Timing Recovery block reference page. The object properties correspond to the
block parameters, except:

• The object corresponds to the MSK-Type Signal Timing Recovery block with the
Modulation type parameter set to MSK.

• The Reset parameter corresponds to the ResetInputPort on page 4-0 and
ResetCondition on page 4-0 properties.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.SymbolSynchronizer

Introduced in R2012a

4 System Objects — Alphabetical List

4-1310

reset
System object: comm.MSKTimingSynchronizer
Package: comm

Reset states of MSK timing phase synchronizer object

Syntax
reset(H)

Description
reset(H) resets the states of MSKTimingSynchronizer object, H.

 reset

4-1311

step
System object: comm.MSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Syntax
[Y,PHASE] = step(H,X)
[Y,PHASE] = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[Y,PHASE] = step(H,X) recovers the timing phase and returns the time-synchronized
signal, Y, and the estimated timing phase, PHASE, for input signal X. X must be a double
or single precision complex column vector.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you input
a reset signal, R, that is non-zero. R must be a logical or double scalar. This syntax applies
when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-1312

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1313

comm.MultiplexedDeinterleaver
Package: comm

Deinterleave input symbols using set of shift registers with specified delays

Description
The MultiplexedDeinterleaver object restores the original ordering of a sequence
that was interleaved using the General Multiplexed Interleaver object.

To deinterleave the input symbols:

1 Define and set up your multiplexed deinterleaver object. See “Construction” on page
4-1314.

2 Call step to restore the original ordering of the input sequence according to the
properties of comm.MultiplexedDeinterleaver. The behavior of step is specific
to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MultiplexedDeinterleaver creates a multiplexed deinterleaver System
object, H. This object restores the original ordering of a sequence that was interleaved
using the multiplexed interleaver System object.

H = comm.MultiplexedDeinterleaver(Name,Value) creates a multiplexed
deinterleaver object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1314

Properties
Delay

Interleaver delay

Specify the lengths of the shift registers as an integer column vector. The default is
[2;0;1;3;10].

InitialConditions

Initial conditions of shift registers

Specify the initial values in each shift register as a numeric scalar value or a column
vector. The default is 0. When you set this property to a column vector, the vector length
must equal the value of the Delay on page 4-0 property. This vector contains initial
conditions, where the i-th initial condition is stored in the ith shift register.

Methods
reset Reset states of the multiplexed deinterleaver object
step Deinterleave input symbols using a set of shift registers with specified delays

Common to All System Objects
release Allow System object property value changes

Examples

Multiplexed Interleaving and Deinterleaving

Create interleaver and deinterleaver objects.

interleaver = comm.MultiplexedInterleaver('Delay',[1; 0; 2; 1]);
deinterleaver = comm.MultiplexedDeinterleaver('Delay',[1; 0; 2; 1]);

Generate a random data sequence. Pass the data sequence through the interleaver and
deinterleaver.

 comm.MultiplexedDeinterleaver

4-1315

[dataIn,dataOut] = deal([]); % Initialize data arrays

for k = 1:50
 data = randi([0 7],20,1); % Generate data sequence
 intData = interleaver(data); % Interleave sequence
 deIntData = deinterleaver(intData); % Deinterleave sequence

 dataIn = cat(1,dataIn,data); % Save original data
 dataOut = cat(1,dataOut,deIntData); % Save deinterleaved data
end

Determine the delay through the interleaver and deinterleaver.

intlvrDelay = finddelay(dataIn,dataOut)

intlvrDelay = 8

After accounting for the delay, confirm that the original and deinterleaved sequences are
identical.

isequal(dataIn(1:end-intlvrDelay),dataOut(intlvrDelay+1:end))

ans = logical
 1

Copyright 2012 The MathWorks, Inc.

Algorithms
This object implements the algorithm, inputs, and outputs described on the General
Multiplexed Deinterleaver block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 System Objects — Alphabetical List

4-1316

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalDeinterleaver | comm.MultiplexedInterleaver

Introduced in R2012a

 comm.MultiplexedDeinterleaver

4-1317

reset
System object: comm.MultiplexedDeinterleaver
Package: comm

Reset states of the multiplexed deinterleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the MultiplexedDeinterleaver object, H.

4 System Objects — Alphabetical List

4-1318

step
System object: comm.MultiplexedDeinterleaver
Package: comm

Deinterleave input symbols using a set of shift registers with specified delays

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a multiplexed interleaver and returns Y. The input X must be a column vector. The
data type for X can be numeric, logical, or fixed-point (fi objects). Y has the same data
type as X. The multiplexed deinterleaver object uses N shift registers, where N is the
number of elements in the vector specified by the Delay property. When a new input
symbol enters the deinterleaver, a commutator switches to a new register. The new
symbol shifts in while the oldest symbol in that register is shifted out. When the
commutator reaches the Nth register, upon the next new input, it returns to the first
register. The multiplexed deinterleaver associated with a multiplexed interleaver has the
same number of registers as the interleaver. The delay in a particular deinterleaver
register depends on the largest interleaver delay minus the interleaver delay for the given
register.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-1319

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1320

comm.MultiplexedInterleaver
Package: comm

Permute input symbols using set of shift registers with specified delays

Description
The MultiplexedInterleaver object permutes the symbols in the input signal.
Internally, the object uses a set of shift registers, each with its own delay value.

To permute the symbols in the input signal:

1 Define and set up your multiplexed interleaver object. See “Construction” on page 4-
1321.

2 Call step to interleave the input signal according to the properties of
comm.MultiplexedInterleaver. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.MultiplexedInterleaver creates a multiplexed interleaver System object,
H. This object permutes the symbols in the input signal using a set of shift registers with
specified delays.

H = comm.MultiplexedInterleaver(Name,Value) creates a multiplexed interleaver
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.MultiplexedInterleaver

4-1321

Properties
Delay

Interleaver delay

Specify the lengths of the shift registers as an integer column vector. The default is
[2;0;1;3;10].

InitialConditions

Initial conditions of shift registers

Specify the initial values in each shift register as a numeric scalar value or a column
vector. The default is 0. When you set this property to a column vector, the length must
equal the value of the Delay on page 4-0 property. This vector contains initial
conditions, where the i-th initial condition is stored in the i-th shift register.

Methods
reset Reset states of the multiplexed interleaver object
step Permute input symbols using a set of shift registers with specified delays

Common to All System Objects
release Allow System object property value changes

Examples

Multiplexed Interleaving and Deinterleaving

Create interleaver and deinterleaver objects.

interleaver = comm.MultiplexedInterleaver('Delay',[1; 0; 2; 1]);
deinterleaver = comm.MultiplexedDeinterleaver('Delay',[1; 0; 2; 1]);

Generate a random data sequence. Pass the data sequence through the interleaver and
deinterleaver.

4 System Objects — Alphabetical List

4-1322

[dataIn,dataOut] = deal([]); % Initialize data arrays

for k = 1:50
 data = randi([0 7],20,1); % Generate data sequence
 intData = interleaver(data); % Interleave sequence
 deIntData = deinterleaver(intData); % Deinterleave sequence

 dataIn = cat(1,dataIn,data); % Save original data
 dataOut = cat(1,dataOut,deIntData); % Save deinterleaved data
end

Determine the delay through the interleaver and deinterleaver.

intlvrDelay = finddelay(dataIn,dataOut)

intlvrDelay = 8

After accounting for the delay, confirm that the original and deinterleaved sequences are
identical.

isequal(dataIn(1:end-intlvrDelay),dataOut(intlvrDelay+1:end))

ans = logical
 1

Copyright 2012 The MathWorks, Inc.

Algorithms
This object implements the algorithm, inputs, and outputs described on the General
Multiplexed Interleaver block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.MultiplexedInterleaver

4-1323

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalInterleaver | comm.MultiplexedDeinterleaver

Introduced in R2012a

4 System Objects — Alphabetical List

4-1324

reset
System object: comm.MultiplexedInterleaver
Package: comm

Reset states of the multiplexed interleaver object

Syntax
reset(H)

Description
reset(H) resets the states of the MultiplexedInterleaver object, H.

 reset

4-1325

step
System object: comm.MultiplexedInterleaver
Package: comm

Permute input symbols using a set of shift registers with specified delays

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector and the data type can be numeric, logical, or fixed-point
(fi objects). Y has the same data type as X. The multiplexed interleaver object consists of
N registers, each with a specified delay. With each new input symbol, a commutator
switches to a new register and the new symbol is shifted in while the oldest symbol in that
register is shifted out. When the commutator reaches the Nth register, upon the next new
input, it returns to the first register.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-1326

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1327

comm.OQPSKDemodulator
Package: comm

Demodulation using OQPSK method

Description
The comm.OQPSKDemodulator object applies pulse shape filtering to the input waveform
and demodulates it using the offset quadrature phase shift keying (OQPSK) method. For
more information, see “Pulse Shaping Filter” on page 4-1337. The input is a baseband
representation of the modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see
“Modulation Delays” on page 4-1336.

To demodulate a signal that is OQPSK modulated:

1 Create the comm.OQPSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
oqpskdemod = comm.OQPSKDemodulator
oqpskdemod = comm.OQPSKDemodulator(mod)
oqpskdemod = comm.OQPSKDemodulator(Name,Value)
oqpskdemod = comm.OQPSKDemodulator(phase,Name,Value)

4 System Objects — Alphabetical List

4-1328

Description
oqpskdemod = comm.OQPSKDemodulator creates a demodulator System object. This
object can jointly match-filter and decimate a waveform, and demodulate it using the
offset quadrature phase shift keying (OQPSK) method.

oqpskdemod = comm.OQPSKDemodulator(mod) creates a demodulator System object
with symmetric configuration to the OQPSK modulator object, mod.

oqpskdemod = comm.OQPSKDemodulator(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in single quotes.
Example: comm.OQPSKDemodulator('BitOutput',true)

oqpskdemod = comm.OQPSKDemodulator(phase,Name,Value) sets the PhaseOffset
property of the created object to phase and sets any other specified Name, Value pairs.
Example: comm.OQPSKDemodulator(0.5*pi,'SamplesPerSymbol',2)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

PhaseOffset — Phase of zeroth point of signal constellation
0 (default) | scalar

Phase of zeroth point of the signal constellation in radians, specified as a scalar.
Example: 'PhaseOffset',0 aligns the OQPSK signal constellation points on the axes,
{(1,0), (0,j), (-1,0), (0,-j)}.
Data Types: double

BitOutput — Option to output data as bits
false (default) | true

 comm.OQPSKDemodulator

4-1329

Option to output data as bits, specified as false or true.

• When you set this property to false, the object outputs a column vector of integer
values with a length equal to the number of demodulated symbols. The output values
are integer representations of two bits and range from 0 to 3.

• When you set this property to true, the object outputs a binary column vector of bit
values. The output vector length is twice as long as the number of input symbols.

Data Types: logical

SymbolMapping — Signal constellation bit mapping
'Gray' (default) | 'Binary' | custom 4-element numeric vector of integers with values
from 0 to 3

Signal constellation bit mapping, specified as 'Gray', 'Binary', or a custom 4-element
numeric vector of integers with values from 0 to 3.

Setting Constellation
Mapping for
Integers

Constellation
Mapping for Bits

Comment

Gray The signal
constellation
mapping is Gray-
encoded.

Binary The signal
constellation
mapping for the
input integer m (0 ≤
m ≤ 3) is the complex
value e(j*(PhaseOffset
+π/4) + j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d]
must be composed of
the set of values [0,
1, 2, 3] in any order.

4 System Objects — Alphabetical List

4-1330

Data Types: char | double

PulseShape — Filtering pulse shape
'Half sine' (default) | 'Normal raised cosine' | 'Root raised cosine' |
'Custom'

Filtering pulse shape, specified as 'Half sine', 'Normal raised cosine' | 'Root
raised cosine', or 'Custom'.
Data Types: char

RolloffFactor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar from 0 to 1.

Dependencies

This property applies when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterSpanInSymbols — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite
impulse response. However, to realize a practical implementation of this filter, the object
truncates the impulse response to FilterSpanInSymbols symbols.

Dependencies

This property applies when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterNumerator — Filter numerator
[0.7071 0.7071] (default) | row vector

Filter numerator, specified as a row vector.

Dependencies

This property applies when PulseShape is 'Custom'.

 comm.OQPSKDemodulator

4-1331

Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

OutputDataType — Data type assigned to output
'double' (default) | 'single' | 'uint8'

Data type assigned to output, specified as 'double', 'single', or 'uint8'.
Data Types: char

Usage

Syntax
outsignal = oqpskdemod(waveform)

Description
outsignal = oqpskdemod(waveform) returns the demodulated output signal. The
object produces one output symbol for each input pulse.

Input Arguments
waveform — Received waveform
scalar | column vector

Received waveform, specified as a complex scalar or column vector.
Data Types: double
Complex Number Support: Yes

4 System Objects — Alphabetical List

4-1332

Output Arguments
outsignal — Demodulated signal
integer vector | bit vector

Demodulated signal, returned as an NS-element integer vector or bit vector, where NS is
the number of samples.

The received waveform is pulse shaped according to the configuration properties
PulseShape and SamplesPerSymbol. The setting of the BitOutput property determines the
interpretation of the received waveform.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

OQPSK Signal in AWGN

Create an OQPSK modulator and demodulator pair. Create an AWGN channel object
having two bits per symbol.

oqpskmod = comm.OQPSKModulator('BitInput',true);
oqpskdemod = comm.OQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',4,'BitsPerSymbol',2);

 comm.OQPSKDemodulator

4-1333

Create an error rate calculator. To account for the delay between the modulator and
demodulator, set the ReceiveDelay property to 2.

errorRate = comm.ErrorRate('ReceiveDelay',2);

Process 300 frames of data looping through these steps.

• Generate vectors with 100 elements of random binary data.
• OQPSK-modulate the data. The data frames are processed as 50 sample frames of 2-bit

binary data.
• Pass the modulated data through the AWGN channel.
• OQPSK-demodulate the data.
• Collect error statistics on the frames of data.

for counter = 1:300
 txData = randi([0 1],100,1);
 modSig = oqpskmod(txData);
 rxSig = channel(modSig);
 rxData = oqpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 3.3336e-05

numErrors = errorStats(2)

numErrors = 1

numBits = errorStats(3)

numBits = 29998

OQPSK Signal with Root Raised Cosine Filtering

Perform OQPSK modulation and demodulation and apply root raised cosine filtering to a
waveform.

4 System Objects — Alphabetical List

4-1334

System initialization

Define simulation parameters and create objects for OQPSK modulation and
demodulation.

sps = 12; % samples per symbol
bits = randi([0, 1], 800, 1); % transmission data

modulator = comm.OQPSKModulator('BitInput',true,'SamplesPerSymbol',sps,'PulseShape','Root raised cosine');
demodulator = comm.OQPSKDemodulator(modulator);

Waveform transmission and reception

Use the modulator object to apply OQPSK modulation and transmit filtering to the input
data.

oqpskWaveform = modulator(bits);

Pass the waveform through a channel.

snr = 0;
rxWaveform = awgn(oqpskWaveform, snr);

Use the demodulator object to apply receive filtering and OQPSK demodulation to the
waveform.

demodData = demodulator(rxWaveform);

Compute the bit error rate to confirm the quality of the data recovery.

delay = (1+modulator.BitInput)*modulator.FilterSpanInSymbols;
[~, ber] = biterr(bits(1:end-delay), demodData(delay+1:end))

ber = 0

Soft-Decision OQPSK Modulation-Demodulation

Use the qamdemod function to simulate soft decision output for OQPSK-modulated
signals.

Create an OQPSK modulated signal and add noise to the signal.

 comm.OQPSKDemodulator

4-1335

sps = 4;
msg = randi([0 1],1000,1);
oqpskMod = comm.OQPSKModulator('SamplesPerSymbol',sps,'BitInput',true);
oqpskSig = oqpskMod(msg);

impairedSig = awgn(oqpskSig,15);

Perform Soft-Decision Demodulation

Create QPSK equivalent signal to align I and Q. Apply matched filtering to the received
OQPSK signal.

impairedQPSK = complex(real(impairedSig(1+sps/2:end-sps/2)), imag(impairedSig(sps+1:end)));

halfSinePulse = sin(0:pi/sps:(sps)*pi/sps);
matchedFilter = dsp.FIRDecimator(sps,halfSinePulse,'DecimationOffset',sps/2);
filteredQPSK = matchedFilter(impairedQPSK);

To perform soft demodulation of the filtered OQPSK signal use the qamdemod function.
Align symbol mapping of qamdemod with the symbol mapping used by the
comm.OQPSKModulator, then demodulate the signal.

oqpskModSymbolMapping = [1 3 0 2];
demodulated = qamdemod(filteredQPSK,4,oqpskModSymbolMapping,'OutputType','llr');

More About

Modulation Delays
Digital modulation and demodulation objects incur delays between their inputs and
outputs that result in an offset in the arrival sample of the received data. When
comparing transmitted data with received data, such as when plotting or computing error
statistics, you must take system delays into account. As shown here, the OQPSK
modulation-demodulation delay varies depending on the pulse shaping filter and the
input/output settings of the object pairs.

4 System Objects — Alphabetical List

4-1336

Pulse Shape Input/Output Data (*) End-to-End Delay
Incurred by ay an OQPSK
Modulator-Demodulator
Object Pair (in samples)

'Half sine' or 'Custom' Integer 1
Bit 2

'Normal raised
cosine' or 'Root raised
cosine'

Integer FilterSpanInSymbols
Bit 2*FilterSpanInSymbols

(*) Set the data type property (BitInput for modulation or BitOutput for
demodulation) to false for integer data and true for bit data.

Pulse Shaping Filter
The OQPSK modulation scheme requires oversampling of two or greater in order to delay
(or offset) the quadrature channel by 90 degrees. This oversampling is achieved through
interpolation filtering implemented by pulse shaping.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

See Also
Objects
comm.OQPSKModulator | comm.QPSKDemodulator

Blocks
OQPSK Demodulator Baseband

 comm.OQPSKDemodulator

4-1337

Topics
Phase Modulation

Introduced in R2012a

4 System Objects — Alphabetical List

4-1338

comm.OQPSKModulator
Package: comm

Modulation using OQPSK method

Description
The comm.OQPSKModulator object modulates the input signal using the offset
quadrature phase shift keying (OQPSK) method and applies pulse shape filtering to the
output waveform. For more information, see “Pulse Shaping Filter” on page 4-1349. The
output is a baseband representation of the modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see
“Modulation Delays” on page 4-1348.

To modulate a signal using offset quadrature phase shift keying:

1 Create the comm.OQPSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
oqpskmod = comm.OQPSKModulator
oqpskmod = comm.OQPSKModulator(demod)
oqpskmod = comm.OQPSKModulator(Name,Value)
oqpskmod = comm.OQPSKModulator(phase,Name,Value)

 comm.OQPSKModulator

4-1339

Description
oqpskmod = comm.OQPSKModulator creates a modulator System object. This object
applies offset quadrature phase shift keying (OQPSK) modulation and pulse shape
filtering to the input signal.

oqpskmod = comm.OQPSKModulator(demod) creates a modulator System object with
symmetric configuration to the OQPSK demodulator object, demod.

oqpskmod = comm.OQPSKModulator(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in single quotes.
Example: comm.OQPSKModulator('BitInput',true)

oqpskmod = comm.OQPSKModulator(phase,Name,Value) sets the PhaseOffset
property of the created object to phase and sets any other specified Name, Value pairs.
Example: comm.OQPSKModulator(0.5*pi,'SymbolMapping','Binary')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

PhaseOffset — Phase of zeroth point of signal constellation
0 (default) | scalar

Phase of zeroth point of the signal constellation in radians, specified as a scalar.
Example: 'PhaseOffset',0 aligns the OQPSK signal constellation points on the axes,
{(1,0), (0,j), (-1,0), (0,-j)}.
Data Types: double

BitInput — Option to provide input in bits
false (default) | true

4 System Objects — Alphabetical List

4-1340

Option to provide input in bits, specified as false or true.

• When this property is set to false, the input values must be integer representations
of two-bit input segments and range from 0 to 3.

• When this property is set to true, the input must be a binary vector of even length.
Element pairs are binary representations of integers.

Data Types: logical

SymbolMapping — Signal constellation bit mapping
'Gray' (default) | 'Binary' | custom 4-element numeric vector of integers with values
from 0 to 3

Signal constellation bit mapping, specified as 'Gray', 'Binary', or a custom 4-element
numeric vector of integers with values from 0 to 3.

Setting Constellation
Mapping for
Integers

Constellation
Mapping for Bits

Comment

Gray The signal
constellation
mapping is Gray-
encoded.

Binary The signal
constellation
mapping for the
input integer m (0 ≤
m ≤ 3) is the complex
value e(j*(PhaseOffset
+π/4) + j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d]
must be composed of
the set of values [0,
1, 2, 3] in any order.

Data Types: char | double

 comm.OQPSKModulator

4-1341

PulseShape — Filtering pulse shape
'Half sine' (default) | 'Normal raised cosine' | 'Root raised cosine' |
'Custom'

Filtering pulse shape, specified as 'Half sine', 'Normal raised cosine', 'Root
raised cosine', or 'Custom'.
Data Types: char

RolloffFactor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar from 0 to 1.

Dependencies

This property applies when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterSpanInSymbols — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite
impulse response. However, to realize a practical implementation of this filter, the object
truncates the impulse response to FilterSpanInSymbols symbols.

Dependencies

This property applies when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterNumerator — Filter numerator
[0.7071 0.7071] (default) | row vector

Filter numerator, specified as a row vector.

Dependencies

This property applies when PulseShape is 'Custom'.
Data Types: double

4 System Objects — Alphabetical List

4-1342

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

OutputDataType — Data type assigned to output
'double' (default) | 'single'

Data type assigned to output, specified as 'double' or 'single'.
Data Types: char

Usage

Syntax
waveform = oqpskmod(insignal)

Description
waveform = oqpskmod(insignal) returns baseband-modulated output. The output
waveform is pulse shaped according to the configuration properties PulseShape and
SamplesPerSymbol.

Input Arguments
insignal — Input signal
integer column vector | bit column vector

Input signal, specified as an NS-element column vector of integers or bits, where NS is the
number of samples.

The setting of the BitInput property determines the interpretation of the input vector.
Data Types: double

 comm.OQPSKModulator

4-1343

Output Arguments
waveform — Output waveform
vector

Output waveform, returned as a vector. The output waveform is pulse-shaped according
to the configuration properties PulseShape and SamplesPerSymbol.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

OQPSK Signal in AWGN

Create an OQPSK modulator and demodulator pair. Create an AWGN channel object
having two bits per symbol.

oqpskmod = comm.OQPSKModulator('BitInput',true);
oqpskdemod = comm.OQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',4,'BitsPerSymbol',2);

Create an error rate calculator. To account for the delay between the modulator and
demodulator, set the ReceiveDelay property to 2.

errorRate = comm.ErrorRate('ReceiveDelay',2);

Process 300 frames of data looping through these steps.

4 System Objects — Alphabetical List

4-1344

• Generate vectors with 100 elements of random binary data.
• OQPSK-modulate the data. The data frames are processed as 50 sample frames of 2-bit

binary data.
• Pass the modulated data through the AWGN channel.
• OQPSK-demodulate the data.
• Collect error statistics on the frames of data.

for counter = 1:300
 txData = randi([0 1],100,1);
 modSig = oqpskmod(txData);
 rxSig = channel(modSig);
 rxData = oqpskdemod(rxSig);
 errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 3.3336e-05

numErrors = errorStats(2)

numErrors = 1

numBits = errorStats(3)

numBits = 29998

Create OQPSK Modulator Using Demodulator

Use an OQPSK demodulator object to initialize an OQPSK modulator object while creating
it.

Create an OQPSK demodulator, assigning it a phase offset of 1
2π.

phase = 0.5*pi;
oqpskdemod = comm.OQPSKDemodulator(phase)

oqpskdemod =
 comm.OQPSKDemodulator with properties:

 comm.OQPSKModulator

4-1345

 Modulation
 PhaseOffset: 1.5708
 SymbolMapping: 'Gray'
 BitOutput: false

 Filtering
 PulseShape: 'Half sine'
 SamplesPerSymbol: 4

 OutputDataType: 'double'

Use the demodulator object to initialize an OQPSK modulator while creating it.

oqpskmod = comm.OQPSKModulator(oqpskdemod)

oqpskmod =
 comm.OQPSKModulator with properties:

 Modulation
 PhaseOffset: 1.5708
 SymbolMapping: 'Gray'
 BitInput: false

 Filtering
 PulseShape: 'Half sine'
 SamplesPerSymbol: 4

 OutputDataType: 'double'

OQPSK Signal with Root Raised Cosine Filtering

Perform OQPSK modulation and demodulation and apply root raised cosine filtering to a
waveform.

System initialization

Define simulation parameters and create objects for OQPSK modulation and
demodulation.

4 System Objects — Alphabetical List

4-1346

sps = 12; % samples per symbol
bits = randi([0, 1], 800, 1); % transmission data

modulator = comm.OQPSKModulator('BitInput',true,'SamplesPerSymbol',sps,'PulseShape','Root raised cosine');
demodulator = comm.OQPSKDemodulator(modulator);

Waveform transmission and reception

Use the modulator object to apply OQPSK modulation and transmit filtering to the input
data.

oqpskWaveform = modulator(bits);

Pass the waveform through a channel.

snr = 0;
rxWaveform = awgn(oqpskWaveform, snr);

Use the demodulator object to apply receive filtering and OQPSK demodulation to the
waveform.

demodData = demodulator(rxWaveform);

Compute the bit error rate to confirm the quality of the data recovery.

delay = (1+modulator.BitInput)*modulator.FilterSpanInSymbols;
[~, ber] = biterr(bits(1:end-delay), demodData(delay+1:end))

ber = 0

Soft-Decision OQPSK Modulation-Demodulation

Use the qamdemod function to simulate soft decision output for OQPSK-modulated
signals.

Create an OQPSK modulated signal and add noise to the signal.

sps = 4;
msg = randi([0 1],1000,1);
oqpskMod = comm.OQPSKModulator('SamplesPerSymbol',sps,'BitInput',true);
oqpskSig = oqpskMod(msg);

impairedSig = awgn(oqpskSig,15);

 comm.OQPSKModulator

4-1347

Perform Soft-Decision Demodulation

Create QPSK equivalent signal to align I and Q. Apply matched filtering to the received
OQPSK signal.

impairedQPSK = complex(real(impairedSig(1+sps/2:end-sps/2)), imag(impairedSig(sps+1:end)));

halfSinePulse = sin(0:pi/sps:(sps)*pi/sps);
matchedFilter = dsp.FIRDecimator(sps,halfSinePulse,'DecimationOffset',sps/2);
filteredQPSK = matchedFilter(impairedQPSK);

To perform soft demodulation of the filtered OQPSK signal use the qamdemod function.
Align symbol mapping of qamdemod with the symbol mapping used by the
comm.OQPSKModulator, then demodulate the signal.

oqpskModSymbolMapping = [1 3 0 2];
demodulated = qamdemod(filteredQPSK,4,oqpskModSymbolMapping,'OutputType','llr');

More About

Modulation Delays
Digital modulation and demodulation objects incur delays between their inputs and
outputs that result in an offset in the arrival sample of the received data. When
comparing transmitted data with received data, such as when plotting or computing error
statistics, you must take system delays into account. As shown here, the OQPSK
modulation-demodulation delay varies depending on the pulse shaping filter and the
input/output settings of the object pairs.

Pulse Shape Input/Output Data (*) End-to-End Delay
Incurred by ay an OQPSK
Modulator-Demodulator
Object Pair (in samples)

'Half sine' or 'Custom' Integer 1
Bit 2

'Normal raised
cosine' or 'Root raised
cosine'

Integer FilterSpanInSymbols
Bit 2*FilterSpanInSymbols

4 System Objects — Alphabetical List

4-1348

Pulse Shape Input/Output Data (*) End-to-End Delay
Incurred by ay an OQPSK
Modulator-Demodulator
Object Pair (in samples)

(*) Set the data type property (BitInput for modulation or BitOutput for
demodulation) to false for integer data and true for bit data.

Pulse Shaping Filter
The OQPSK modulation scheme requires oversampling of two or greater in order to delay
(or offset) the quadrature channel by 90 degrees. This oversampling is achieved through
interpolation filtering implemented by pulse shaping.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

See Also
Objects
comm.OQPSKDemodulator | comm.QPSKModulator

Blocks
OQPSK Modulator Baseband

Topics
Phase Modulation

 comm.OQPSKModulator

4-1349

Introduced in R2012a

4 System Objects — Alphabetical List

4-1350

comm.OSTBCCombiner
Package: comm

Combine inputs using orthogonal space-time block code

Description
The OSTBCCombiner object combines the input signal (from all of the receive antennas)
and the channel estimate signal to extract the soft information of the symbols encoded by
an OSTBC. The input channel estimate does not need to be constant and can vary at each
call to the step method. The combining algorithm uses only the estimate for the first
symbol period per codeword block. A symbol demodulator or decoder would follow the
Combiner object in a MIMO communications system.

To combine input signals and extract the soft information of the symbols encoded by an
OSTBC:

1 Define and set up your OSTBC combiner object. See “Construction” on page 4-1351.
2 Call step to Combine inputs using an orthogonal space-time block code according to

the properties of comm.OSTBCCombiner. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.OSTBCCombiner creates an orthogonal space-time block code (OSTBC)
combiner System object, H. This object combines the input signal (from all of the receive
antennas) with the channel estimate signal to extract the soft information of the symbols
encoded by an OSTBC.

 comm.OSTBCCombiner

4-1351

H = comm.OSTBCCombiner(Name,Value) creates an OSTBC Combiner object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OSTBCCombiner(N,M,Name,Value) creates an OSTBC Combiner object, H.
This object has the NumTransmitAntennas property set to N, the
NumReceiveAntennas property set to N, and the other specified properties set to the
specified values.

Properties
NumTransmitAntennas

Number of transmit antennas

Specify the number of antennas at the transmitter as 2 | 3 | 4. The default is 2.

SymbolRate

Symbol rate of code

Specify the symbol rate of the code as 3/4 | 1/2. The default is 3/4. This property applies
when the NumTransmitAntennas on page 4-0 property is greater than 2. For 2
transmit antennas, the symbol rate defaults to 1.

NumReceiveAntennas

Number of receive antennas

Specify the number of antennas at the receiver as a double-precision, real, scalar integer
value from 1 to 8. The default is 1.

Fixed-Point Properties

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero. The default is Floor.

4 System Objects — Alphabetical List

4-1352

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property specifies the action to be taken in case of overflow. Such overflow occurs if the
magnitude of a fixed-point calculation result does not fit into the range of the data type
and scaling that stores the result.

ProductDataType

Data type of product

Specify the product data type as one of Full precision | Custom. The default is Full
precision.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,16). This property applies when you set the
ProductDataType property to Custom.

AccumulatorDataType

Data type of accumulator

Specify the accumulator data type as Full precision | Same as product | Custom.
The default is Full precision.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator fixed-point type as a scaled numerictype object with a
signedness of Auto. The default is numerictype([],32,16). This property applies when
you set the AccumulatorDataType property to Custom.

EnergyProductDataType

Data type of energy product

 comm.OSTBCCombiner

4-1353

Specify the complex energy product data type as one of Full precision | Same as
product | Custom. The default is Full precision. This property sets the data type of
the complex product in the denominator to calculate the total energy in the MIMO
channel.

CustomEnergyProductDataType

Fixed-point data type of energy product

Specify the energy product fixed-point type as a scaled numerictype object with a
signedness of Auto. The default is numerictype([],32,16). This property applies when
you set the EnergyProductDataType property to Custom.

EnergyAccumulatorDataType

Data type of energy accumulator

Specify the energy accumulator data type as one of Full precision | Same as
energy product | Same as accumulator | Custom. The default is Full precision.
This property sets the data type of the summation in the denominator to calculate the
total energy in the MIMO channel.

CustomEnergyAccumulatorDataType

Fixed-point data type of energy accumulator

Specify the energy accumulator fixed-point type as a scaled numerictype object with a
signedness of Auto. The default is numerictype([],32,16). This property applies when
you set the EnergyAccumulatorDataType property to Custom.

DivisionDataType

Data type of division

Specify the division data type as one of Same as accumulator | Custom. The default is
Same as accumulator. This property sets the data type at the output of the division
operation. The setting normalizes diversity combining by the total energy in the MIMO
channel.

CustomDivisionDataType

Fixed-point data type of division

4 System Objects — Alphabetical List

4-1354

Specify the division fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,16). This property applies when you set the
DivisionDataType property to Custom.

Methods
step Combine inputs using orthogonal space-time block code

Common to All System Objects
release Allow System object property value changes

Examples

Encode with OSTBC and Calculate Errors

Determine the bit error rate for a QSPK signal employing OSTBC encoding when
transmitted through a 4x2 MIMO channel. Perfect channel estimation is assumed to be
used by the OSTBC combiner.

Define the system parameters.

numTx = 4; % Number of transmit antennas
numRx = 2; % Number of receive antennas
Rs = 1e6; % Sampling rate (Hz)
tau = [0 2e-6]; % Path delays (sec)
pdb = [0 -10]; % Average path gains (dB)
maxDopp = 30; % Maximum Doppler shift (Hz)
numBits = 12000; % Number of bits
SNR = 6; % Signal-to-noise ratio (dB)

Set the random number generator to its default state to ensure repeatable results.

rng default

Create a QPSK modulator System object™. Set the BitInput property to true and the
SymbolMapping property to Gray.

 comm.OSTBCCombiner

4-1355

hMod = comm.QPSKModulator(...
 'BitInput',true,...
 'SymbolMapping','Gray');

Create a corresponding QPSK demodulator System object. Set the SymbolMapping
property to Gray and the BitOutput property to true.

hDemod = comm.QPSKDemodulator(...
 'SymbolMapping','Gray',...
 'BitOutput',true);

Create an OSTBC encoder and combiner pair, where the number of antennas is specified
in the system parameters.

hOSTBCEnc = comm.OSTBCEncoder(...
 'NumTransmitAntennas',numTx);

hOSTBCComb = comm.OSTBCCombiner(...
 'NumTransmitAntennas',numTx,...
 'NumReceiveAntennas',numRx);

Create a flat 4x2 MIMO Channel System object, where the channel characteristics are set
using name-value pairs. The path gains are made available to serve as a perfect channel
estimate for the OSTBC combiner.

hChan = comm.MIMOChannel(...
 'SampleRate',Rs,...
 'PathDelays',tau,...
 'AveragePathGains',pdb,...
 'MaximumDopplerShift',maxDopp,...
 'SpatialCorrelationSpecification','None',...
 'NumTransmitAntennas',numTx,...
 'NumReceiveAntennas',numRx,...
 'PathGainsOutputPort',true);

Create an AWGN channel System object in which the noise method is specified as a
signal-to-noise ratio.

hAWGN = comm.AWGNChannel(...
 'NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',SNR,...
 'SignalPower',1);

Generate a random sequence of bits.

4 System Objects — Alphabetical List

4-1356

data = randi([0 1],numBits,1);

Apply QPSK modulation.

modData = step(hMod,data);

Encode the modulated data using the OSTBC encoder object.

encData = step(hOSTBCEnc,modData);

Transmit the encoded data through the MIMO channel and add white noise by using the
step functions of the MIMO and AWGN channel objects, respectively.

[chanOut,pathGains] = step(hChan,encData);
rxSignal = step(hAWGN,chanOut);

Sum the pathGains array along the number of paths (2nd dimension) to form the
channel estimate. Apply the squeeze function to make its dimensions conform with those
of rxSignal.

chEst = squeeze(sum(pathGains,2));

Combine the received MIMO signal and its channel estimate using the step function of
the OSTBC combiner object. Demodulate the combined signal.

combinedData = step(hOSTBCComb,rxSignal,chEst);
receivedData = step(hDemod,combinedData);

Compute the number of bit errors and the bit error rate.

[numErrors,ber] = biterr(data,receivedData)

numErrors = 11

ber = 9.1667e-04

Algorithms
This object implements the algorithm, inputs, and outputs described on the OSTBC
Combiner block reference page. The object properties correspond to the block
parameters.

 comm.OSTBCCombiner

4-1357

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.OSTBCEncoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-1358

step
System object: comm.OSTBCCombiner
Package: comm

Combine inputs using orthogonal space-time block code

Syntax
Y = step(H,X,CEST)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X,CEST) combines the received data, X, and the channel estimate, CEST,
to extract the symbols encoded by an OSTBC. Both X and CEST are complex-valued and of
the same data type, which can be double, single, or signed fixed point with power-of-two
slope and zero bias. When the step method input X has double or single precision, the
output, Y, has the same data type as the input. The input channel estimate can remain
constant or can vary during each codeword block transmission. The combining algorithm
uses the estimate only for the first symbol period per codeword block.

The time domain length, T/SymbolRate, must be a multiple of the codeword block length.
T is the output symbol sequence length in the time domain. Specifically, when you set the
NumTransmitAntennas property to 2, T/SymbolRate must be a multiple of two. When
you set the NumTransmitAntennas property greater than 2, T/SymbolRate must be a
multiple of four. For an input of T/SymbolRate rows by NumReceiveAntennas columns,
the input channel estimate, CEST, must be a matrix of size T/SymbolRateby
NumTransmitAntennas by NumReceiveAntennas. In this case, the extracted symbol data,
Y, is a column vector with T elements. Input matrix size can be F by T/SymbolRate by
NumReceiveAntennas, where F is an optional dimension (typically frequency domain)

 step

4-1359

over which the combining calculation is independent. In this case, the input channel
estimate, CEST, must be a matrix of size F by T/SymbolRate by NumTransmitAntennas
by NumReceiveAntennas. The extracted symbol data, Y, is an F rows by T columns
matrix.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1360

comm.OSTBCEncoder
Package: comm

Encode input using orthogonal space-time block code

Description
The OSTBCEncoder object encodes an input symbol sequence using orthogonal space-
time block code (OSTBC). The block maps the input symbols block-wise and concatenates
the output codeword matrices in the time domain.

To encode an input symbol sequence using an orthogonal space-time block code:

1 Define and set up your OSTBC encoder object. See “Construction” on page 4-1361.
2 Call step to encode an input symbol sequence according to the properties of

comm.OSTBCEncoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.OSTBCEncoder creates an orthogonal space-time block code (OSTBC)
encoder System object, H. This object maps the input symbols block-wise and
concatenates the output codeword matrices in the time domain.

H = comm.OSTBCEncoder(Name,Value) creates an OSTBC encoder object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OSTBCEncoder(N,Name,Value) creates an OSTBC encoder object, H. This
object has the NumTransmitAntennas property set to N, and the other specified
properties set to the specified values.

 comm.OSTBCEncoder

4-1361

Properties
NumTransmitAntennas

Number of transmit antennas

Specify the number of antennas at the transmitter as 2 | 3 | 4. The default is 2.

SymbolRate

Symbol rate of code

Specify the symbol rate of the code as one of 3/4 | 1/2. The default is 3/4. This property
applies when you set the NumTransmitAntennas on page 4-0 property to greater
than 2. For 2 transmit antennas, the symbol rate defaults to 1.

Fixed-Point Properties

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property specifies the action to be taken in the case of an overflow. Such overflow occurs
when the magnitude of a fixed-point calculation result does not fit into the range of the
data type and scaling that stores the result.

Methods
step Encode input using orthogonal space-time block code

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-1362

Encode BPSK Modulated Data with OSTBC

Generate random binary data, modulate using the BPSK modulation scheme, and encode
the modulated data using OSTBC.

Generate an 8-by-1 vector of random binary data.

data = randi([0 1],8,1);

Create BPSK Modulator System object and modulated the data using the step function.

bpskMod = comm.BPSKModulator;
modData = bpskMod(data);

Create an OSTBC Encoder and encode the modulated signal. As the default number of
transmit antennas is 2, you can see that encData is an 8-by-2 vector.

ostbcEnc = comm.OSTBCEncoder;
encData = ostbcEnc(modData)

encData = 8×2 complex

 -1.0000 + 0.0000i -1.0000 + 0.0000i
 1.0000 + 0.0000i -1.0000 - 0.0000i
 1.0000 + 0.0000i -1.0000 + 0.0000i
 1.0000 + 0.0000i 1.0000 + 0.0000i
 -1.0000 + 0.0000i 1.0000 + 0.0000i
 -1.0000 + 0.0000i -1.0000 - 0.0000i
 1.0000 + 0.0000i -1.0000 + 0.0000i
 1.0000 + 0.0000i 1.0000 + 0.0000i

Algorithms
This object implements the algorithm, inputs, and outputs described on the OSTBC
Encoder block reference page. The object properties correspond to the block parameters.

When this object processes variable-size signals:

• If the input signal is a column vector, the first dimension can change, but the second
dimension must remain fixed at 1.

 comm.OSTBCEncoder

4-1363

• If the input signal is a matrix, both dimensions can change.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.OSTBCCombiner

Introduced in R2012a

4 System Objects — Alphabetical List

4-1364

step
System object: comm.OSTBCEncoder
Package: comm

Encode input using orthogonal space-time block code

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes the input data, X, using OSTBC encoder object, H. The input is
a complex-valued column vector or matrix of data type double, single, or signed fixed-
point with power-of-two slope and zero bias. The step method output, Y, is the same data
type as the input data. The time domain length, T, of X must be a multiple of the number
of symbols in each codeword matrix. Specifically, when you set the NumTransmitAntennas
property is 2 or the SymbolRate property is 1/2, T must be a multiple of two and when
the SymbolRate property to 3/4, T must be a multiple of three. For a time or spatial
domain input of T rows by one column, the encoded output data, Y, is a (T/SymbolRate)-
by-NumTransmitAntennas matrix. The input matrix size can be F rows by T columns,
where F is the additional dimension (typically the frequency domain) over which the
encoding calculation is independent. In this case, the output is an F-by-(T/SymbolRate)-
by-NumTransmitAntennas matrix.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-1365

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1366

comm.OVSFCode
Package: comm

Generate OVSF code

Description
The OVSFCode object generates an orthogonal variable spreading factor (OVSF) code
from a set of orthogonal codes. OVSF codes were first introduced for 3G communication
systems. They are primarily used to preserve orthogonality between different channels in
a communication system.

To generate an OVSF code:

1 Define and set up your OVSF code object. See “Construction” on page 4-1367.
2 Call step to generate an OVSF code according to the properties of comm.OVSFCode.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.OVSFCode creates an orthogonal variable spreading factor (OVSF) code
generator System object, H. This object generates an OVSF code.

H = comm.OVSFCode(Name,Value) creates an OVSF code generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.OVSFCode

4-1367

Properties
SpreadingFactor

Length of generated code

Specify the length of the generated code as an integer scalar value with a power of two.
The default is 64.

Index

Index of code of interest

Specify the index of the desired code from the available set of codes that have the
spreading factor specified in the SpreadingFactor on page 4-0 property. This
property must be an integer scalar in the range 0 to SpreadingFactor–1. The default is
60.

OVSF codes are defined as the rows of an n-by-n matrix, Cn, where n is the value
specified in the SpreadingFactor property.

You can define the matrix Cn recursively as follows:
First, define C1 = [1].
Next, assume that Cn is defined and let Cn(k) denote the k-th row of Cn.
Then, C2n = [Cn(0) Cn(0); Cn(0) -Cn(0); ... ; Cn(n-1) Cn(n–1); Cn(n–1)–Cn(n–1)].
Cn is only defined for values of n that are a power of 2. Set this property to a value of k to
choose the k-th row of the C matrix as the code of interest.

SamplesPerFrame

Number of output samples per frame

Specify the number of OVSF code samples that the step method outputs as a numeric,
positive, integer scalar value. The default is 1. If you set this property to a value of M,
then the step method outputs M samples of an OVSF code of length N. N is the length of
the OVSF code that you specify in the SpreadingFactor on page 4-0 property.

OutputDataType

Data type of output

Specify output data type as one of double | int8. The default is double.

4 System Objects — Alphabetical List

4-1368

Methods

reset Reset states of OVSF code generator object
step Generate OVSF code

Common to All System Objects
release Allow System object property value changes

Examples
Generate 10 samples of an OVSF code with a spreading factor of 64.

 hOVSF = comm.OVSFCode('SamplesPerFrame', 10,'SpreadingFactor',64);
 seq = step(hOVSF)

Algorithms
This object implements the algorithm, inputs, and outputs described on the OVSF Code
Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

See Also
comm.HadamardCode | comm.WalshCode

Introduced in R2012a

 comm.OVSFCode

4-1369

reset
System object: comm.OVSFCode
Package: comm

Reset states of OVSF code generator object

Syntax
reset(H)

Description
reset(H) resets the states of the OVSFCode object, H.

4 System Objects — Alphabetical List

4-1370

step
System object: comm.OVSFCode
Package: comm

Generate OVSF code

Syntax
Y = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H) outputs a frame of the OVSF code in column vector Y. Specify the frame
length with the SamplesPerFrame property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1371

comm.PAMDemodulator
Package: comm

(Not recommended) Demodulate using M-ary PAM method

Note comm.PAMDemodulator is not recommended. Use pamdemod instead.

Description
The PAMDemodulator object demodulates a signal that was modulated using M-ary pulse
amplitude modulation. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using M-ary pulse amplitude modulation:

1 Define and set up your PAM demodulator object. See “Construction” on page 4-1372.
2 Call step to demodulate the signal according to the properties of

comm.PAMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PAMDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the M-ary pulse amplitude modulation (M-PAM)
method.

H = comm.PAMDemodulator(Name,Value) creates an M-PAM demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1372

H = comm.PAMDemodulator(M,Name,Value) creates an M-PAM demodulator object,
H. This object has the ModulationOrder property set to M, and the other specified
properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value.
The default is 4. When you set the BitOutput on page 4-0 property to false, this
value must be even. When you set the BitOutput property to true, this value requires
an integer power of two.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false.

When you set this property to true the step method outputs a column vector of bit
values with length equal to log2(ModulationOrder on page 4-0) times the number
of demodulated symbols.

When you set this property to false, the step method outputs a column vector, with
length equal to the input data vector. This value contains integer symbol values between 0
and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) bits to the corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the integer m, between 0 ≤ m ≤
(ModulationOrder–1) maps to the complex value 2m-ModulationOrder+1.

 comm.PAMDemodulator

4-1373

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as one of Minimum
distance between symbols | Average power | Peak power. The default is Minimum
distance between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric
scalar value. The default is 2. This property applies when you set the
NormalizationMethod on page 4-0 property to Minimum distance between
symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric
scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Peak power.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The
default is Full precision.

When you set this property to Full precision, and the input data type is single or
double precision, the output data has the same data type that of the input.

4 System Objects — Alphabetical List

4-1374

When the input signal is an integer data type, you must have a Fixed-Point Designer user
license to use this property in Smallest unsigned integer or Full precision
mode.

When the input data is of a fixed-point type, the output data type behaves as if you had set
the OutputDataType on page 4-0 property to Smallest unsigned integer.

When you set the BitOutput on page 4-0 property to true, then logical data type
becomes a valid option.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true,
which is the default, the object computes all internal arithmetic and output data types
using full precision rules. These rules provide the most accurate fixed-point numerics. It
also turns off the display of other fixed-point properties because they do not apply
individually. These rules guarantee that no quantization occurs within the object. Bits are
added, as needed, to ensure that no roundoff or overflow occurs. If you set
FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects” on page 4-1378.

DenormalizationFactorDataType

Data type of denormalization factor

Specify the denormalization factor data type as one of Same word length as input |
Custom. The default is Same word length as input.

CustomDenormalizationFactorDataType

Fixed-point data type of denormalization factor

Specify the denormalization factor fixed-point type as an unscaled numerictype object
with a signedness of Auto. The default is numerictype([],16). This property applies
when you set the DenormalizationFactorDataType on page 4-0 property to
Custom.

 comm.PAMDemodulator

4-1375

ProductDataType

Data type of product

Specify the product data type as one of Full precision | Custom. The default is Full
precision. When you set this property to Full precision the object calculates the
full-precision product word and fraction lengths. This property applies when you set the
FullPrecisionOverride on page 4-0 property to false.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],32). This property applies when
you set the FullPrecisionOverride on page 4-0 property to false and the
ProductDataType on page 4-0 property to Custom.

ProductRoundingMethod

Rounding of fixed-point numeric value of product

Specify the product rounding method as one of Ceiling | Convergent | Floor |
Nearest | Round | Simplest | Zero. The default is Floor. This property applies when
the object is not in a full precision configuration

ProductOverflowAction

Action when fixed-point numeric value of product overflows

Specify the product overflow action as one of Wrap | Saturate. The default is Wrap. This
property applies when the object is not in a full precision configuration.

SumDataType

Data type of sum

Specify the sum data type as one of Full precision | Same as product | Custom.
The default is Full precision. When you set this property to Full precision, the
object calculates the full-precision sum word and fraction lengths. This property applies
when you set the FullPrecisionOverride on page 4-0 property to false

4 System Objects — Alphabetical List

4-1376

CustomSumDataType

Fixed-point data type of sum

Specify the sum fixed-point type as an unscaled numerictype object with a signedness of
Auto. The default is numerictype([],32). This property applies when you set the
FullPrecisionOverride on page 4-0 property to false and the SumDataType on
page 4-0 property to Custom.

Methods
constellation (Not recommended) Calculate or plot ideal signal constellation
step (Not recommended) Demodulate using M-ary PAM method

Common to All System Objects
release Allow System object property value changes

Examples
Modulate and demodulate a signal using 16-PAM modulation.

 hMod = comm.PAMModulator(16);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)', ...
 'SNR',20, 'SignalPower', 85);
 hDemod = comm.PAMDemodulator(16);
 %Create an error rate calculator
 hError = comm.ErrorRate;
 for counter = 1:100
 % Transmit a 50-symbol frame
 data = randi([0 hMod.ModulationOrder-1],50,1);
 modSignal = step(hMod, data);
 noisySignal = step(hAWGN, modSignal);
 receivedData = step(hDemod, noisySignal);
 errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

 comm.PAMDemodulator

4-1377

Compatibility Considerations

comm.PAMDemodulator is not recommended
comm.PAMDEmodulator is not recommended. Use pamdemod instead.

n = 10000; % Number of symbols to process
M = 8; % Modulation order
x = randi([0 M-1],n,1); % Create message signal.

%% Using PAM modulation and demodulation system objects
pammodObj = comm.PAMModulator(M);
pamdemodObj = comm.PAMDemodulator(M);
yOld = pammodObj(x); % Modulate.
% ... channel filtering ...
zOld = pamdemodObj(complex(y)); % Demodulate.

%% Using PAM modulation and demodulation functions
yNew = pammod(x,M); % Modulate.
% ... channel filtering ...
zNew = pamdemod(y,M); % Demodulate.

More About

Full Precision for Fixed-Point System Objects
FullPrecisionOverride is a convenience property that, when you set to true,
automatically sets the appropriate properties for an object to use full-precision to process
fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough
additional bits to compute the ideal full precision result. This operation has no minimum
or maximum range overflow nor any precision loss due to rounding or underflow. It is also
independent of any hardware-specific settings. The data types chosen are based only on
known data type ranges and not on actual numeric values. Full precision for System
objects does not optimize coefficient values. When you set the FullPrecisionOverride
property to true, the other fixed-point properties it controls no longer apply and any of
their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

4 System Objects — Alphabetical List

4-1378

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PAM
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
pamdemod | pammod

Introduced in R2012a

 comm.PAMDemodulator

4-1379

constellation
System object: comm.PAMDemodulator
Package: comm

(Not recommended) Calculate or plot ideal signal constellation

Note comm.PAMDemodulator is not recommended. Use pamdemod and
comm.ConstellationDiagram instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal PAM Signal Constellation
Create comm.PAMModulator and comm.PAMDemodulator System objects™, and then
calculate their ideal signal constellations.

Create a modulator and demodulator objects.

mod = comm.PAMModulator;
demod = comm.PAMModulator;

Calculate the constellation points.

4 System Objects — Alphabetical List

4-1380

refMod = constellation(mod)

refMod = 4×1

 -3
 -1
 1
 3

refDemod = constellation(demod)

refDemod = 4×1

 -3
 -1
 1
 3

Verify that both objects produce the same points.

isequal(refMod,refDemod)

ans = logical
 1

Display the ideal signal constellation.

constellation(mod)

 constellation

4-1381

4 System Objects — Alphabetical List

4-1382

step
System object: comm.PAMDemodulator
Package: comm

(Not recommended) Demodulate using M-ary PAM method

Note comm.PAMDemodulator is not recommended. Use pamdemod instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates data, X, with the M-PAM demodulator System object, H,
and returns Y. Input X must be a scalar or column vector. The data type of the input can
be double or single precision, signed integer, or signed fixed point (fi objects). Depending
on the BitOutput property value, output Y can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1383

comm.PAMModulator
Package: comm

(Not recommended) Modulate using M-ary PAM method

Note comm.PAMModulator is not recommended. Use pammod instead.

Description
The PAMModulator object modulates using M-ary pulse amplitude modulation. The
output is a baseband representation of the modulated signal. The M-ary number
parameter, M, represents the number of points in the signal constellation and requires an
even integer.

To modulate a signal using M-ary pulse amplitude modulation:

1 Define and set up your PAM modulator object. See “Construction” on page 4-1384.
2 Call step to modulate the signal according to the properties of

comm.PAMModulator. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PAMModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary pulse amplitude modulation (M-PAM) method.

H = comm.PAMModulator(Name,Value) creates an M-PAM modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1384

H = comm.PAMModulator(M,Name,Value) creates an M-PAM modulator object, H.
This object has the ModulationOrder property set to M and the other specified
properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value.
The default is 4. When you set the BitInput on page 4-0 property to false,
ModulationOrder must be even. When you set the BitInput property to true,
ModulationOrder must be an integer power of two.

BitInput

Assume bit inputs

Specify whether the input is in bits or integers. The default is false.

When you set this property to true, the step method input requires a column vector of
bit values whose length is an integer multiple of log2(ModulationOrder on page 4-
0). This vector contains bit representations of integers between 0 and
ModulationOrder–1.

When you set this property to false, the step method input must be a column vector of
integer symbol values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) input bits to the corresponding symbol as one of Binary | Gray. The default is
Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the input integer m, between 0 ≤ m ≤
ModulationOrder-1) maps to the complex value 2m– ModulationOrder + 1.

 comm.PAMModulator

4-1385

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as one of Minimum
distance between symbols | Average power | Peak power. The default is Minimum
distance between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric
scalar value. The default is 2. This property applies when you set the
NormalizationMethod on page 4-0 property to Minimum distance between
symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric
scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Peak power.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

4 System Objects — Alphabetical List

4-1386

Specify the output fixed-point type as a numerictype object with a signedness of Auto.
The default is numerictype([],16). This property applies when you set the
OutputDataType on page 4-0 property to Custom.

Methods
constellation (Not recommended) Calculate or plot ideal signal constellation
step (Not recommended) Modulate using M-ary PAM method

Common to All System Objects
release Allow System object property value changes

Examples
Modulate data using 16-PAM modulation, and visualize the data in a scatter plot.

 % Create binary data for 100, 4-bit symbols
 data = randi([0 1],400,1);
 % Create a 16-PAM modulator System object with bits as inputs and
 % Gray-coded signal constellation
 hModulator = comm.PAMModulator(16,'BitInput',true);
 % Modulate and plot the data
 modData = step(hModulator, data);
 constellation(hModulator)

Compatibility Considerations

comm.PAMModulator is not recommended
comm.PAMModulator is not recommended. Use pammod instead.

n = 10000; % Number of symbols to process
M = 8; % Modulation order
x = randi([0 M-1],n,1); % Create message signal.

%% Using PAM modulation and demodulation system objects

 comm.PAMModulator

4-1387

pammodObj = comm.PAMModulator(M);
pamdemodObj = comm.PAMDemodulator(M);
yOld = pammodObj(x); % Modulate.
% ... channel filtering ...
zOld = pamdemodObj(complex(y)); % Demodulate.

%% Using PAM modulation and demodulation functions
yNew = pammod(x,M); % Modulate.
% ... channel filtering ...
zNew = pamdemod(y,M); % Demodulate.

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PAM
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
pamdemod | pammod

Introduced in R2012a

4 System Objects — Alphabetical List

4-1388

constellation
System object: comm.PAMModulator
Package: comm

(Not recommended) Calculate or plot ideal signal constellation

Note comm.PAMModulator is not recommended. Use pammod and
comm.ConstellationDiagram instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal PAM Signal Constellation
Create comm.PAMModulator and comm.PAMDemodulator System objects™, and then
calculate their ideal signal constellations.

Create a modulator and demodulator objects.

mod = comm.PAMModulator;
demod = comm.PAMModulator;

Calculate the constellation points.

 constellation

4-1389

refMod = constellation(mod)

refMod = 4×1

 -3
 -1
 1
 3

refDemod = constellation(demod)

refDemod = 4×1

 -3
 -1
 1
 3

Verify that both objects produce the same points.

isequal(refMod,refDemod)

ans = logical
 1

Display the ideal signal constellation.

constellation(mod)

4 System Objects — Alphabetical List

4-1390

 constellation

4-1391

step
System object: comm.PAMModulator
Package: comm

(Not recommended) Modulate using M-ary PAM method

Note comm.PAMModulator is not recommended. Use pammod instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the M-PAM modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1392

comm.PhaseFrequencyOffset
Package: comm

Apply phase and frequency offsets to input signal

Description
The PhaseFrequencyOffset object applies phase and frequency offsets to an incoming
signal.

To apply phase and frequency offsets to the input signal:

1 Define and set up your phase frequency offset object. See “Construction” on page 4-
1393.

2 Call step to apply phase and frequency offsets to the input signal according to the
properties of comm.PhaseFrequencyOffset. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PhaseFrequencyOffset creates a phase and frequency offset System
object, H. This object applies phase and frequency offsets to an input signal.

H = comm.PhaseFrequencyOffset(Name,Value) creates a phase and frequency
offset object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.PhaseFrequencyOffset

4-1393

Properties
PhaseOffset

Phase offset

Specify the phase offset in degrees. The default is 0. If the step method input is an M-by-
N matrix, the PhaseOffset on page 4-0 property can be set to a numeric scalar, an
M-by-1, or 1-by-N numeric vector, or an M-by-N numeric matrix.

When you set the PhaseOffset property to a scalar value, the object applies the
constant specified phase offset to each column of the input matrix.

When you set this property to an M-by-1 vector, the object applies time varying phase
offsets, specified in the vector of this property, to each column of the input to the step
method.

When you set this property to a 1-by-N vector, the object applies the i-th constant phase
offset of this property to the i-th column of the input to the step method.

When you set this property to an M-by-N matrix, the object applies the i-th time varying
phase offsets, specified in the i-th column of this property, to the i-th column of the input
to the step method. This property is tunable.

FrequencyOffsetSource

Source of frequency offset

Specify the source of the frequency offset as one of Property | Input port. The default
is Property. If you set this property to Property, you can specify the frequency offset
using the FrequencyOffset on page 4-0 property. If you set this property to Input
port, you specify the frequency offset as a step method input.

FrequencyOffset

Frequency offset

Specify the frequency offset in Hertz. The default is 0. If the step method input is an M-
by-N matrix, then the FrequencyOffset on page 4-0 property is a numeric scalar, an
M-by-1, or 1-by-N numeric vector, or an M-by-N numeric matrix.

4 System Objects — Alphabetical List

4-1394

This property applies when you set the FrequencyOffsetSource on page 4-0
property to Property.

When you set this property to a scalar value, the object applies the constant specified
frequency offset to each column of the input to the step method.

When you set this property to an M-by-1 vector, the object applies time-varying frequency
offsets. These offsets are specified in the property, to each column of the input to the
step method.

When you set this property to a 1-by-N vector, the object applies the i-th constant
frequency offset in this property to the i-th column of the input to the step method.

When you set this property to an M-by-N matrix, the object applies the i-th time varying
frequency offset. This offset is specified in the i-th column of this property and to the i-th
column of input to the step method. This property is tunable.

SampleRate

Sample rate

Specify the sample rate of the input samples in seconds as a double-precision, real,
positive scalar value. The default is 1.

SampleRate = Input Vector Size / Simulink Sample Time

Methods
step Apply phase and frequency offsets to input signal

Common to All System Objects
release Allow System object property value changes

Examples

Introduce Phase Offset to 16-QAM Signal

Introduce a phase offset to a 16-QAM signal and view its effect on the constellation.

 comm.PhaseFrequencyOffset

4-1395

Create a phase frequency offset System object™. Set the phase offset to 30 degrees.

pfo = comm.PhaseFrequencyOffset('PhaseOffset',30);

Generate random symbols and apply 16-QAM modulation.

M = 16;
data = (0:M-1)';
modData = qammod(data,M);

Plot the 16-QAM constellation.

scatterplot(modData);
title(' Original Constellation')
xlim([-5 5])
ylim([-5 5])

4 System Objects — Alphabetical List

4-1396

Introduce a phase offset using pfo and plot the offset constellation. Note that it has been
shifted 30 degrees.

impairedData = pfo(modData);
scatterplot(impairedData);
title('Constellation after phase offset')
xlim([-5 5])
ylim([-5 5])

 comm.PhaseFrequencyOffset

4-1397

Algorithms
This object implements the algorithm, inputs, and outputs described on the Phase/
Frequency Offset block reference page. The object properties correspond to the block
parameters, except:
The object provides a SampleRate on page 4-0 property, which you must specify. The
block senses the sample time of the signal and therefore does not have a corresponding
parameter.

4 System Objects — Alphabetical List

4-1398

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.MemorylessNonlinearity | comm.PhaseNoise | comm.ThermalNoise

Introduced in R2012a

 comm.PhaseFrequencyOffset

4-1399

step
System object: comm.PhaseFrequencyOffset
Package: comm

Apply phase and frequency offsets to input signal

Syntax
Y = step(H,X)
Y = step(H,X,FRQ)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) applies phase and frequency offsets to input X, and returns Y. The input
X is a double or single precision matrix X, of dimensions MxN. M is the number of time
samples in the input signals and N is number of channels. Both M and N can be equal to
1. The object adds phase and frequency offsets independently to each column of X. The
data type and dimensions of X and Y are the same.

Y = step(H,X,FRQ) uses FRQ as the frequency offset that the object applies to input X
when you set the FrequencyOffsetSource property to 'Input port'. When the X input is
an MxN matrix, the value for FRQ can be a numeric scalar, an Mx1 or 1xN numeric vector,
or an MxN numeric matrix. When the FRQ input is a scalar, the object applies a constant
frequency offset, FRQ, to each column of X. When the FRQ input is an Mx1 vector, the
object applies time varying frequency offsets, which are specified in the FRQ vector, to
each column of X. When the FRQ input is a 1xN vector, the object applies the ith constant
frequency offset in FRQ to the ith column of X. When the FRQ input is an MxN matrix, the
object applies the ith time varying frequency offsets, specified in the ith column of FRQ, to
the ith column of X.

4 System Objects — Alphabetical List

4-1400

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1401

comm.PhaseNoise
Package: comm

Apply phase noise to baseband signal

Description
The comm.PhaseNoise System object adds phase noise to a complex signal. This object
emulates impairments introduced by the local oscillator of a wireless communication
transmitter or receiver. The object generates filtered phase noise according to the
specified spectral mask and adds it to the input signal. For a description of the phase
noise modeling, see “Algorithms” on page 4-1409.

To add phase noise using a comm.PhaseNoise object:

1 Create the comm.PhaseNoise object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
phznoise = comm.PhaseNoise
phznoise = comm.PhaseNoise(Name,Value)
phznoise = comm.PhaseNoise(level,offset,samplerate)

Description
phznoise = comm.PhaseNoise creates a phase noise System object with default
property values.

4 System Objects — Alphabetical List

4-1402

phznoise = comm.PhaseNoise(Name,Value) creates a phase noise object with the
specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

phznoise = comm.PhaseNoise(level,offset,samplerate) creates a phase noise
object with the phase noise level, frequency offset, and sample rate properties specified
as value-only arguments. When specifying a value-only argument, you must specify all
preceding value-only arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Level — Phase noise level
[-60 -80] (default) | vector of negative scalars

Phase noise level in decibels relative to carrier per hertz (dBc/Hz), specified as a vector of
negative scalars. The Level and FrequencyOffset properties must have the same
length.
Data Types: double

FrequencyOffset — Frequency offset
[20 200] (default) | vector of positive increasing values

Frequency offset in Hz, specified as a vector of positive increasing values. The Level and
FrequencyOffset properties must have the same length.
Data Types: double

SampleRate — Sample rate
1024 (default) | positive scalar

Sample rate in samples per second, specified as a positive scalar. To avoid aliasing, the
sample rate must be greater than twice the largest value specified by FrequencyOffset.

 comm.PhaseNoise

4-1403

Data Types: double

RandomStream — Source of random stream
'Global stream' (default) | 'mt19937ar with seed'

Source of the random stream, specified as 'Global stream' or 'mt19937ar with
seed'.If RandomStream is set to 'mt19937ar with seed', the mt19937ar algorithm
is used for normally distributed random number generation, in which case the reset
method reinitializes the random number stream to the value of the Seed property.
Data Types: char | string

Seed — Initial seed
2137 (default) | positive scalar less than 232

Initial seed for RandomStream, specified as a positive scalar less than 232.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: double

Usage

Syntax
out = phznoise(in)

Description
out = phznoise(in) adds phase noise, specified by the phznoise System object, to
the input signal. The result is returned in out.

Input Arguments
in — Input signal
complex column vector

4 System Objects — Alphabetical List

4-1404

Input signal, specified as an NS-by-1 vector of complex values. NS is the number of
samples.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Output signal
column vector

Output signal, returned as an NS-by-1 vector of complex values. NS equals the number of
samples in the input signal.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.PhaseNoise
visualize Visualize spectrum mask of phase noise

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

 comm.PhaseNoise

4-1405

Phase Noise Effects on 16-QAM Signal

Add a phase noise vector and frequency offset vector to a 16-QAM signal. Then plot the
signal.

Create a phase noise System object.

pnoise = comm.PhaseNoise('Level',-50,'FrequencyOffset',20);

Generate modulated symbols.

M = 16; % From 16-QAM
data = randi([0 M-1],1000,1);
modData = qammod(data,M);

Use pnoise to apply phase noise. Plot the impaired data.

y = pnoise(modData);
scatterplot(y)

4 System Objects — Alphabetical List

4-1406

Phase Noise Effects on Signal Spectrum

Create a sine wave generator having a carrier frequency of 100 Hz, a sample rate of 1000
Hz, and a frame size of 10,000 samples.

sinewave = dsp.SineWave('Frequency',100,'SampleRate',1000, ...
 'SamplesPerFrame',1e4,'ComplexOutput',true);

Create a phase noise object. Specify the phase noise level to be ?40 dBc/Hz for a 100 Hz
offset and ?70 dBc/Hz for a 200 Hz offset.

 comm.PhaseNoise

4-1407

pnoise = comm.PhaseNoise('Level',[-40 -70],'FrequencyOffset',[100 200], ...
 'SampleRate',1000);

Create a spectrum analyzer.

spectrum = dsp.SpectrumAnalyzer('NumInputPorts',2,'SampleRate',1000, ...
 'SpectralAverages',10,'PowerUnits','dBW');

Generate a sine wave and add phase noise to it. Plot the spectrum of the sine wave and
the noisy signal.

x = sinewave();
y = pnoise(x);

spectrum(x,y)

4 System Objects — Alphabetical List

4-1408

The phase noise is ?40 dBW within ±100 Hz of the carrier. The phase noise is ?70 dB
below the carrier for offsets greater than 200 Hz.

Algorithms
The output signal, yk, is related to input sequence xk by yk=xkejφk, where φk is the phase
noise. The phase noise is filtered Gaussian noise such that φk=f(nk), where nk is the noise
sequence and f represents a filtering operation.

To model the phase noise, define the power spectrum density (PSD) mask characteristic
by specifying scalar or vector values for the frequency offset and phase noise level.

• For a scalar frequency offset and phase noise level specification, an IIR digital filter
computes the spectrum mask. The spectrum mask has a 1/f characteristic that passes
through the specified point.

• For a vector frequency offset and phase noise level specification, an FIR filter
computes the spectrum mask. The spectrum mask is interpolated across log10(f). It is
flat from DC to the lowest frequency offset, and from the highest frequency offset to
half the sample rate.

IIR Digital Filter

For the IIR digital filter, the numerator coefficient is

λ = 2πfof f set10L/10 ,

 comm.PhaseNoise

4-1409

where foffset is the frequency offset in Hz and L is the phase noise level in dBc/Hz. The
denominator coefficients, γi, are recursively determined as

γi = i− 2.5
γi− 1
i− 1 ,

where γ1 = 1, i = {1, 2,..., Nt}, and Nt is the number of filter coefficients. Nt is a power of
2, from 27 to 219. The value of Nt grows as the phase noise offset decreases towards 0 Hz.

FIR Filter

For the FIR filter, the phase noise level is determined through log10(f) interpolation for
frequency offsets over the range [df, fs / 2], where df is the frequency resolution and fs is
the sample rate. The phase noise is flat from 0 Hz to the smallest frequency offset, and

from the largest frequency offset to fs / 2. The frequency resolution is equal to
fs
2

1
Nt

,

where Nt is the number of coefficients, and is a power of 2 less than or equal to 216. If Nt
< 28, a time domain FIR filter is used. Otherwise, a frequency domain FIR filter is used.

The algorithm increases Nt until these conditions are met:

• The frequency resolution is less than the minimum value of the frequency offset vector.
• The frequency resolution is less than the minimum difference between two

consecutive frequencies in the frequency offset vector.
• The maximum number of FIR filter taps is 216.

References
[1] Kasdin, N. J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/

(f^alpha); Power Law Noise Generation." The Proceedings of the IEEE. Vol. 83,
No. 5, May, 1995, pp 802–827.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 System Objects — Alphabetical List

4-1410

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.MemorylessNonlinearity | comm.PhaseFrequencyOffset

Blocks
Phase Noise

Introduced in R2012a

 comm.PhaseNoise

4-1411

visualize
Package: comm

Visualize spectrum mask of phase noise

Syntax
visualize(phznoise)

Description
visualize(phznoise) displays the magnitude response of the filter defined by the
comm.PhaseNoise System object. The function uses the fvtool function to display the
magnitude response.

Examples

Visualize Spectrum Mask of Phase Noise

Create a phase noise object and display the spectral mask.

pnoise = comm.PhaseNoise('Level',[-40 -70],'FrequencyOffset',[100 200], ...
 'SampleRate',1000);
visualize(pnoise)

4 System Objects — Alphabetical List

4-1412

Input Arguments
phznoise — Phase noise
comm.PhaseNoise System object

Phase noise that defines the spectrum mask that is displayed, specified as a
comm.PhaseNoise System object.

 visualize

4-1413

See Also
Functions
fvtool

Objects
comm.PhaseNoise

Introduced in R2012a

4 System Objects — Alphabetical List

4-1414

comm.PNSequence
Package: comm

Generate a pseudo-noise (PN) sequence

Description
The PNSequence object generates a sequence of pseudorandom binary numbers using a
linear-feedback shift register (LFSR). This block implements LFSR using a simple shift
register generator (SSRG, or Fibonacci) configuration. You can use a pseudonoise
sequence in a pseudorandom scrambler and descrambler. You can also use one in a direct-
sequence spread-spectrum system.

To generate a PN sequence:

1 Define and set up your PN sequence object. See “Construction” on page 4-1415.
2 Call step to generate a PN sequence according to the properties of

comm.PNSequence. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Construction
H = comm.PNSequence creates a pseudo-noise (PN) sequence generator System object,
H. This object generates a sequence of pseudorandom binary numbers using a linear-
feedback shift register (LFSR).

H = comm.PNSequence(Name,Value) creates a PN sequence generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.PNSequence

4-1415

Properties
Polynomial

Generator polynomial

Specify the polynomial that determines the shift register's feedback connections. The
default is 'z^6 + z + 1'. You can specify the generator polynomial as a character
vector or as a numeric, binary vector that lists the coefficients of the polynomial in
descending order of powers. The first and last elements must equal 1, and the length of
this vector must be n+1. The value n indicates the degree of the generator polynomial.
Lastly, you can specify the generator polynomial as a numeric vector containing the
exponents of z for the nonzero terms of the polynomial in descending order of powers.
The last entry must be 0. For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent
the same polynomial, g(z) = z8 + z2 + 1. The PN sequence has a period of N = 2n− 1
(applies only to maximal length sequences).

InitialConditionsSource

Source of initial conditions

Specify the source of the initial conditions that determines the start of the PN sequence
as one of Property | Input port. The default is Property. When you set this property
to Property, the initial conditions can be specified as a scalar or binary vector using the
InitialConditions on page 4-0 property. When you set this property to Input
port, you specify the initial conditions as an input to the step method. The object
accepts a binary scalar or a binary vector input. The length of the input must equal the
degree of the generator polynomial that the Polynomial property specifies.

InitialConditions

Initial conditions of shift register

Specify the initial values of the shift register as a binary, numeric scalar or a binary,
numeric vector. The default is [0 0 0 0 0 1]. Set the vector length equal to the degree
of the generator polynomial. If you set this property to a vector, each element of the
vector corresponds to the initial value of the corresponding cell in the shift register. If you
set this property to a scalar, the initial conditions of all the cells of the shift register are
the specified scalar value. The scalar, or at least one element of the specified vector, must
be nonzero for the object to generate a nonzero sequence.

4 System Objects — Alphabetical List

4-1416

MaskSource

Source of mask to shift PN sequence

Specify the source of the mask that determines the shift of the PN sequence as one of
Property | Input port. The default is Property. When you set this property to
Property, the mask can be specified as a scalar or binary vector using the Mask
property. When you set this property to Input port, the mask, which is an input to the
step method, can only be specified as a binary vector. This vector must have a length
equal to the degree of the generator polynomial specified in the Polynomial property.

Mask

Mask to shift PN sequence

Specify the mask that determines how the PN sequence is shifted from its starting point
as a numeric, integer scalar or as a binary vector. The default is 0.

When you set this property to an integer scalar, the value is the length of the shift. A
scalar shift can be positive or negative. When the PN sequence has a period of
N = 2n− 1, where n is the degree of the generator polynomial that you specify in the
Polynomial property, the object wraps shift values that are negative or greater than N.

When you set this property to a binary vector, its length must equal the degree of the
generator polynomial specified in the Polynomial property. The mask vector that
represents m(z) = zD modulo g(z), where g(z) is the generator polynomial, and the mask
vector corresponds to a shift of D. For example, for a generator polynomial of degree of 4,
the mask vector corresponding to D = 2 is [0 1 0 0], which represents the polynomial
m(z) = z2.

You can calculate the mask vector using the shift2mask function. This property applies
when you set the MaskSource property to Property.

VariableSizeOutput

Enable variable-size outputs

Set this property to true to enable an additional input to the step method. The default is
false. When you set this property to true, the enabled input specifies the output size of the
PN sequence used for the step. The input value must be less than or equal to the value of
the MaximumOutputSize property.

 comm.PNSequence

4-1417

When you set this property to false, the SamplesPerFrame property specifies the
number of output samples.

MaximumOutputSize

Maximum output size

Specify the maximum output size of the PN sequence as a positive integer 2-element row
vector. The second element of the vector must be 1. The default is [10 1].

This property applies when you set the VariableSizeOutput property to true.

SamplesPerFrame

Number of samples output per frame

Number of samples output per frame by the PN sequence object, specified as positive
integer. The default is 1. If you set this property to a value of M, then the object outputs
M samples of a PN sequence that has a period of N = 2n− 1. The value n represents the
degree of the generator polynomial that you specify in the Polynomial property. If you
set the BitPackedOutput property to false, the samples are bits from the PN
sequence. If you set the BitPackedOutput property to true, then the output
corresponds to SamplesPerFrame groups of bit-packed samples.

ResetInputPort

Enable generator reset input

Set this property to true to enable an additional input to the step method. The default is
false. This input resets the states of the PN sequence generator to the initial conditions
specified in the InitialConditions property.

BitPackedOutput

Option to output bit-packed words

Option to output bit-packed words, specified as false or true. Set this property to true
to enable bit-packed outputs. The first bit from the left in the bit-packed word is
considered the most significant bit. The default is false.

When BitPackedOutput is true, the object outputs a column vector of length M, which
contains integer representations of bit words of length P. M is the number of samples per

4 System Objects — Alphabetical List

4-1418

frame specified in the SamplesPerFrame property. P is the size of the bit-packed words
specified in the NumPackedBits property.

NumPackedBits

Number of bits per bit-packed word

Specify the number of bits to pack into each output data word as a numeric, integer
scalar value from 1 to 32. The default is 8.

Dependencies

This property applies when you set the BitPackedOutput property to true.

SignedOutput

Output signed bit-packed words

Set this property to true to obtain signed, bit-packed, output words. The default is false.
In this case, a 1 in the most significant bit (sign bit) indicates a negative value. The
property indicates negative numbers in a two's complement format.

Dependencies

This property applies when you set the BitPackedOutput property to true.

OutputDataType

Data type of output

Specify the output data type as one of these:

• When BitPackedOutput property is false, OutputDataType can be 'double',
'logical', or 'Smallest unsigned integer'.

• When BitPackedOutput property is true, OutputDataType can be 'double' or
'Smallest integer'.

The default is double.

Note You must have a Fixed-Point Designer user license to use this property in
'Smallest unsigned integer' or 'Smallest integer' mode.

 comm.PNSequence

4-1419

Dependencies

The valid settings for output data type depends on the setting of BitPackedOutput.

Methods
reset Reset states of PN sequence generator object
step Generate a pseudo-noise (PN) sequence

Common to All System Objects
release Allow System object property value changes

Examples

Generate Maximal Length PN Sequences

Generate a 14-sample frame of a maximal length PN sequence given generator
polynomial, x3 + x2 + 1.

Generate PN sequence data by using the comm.PNSequence object. The sequence
repeats itself as it contains 14 samples while the maximal sequence length is only 7
samples (23− 1).

pnSequence = comm.PNSequence('Polynomial',[3 2 0], ...
 'SamplesPerFrame',14,'InitialConditions',[0 0 1]);
x1 = pnSequence();
[x1(1:7) x1(8:14)]

ans = 7×2

 1 1
 0 0
 0 0
 1 1
 1 1
 1 1
 0 0

4 System Objects — Alphabetical List

4-1420

Create another maximal length sequence based on the generator polynomial, x4 + x + 1.
As it is a fourth order polynomial, the sequence repeats itself after 15 samples (24− 1).

pnSequence2 = comm.PNSequence('Polynomial','x^4+x+1', ...
 'InitialConditions',[0 0 0 1],'SamplesPerFrame',30);
x2 = pnSequence2();
[x2(1:15) x2(16:30)]

ans = 15×2

 1 1
 0 0
 0 0
 0 0
 1 1
 0 0
 0 0
 1 1
 1 1
 0 0
 ⋮

Algorithms
This object implements the algorithm, inputs, and outputs described on the PN Sequence
Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.PNSequence

4-1421

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.GoldSequence | comm.KasamiSequence

Introduced in R2012a

4 System Objects — Alphabetical List

4-1422

reset
System object: comm.PNSequence
Package: comm

Reset states of PN sequence generator object

Syntax
reset(H)

Description
reset(H) resets the states of the PNSequence object, H.

 reset

4-1423

step
System object: comm.PNSequence
Package: comm

Generate a pseudo-noise (PN) sequence

Syntax
y = step(pnseqObj)
y = step(pnseqObj,initCond)
y = step(pnseqObj,mask)
y = step(pnseqObj,outputSize)
y = step(pnseqObj,reset)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

y = step(pnseqObj) outputs a frame of the PN sequence in column vector y. Specify
the frame length with the SamplesPerFrame property. The PN sequence has a period of
N = 2n-1, where n is the degree of the generator polynomial that you specify in the
Polynomial property.

y = step(pnseqObj,initCond) uses initCond as the initial conditions value when
you set the InitialConditionsSource property to 'Input port'. initCond must
be a numeric scalar or numeric, binary vector with length equal to the degree of the
generator polynomial specified in the Polynomial property.

y = step(pnseqObj,mask) uses mask as the shift value when you set the MaskSource
property to 'Input port'. mask must be a numeric, binary vector with length equal to
the degree of the generator polynomial specified in the Polynomial property. Refer to
the Mask property help for details of the mask calculation.

4 System Objects — Alphabetical List

4-1424

y = step(pnseqObj,outputSize) uses outputSize as the output size for the
current step when you set the VariableSizeOutput property to true. The outputSize
input must be a non-negative integer scalar or 2-element row vector. The scalar or the
first element of the row vector must be less than or equal to the first element of
MaximumOutputSize property value. The second element of the outputSize row vector
input must be 1.

y = step(pnseqObj,reset) uses reset as the reset signal when you set the
ResetInputPort property to true. The data type of the reset input must be double
precision or logical. reset can be a scalar value or a column vector with length equal to
the number of samples per frame specified in the SamplesPerFrame property. When the
reset input is a non zero scalar, the object resets to the initial conditions that you specify
in the InitialConditions property and then generates a new output frame. A column
vector reset input allows multiple resets within an output frame. A non-zero value at the
ith element of the vector will cause a reset at the ith output sample time.

You can combine optional input arguments when you set their enabling properties.
Optional inputs must be listed in the same order as the order of the enabling properties.
For example, y = step(pnseqObj,mask,reset). You cannot combine reset and
initCond in the same object step call.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1425

comm.PreambleDetector
Package: comm

Detect preamble in data

Description
The comm.PreambleDetector System object detects a preamble in an input data
sequence. A preamble is a set of symbols or bits used in packet-based communication
systems to indicate the start of a packet. The preamble detector object finds the location
corresponding to the end of the preamble.

To detect a preamble in an input data sequence:

1 Create a comm.PreambleDetector object and set the properties of the object.
2 Call step to detect the presence of a preamble.

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction
prbdet = comm.PreambleDetector creates a preamble detector object, prbdet,
using the default properties.

prbdet = comm.PreambleDetector(Name,Value) specifies additional properties
using Name,Value pairs. Unspecified properties have default values.

prbdet = comm.PreambleDetector(prb,Name,Value) specifies the preamble, prb
in addition to those properties specified by using Name,Value pairs.

Example:

prbdet = comm.PreambleDetector('Input','Bit','Detections','First');

4 System Objects — Alphabetical List

4-1426

Properties
Input — Type of input data
'Symbol' (default) | 'Bit'

Type of input data, specified as 'Symbol' or 'Bit'. For binary inputs, set this parameter
to 'Bit'. For all other inputs, set this parameter to 'Symbol'. Symbol data can be of
data type single or double while bit data can, in addition, support the Boolean, int8,
and uint8 data types.

Preamble — Preamble sequence
[1+1i; 1-1i] (default) | column vector

Preamble sequence, specified as a real or complex column vector. The object uses this
sequence to detect the presence of the preamble in the input data. If Input is 'Bit', the
preamble must be a binary sequence. If Input is 'Symbol', the preamble can be any
real or complex sequence.
Data Types: double | single | logical | int8 | uint8

Threshold — Detection threshold
3 (default) | nonnegative scalar

Detection threshold, specified as a nonnegative scalar. When the computed detection
metric is greater than or equal to Threshold, the preamble is detected. This property is
available when Input is set to 'Symbol'. Tunable.

Detections — Number of preambles to detect
'All' (default) | 'First'

Number of preambles to detect, specified as 'All' or 'First'.

• 'All' — Detects all the preambles in the input data sequence.
• 'First' — Detect only the first preamble in the input data sequence.

Methods
reset Reset states of preamble detector object
step Detect preamble in data

 comm.PreambleDetector

4-1427

Common to All System Objects
release Allow System object property value changes

Examples

Detect Preamble from Binary Data Sequence

Specify a six-bit preamble.

prb = [1 0 0 1 0 1]';

Create a preamble detector object using preamble prb and taking bit inputs.

prbdet = comm.PreambleDetector(prb,'Input','Bit');

Generate a binary data sequence containing two preambles and using random bits to
represent the data fields.

pkt = [prb; randi([0 1],10,1); prb; randi([0 1],10,1)];

Locate the indices of the two preambles. The indices correspond to the end of the
preambles.

idx = prbdet(pkt)

idx = 2×1

 6
 22

The detector correctly identified indices 6 and 22 as the end of the two preambles
inserted in the sequence.

Detect Preamble in Noisy QPSK Signal

Create a preamble and apply QPSK modulation.

4 System Objects — Alphabetical List

4-1428

p1 = [0 1 2 3 3 2 1 0]';
p = [p1; p1];
prb = pskmod(p,4,pi/4,'gray');

Create a comm.PreambleDetector object using preamble prb.

prbdet = comm.PreambleDetector(prb)

prbdet =
 comm.PreambleDetector with properties:

 Input: 'Symbol'
 Preamble: [16x1 double]
 Threshold: 3
 Detections: 'All'

Generate a sequence of random symbols. The first sequence represents the last 20
symbols from a previous packet. The second sequence represents the symbols from the
current packet.

d1 = randi([0 3],20,1);
d2 = randi([0 3],100,1);

Modulate the two sequences.

x1 = pskmod(d1,4,pi/4,'gray');
x2 = pskmod(d2,4,pi/4,'gray');

Create a sequence of modulated symbols consisting of the remnant of the previous
packet, the preamble, and the current packet.

y = [x1; prb; x2];

Add white Gaussian noise.

z = awgn(y,10);

Determine the preamble index and the detection metric.

[idx,detmet] = prbdet(z);

Calculate the number of elements in idx. Because the number of elements is greater than
one, the detection threshold is too low.

numel(idx)

 comm.PreambleDetector

4-1429

ans = 80

Display the five largest detection metrics.

detmetSort = sort(detmet,'descend');
detmetSort(1:5)

ans = 5×1

 16.3115
 13.6900
 10.5698
 9.1920
 8.9706

Increase the threshold and determine the preamble index.

prbdet.Threshold = 15;
idx = prbdet(z)

idx = 36

The result of 36 corresponds to the sum of the preamble length (16) and the remaining
samples in the previous packet (20). This indicates that the preamble has been
successfully detected.

Algorithms
Bit Inputs

When the input data is composed of bits, the preamble detector uses an exact pattern
match.

Symbol Inputs

When the input data is composed of symbols, the preamble detector uses a cross-
correlation algorithm. A finite impulse response (FIR) filter, in which the coefficients are
specified from the preamble, computes the cross-correlation between the input data and
the preamble. When a sequence of input samples match the preamble, the filter output
reaches its peak. The index of the peak corresponds to the end of the preamble sequence

4 System Objects — Alphabetical List

4-1430

in the input data. See Discrete FIR Filter for further information on the FIR filter
algorithm.

The cross-correlation values that are greater than or equal to the specified threshold are
reported as peaks.

• If the detection threshold is too low, the algorithm will detect false peaks, or, in the
extreme case, detect as many detected peaks as there are input samples.

• If the detection threshold is too high, the algorithm will miss detecting peaks, or, in
the extreme case, detect no peaks.

Consequently, the selection of the detection threshold is critical.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CarrierSynchronizer | comm.CoarseFrequencyCompensator |
comm.SymbolSynchronizer

Introduced in R2016b

 comm.PreambleDetector

4-1431

reset
System object: comm.PreambleDetector
Package: comm

Reset states of preamble detector object

Syntax
reset(prbdet)

Description
reset(prbdet) resets the states of the PreambleDetector object, prbdet.

Introduced in R2016b

4 System Objects — Alphabetical List

4-1432

step
System object: comm.PreambleDetector
Package: comm

Detect preamble in data

Syntax
idx = step(prbdet,x)
[idx,detmet] = step(prbdet,x)
idx = prbdet(x)
[idx,detmet] = prbdet(x)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

idx = step(prbdet,x) returns the location of the end of the preamble in data
sequence x, using preamble detector prbdet. The index is of data type double.

[idx,detmet] = step(prbdet,x) also returns the detection metric, detmet. This
syntax is available when the Input property is 'Symbol'. detmet has the same
dimensions and data type as x.

The output, detmet, is determined by one of these algorithms:

• If either the preamble or input data is complex, the detection metric is the absolute
value of the cross-correlation of the preamble and the input signal.

• If both the preamble and input data are real, the detection metric is the cross-
correlation of the preamble and the input signal.

 step

4-1433

idx = prbdet(x) is equivalent to the first syntax.

[idx,detmet] = prbdet(x) is equivalent to the second syntax.

Note prbdet specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016b

4 System Objects — Alphabetical List

4-1434

comm.PSKCoarseFrequencyEstimator
Package: comm

(To be removed) Estimate frequency offset for PSK signal

Note will be removed in a future release. Use comm.CoarseFrequencyCompensator
instead.

Description
The PSKCoarseFrequencyEstimator System object estimates frequency offset for a
PSK signal.

To estimate frequency offset for a PSK signal:

1 Define and set up your PSK coarse frequency estimator object. See “Construction” on
page 4-1435.

2 Call step to estimate frequency offset for a PSK signal according to the properties of
comm.PSKCoarseFrequencyEstimator. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PSKCoarseFrequencyEstimator creates a PSK coarse frequency offset
estimator object, H. This object uses an open-loop technique to estimate the carrier
frequency offset in a received PSK signal.

H = comm.PSKCoarseFrequencyEstimator(Name,Value) creates a PSK coarse
frequency offset estimator object, H, with the specified property Name set to the specified

 comm.PSKCoarseFrequencyEstimator

4-1435

Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
ModulationOrder

Modulation order the object uses

Specify the modulation order of the PSK signal as a positive, real scalar of data type
double. This value must be a positive power of 2. The default is 4.

Algorithm

Estimation algorithm to object uses

Specify the estimation algorithm as one of FFT-based or Correlation-based. The
default is FFT-based.

FrequencyResolution

Desired frequency resolution (Hz)

Specify the desired frequency resolution for offset frequency estimation as a positive, real
scalar of data type double. This property establishes the FFT length used to perform
spectral analysis, and must be less than or equal to half the SampleRate on page 4-0
property. This property applies only if the Algorithm property is FFT-based. The
default is 0.001.

MaximumOffset

Maximum measurable frequency offset (Hz)

Specify the maximum measurable frequency offset as a positive, real scalar of data type
double. The default is 0.05.

The value of this property must be less than SampleRate on page 4-0 /
ModulationOrder on page 4-0 . It is recommended that MaximumOffset on page 4-
0 be less than or equal to SampleRate on page 4-0 /(4*ModulationOrder on
page 4-0). This property is active only if the Algorithm property is Correlation-
based.

4 System Objects — Alphabetical List

4-1436

SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type
double. The default is 1.

Methods

reset (To be removed) Reset states of the PSKCoarseFrequencyEstimator object
step (To be removed) Estimate frequency offset for PSK signal

Common to All System Objects
release Allow System object property value changes

Examples

Correct For a Frequency Offset in a QPSK Signal

Estimate and correct for a -250 Hz frequency offset in a QPSK signal using the PSK
Coarse Frequency Estimator System object?.

Create a square root raised cosine transmit filter System object.

txfilter = comm.RaisedCosineTransmitFilter;

Create a phase frequency offset object, where the FrequencyOffset property is set to
-250 Hz and SampleRate is set to 4000 Hz using name-value pairs.

pfo = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',-250, ...
 'SampleRate',4000);

Create a PSK coarse frequency estimator System object with a sample rate of 4 kHz and a
frequency resolution of 1 Hz.

 comm.PSKCoarseFrequencyEstimator

4-1437

frequencyEst = comm.PSKCoarseFrequencyEstimator(...
 'SampleRate',4000, ...
 'FrequencyResolution',1);

Create a second phase frequency offset object to correct the offset. Set the
FrequencyOffsetSource property to Input port so that the frequency correction
estimate is an input argument.

pfoCorrect = comm.PhaseFrequencyOffset(...
 'FrequencyOffsetSource','Input port', ...
 'SampleRate',4000);

Generate a QPSK signal, filter the signal, apply the frequency offset, and pass the signal
through the AWGN channel.

modData = pskmod(randi([0 3],4096,1),4,pi/4); % Generate QPSK signal
txFiltData = txfilter(modData); % Apply Tx filter
offsetData = pfo(txFiltData); % Apply frequency offset
noisyData = awgn(offsetData,25); % Pass through AWGN channel

Estimate the frequency offset by using frequencyEst. Observe that the estimate is close
to the -250 Hz target.

estFreqOffset = frequencyEst(noisyData)

estFreqOffset =

 -250

Correct for the frequency offset using pfoCorrect and the inverse of the estimated
frequency offset.

compensatedData = pfoCorrect(noisyData,-estFreqOffset);

Create a spectrum analyzer object to view the frequency response of the signals.

spectrum = dsp.SpectrumAnalyzer('SampleRate',4000, 'ShowLegend',true, ...
 'ChannelNames',{'Received Signal' 'Compensated Signal'});

Plot the frequency response of the received signal, which is shifted 250 Hz to the left, and
of the compensated signal using the spectrum analyzer. The compensated signal is now
properly centered.

4 System Objects — Alphabetical List

4-1438

spectrum([noisyData compensatedData]);

Compatibility Considerations

comm.PSKCoarseFrequencyEstimator will be removed
Not recommended starting in R2019a

comm.PSKCoarseFrequencyEstimator will be removed. Use
comm.CoarseFrequencyCompensator instead.

 comm.PSKCoarseFrequencyEstimator

4-1439

Selected Bibliography
[1] Luise, M. and R. Regiannini. “Carrier recovery in all-digital modems for burst-mode

transmissions”, IEEE Transactions on Communications, Vol. 43, No. 2, 3, 4,
Feb/Mar/April, 1995, pp. 1169–1178.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CoarseFrequencyCompensator | comm.PhaseFrequencyOffset | dsp.FFT

Introduced in R2013b

4 System Objects — Alphabetical List

4-1440

reset
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

(To be removed) Reset states of the PSKCoarseFrequencyEstimator object

Note will be removed in a future release. Use comm.CoarseFrequencyCompensator
instead.

Syntax
reset(H)

Description
reset(H) resets the internal states of the PSKCoarseFrequencyEstimator object, H.

 reset

4-1441

step
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

(To be removed) Estimate frequency offset for PSK signal

Note will be removed in a future release. Use comm.CoarseFrequencyCompensator
instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) estimates the carrier frequency offset of the input X and returns the
result in Y. X must be a complex column vector of data type double. The step method
outputs the estimate Y as a scalar of type double.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1442

comm.PSKDemodulator
Package: comm

Demodulate using M-ary PSK method

Description
The PSKDemodulator object demodulates an input signal using the M-ary phase shift
keying (M-PSK) method.

To demodulate a signal that was modulated using phase shift keying:

1 Define and set up your PSK demodulator object. See “Construction” on page 4-1443.
2 Call step to demodulate the signal according to the properties of

comm.PSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the M-ary phase shift keying (M-PSK) method.

H = comm.PSKDemodulator(Name,Value) creates an M-PSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKDemodulator(M,PHASE,Name,Value) creates an M-PSK demodulator
object, H. This object has the ModulationOrder property set to M, the PhaseOffset
property set to PHASE, and the other specified properties set to the specified values. M
and PHASE are value-only arguments. To specify a value-only argument, you must also

 comm.PSKDemodulator

4-1443

specify all preceding value-only arguments. You can specify name-value pair arguments in
any order.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value.
The default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real scalar
value. The default is pi/8.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false. When you set this property to true, the step method outputs a column
vector of bit values. The length of this vector equals log2(ModulationOrder on page 4-
0) times the number of demodulated symbols. When you set this property to false,
the step method outputs a column vector with a length equal to the input data vector.
This vector contains integer symbol values between 0 and ModulationOrder-1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) bits to the corresponding symbol. Choose from Binary | Gray | Custom. The
default is Gray. When you set this property to Gray, the object uses a Gray-encoded
signal constellation. When you set this property to Binary, the integer m, between 0
≤ m ≤ModulationOrder–1) maps to the complex value exp(j×PhaseOffset on page 4-
0 + j×2×π×m/ModulationOrder). When you set this property to Custom, the object

4 System Objects — Alphabetical List

4-1444

uses the signal constellation defined in the CustomSymbolMapping on page 4-0
property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:7. This property
requires a row or column vector with a size of ModulationOrder on page 4-0 . This
vector must have unique integer values in the range [0, ModulationOrder–1]. The
values must be of data type double. The first element of this vector corresponds to the
constellation point at an angle of 0 + PhaseOffset on page 4-0 , with subsequent
elements running counterclockwise. The last element corresponds to the constellation
point at an angle of –π/ModulationOrder + PhaseOffset. This property applies when
you set the SymbolMapping on page 4-0 property to Custom.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as Hard decision | Log-likelihood
ratio | Approximate log-likelihood ratio. The default is Hard decision. When
you set the BitOutput on page 4-0 property to false, the object always performs
hard decision demodulation. This property applies when you set the BitOutput property
to true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the BitOutput on page 4-0
property to true and the DecisionMethod on page 4-0 property to Log-likelihood
ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If this
value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations may
yield Inf or –Inf. This result occurs because the LLR algorithm computes the exponential

 comm.PSKDemodulator

4-1445

of very large or very small numbers using finite-precision arithmetic. In such cases, use
approximate LLR instead because the algorithm for that option does not compute
exponentials. This property applies when you set the BitOutput on page 4-0
property to true, the DecisionMethod on page 4-0 property to Log-likelihood
ratio, or Approximate log-likelihood ratio, and the VarianceSource on page
4-0 property to Property. This property is tunable.

OutputDataType

Data type of output

Specify the output data type as Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is
Full precision. This property applies when you set the BitOutput on page 4-0
property to false. It also applies when you set the BitOutput property to true and the
DecisionMethod on page 4-0 property to Hard decision. In this second case,
when the OutputDataType on page 4-0 property is set to Full precision, the
input data type is single- or double-precision, the output data has the same data type as
the input. . When the input data is of a fixed-point type, the output data type behaves as if
you had set the OutputDataType property to Smallest unsigned integer.

When you set BitOutput to true and the DecisionMethod property to Hard
Decision, then logical data type becomes a valid option. If you set the BitOutput
property to true and the DecisionMethod property to Log-likelihood ratio or
Approximate log-likelihood ratio, the output data has the same data type as the
input. In this case, the data type must be single- or double-precision.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as Same word length as input | Custom. The
default is Same word length as input. This property applies when you set the
BitOutput on page 4-0 property to false. It also applies when you set the
BitOutput property to true and the DecisionMethod on page 4-0 property to
Hard decision. The object uses the derotate factor in the computations only when the
ModulationOrder on page 4-0 property is 2, 4, or 8. The step method input must
also have a fixed-point type, and the PhaseOffset on page 4-0 property must have a
nontrivial value. For ModulationOrder = 2, the phase offset is trivial if that value is a

4 System Objects — Alphabetical List

4-1446

multiple of π/2. For ModulationOrder = 4, the phase offset is trivial if that value is an
even multiple of π/4. For ModulationOrder = 8, there are no trivial phase offsets.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the DerotateFactorDataType on page 4-0 property to Custom. The word
length must be a value between 2 and 128.

Methods
constellation Calculate or plot ideal signal constellation
step Demodulate using M-ary PSK method

Common to All System Objects
release Allow System object property value changes

Examples

16-PSK with Custom Symbol Mapping

Create 16-PSK modulator and demodulator System objects™ in which custom symbol
mapping is used. Estimate the BER in an AWGN channel and compare the performance
with that of a theoretical Gray-coded PSK system.

Create a custom symbol mapping for the 16-PSK modulation scheme. The 16 integer
symbols must have values which fall between 0 and 15.

custMap = [0 2 4 6 8 10 12 14 15 13 11 9 7 5 3 1];

Create a 16-PSK modulator and demodulator pair having custom symbol mapping defined
by the array, custMap.

pskModulator = comm.PSKModulator(16,'BitInput',true, ...
 'SymbolMapping','Custom', ...

 comm.PSKDemodulator

4-1447

 'CustomSymbolMapping',custMap);
pskDemodulator = comm.PSKDemodulator(16,'BitOutput',true, ...
 'SymbolMapping','Custom', ...
 'CustomSymbolMapping',custMap);

Display the modulator constellation.

constellation(pskModulator)

Create an AWGN channel System object for use with 16-ary data.

awgnChannel = comm.AWGNChannel('BitsPerSymbol',log2(16));

Create an error rate object to track the BER statistics.

4 System Objects — Alphabetical List

4-1448

errorRate = comm.ErrorRate;

Initialize the simulation vectors. The Eb/No is varied from 6 to 18 dB in 1 dB steps.

ebnoVec = 6:18;
ber = zeros(size(ebnoVec));

Estimate the BER by modulating binary data, passing it through an AWGN channel,
demodulating the received signal, and collecting the error statistics.

for k = 1:length(ebnoVec)

 % Reset the error counter for each Eb/No value
 reset(errorRate)
 % Reset the array used to collect the error statistics
 errVec = [0 0 0];
 % Set the channel Eb/No
 awgnChannel.EbNo = ebnoVec(k);

 while errVec(2) < 200 && errVec(3) < 1e7
 % Generate a 1000-symbol frame
 data = randi([0 1],4000,1);
 % Modulate the binary data
 modData = pskModulator(data);
 % Pass the modulated data through the AWGN channel
 rxSig = awgnChannel(modData);
 % Demodulate the received signal
 rxData = pskDemodulator(rxSig);
 % Collect the error statistics
 errVec = errorRate(data,rxData);
 end

 % Save the BER data
 ber(k) = errVec(1);
end

Generate theoretical BER data for an AWGN channel using berawgn.

berTheory = berawgn(ebnoVec,'psk',16,'nondiff');

Plot the simulated and theoretical results. Because the simulated results rely on 16-PSK
modulation that does not use Gray codes, the performance is not as good as that
predicted by theory.

figure
semilogy(ebnoVec,[ber; berTheory])

 comm.PSKDemodulator

4-1449

xlabel('Eb/No (dB)')
ylabel('BER')
grid
legend('Simulation','Theory','location','ne')

Algorithms

BPSK
Diagrams for hard-decision demodulation of BPSK signals follow.

4 System Objects — Alphabetical List

4-1450

{ , }0 1

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , }0 1

Hard-Decision BPSK Demodulator Signal Diagram for Trivial Phase Offset
(multiple of π/2)

 comm.PSKDemodulator

4-1451

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

input DT

input DT

(constant derotate factors)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Floating-Point Signal Diagram for Nontrivial
Phase Offset

4 System Objects — Alphabetical List

4-1452

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Fixed-Point Signal Diagram for Nontrivial
Phase Offset

QPSK
Diagrams for hard-decision demodulation of QPSK signals follow.

 comm.PSKDemodulator

4-1453

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , , , }0 1 2 3

Hard-Decision QPSK Demodulator Signal Diagram for Trivial Phase Offset (odd
multiple of π/4)

4 System Objects — Alphabetical List

4-1454

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

u

+

+

-

+

+

+

I input DT

input DT

input DT

input DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Floating-Point Signal Diagram for Nontrivial
Phase Offset

 comm.PSKDemodulator

4-1455

+

+

-

+

+

+

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Output DT

symbol

index

(integer)

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

Re

Im

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Fixed-Point Signal Diagram for Nontrivial
Phase Offset

Higher-Order PSK
Diagrams for hard-decision demodulation of higher-order (M ≥ 8) signals follow.

4 System Objects — Alphabetical List

4-1456

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

Re
derotate to

Phase offset

constellation

mapping to

symbol index

(simple sign

comparisons)

u I

Input DT

input DT

Input DT

complex multiply

complex multiply

Q

I

Q
Im

π 8

3 8π

derotate to

Phase offset

Input DT

input DT

Input DT
(constant

derotate

factors)

(constant

derotate

factors)

I

Q

{ , , , }0 1 2 7 …

sin()

cos

Phase offset − 3 8π

(()Phase offset − 3 8π

sin()

cos()

Phase Offset

Phase Offset

−

−

π

π

8

8

Hard-Decision 8-PSK Demodulator Floating-Point Signal Diagram

 comm.PSKDemodulator

4-1457

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

Re
derotate to

Phase offset

constellation

mapping to

symbol index

(simple sign

comparisons)

u I

Derotate

factor DT

input DT

Derotate

factor DT

complex fixed-point

multiply (with saturate on)

complex fixed-point

multiply (with saturate on)

Q

I

Q
Im

π 8

3 8π

derotate to

Phase offset

Derotate

factor DT

input DT

Derotate

factor DT

(constant

derotate

factors)

(constant

derotate

factors)

I

Q

{ , , , }0 1 2 7 …

sin()

cos

Phase offset − 3 8π

(()Phase offset − 3 8π

sin()

cos()

Phase Offset

Phase Offset

−

−

π

π

8

8

Hard-Decision 8-PSK Demodulator Fixed-Point Signal Diagram

4 System Objects — Alphabetical List

4-1458

Output

formatting

(and data

type casting)

Constellation mapping to

symbol index

Compute phase of constell-

ation point using

Scale floating-point result

by

Round result to nearest integer

Clip out of range values to

0 or

input

DT

Output DT

symbol

index

(integer)

I

input

DT

Q

Derotate input to

 Phase offset

u

+

+

-

+

+

+

I

input

DT

input

DT

input

DT

input

DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

{ , , , ..., }

tan ()

0 1 2 1

0

2

1

1

 M

Q I

M

M

−

−

−

π

Hard-Decision M-PSK Demodulator (M > 8) Floating-Point Signal Diagram for
Nontrivial Phase Offset

For M > 8, in order to improve speed and implementation costs, no derotation arithmetic
is performed when PhaseOffset is 0, π/2, π, or 3π/2 (i.e., when it is trivial).

 comm.PSKDemodulator

4-1459

Also, for M > 8, this block will only support inputs of type double and single.

Log-likelihood Ratio and Approximate Log-likelihood Ratio
The exact LLR and approximate LLR algorithms (soft-decision) are described in “Phase
Modulation”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DPSKDemodulator | comm.PSKModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-1460

constellation
System object: comm.PSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Plot PSK Reference Constellation
Create a PSK modulator.

mod = comm.PSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 8×1 complex

 0.9239 + 0.3827i
 0.3827 + 0.9239i
 -0.3827 + 0.9239i
 -0.9239 + 0.3827i

 constellation

4-1461

 -0.9239 - 0.3827i
 -0.3827 - 0.9239i
 0.3827 - 0.9239i
 0.9239 - 0.3827i

Plot the constellation.

constellation(mod)

Create a PSK demodulator having modulation order 16.

demod = comm.PSKDemodulator(16);

4 System Objects — Alphabetical List

4-1462

Plot its reference constellation. The constellation method works for both modulator
and demodulator objects.

constellation(demod)

 constellation

4-1463

step
System object: comm.PSKDemodulator
Package: comm

Demodulate using M-ary PSK method

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates data, X, with the PSK demodulator System object, H, and
returns Y. Input X must be a scalar or a column vector with double or single precision
data type. If the value of the ModulationOrder property is less than or equal to 8 and
you set BitOutput to false, or when you set the DecisionMethod property to Hard
Decision and BitOutput to true, the object accepts an input with a signed integer
data type or signed fixed point (fi objects). Depending on the BitOutput property value,
output Y, can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratio or Log-likelihood ratio, and
the VarianceSource property to Input port. The data type of input VAR must be
double or single precision.

Note obj specifies the System object on which to run this step method.

4 System Objects — Alphabetical List

4-1464

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1465

comm.PSKModulator
Package: comm

Modulate using M-ary PSK method

Description
The PSKModulator object modulates using the M-ary phase shift keying method. The
output is a baseband representation of the modulated signal. The M-ary number
parameter, M, is the number of points in the signal constellation.

To modulate a signal using phase shift keying:

1 Define and set up your PSK modulator object. See “Construction” on page 4-1466.
2 Call step to modulate the signal according to the properties of

comm.PSKModulator. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PSKModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary phase shift keying (M-PSK) method.

H = comm.PSKModulator(Name,Value) creates an M-PSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKModulator(M,PHASE,Name,Value) creates an M-PSK modulator
object, H. This object has the ModulationOrder property set to M, the PhaseOffset
property set to PHASE, and the other specified properties set to the specified values.

4 System Objects — Alphabetical List

4-1466

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value.
The default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real scalar
value. The default is pi/8.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. When you set this property to true, the
step method input must be a column vector of bit values. This vector must have a length
that is an integer multiple of log2(ModulationOrder on page 4-0). This vector
contains bit representations of integers between 0 and ModulationOrder-1. When you
set the BitInput on page 4-0 property to false, the step method input must be a
column vector of numeric data type integer symbol values. These values must be between
0 and ModulationOrder-1. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) input bits to the corresponding symbol as one of Binary | Gray | Custom. The
default is Gray. When you set this property to Gray, the object uses a Gray-encoded
signal constellation. When you set this property to Binary, the integer m, between 0
≤ m ≤ModulationOrder–1) maps to the complex value exp(j×PhaseOffset on page 4-
0 + j ¥ 2¥ π ¥ m/ModulationOrder). When you set this property to Custom, the
object uses the signal constellation defined in the CustomSymbolMapping on page 4-
0 property.

 comm.PSKModulator

4-1467

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. This property requires a row or
column vector of size ModulationOrder on page 4-0 and must have unique integer
values in the range [0, ModulationOrder–1]. The values must be of data type double.
The first element of this vector corresponds to the constellation point at an angle of 0 +
PhaseOffset on page 4-0 , with subsequent elements running counterclockwise. The
last element corresponds to the constellation point at an angle of – p /ModulationOrder
+ PhaseOffset. This property applies when you set the SymbolMapping on page 4-
0 property to Custom. The default is 0:7.

OutputDataType

Data type of output

Specify the output data type as double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of Auto.
The default is numerictype([],16). This property applies when you set the
OutputDataType on page 4-0 property to Custom.

Methods

constellation Calculate or plot ideal signal constellation
step Modulate using M-ary PSK method

Common to All System Objects
release Allow System object property value changes

4 System Objects — Alphabetical List

4-1468

Examples

Add White Gaussian Noise to 8-PSK Signal

Modulate an 8-PSK signal, add white Gaussian noise, and plot the signal to observe the
effects of noise.

Create a PSK modulator System object™. The default modulation order for the PSK
modulator object is 8.

pskModulator = comm.PSKModulator;

Modulate the signal.

modData = pskModulator(randi([0 7],2000,1));

Add white Gaussian noise to the modulated signal by passing the signal through an
AWGN channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',3);

Transmit the signal through the AWGN channel.

channelOutput = channel(modData);

Plot the noiseless and noisy data using scatter plots to observe the effects of noise.

scatterplot(modData)

 comm.PSKModulator

4-1469

scatterplot(channelOutput)

4 System Objects — Alphabetical List

4-1470

Change the EbNo property to 10 dB to increase the noise.

channel.EbNo = 10;

Pass the modulated data through the AWGN channel.

channelOutput = channel(modData);

Plot the channel output. You can see the effects of increased noise.

scatterplot(channelOutput)

 comm.PSKModulator

4-1471

Algorithms
The block outputs a baseband signal by mapping input bits or integers to complex
symbols according to the following:

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

This applies when a natural binary ordering is used. Another common mapping is Gray
coding, which has the advantage that only one bit changes between adjacent constellation

4 System Objects — Alphabetical List

4-1472

points. This results in better bit error rate performance. For 8-PSK modulation with Gray
coding, the mapping between the input and output symbols is shown.

Input Output
0 0 (000)
1 1 (001)
2 3 (011)
3 2 (010)
4 6 (110)
5 7 (111)
6 5 (101)
7 4 (100)

The corresponding constellation diagram follows.

 comm.PSKModulator

4-1473

When the input signal is composed of bits, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of log2(M) bits.

4 System Objects — Alphabetical List

4-1474

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.PSKDemodulator | comm.QPSKModulator

Introduced in R2012a

 comm.PSKModulator

4-1475

constellation
System object: comm.PSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Plot PSK Reference Constellation
Create a PSK modulator.

mod = comm.PSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 8×1 complex

 0.9239 + 0.3827i
 0.3827 + 0.9239i
 -0.3827 + 0.9239i
 -0.9239 + 0.3827i

4 System Objects — Alphabetical List

4-1476

 -0.9239 - 0.3827i
 -0.3827 - 0.9239i
 0.3827 - 0.9239i
 0.9239 - 0.3827i

Plot the constellation.

constellation(mod)

Create a PSK demodulator having modulation order 16.

demod = comm.PSKDemodulator(16);

 constellation

4-1477

Plot its reference constellation. The constellation method works for both modulator
and demodulator objects.

constellation(demod)

4 System Objects — Alphabetical List

4-1478

step
System object: comm.PSKModulator
Package: comm

Modulate using M-ary PSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the PSK modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1479

comm.PSKTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to M-ary PSK signal constellation

Description
The PSKTCMDemodulator object uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using a PSK signal constellation.

To demodulate a signal that was modulated using trellis-coded modulation:

1 Define and set up your PSK TCM demodulator object. See “Construction” on page 4-
1480.

2 Call step to demodulate the signal according to the properties of
comm.PSKTCMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PSKTCMDemodulator creates a trellis-coded, M-ary phase shift, keying (PSK
TCM) demodulator System object, H. This object demodulates convolutionally encoded
data that has been mapped to an M-PSK constellation.

H = comm.PSKTCMDemodulator(Name,Value) creates a PSK TCM demodulator
object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1480

H = comm.PSKTCMDemodulator(TRELLIS,Name,Value) creates a PSK TCM
demodulator System object, H. This object has the TrellisStructure property set to
TRELLIS and the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether the trellis structure is
valid. The default is the result of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object saves the internal state metric at
the end of each frame. The next frame uses the same state metric. The object treats each
traceback path independently. If the input signal contains only one symbol, use
Continuous mode.

When you set this property to Truncated, the object treats each input vector
independently. The traceback path starts at the state with the best metric and always
ends in the all-zeros state.

When you set property to Terminated, the object treats each input vector independently,
and the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path.
The default is 21. The traceback depth influences the decoding accuracy and delay. The
decoding delay is the number of zero symbols that precede the first decoded symbol in
the output.

 comm.PSKTCMDemodulator

4-1481

When you set the TerminationMethod on page 4-0 property to Continuous, the
decoding delay consists of TracebackDepth zero symbols or TracebackDepth×K zero bits
for a rate K/N convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, no
output delay occurs and the traceback depth must be less than or equal to the number of
symbols in each input vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default is
false. When this additional reset input is a nonzero value, the internal states of the
encoder reset to initial conditions. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive, integer scalar value. The number of points must be 4, 8, or
16. The default is 8. The ModulationOrder on page 4-0 property value must equal
the number of possible input symbols to the convolutional decoder of the PSK TCM
demodulator object. The ModulationOrder property must equal 2N for a rate K/N
convolutional code.

OutputDataType

Data type of output

Specify output data type as logical | double. The default is double.

Methods

reset Reset states of the PSK TCM demodulator object
step Demodulate convolutionally encoded data mapped to M-ary PSK constellation

4 System Objects — Alphabetical List

4-1482

Common to All System Objects
release Allow System object property value changes

Examples

Demodulate Noisy PSK QAM Data

Modulate and demodulate data using 8-PSK TCM modulation in an AWGN channel.
Estimate the resulting error rate.

Define a trellis structure with four input symbols and eight output symbols.

t = poly2trellis([5 4],[23 35 0; 0 5 13]);

Create modulator and demodulator System objects™ using trellis, t, having modulation
order 8.

hMod = comm.PSKTCMModulator(t,'ModulationOrder',8);
hDemod = comm.PSKTCMDemodulator(t,'ModulationOrder',8, ...
 'TracebackDepth',16);

Create an AWGN channel object.

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...
 'SNR',7);

Create an error rate calculator with delay in bits equal to TracebackDepth times the
number of bits per symbol.

hError = comm.ErrorRate('ReceiveDelay',...
 hDemod.TracebackDepth*log2(t.numInputSymbols));

Generate random binary data and modulate with 8-PSK TCM. Pass the modulated signal
through the AWGN channel and demodulate. Calculate the error statistics.

for counter = 1:10
 % Transmit frames of 250 2-bit symbols
 data = randi([0 1],500,1);
 % Modulate
 modSignal = step(hMod,data);
 % Pass through AWGN channel

 comm.PSKTCMDemodulator

4-1483

 noisySignal = step(hAWGN,modSignal);
 % Demodulate
 receivedData = step(hDemod,noisySignal);
 % Calculate error statistics
 errorStats = step(hError,data,receivedData);
end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
 errorStats(1),errorStats(2))

Error rate = 2.17e-02
Number of errors = 108

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PSK TCM
Decoder block reference page. The object properties correspond to the block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.GeneralQAMTCMDemodulator | comm.PSKTCMModulator |
comm.RectangularQAMTCMDemodulator | comm.ViterbiDecoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-1484

reset
System object: comm.PSKTCMDemodulator
Package: comm

Reset states of the PSK TCM demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the PSKTCMDemodulator object, H.

 reset

4-1485

step
System object: comm.PSKTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to M-ary PSK constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates the PSK modulated input data, X, and uses the Viterbi
algorithm to decode the resulting demodulated, convolutionally encoded bits. X must be a
complex, double or single precision column vector. The step method outputs a
demodulated, binary data column vector, Y. When the convolutional encoder represents a
rate K/N code, the length of the output vector is K×L, where L is the length of the input
vector, X.

Y = step(H,X,R) resets the decoder to the all-zeros state when you input a reset
signal, R that is non-zero. R must be a double precision or logical, scalar integer. This
syntax applies when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

4 System Objects — Alphabetical List

4-1486

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1487

comm.PSKTCMModulator
Package: comm

Convolutionally encode binary data and map using M-ary PSK signal constellation

Description
The PSKTCMModulator object implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and then mapping the result to a PSK
signal constellation.

To modulate a signal using trellis-coded modulation:

1 Define and set up your PSK TCM modulator object. See “Construction” on page 4-
1488.

2 Call step to modulate the signal according to the properties of
comm.PSKTCMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.PSKTCMModulator creates a trellis-coded M-ary phase shift keying (PSK
TCM) modulator System object, H. This object convolutionally encodes a binary input
signal and maps the result to an M-PSK constellation.

H = comm.PSKTCMModulator(Name,Value) creates a PSK TCM encoder object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1488

H = comm.PSKTCMModulator(TRELLIS,Name,Value) creates a PSK TCM encoder
object, H. This object has the TrellisStructure property set to TRELLIS and the other
specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether a trellis structure is
valid. The default is the result of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently. The encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector
independently. However, for each input vector, the object uses extra bits to set the
encoder to the all-zeros state at the end of the vector. For a rate K/N code, the step
method outputs the vector with a length given by y = N × (L + S) K, where S =
constraintLength–1 (or, in the case of multiple constraint lengths, S =
sum(constraintLength(i)–1)). L indicates the length of the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default is
false. When this additional reset input is a nonzero value, the internal states of the

 comm.PSKTCMModulator

4-1489

encoder reset to initial conditions. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive integer scalar value equal to 4, 8, or 16. The default is 8. The
value of the ModulationOrder on page 4-0 property must equal the number of
possible output symbols from the convolutional encoder of the PSK TCM modulator. Thus,
the value for the ModulationOrder property must equal 2N for a rate K/N convolutional
code.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods
reset Reset states of the PSK TCM modulator object
step Convolutionally encode binary data and map using M-ary PSK constellation

Common to All System Objects
release Allow System object property value changes

Examples

Modulate Data Using 8-PSK TCM Modulation

Modulate random data using 8-PSK TCM modulation and display the constellation
diagram.

Create binary data.

4 System Objects — Alphabetical List

4-1490

data = randi([0 1],1000,1);

Define a trellis structure with four input symbols and eight output symbols.

t = poly2trellis([5 4],[23 35 0; 0 5 13]);

Create an 8-PSK TCM modulator object using the trellis structure variable, t.

hMod = comm.PSKTCMModulator(t,'ModulationOrder',8);

Modulate and plot the data.

modData = step(hMod,data);
scatterplot(modData);

 comm.PSKTCMModulator

4-1491

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PSK TCM
Decoder block reference page. The object properties correspond to the block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalEncoder | comm.GeneralQAMTCMModulator |
comm.PSKTCMDemodulator | comm.RectangularQAMTCMModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-1492

reset
System object: comm.PSKTCMModulator
Package: comm

Reset states of the PSK TCM modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the PSKTCMModulator object, H.

 reset

4-1493

step
System object: comm.PSKTCMModulator
Package: comm

Convolutionally encode binary data and map using M-ary PSK constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) convolutionally encodes and modulates the input binary data column
vector, X, and returns the encoded and modulated data, Y. X must be of data type
numeric, logical, or unsigned fixed point of word length 1 (fi object). When the
convolutional encoder represents a rate K/N code, the length of the input vector, X, must
be K×L, for some positive integer L. The step method outputs a complex column vector,
Y, of length L.

Y = step(H,X,R) resets the encoder of the PSK TCM modulator object to the all-zeros
state when you input a reset signal, R, that is non-zero. R must be a double precision or
logical scalar integer. This syntax applies when you set the ResetInputPort property to
true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

4 System Objects — Alphabetical List

4-1494

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1495

comm.QAMCoarseFrequencyEstimator
Package: comm

(To be removed) Estimate frequency offset for QAM signal

Note comm.QAMCoarseFrequencyEstimator will be removed in a future release. Use
comm.CoarseFrequencyCompensator instead.

Description
The QAMCoarseFrequencyEstimator System object estimates frequency offset for a
QAM signal.

To estimate frequency offset for a QAM signal:

1 Define and set up your QAM Coarse Frequency Estimator object. See “Construction”
on page 4-1496.

2 Call step to estimate frequency offset for a QAM signal according to the properties
of comm.QAMCoarseFrequencyEstimator. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.QAMCoarseFrequencyEstimator creates a rectangular QAM coarse
frequency offset estimator object, H. This object uses an open-loop, FFT-based technique
to estimate the carrier frequency offset in a received rectangular QAM signal.

H = comm.QAMCoarseFrequencyEstimator(Name,Value) creates a rectangular
QAM coarse frequency offset estimator object, H, with the specified property Name set to

4 System Objects — Alphabetical List

4-1496

the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
FrequencyResolution

Desired frequency resolution (Hz)

Specify the desired frequency resolution for offset frequency estimation as a positive, real
scalar of data type double. This property establishes the FFT length that the object uses
to perform spectral analysis. The value for this property must be less than or equal to half
the SampleRate on page 4-0 property. The default is 0.001.

SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type
double. The default is 1.

Methods
reset (To be removed) Reset states of the QAMCoarseFrequencyEstimator object
step (To be removed) Estimate frequency offset for QAM signal

Common to All System Objects
release Allow System object property value changes

Examples

Correct Frequency Offset in 16-QAM Signal

Estimate and correct for a -250 Hz frequency offset in a 16-QAM signal using the QAM
Coarse Frequency Estimator System object?.

 comm.QAMCoarseFrequencyEstimator

4-1497

Create a rectangular QAM modulator System object using name-value pairs to set the
modulation order to 16 and the constellation to have an average power of 1 W.

qamModulator = comm.RectangularQAMModulator('ModulationOrder',16, ...
 'NormalizationMethod','Average power', ...
 'AveragePower',1);

Create a square root raised cosine transmit filter System object.

txfilter = comm.RaisedCosineTransmitFilter;

Create a phase frequency offset object, where the FrequencyOffset property is set to
-250 Hz and SampleRate is set to 4000 Hz using name-value pairs.

pfo = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',-250, ...
 'SampleRate',4000);

Create a QAM coarse frequency estimator System object with a sample rate of 4 kHz and
a frequency resolution of 1 Hz.

frequencyEst = comm.QAMCoarseFrequencyEstimator(...
 'SampleRate',4000, ...
 'FrequencyResolution',1);

Create a second phase frequency offset object to correct the offset. Set the
FrequencyOffsetSource property to Input port so that the frequency correction
estimate is an input argument.

pfoCorrect = comm.PhaseFrequencyOffset(...
 'FrequencyOffsetSource','Input port', ...
 'SampleRate',4000);

Create a spectrum analyzer object to view the frequency response of the signals.

spectrum = dsp.SpectrumAnalyzer('SampleRate',4000);

Generate a 16-QAM signal, filter the signal, apply the frequency offset, and pass the
signal through the AWGN channel.

modData = qamModulator(randi([0 15],4096,1)); % Generate QAM signal
txFiltData = txfilter(modData); % Apply Tx filter
offsetData = pfo(txFiltData); % Apply frequency offset
noisyData = awgn(offsetData,25,'measured'); % Pass through AWGN channel

4 System Objects — Alphabetical List

4-1498

Plot the frequency response of the noisy, frequency-offset signal using the spectrum
analyzer. The signal is shifted 250 Hz to the left.

spectrum.Title = 'Received Signal';
spectrum(noisyData);

Estimate the frequency offset using frequencyEst. Observe that the estimate is close to
the -250 Hz target.

estFreqOffset = frequencyEst(noisyData)

estFreqOffset =

 comm.QAMCoarseFrequencyEstimator

4-1499

 -250

Correct for the frequency offset using pfoCorrect and the inverse of the estimated
frequency offset.

compensatedData = pfoCorrect(noisyData,-estFreqOffset);

Plot the frequency response of the compensated signal using the spectrum analyzer. The
signal is now properly centered.

spectrum.Title = 'Frequency-Compensated Signal';
spectrum(compensatedData);

4 System Objects — Alphabetical List

4-1500

Selected Bibliography

[1] Nakagawa, T., Matsui, M., Kobayashi, T., Ishihara, K., Kudo, R., Mizoguchi, M., and Y.
Miyamoto. “Non-data-aided wide-range frequency offset estimator for QAM
optical coherent receivers”, Optical Fiber Communication Conference and
Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers
Conference , March, 2011, pp. 1–3.

[2] Wang, Y., Shi. K., and E. Serpedin. “Non-Data-Aided Feedforward Carrier Frequency
Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach”,
EURASIP Journal on Advances in Signal Processing, Vol. 13, 2004, pp. 1993–2001.

 comm.QAMCoarseFrequencyEstimator

4-1501

Compatibility Considerations

comm.QAMCoarseFrequencyEstimator will be removed
Not recommended starting in R2019a

comm.PSKCoarseFrequencyEstimator will be removed in a future release. Use
comm.CoarseFrequencyCompensator instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CoarseFrequencyCompensator | comm.PhaseFrequencyOffset | dsp.FFT

Introduced in R2013b

4 System Objects — Alphabetical List

4-1502

reset
System object: comm.QAMCoarseFrequencyEstimator
Package: comm

(To be removed) Reset states of the QAMCoarseFrequencyEstimator object

Note comm.QAMCoarseFrequencyEstimator will be removed in a future release. Use
comm.CoarseFrequencyCompensator instead.

Syntax
reset(H)

Description
reset(H) resets the internal states of the QAMCoarseFrequencyEstimator object, H.

 reset

4-1503

step
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

(To be removed) Estimate frequency offset for QAM signal

Note comm.QAMCoarseFrequencyEstimator will be removed in a future release. Use
comm.CoarseFrequencyCompensator instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) estimates the carrier frequency offset of the input X and returns the
result in Y. X must be a complex column vector of data type double. The step method
outputs the estimate Y as a scalar of type double.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1504

comm.QPSKDemodulator
Package: comm

Demodulate using QPSK method

Description
The QPSKDemodulator object demodulates a signal that was modulated using the
quadrature phase shift keying method. The input is a baseband representation of the
modulated signal.

To demodulate a signal that was modulated using quadrature phase shift keying:

1 Define and set up your QPSK demodulator object. See “Construction” on page 4-
1505.

2 Call step to demodulate the signal according to the properties of
comm.QPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.QPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the quadrature phase shift keying (QPSK) method.

H = comm.QPSKDemodulator(Name,Value) creates a QPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.QPSKDemodulator

4-1505

H = comm.QPSKDemodulator(PHASE,Name,Value) creates a QPSK demodulator
object, H. This object has the PhaseOffset property set to PHASE, and the other
specified properties set to the specified values.

Properties
PhaseOffset

Phase of zeroth point in constellation

Specify the phase offset of the zeroth point in the constellation, in radians, as a real scalar
value. The default is pi/4.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values.

When you set this property to true, the step method outputs a column vector of bit
values with length equal to twice the number of demodulated symbols.

When you set this property to false, the step method outputs a column vector with
length equal to the input data vector. This vector contains integer symbol values between
0 and 3. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of 2 bits to the corresponding symbol as
one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the integer m, between 0 ≤ m ≤ 3 maps to the
complex value exp(j×PhaseOffset on page 4-0 + j×2π × m 4).

DecisionMethod

Demodulation decision method

4 System Objects — Alphabetical List

4-1506

Specify the decision method the object uses as Hard decision | Log-likelihood
ratio | Approximate log-likelihood ratio. The default is Hard decision.

When you set the BitOutput on page 4-0 property to false, the object always
performs hard decision demodulation. This property applies when you set the BitOutput
property to true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the BitOutput on page 4-0
property to true and the DecisionMethod on page 4-0 property to Log-
likelihood ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If this
value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations may
yield Inf or -Inf. This result occurs because the LLR algorithm computes the
exponential of very large or very small numbers using finite-precision arithmetic. In such
cases, use approximate LLR is because that option's algorithm does not compute
exponentials.

This property applies when you set the BitOutput on page 4-0 property to true, the
DecisionMethod on page 4-0 property to Log-likelihood ratio or
Approximate log-likelihood ratio, and the VarianceSource on page 4-0
property to Property.This property is tunable.

OutputDataType

Data type of output

Specify the output data type as Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is
Full precision.

This property applies when you set the BitOutput on page 4-0 property to false.
The property also applies when you set the BitOutput property to true and the

 comm.QPSKDemodulator

4-1507

DecisionMethod on page 4-0 property to Hard decision. In this second case,
when the OutputDataType on page 4-0 property is set to Full precision, and the
input data type is single or double precision, the output data has the same as that of the
input.

When the input data is of a fixed-point type, the output data type behaves as if you had set
the OutputDataType property to Smallest unsigned integer.

When you set BitOutput to true and the DecisionMethod property to Hard
Decision, then logical data type becomes a valid option.

When you set the BitOutput property to true and the DecisionMethod property to
Log-likelihood ratio or Approximate log-likelihood ratio, the output data
type is the same as that of the input. In this case, that data type can only be single or
double precision.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

Specify derotate factor data type as one of Same word length as input | Custom.
The default is Same word length as input.

This property applies when you set the BitOutput on page 4-0 property to false.
The property also applies when you set the BitOutput property to true and the
DecisionMethod on page 4-0 property to Hard decision. The object uses the
derotate factor in the computations only when the step method input is a fixed-point type
and the PhaseOffset on page 4-0 property has a value that is not an even multiple of
pi/4.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the DerotateFactorDataType on page 4-0 property to Custom.

4 System Objects — Alphabetical List

4-1508

Methods
constellation Calculate or plot ideal signal constellation
step Demodulate using QPSK method

Common to All System Objects
release Allow System object property value changes

Examples

Plot QPSK Reference Constellation

Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 - 0.7071i
 0.7071 - 0.7071i

Plot the constellation.

constellation(mod)

 comm.QPSKDemodulator

4-1509

Create a PSK demodulator having 0 phase offset.

demod = comm.QPSKDemodulator('PhaseOffset',0);

Plot its reference constellation. The constellation method works for both modulator
and demodulator objects.

constellation(demod)

4 System Objects — Alphabetical List

4-1510

BER Estimate of QPSK Signal

Create a QPSK modulator and demodulator pair that operate on bits.

qpskModulator = comm.QPSKModulator('BitInput',true);
qpskDemodulator = comm.QPSKDemodulator('BitOutput',true);

Create an AWGN channel object and an error rate counter.

channel = comm.AWGNChannel('EbNo',4,'BitsPerSymbol',2);
errorRate = comm.ErrorRate;

 comm.QPSKDemodulator

4-1511

Generate random binary data and apply QPSK modulation.

data = randi([0 1],1000,1);
txSig = qpskModulator(data);

Pass the signal through the AWGN channel and demodulate it.

rxSig = channel(txSig);
rxData = qpskDemodulator(rxSig);

Calculate the error statistics. Display the BER.

errorStats = errorRate(data,rxData);

errorStats(1)

ans = 0.0100

Algorithms
This object implements the algorithm, inputs, and outputs described on the QPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.PSKDemodulator | comm.QPSKModulator

4 System Objects — Alphabetical List

4-1512

Topics
“LLR vs. Hard Decision Demodulation”

Introduced in R2012a

 comm.QPSKDemodulator

4-1513

constellation
System object: comm.QPSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples
Plot QPSK Reference Constellation
Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 - 0.7071i
 0.7071 - 0.7071i

4 System Objects — Alphabetical List

4-1514

Plot the constellation.

constellation(mod)

Create a PSK demodulator having 0 phase offset.

demod = comm.QPSKDemodulator('PhaseOffset',0);

Plot its reference constellation. The constellation method works for both modulator
and demodulator objects.

constellation(demod)

 constellation

4-1515

4 System Objects — Alphabetical List

4-1516

step
System object: comm.QPSKDemodulator
Package: comm

Demodulate using QPSK method

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates input data, X, with the QPSK demodulator System object,
H, and returns Y. Input X must be a scalar or a column vector with double or single
precision data type. When you set the BitOutput property to false, or when you set the
DecisionMethod property to Hard decision and the BitOutput property to true,
the data type of the input can also be signed integer, or signed fixed point (fi objects).
Depending on the BitOutput property value, output Y can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratioor Log-likelihood ratio, and
the VarianceSource property to Input port. The data type of input VAR must be
double or single precision.

Note obj specifies the System object on which to run this step method.

 step

4-1517

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1518

comm.QPSKModulator
Package: comm

Modulate using QPSK method

Description
The QPSKModulator object modulates using the quadrature phase shift keying method.
The output is a baseband representation of the modulated signal.

To modulate a signal using quadrature phase shift keying:

1 Define and set up your QPSK modulator object. See “Construction” on page 4-1519.
2 Call step to modulate the signal according to the properties of

comm.QPSKModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.QPSKModulator creates a modulator System object, H. This object modulates
the input signal using the quadrature phase shift keying (QPSK) method.

H = comm.QPSKModulator(Name,Value) creates a QPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.QPSKModulator(PHASE,Name,Value) creates a QPSK modulator object, H.
This object has the PhaseOffset property set to PHASE and the other specified
properties set to the specified values.

 comm.QPSKModulator

4-1519

Properties
PhaseOffset

Phase of zeroth point in constellation

Specify the phase offset of the zeroth point in the constellation, in radians, as a real scalar
value. The default is pi/4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values. This
vector must have a length that is an integer multiple of 2. This vector contains bit
representations of integers between 0 and 3. When you set this property to false, the
step method input must be a column vector of integer symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or a group of two input bits to the corresponding
symbol as one of Binary | Gray. The default is Gray. When you set this property to
Gray, the object uses a Gray-encoded signal constellation. When you set this property to
Binary, the input integer m, between 0 ≤ m ≤ 3, maps to the complex value exp(j×
PhaseOffset on page 4-0 + j×2×π × m 4).

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

4 System Objects — Alphabetical List

4-1520

Specify the output fixed-point type as a numerictype object with a signedness of Auto.
The default is numerictype([],16). This property applies when you set the
OutputDataType on page 4-0 property to Custom.

Methods

constellation Calculate or plot ideal signal constellation
step Modulate using QPSK method

Common to All System Objects
release Allow System object property value changes

Examples

Plot QPSK Reference Constellation

Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 - 0.7071i
 0.7071 - 0.7071i

Plot the constellation.

constellation(mod)

 comm.QPSKModulator

4-1521

Create a PSK demodulator having 0 phase offset.

demod = comm.QPSKDemodulator('PhaseOffset',0);

Plot its reference constellation. The constellation method works for both modulator
and demodulator objects.

constellation(demod)

4 System Objects — Alphabetical List

4-1522

Phase Noise on QPSK Signal

Create a QPSK modulator object and a phase noise object.

qpskModulator = comm.QPSKModulator;
phNoise = comm.PhaseNoise('Level',-55,'FrequencyOffset',20,'SampleRate',1000);

Generate random QPSK data. Pass the signal through the phase noise object.

d = randi([0 3],1000,1);
x = qpskModulator(d);
y = phNoise(x);

 comm.QPSKModulator

4-1523

Display the constellation diagram of the QPSK signal. The phase noise has introduced a
rotational distortion on the constellation diagram.

constDiagram = comm.ConstellationDiagram;

constDiagram(y)

4 System Objects — Alphabetical List

4-1524

Algorithms
This object implements the algorithm, inputs, and outputs described on the QPSK
Modulator Baseband block reference page. The object properties correspond to the block

 comm.QPSKModulator

4-1525

parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.PSKModulator | comm.QPSKDemodulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-1526

constellation
System object: comm.QPSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples
Plot QPSK Reference Constellation
Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 - 0.7071i
 0.7071 - 0.7071i

 constellation

4-1527

Plot the constellation.

constellation(mod)

Create a PSK demodulator having 0 phase offset.

demod = comm.QPSKDemodulator('PhaseOffset',0);

Plot its reference constellation. The constellation method works for both modulator
and demodulator objects.

constellation(demod)

4 System Objects — Alphabetical List

4-1528

 constellation

4-1529

step
System object: comm.QPSKModulator
Package: comm

Modulate using QPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the QPSK modulator System object, H. It
returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1530

comm.RaisedCosineReceiveFilter
Package: comm

Apply pulse shaping by decimating signal using raised cosine filter

Description
The Raised Cosine Receive Filter System object applies pulse-shaping by
decimating an input signal using a raised cosine FIR filter.

To decimate the input signal:

1 Define and set up your raised cosine receive filter object. See “Construction” on page
4-1531.

2 Call step to decimate the input signal according to the properties of
comm.RaisedCosineReceiveFilter. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RaisedCosineReceiveFilter returns a raised cosine receive filter System
object, H, which decimates the input signal. The filter uses an efficient polyphase FIR
decimation structure and has unit energy.

H = comm.RaisedCosineReceiveFilter(PropertyName,PropertyValue, ...)
returns a raised cosine receive filter object, H, with each specified property set to the
specified value.

 comm.RaisedCosineReceiveFilter

4-1531

Properties
Shape

Filter shape

Specify the filter shape as one of Normal or Square root. The default is Square root.

RolloffFactor

Rolloff factor

Specify the rolloff factor as a scalar between 0 and 1. The default is 0.2.

FilterSpanInSymbols

Filter span in symbols

Specify the number of symbols the filter spans as an integer-valued positive scalar. The
default is 10. Because the ideal raised cosine filter has an infinite impulse response, the
object truncates the impulse response to the value you specify for this property.

InputSamplesPerSymbol

Input samples per symbol

Specify the number of input samples that represent a symbol. The default is 8. This
property accepts an integer-valued, positive double or single scalar value. The raised
cosine filter has (FilterSpanInSymbols x InputSamplesPerSymbol + 1) taps.

DecimationFactor

Decimation factor

Specify the factor by which the object reduces the sampling rate of the input signal. The
default value is 8. This property accepts a positive integer scalar value between 1 and
InputSamplesPerSymbol. The value must evenly divide into InputSamplesPerSymbol.
The number of input rows must be a multiple of the decimation factor. If you set
DecimationFactor to 1, then the object only applies filtering without downsampling.

4 System Objects — Alphabetical List

4-1532

DecimationOffset

Specify the number of filtered samples the System object discards before downsampling.
The default is 0. This property accepts an integer valued scalar between 0 and
DecimationFactor − 1.

Gain

Linear filter gain

Specify the linear gain of the filter as a positive numeric scalar. The default is 1. The
object designs a raised cosine filter that has unit energy, and then applies the linear gain
to obtain final tap values.

Methods
coeffs Returns coefficients for filters
reset Reset internal states of System object
step Output decimated values of input signal

Common to All System Objects
release Allow System object property value changes

Examples

Filter Signal Using Square Root Raised Cosine Receive Filter

Filter the output of a square root raised cosine transmit filter using a matched square
root raised cosine receive filter. The input signal has eight samples per symbol.

Create a raised cosine transmit filter and set the OutputSamplesPerSymbol property to
8.

 txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',8);

Create a raised cosine receive filter and set the InputSamplesPerSymbol property to 8
and the DecimationFactor property to 8.

 comm.RaisedCosineReceiveFilter

4-1533

rxfilter = comm.RaisedCosineReceiveFilter('InputSamplesPerSymbol',8, ...
 'DecimationFactor',8);

Use the coeffs function to determine the filter coefficients for both filters.

txCoef = coeffs(txfilter);
rxCoef = coeffs(rxfilter);

Launch the filter visualization tool and display the magnitude responses of the two filters.
Observe that they have identical responses.

 fvtool(txCoef.Numerator,1,rxCoef.Numerator,1);
 legend('Tx Filter','Rx Filter')

Generate a random bipolar signal and then interpolate.

4 System Objects — Alphabetical List

4-1534

 preTx = 2*randi([0 1],100,1) - 1;
 y = txfilter(preTx);

Decimate the signal using the raised cosine receive filter System object.

 postRx = rxfilter(y);

The filter delay is equal to the FilterSpanInSymbols property. Adjust for the delay to
compare the pre-Tx filter signal with the post-Rx filter signal.

delay = txfilter.FilterSpanInSymbols;
x = (1:(length(preTx)-delay));
plot(x,preTx(1:end-delay),x,postRx(delay+1:end))
legend('Pre-Tx Filter','Post-Rx Filter')

 comm.RaisedCosineReceiveFilter

4-1535

You can see that the two signals overlap one another since the receive filter is matched to
the transmit filter.

Specify Filter Span of Raised Cosine Receive Filter

Decimate a bipolar signal using a square root raised cosine filter whose impulse response
is truncated to six symbol durations.

Create a raised cosine transmit filter and set the FilterSpanInSymbols property to 6.
The object truncates the impulse response to six symbols.

txfilter = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',6);

Generate a random bipolar signal and filter it using txfilter.

x = 2*randi([0 1],25,1) - 1;
y = txfilter(x);

Create a matched raised cosine receive filter System object.

rxfilter = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',6);

Launch the filter visualization tool to show the impulse response of the receive filter.

fvtool(rxfilter,'Analysis','impulse')

4 System Objects — Alphabetical List

4-1536

Filter the output signal from the transmit filter using the matched receive filter object,
rxfilter.

r = rxfilter(y);

Plot the interpolated signal. Because of the filter span, there is a delay of six symbols
before data passes through the filter.

stem(r)

 comm.RaisedCosineReceiveFilter

4-1537

Raised Cosine Receive Filter with Unity Passband Gain

Create a raised cosine receive filter with unity passband gain.

Create a raised cosine receive filter System object™. Obtain the filter coefficients using
the coeffs function.

rxfilter = comm.RaisedCosineReceiveFilter;
b = coeffs(rxfilter);

A filter with unity passband gain has filter coefficients such that the sum of coefficients is
1. Therefore, set the Gain property to the inverse of the sum of b.Numerator.

4 System Objects — Alphabetical List

4-1538

rxfilter.Gain = 1/sum(b.Numerator);

Verify that the sum of the coefficients from the resulting filter equal 1.

bNorm = coeffs(rxfilter);
sum(bNorm.Numerator)

ans = 1.0000

Plot the frequency response of the filter. Note that it shows a passband gain of 0 dB,
which is unity gain.

fvtool(rxfilter)

 comm.RaisedCosineReceiveFilter

4-1539

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.RaisedCosineTransmitFilter | rcosdesign

Introduced in R2013b

4 System Objects — Alphabetical List

4-1540

coeffs
System object: comm.RaisedCosineReceiveFilter
Package: comm

Returns coefficients for filters

Syntax
S = coeffs(H)
S = coeffs(H,'Arithmetic',ARITH,...)

Description
S = coeffs(H) Returns the coefficients of filter System object, H, in the structure S.

S = coeffs(H,'Arithmetic',ARITH,...) analyzes the filter System object, H,
based on the arithmetic specified in the ARITH input. ARITH can be set to one of double,
single, or fixed. The analysis tool assumes a double precision filter when the
arithmetic input is not specified and the filter System object is in an unlocked state. The
coeffs method returns the quantized filter coefficients when you set ARITH to single or
fixed.

 coeffs

4-1541

reset
System object: comm.RaisedCosineReceiveFilter
Package: comm

Reset internal states of System object

Syntax
reset(OBJ)

Description
reset(OBJ) resets the internal states of System object OBJ to their initial values.

4 System Objects — Alphabetical List

4-1542

step
System object: comm.RaisedCosineReceiveFilter
Package: comm

Output decimated values of input signal

Syntax
Y = step(H, X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H, X) outputs the decimated values, Y, of the input signal X. The System
object treats the input matrix Ki-by-N as N independent channels. The System object filters
each channel over time and generates a Ko-by-N output matrix. Ko = Ki/M where M
represents the decimation factor. The System object supports real and complex floating-
point inputs.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1543

comm.RaisedCosineTransmitFilter
Package: comm

Apply pulse shaping by interpolating signal using raised cosine filter

Description
The Raised Cosine Transmit Filter System object applies pulse-shaping by
interpolating an input signal using a raised cosine FIR filter.

To interpolate the input signal:

1 Define and set up your raised cosine transmit filter object. See “Construction” on
page 4-1544.

2 Call step to interpolate the input signal according to the properties of
comm.RaisedCosineTransmitFilter. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RaisedCosineTransmitFilter returns a raised cosine transmit filter
System object, H, which interpolates an input signal using a raised cosine FIR filter. The
filter uses an efficient polyphase FIR interpolation structure and has unit energy.

H = comm.RaisedCosineTransmitFilter(PropertyName,PropertyValue, ...)
returns a raised cosine transmit filter object, H, with each specified property set to the
specified value.

4 System Objects — Alphabetical List

4-1544

Properties
Shape

Filter shape

Specify the filter shape as one of Normal or Square root. The default is Square root.

RolloffFactor

Rolloff factor

Specify the rolloff factor as a scalar between 0 and 1. The default is 0.2.

FilterSpanInSymbols

Filter span in symbols

Specify the number of symbols the filter spans as an integer-valued, positive scalar. The
default is 10. Because the ideal raised cosine filter has an infinite impulse response, the
object truncates the impulse response to the value you specify for this property.

OutputSamplesPerSymbol

Output samples per symbol

Specify the number of output samples for each input symbol. The default is 8. This
property accepts an integer-valued, positive scalar value. The raised cosine filter has
(FilterSpanInSymbols x OutputSamplesPerSymbol + 1) taps.

Gain

Linear filter gain

Specify the linear gain of the filter as a positive numeric scalar. The default is 1. The
object designs a raised cosine filter that has unit energy, and then applies the linear gain
to obtain final tap values.

 comm.RaisedCosineTransmitFilter

4-1545

Methods
coeffs Returns coefficients for filters
reset Reset internal states of System object
step Output interpolated values of input signal

Common to All System Objects
release Allow System object property value changes

Examples

Interpolate Signal Using Square Root Raised Cosine Filter

This example shows how to interpolate a signal using the
comm.RaisedCosineTransmitFilter System object and to display its spectrum.

Create a square root raised square root cosine transmit filter object. You can see that its
default settings are such that the filter has a square root shape and that there are 8
samples per symbol.

txfilter = comm.RaisedCosineTransmitFilter

txfilter =

 comm.RaisedCosineTransmitFilter with properties:

 Shape: 'Square root'
 RolloffFactor: 0.2000
 FilterSpanInSymbols: 10
 OutputSamplesPerSymbol: 8
 Gain: 1

Generate random bipolar data.

data = 2*randi([0 1],10000,1) - 1;

Filter the data by using the RRC filter.

4 System Objects — Alphabetical List

4-1546

filteredData = txfilter(data);

To view the spectrum of the filtered signal, create a spectrum analyzer object with a
sample rate of 1000 Hz.

spectrumAnalyzer = dsp.SpectrumAnalyzer('SampleRate',1000);

View the spectrum of the filtered signal using the spectrum analyzer.

spectrumAnalyzer(filteredData)

 comm.RaisedCosineTransmitFilter

4-1547

Specify Filter Span of Raised Cosine Transmit Filter

This example shows to create an interpolated signal from a square root raised cosine
filter that is truncated to six symbol durations.

Create a raised cosine filter and set the FilterSpanInSymbols to 6. The object
truncates the impulse response to six symbols.

txfilter = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',6);

Launch the filter visualization tool to show the impulse response.

fvtool(txfilter)

Generate random bipolar data and pass it through the filter.

4 System Objects — Alphabetical List

4-1548

x = 2*randi([0 1],96,1) - 1;
y = txfilter(x);

Plot the interpolated signal.

plot(y)
grid on

Raised Cosine Transmit Filter with Unity Passband Gain

This example shows how to create a raised cosine transmit filter with unity passband
gain.

 comm.RaisedCosineTransmitFilter

4-1549

Generate a filter with unit energy. You can obtain the filter coefficients using the coeffs
function.

txfilter = comm.RaisedCosineTransmitFilter;
b = coeffs(txfilter);

Plot the filter response. You can see that its gain is greater than unity (more than 0 dB).

fvtool(txfilter)

A filter with unity passband gain has filter coefficients that sum to 1. Set the Gain
property to the inverse of the sum of b.Numerator

txfilter.Gain = 1/sum(b.Numerator);

4 System Objects — Alphabetical List

4-1550

Verify that the resulting filter coefficients sum to 1.

bNorm = coeffs(txfilter);
sum(bNorm.Numerator)

ans = 1.0000

Plot the filter frequency response. Note that it shows a passband gain of 0 dB.

fvtool(txfilter)

 comm.RaisedCosineTransmitFilter

4-1551

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.RaisedCosineReceiveFilter | rcosdesign

Introduced in R2013b

4 System Objects — Alphabetical List

4-1552

coeffs
System object: comm.RaisedCosineTransmitFilter
Package: comm

Returns coefficients for filters

Syntax
S = coeffs(H)
S = coeffs(H,'Arithmetic',ARITH,...)

Description
S = coeffs(H) Returns the coefficients of filter System object, H, in the structure S.

S = coeffs(H,'Arithmetic',ARITH,...) analyzes the filter System object, H, based
on the arithmetic specified in the ARITH input. ARITH can be set to one of double,
single, or fixed. The analysis tool assumes a double precision filter when the
arithmetic input is not specified and the filter System object is in an unlocked state. The
coeffs method returns the quantized filter coefficients when you set ARITH to single or
fixed.

 coeffs

4-1553

reset
System object: comm.RaisedCosineTransmitFilter
Package: comm

Reset internal states of System object

Syntax
reset(OBJ)

Description
reset(OBJ) resets the internal states of System object OBJ to their initial values.

4 System Objects — Alphabetical List

4-1554

step
System object: comm.RaisedCosineTransmitFilter
Package: comm

Output interpolated values of input signal

Syntax
Y = step(H, X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H, X) outputs the interpolated values, Y, of the input signal X. The System
object treats the input matrix Ki-by-N as N independent channels. The object interpolates
each channel over the first dimension and then generates a Ko-by-N output matrix. In the
output matrix, Ko = Ki*L, where L represents the output samples per symbol. The object
supports real and complex floating-point inputs.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1555

comm.RayleighChannel
Package: comm

Filter input signal through a Rayleigh multipath fading channel

Description
The RayleighChannel System object filters an input signal through a Rayleigh fading
channel. The fading processing per link is per the Methodology for Simulating Multipath
Fading Channels

To filter an input signal using a Rayleigh multipath fading channel:

1 Define and set up your Rayleigh channel object. See “Construction” on page 4-1556.
2 Call step to filter the input signal through a Rayleigh multipath fading channel

according to the properties of comm.Rayleighhannel. The behavior of step is
specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RayleighChannel creates a frequency-selective or frequency-flat multipath
Rayleigh fading channel System object, H. This object filters a real or complex input signal
through the multipath channel to obtain the channel impaired signal.

H = comm.RayleighChannel(Name,Value) creates a multipath Rayleigh fading
channel object, H, with the specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

4 System Objects — Alphabetical List

4-1556

Properties
SampleRate

Input signal sample rate (hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 1 Hz.

PathDelays

Discrete path delay vector (seconds)

Specify the delays of the discrete paths in seconds as a double-precision, real, scalar or
row vector. The default value of this property is 0.

When you set PathDelays to a scalar, the channel is frequency flat.

When you set PathDelays to a vector, the channel is frequency selective.

AveragePathGains

Average path gain vector (decibels)

Specify the average gains of the discrete paths in decibels as a double-precision, real,
scalar or row vector. The default value of this property is 0.

AveragePathGains must have the same size as PathDelays on page 4-0 .

NormalizePathGains

Normalize average path gains to 0 dB

Set this property to true to normalize the fading processes such that the total power of
the path gains, averaged over time, is 0 dB. The default value of this property is true.

MaximumDopplerShift

Maximum Doppler shift (hertz)

Specify the maximum Doppler shift for all channel paths in hertz as a double-precision,
real, nonnegative scalar. The default value of this property is 0.001 Hz.

 comm.RayleighChannel

4-1557

The Doppler shift applies to all the paths of the channel. When you set the
MaximumDopplerShift to 0, the channel remains static for the entire input. You can use
the reset method to generate a new channel realization.

The MaximumDopplerShift must be smaller than SampleRate/10/fc for each path,
where fc represents the cutoff frequency factor of the path. For most Doppler spectrum
types, the value of fc is 1. For Gaussian and BiGaussian Doppler spectrum types, fc is
dependent on the Doppler spectrum structure fields. For more details about how fc is
defined, see “Cutoff Frequency Factor” on page 4-1575.

DopplerSpectrum

Doppler spectrum object(s)

Specify the Doppler spectrum shape for the path(s) of the channel. This property accepts
a single Doppler spectrum structure returned from the doppler function or a row cell
array of such structures. The maximum Doppler shift value necessary to specify the
Doppler spectrum/spectra is given by the MaximumDopplerShift on page 4-0
property. This property applies when the MaximumDopplerShift on page 4-0
property value is greater than 0. The default value of this property is
doppler('Jakes').

If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have
the same specified Doppler spectrum. If the FadingTechnique property is Sum of
sinusoids, DopplerSpectrum must be doppler('Jakes'); otherwise, select from
the following:

• doppler('Jakes')
• doppler('Flat')
• doppler('Rounded', ...)
• doppler('Bell', ...)
• doppler('Asymmetric Jakes', ...)
• doppler('Restricted Jakes', ...)
• doppler('Gaussian', ...)
• doppler('BiGaussian', ...)

If you assign a row cell array of different Doppler spectrum structures (which can be
chosen from any of those on the previous list) to DopplerSpectrum, each path has the
Doppler spectrum specified by the corresponding structure in the cell array. In this case,
the length of DopplerSpectrum must be equal to the length of PathDelays.

4 System Objects — Alphabetical List

4-1558

To generate C code, specify this property to a single Doppler spectrum structure. The
default value of this property is doppler('Jakes').

FadingTechnique

Fading technique used to model the channel

Select between Filtered Gaussian noise and Sum of sinusoids to specify the
way in which the channel is modeled. The default value is Filtered Gaussian noise.

NumSinusoids

Number of sinusoids used to model the fading process

The NumSinuoids property is a positive integer scalar that specified the number of
sinusoids used in modeling the channel and is available only when the FadingTechnique
property is set to Sum of sinusoids. The default value is 48.

InitialTimeSource

Source to control the start time of the fading process

Specify the initial time source as either Property or Input port. This property is
available when the FadingTechnique property is set to Sum of sinusoids. When
InitialTimeSource is set to Input port, the start time of the fading process is
specified using the INITIALTIME input to the step function. The input value can change
in consecutive calls to the step function. The default value is Property.

InitialTime

Start time of the fading process (s)

Specify the time offset of the fading process as a real nonnegative scalar in seconds. This
property applies when the FadingTechnique property is set to Sum of sinusoids and
the InitialTimeSource property is set to Property. The default value is 0.

InitialTime must be greater than the last frame end time. When InitialTime is not a
multiple of 1/SampleRate, it is rounded up to the nearest sample position.

RandomStream

Source of random number stream

 comm.RayleighChannel

4-1559

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream.

If you set RandomStream to Global stream, the current global random number stream
is used for normally distributed random number generation. In this case, the reset
method only resets the filters.

If you set RandomStream to mt19937ar with seed, the mt19937ar algorithm is used
for normally distributed random number generation. In this case, the reset method not
only resets the filters but also reinitializes the random number stream to the value of the
Seed property.

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of a mt19937ar random number generator algorithm as a double-
precision, real, nonnegative integer scalar. The default value of this property is 73. This
property applies when you set the RandomStream property to mt19937ar with seed.
The Seed reinitializes the mt19937ar random number stream in the reset method.

PathGainsOutputPort

Enable path gain output (logical)

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

Visualization

Enable channel visualization

Specify the type of channel visualization to display as one of Off | Impulse response |
Frequency response | Impulse and frequency responses | Doppler spectrum.
The default value of this property is Off.

SamplesToDisplay

Specify percentage of samples to display

You can specify the percentage of samples to display, since displaying fewer samples will
result in better performance at the expense of lower accuracy. Specify the property as one
of 10% | 25% | 50% | 100%. This applies when Visualization is set to Impulse

4 System Objects — Alphabetical List

4-1560

response, Frequency response, or Impulse and frequency responses. The
default value is 25%.

PathsForDopplerDisplay

Specify path for Doppler display

You can specify an integer scalar which selects the discrete path used in constructing a
Doppler spectrum plot. The specified path must be an element of {1, 2, ..., Np}, where Np
is the number of discrete paths per link specified in the object. This property applies
when Visualization is set to Doppler spectrum. The default value is 1.

Methods
info Display information about the RayleighChannel object
reset Reset states of the RayleighChannel object
step Filter input signal through multipath Rayleigh fading channel

Common to All System Objects
release Allow System object property value changes

Visualization
Impulse Response

The impulse response plot displays the path gains, the channel filter coefficients, and the
interpolated path gains. The path gains shown in magenta occur at time instances which
correspond to the specified PathDelays property and may not be aligned with the input
sampling time. The channel filter coefficients shown in yellow are used to model the
channel. They are interpolated from the actual path gains and are aligned with the input
sampling time. In cases in which the path gains are aligned with the sampling time, they
will overlap the filter coefficients. Sinc interpolation is used to connect the channel filter
coefficients and is shown in blue. These points are used solely for display purposes and
not used in subsequent channel filtering. For a flat fading channel (one path), the sinc
interpolation curve is not displayed. For all impulse response plots, the frame and sample
numbers are shown in the display’s upper left corner.

 comm.RayleighChannel

4-1561

The impulse response plot shares the same toolbar and menus as the System object it was
based on, dsp.ArrayPlot.

In the figure, the impulse response of a channel is shown for the case in which the path
gains are aligned with the sample time. The overlap between the path gains and filter
coefficients is evident.

The case in which the specified path gains are not aligned with the SampleRate property
is shown below. Observe that the path gains and the channel filter coefficients do not
overlap and that the filter coefficients are equally distributed.

4 System Objects — Alphabetical List

4-1562

The impulse response for a frequency flat channel is shown below. You can see that the
interpolated path gains are not displayed.

 comm.RayleighChannel

4-1563

Note

• The displayed and specified path gain locations can differ by as much as 5% of the
input sample time.

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Updates to Improve Performance
menu item. Reducing the percentage of samples to display and the enabling reduced
updates will speed up the rendering of the impulse response.

• After the impulse response plots are manually closed, the step call for the Rayleigh
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

4 System Objects — Alphabetical List

4-1564

Frequency Response

The frequency response plot displays the Rayleigh channel spectrum by taking a discrete
Fourier transform of the channel filter coefficients. The frequency response plot shares
the same toolbar and menus as the System object it was based on,
dsp.SpectrumAnalyzer. The default parameter settings are shown below. These
parameters can be changed from their default values by using the View > Spectrum
Settings menu.

Parameter Value
Window Rectangular
WindowLength Channel filter length
FFTLength 512
PowerUnits dBW
YLimits Based on NormalizePathGains and

AveragePathGains properties

The frequency response plot for a frequency selective channel is shown.

 comm.RayleighChannel

4-1565

Note

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Plot Rate to Improve Performance
menu item. Reducing the percentage of samples to display and the enabling reduced
updates will speed up the rendering of the frequency response.

• After the frequency response plots are manually closed, the step call for the Rayleigh
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

4 System Objects — Alphabetical List

4-1566

Doppler Spectrum

The Doppler spectrum plot displays both the theoretical Doppler spectrum and the
empirically determined data points. The theoretical data is displayed as a yellow line for
the case of non-static channels and as a yellow point for static channels, while the
empirical data is shown in blue. There is an internal buffer which must be completely
filled with filtered Gaussian samples before the empirical plot is updated. The empirical
plot is the running mean of the spectrum calculated from each full buffer. For non-static
channels, the number of input samples needed before the next update is displayed in the
upper left hand corner. The samples needed is a function of the sample rate and the
maximum Doppler shift. For static channels, the text Reset fading channel for
next update is displayed.

 comm.RayleighChannel

4-1567

Note

• After the Doppler spectrum plots are manually closed, the step call for the Rayleigh
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

Examples

Produce the Same Outputs Using Two Different Random Number Generation
Methods

The Rayleigh Channel System object™ has two methods for random number generation.
You can use the current global stream or the mt19937ar algorithm with a specified seed.
By interacting with the global stream, the object can produce the same outputs from the
two methods.

4 System Objects — Alphabetical List

4-1568

Create a PSK Modulator System object to modulate randomly generated data.

pskModulator = comm.PSKModulator;
channelInput = pskModulator(randi([0 pskModulator.ModulationOrder-1],1024,1));

Create a Rayleigh channel System object.

rayChan = comm.RayleighChannel(...
 'SampleRate',10e3, ...
 'PathDelays',[0 1.5e-4], ...
 'AveragePathGains',[2 3], ...
 'NormalizePathGains',true, ...
 'MaximumDopplerShift',30, ...
 'DopplerSpectrum',{doppler('Gaussian',0.6),doppler('Flat')}, ...
 'RandomStream','mt19937ar with seed', ...
 'Seed',22, ...
 'PathGainsOutputPort',true);

Filter the modulated data using the Rayleigh channel System object, rayChan.

[chanOut1,pathGains1] = rayChan(channelInput);

Use global stream for random number generation.

release(rayChan);
rayChan.RandomStream = 'Global stream';

Set the global stream to have the same seed that was specified above.

rng(22)

Filter the modulated data using rayChan for the second time.

[chanOut2,pathGains2] = rayChan(channelInput);

Verify that the channel and path gain outputs are the same for each of the two methods.

isequal(chanOut1,chanOut2)

ans = logical
 1

isequal(pathGains1,pathGains2)

 comm.RayleighChannel

4-1569

ans = logical
 1

Display Impulse and Frequency Responses of a Rayleigh Channel

This example shows how to create a frequency selective Rayleigh channel and display its
impulse and frequency responses.

Set the sample rate to 3.84 MHz and specify path delays and gains using ITU pedestrian
B channel parameters. Set the maximum Doppler shift to 50 Hz.

fs = 3.84e6; % Hz
pathDelays = [0 200 800 1200 2300 3700]*1e-9; % sec
avgPathGains = [0 -0.9 -4.9 -8 -7.8 -23.9]; % dB
fD = 50; % Hz

Create a Rayleigh channel System object with the previously defined parameters and set
the Visualization property to Impulse and frequency responses using name-
value pairs.

rchan = comm.RayleighChannel('SampleRate',fs, ...
 'PathDelays',pathDelays, ...
 'AveragePathGains',avgPathGains, ...
 'MaximumDopplerShift',fD, ...
 'Visualization','Impulse and frequency responses');

Generate random binary data and pass it through the Rayleigh channel. The impulse
response plot allows you to easily identify the individual paths and their corresponding
filter coefficients. The frequency selective nature of the pedestrian B channel is shown by
the frequency response plot.

x = randi([0 1],1000,1);
y = rchan(x);

4 System Objects — Alphabetical List

4-1570

 comm.RayleighChannel

4-1571

Generate a Rayleigh Channel Using Sum-of-Sinusoids Technique

This example shows how to generate a Rayleigh channel using the sum-of-sinusoids
technique.

Set the channel parameters.

4 System Objects — Alphabetical List

4-1572

fs = 1000; % Sample rate (Hz)
pathDelays = [0 2.5e-3]; % Path delays (s)
pathPower = [0 -6]; % Path power (dB)
fD = 5; % Maximum Doppler shift (Hz)
numSamples = 1000; % Number of samples

Create a Rayleigh channel object using a name-value pair to set the FadingTechnique
property to Sum of sinusoids.

rchan = comm.RayleighChannel('SampleRate',fs, ...
'PathDelays',pathDelays,'AveragePathGains',pathPower, ...
'MaximumDopplerShift',fD,'FadingTechnique','Sum of sinusoids')

rchan =
 comm.RayleighChannel with properties:

 SampleRate: 1000
 PathDelays: [0 0.0025]
 AveragePathGains: [0 -6]
 NormalizePathGains: true
 MaximumDopplerShift: 5
 DopplerSpectrum: [1x1 struct]

 Show all properties

Pass an all-ones vector through the Rayleigh channel.

y = rchan(ones(numSamples,1));

Plot the magnitude of the Rayleigh channel output.

t = (0:numSamples-1)'/fs;
plot(t,20*log10(abs(y)))
xlabel('Time (s)')
ylabel('Amplitude')

 comm.RayleighChannel

4-1573

Selected Bibliography
[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World

Propagation to Space-Time Code Design, Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. “A
stochastic MIMO radio channel model with experimental validation." IEEE Journal
on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp. 1211–1226.

4 System Objects — Alphabetical List

4-1574

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

Algorithms

Cutoff Frequency Factor
The following information explains how the cutoff frequency factor, fc, is determined for
different Doppler spectrum types:

• For any Doppler spectrum type other than Gaussian and BiGaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals

NormalizedStandardDeviation∙sqrt(2∙log(2)).
• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are
both 0, then fc equals NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are
both 0, then fc equals NormalizedStandardDeviation(2)∙sqrt(2∙log(2)).

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1)∙sqrt(2∙log(2)).

• In all other cases, fc equals 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.RayleighChannel

4-1575

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.AWGNChannel | comm.MIMOChannel | comm.RicianChannel

Introduced in R2013b

4 System Objects — Alphabetical List

4-1576

info
System object: comm.RayleighChannel
Package: comm

Display information about the RayleighChannel object

Syntax
S = info(OBJ)

Description
S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

 info

4-1577

reset
System object: comm.RayleighChannel
Package: comm

Reset states of the RayleighChannel object

Syntax
reset(H)

Description
reset(H) resets the states of the RayleighChannel object, H.

If you set the RandomStream property of H to Global stream, the reset method only
resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

4 System Objects — Alphabetical List

4-1578

step
System object: comm.RayleighChannel
Package: comm

Filter input signal through multipath Rayleigh fading channel

Syntax
Y = step(H,X)
[Y,PATHGAINS] = step(H,X)
___ = step(H,X,INITIALTIME)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) filters input signal X through a multipath Rayleigh fading channel and
returns the result in Y. Both the input X and the output signal Y are of size Ns–by–1, where
Ns represents the number of samples. The input X can be of double- or single-precision
data type with real or complex values. Y contains complex values with same precision as
input signal.

[Y,PATHGAINS] = step(H,X) returns the channel path gains of the underlying
Rayleigh fading process in PATHGAINS. This syntax applies when you set the
PathGainsOutputPort property of H to true. PATHGAINS is of size Ns–by–Np, where Np
represents the number of paths, i.e., the length of the PathDelays property value of H.
PATHGAINS contains complex values with same precision as input signal.

___ = step(H,X,INITIALTIME) passes data through the Rayleigh channel beginning
at INITIALTIME, where INITIALTIME is a nonnegative real scalar measured in seconds.
This syntax applies when the FadingTechnique property of H is set to Sum of sinusoids

 step

4-1579

and the InitialTimeSource property of H is set to Input port. The INITIALTIME must
be greater than the last frame end time. When INITIALTIME is not a multiple of 1/
SampleRate, it is rounded up to the nearest sample position.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1580

comm.RBDSWaveformGenerator
Package: comm

Generate RDS/RBDS waveform

Description
The comm.RBDSWaveformGenerator System object generates configurable standard-
compliant baseband RDS/RBDS waveforms in MATLAB. RDS/RBDS waveforms
supplement FM radio stations with additional textual information, such as song title,
artist name, and station description. The RDS/RBDS signal lies in the 57-kHz band of the
baseband FM radio signal.

Use this object to generate a waveform containing RadioText Plus (RT+) information and
register a custom encoding implementation for an Open Data Application (ODA). You can
also specify the time, data, and the program type. The object supports short, scrolling 8-
character text, and longer 32-character or 64-character text.

To generate baseband RDS/RBDS waveforms:

1 Create a comm.RBDSWaveformGenerator object and set the properties of the
object.

2 Call step to generate the waveform.

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction
rbdsgen = comm.RBDSWaveformGenerator creates an RDS/RBDS waveform
generator object, rbdsgen, using the default properties.

rbdsgen = comm.RBDSWaveformGenerator(Name,Value) specifies additional
properties using Name,Value pairs. Unspecified properties have default values.

 comm.RBDSWaveformGenerator

4-1581

Example:

rbdsgen = comm.RBDSWaveformGenerator('GroupsPerFrame',20,'SamplesPerSymbol',10,...
 'SendRadioTextPlus',true);

Properties
If a property is listed as tunable, then you can change its value even when the object is
locked.

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive even integer

Number of samples per symbol (bit), specified as a positive even integer. Half of the
samples represent one amplitude level of Manchester coding. The other half of the
samples represent the opposite level.

GroupsPerFrame — Number of groups per output frame
10 (default) | scalar integer

Number of groups per output frame, specified as a scalar integer. Each group is 104
symbols (bits) long.

RadioText — Long text conveyed with type 2A groups
'Long text' (default) | character vector

Radio text conveyed with type 2A groups, specified as a character vector that is up to 64
characters long. The object transmits the specified text four characters at a time, using
type 2A groups.

Tunable: Yes

ProgramServiceName — Label of the program service
'ShortTxt' (default) | character vector

Label of the program service, specified as a character vector that is up to eight characters
long. This information is conveyed as a short text with type 0A groups, two characters at
a time.

Tunable: Yes

4 System Objects — Alphabetical List

4-1582

ProgramIdentificationCode — Program identification code
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (default) | 16-bit row vector

Program identification (PI) code, specified as a 16-bit row vector. In North America, the PI
code conveys the call letters of the station. Example call letters include 'WABC' and
'KXYZ'.

To generate North American PI codes for a station's call letters, use the
callLettersToPICode method.

ProgramType — Program type
'No program type or undefined' (default) | character vector

Program type, specified as a character vector containing one of the 31 values allowed by
the RDS/RBDS standard. For a list of program types that the RDS/RBDS standard allows
in North America, see [1].

Tunable: Yes

ProgramTypeName — Program type name
'' (default) | character vector

Program type name, specified as a character vector that is up to eight characters long.
This text further characterizes the program type, such as 'Football' for the program
type 'Sports'. The object conveys the program type name using type 10A groups. If this
property is empty, then no 10A groups are generated.

Tunable: Yes

SendDateTime — Option to advertise date and time
false (default) | true

Option to advertise the date and time, specified as either false or true. When you set
this property to true, one 4A group is periodically generated every 685 groups (once a
minute).

AlternativeFrequencies — Alternative frequencies
[] (default) | numeric row vector

Alternative frequencies, specified as a numeric row vector in MHz. This information is
conveyed with type 0A groups. It indicates other transmitters broadcasting the same
program in the same or adjacent reception areas. With this information, receivers can
switch to a different frequency with better reception.

 comm.RBDSWaveformGenerator

4-1583

SendRadioTextPlus — Option to send RT+ information
false (default) | true

Option to transmit RadioText Plus (RT+) information, specified as a scalar logical. When
you set this property to true, the RT+ ODA information is advertised with type 3A
groups. In addition, the RT+ content types, specified in RadioTextType1,
RadioTextType2, and the two RT+ substrings indexed by RadioTextIndices are
conveyed with the open-format type 11A group.

RadioTextType1 — Content type of first RT+ substring
'Item.Artist' (default) | character vector

Content type of the first RT+ substring, specified as a character vector. Allowed values
are the class names specified in the RT+ standard. For more details, see [2].

Tunable: Yes

RadioTextType2 — Content type of second RT+ substring
'Item.Title' (default) | character vector

Content type of the second RT+ substring, specified as a character vector. Allowed values
are the class names specified in the RT+ standard. For more details, see [2].

Tunable: Yes

RadioTextIndices — Start and end indices of RT+ substrings
[1 2; 3 4] (default) | 2-by-2 matrix of positive integers

Start and end indices of RT+ substrings, specified as a 2-by-2 matrix of positive integers.
The first column indexes the beginning of each RT+ substring. The second column
indexes the end of each substring.

Tunable: Yes

4 System Objects — Alphabetical List

4-1584

Methods

callLettersToPICode Convert North-American call letters to binary PI code
registerODA Register a custom encoding implementation for an ODA
reset Reset states of RBDS waveform generator object
step Generate RDS/RBDS waveform

Examples

Generate a Basic RBDS Waveform

Generate a basic RBDS waveform, FM modulate the waveform with an audio signal, and
then demodulate the waveform.

Each frame of the RBDS waveform contains 19 groups, with a group length of 104 bits
(symbols) each. Set the number of samples per RBDS symbol to 10. Therefore, the
number of samples in each frame of RBDS waveform is 104 x 10 x 19 = 19,760. According
to the RBDS standard, the bit rate is 1187.5 Hz. So, the RBDS sample rate = 1187.5 x
samples per RBDS symbol. Set the audio frame rate to 40 x 1187.5 = 47,500.

groupLen = 104;
sps = 10;
groupsPerFrame = 19;
rbdsFrameLen = groupLen*sps*groupsPerFrame;
afrRate = 40*1187.5;
rbdsRate = 1187.5*sps;
outRate = 4*57000;

afr = dsp.AudioFileReader('rbds_capture_47500.wav','SamplesPerFrame',rbdsFrameLen*afrRate/rbdsRate);
rbds = comm.RBDSWaveformGenerator('GroupsPerFrame',groupsPerFrame,'SamplesPerSymbol',sps);

fmMod = comm.FMBroadcastModulator('AudioSampleRate',afr.SampleRate,'SampleRate',outRate,...
 'Stereo',true,'RBDS',true,'RBDSSamplesPerSymbol',sps);
fmDemod = comm.FMBroadcastDemodulator('SampleRate',outRate,...
 'Stereo',true,'RBDS',true,'PlaySound',true);
scope = dsp.TimeScope('SampleRate',outRate,'YLimits',10^-2*[-1 1]);

 comm.RBDSWaveformGenerator

4-1585

Get the audio input and generate the RBDS waveform. FM modulate the stereo audio with
the RBDS waveform, add noise, and FM demodulate the audio and RBDS waveforms.
View the demodulated RBDS waveform in the time scope.

for idx = 1:7
 input = afr(); % get current audio input
 rbdsWave = rbds(); % generate RBDS info at the same configured rate
 yFM = fmMod([input input], rbdsWave); % FM modulate stereo audio with RBDS info
 rcv = awgn(yFM, 40); % add noise
 [audioRcv, rbdsRcv] = fmDemod(rcv); % FM demodulate the audio and RBDS waveforms
 scope(rbdsRcv);
end

4 System Objects — Alphabetical List

4-1586

Generate RBDS Waveform with RadioText Plus Information

Create a comm.RBDSWaveformGenerator System object™ with 20 groups per frame and
10 samples per symbol. Add the Radio Text plus (RT+) information, such as artist name

 comm.RBDSWaveformGenerator

4-1587

and song, title, to the waveform. Indicate the start and end of the RT+ substrings by
using the RadioTextIndices property.

rbds = comm.RBDSWaveformGenerator('GroupsPerFrame',20,'SamplesPerSymbol',10,...
 'SendRadioTextPlus', true);
rbds.RadioText = 'MyArtist - MySongTitle';
rbds.RadioTextType1 = 'Item.Artist';
rbds.RadioTextType2 = 'Item.Title';
rbds.RadioTextIndices = [1 8; 12 22];
for idx = 1:10
 rbds.step();
end

Register a Custom Encoding Implementation

Register a custom encoding implementation for an Open Data Application (ODA) by using
the registerODA method of the comm.RBDSWaveformGenerator System object™. Set
the ODA ID to 'CD46', which is the ID for the traffic message channel. The allocated
group type is 8A.

rbds = comm.RBDSWaveformGenerator();
odaID = 'CD46';
allocatedGroupType = '8A';

This example uses the following templates as a starting point for custom encoding
implementation.

mainProcessingFcn = @CustomODAEncodingMain;
fcn3A = @CustomODAEncoding3A;
registerODA(rbds,odaID,allocatedGroupType,mainProcessingFcn,fcn3A);
s = info(rbds);
s.ODAMap

ans=2×4 struct
 ID
 GroupType
 FunctionMain
 Function3A

4 System Objects — Alphabetical List

4-1588

Configure RBDS Waveforms with Date and Time Information

Generate RBDS waveform with date and time information, the program type, and
alternative frequencies. The comm.RBDSWaveformGenerator object uses type 4A
groups for date and time information, type 10A groups for the program type information,
and type 0A groups for alternative frequencies. View the waveform in a spectrum
analyzer.

rbds = comm.RBDSWaveformGenerator('GroupsPerFrame',1000);
scope = dsp.SpectrumAnalyzer('SampleRate',1187.5*rbds.SamplesPerSymbol,'YLimits',[-140 20]);
rbds.SendDateTime = true; % send type 4A groups
rbds.ProgramType = 'Sports';
rbds.ProgramTypeName = 'Football'; % send type 10A groups
rbds.AlternativeFrequencies = [99.1 102.5]; % info sent in type 0A groups
wave = rbds.step();
scope(wave)

 comm.RBDSWaveformGenerator

4-1589

Algorithms
comm.RBDSWaveformGenerator generates waveforms according to the RDS/RBDS
standard [1]. The RDS/RBDS standard consists of three layers: physical layer, data-link
layer, and session and application layer.

Physical Layer
The physical layer (first layer) converts the data-link bits to an analog waveform by
conducting differential encoding and biphase symbol encoding (Manchester encoding)
and pulse-shaping filtering.

4 System Objects — Alphabetical List

4-1590

Data-Link Layer
The data-link layer (second layer) performs (26,16) cyclic encoding shortened from
(341,331) encoding [1]. The second layer is responsible for error detection, error
correction, and the establishment of group-level synchronization. Each group of RDS/
RBDS frames contains four blocks of 26 bits (that is 104 bits) each. Each block contains
an information word and a check word. Each information word contains 16 bits, and each
check word contains 10 bits.

Here is the baseband coding structure for the RDS/RBDS waveform. For more details, see
[1].

For each block, a unique offset word is modulo-2 added to the checkword bits. The added
offset word provides a group and block synchronization system in the receiver (decoder).
Because the addition of the offset is reversible in the decoder, the normal additive error-
correcting and detecting properties of the basic code are unaffected.

Session and Application Layer
The first block in every group contains a program identification (PI) code. The first four
bits of the second block of every group are allocated to a four-bit code. This code specifies

 comm.RBDSWaveformGenerator

4-1591

the application of the group. Groups are referred to as types 0–15 according to the binary
weighting A3 = 8, A2 = 4, A1 = 2, A0 = 1. The fifth bit of the second block, B0, defines the
version of the application. If B0 = 0, the version of the group is A. The PI code in this
version is inserted into block 1 only. Example group types include 0A, 1A, 2A, 3A, and 4A.

The Program Type code and Traffic Program Identification (PI) occupy fixed locations in
block 2 of every group.

Group Types

References
[1] National Radio Systems Committee. United States RBDS Standard: Specification of

the radio broadcast data system (RBDS). Electronic Industries Association and
National Association of Broadcasters. April 9, 1998.

[2] Westdeutscher Rundfunk WDR, Nokia, and Institut für Rundfunktechnik IRT.
RadioText Plus (RT+) Specification, Version 2.1. 2006.

4 System Objects — Alphabetical List

4-1592

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

In addition, the following limitations apply when you generate code that contains this
System object or when you use this object in a MATLAB function block.

• The group type 4A cannot be transmitted in the generated code.
• The registerODA method is not supported.
• The ProgramType property is not tunable.

See Also
Objects
comm.FMBroadcastDemodulator | comm.FMBroadcastModulator

Introduced in R2017a

 comm.RBDSWaveformGenerator

4-1593

callLettersToPICode
System object: comm.RBDSWaveformGenerator
Package: comm

Convert North-American call letters to binary PI code

Syntax
picode = callLettersToPICode(rbdsgen, callLetters)

Description
picode = callLettersToPICode(rbdsgen, callLetters) returns the 16-bit
program identification (PI) code that corresponds to callLetters. Acceptable call letter
formats are 3-character or 4-character vectors beginning with 'K' or 'W'.

Introduced in R2017a

4 System Objects — Alphabetical List

4-1594

registerODA
System object: comm.RBDSWaveformGenerator
Package: comm

Register a custom encoding implementation for an ODA

Syntax
registerODA(rbdsgen,odaID,group,handleMain,handle3A)

Description
registerODA(rbdsgen,odaID,group,handleMain,handle3A) associates the Open
Data Application (ODA) specified by the hexadecimal ID odaID, with the type group
groups generated by rbdsgen. The four 16-bit information words of these groups are
generated by the function handle handleMain. The third information word of type 3A
groups, which is ODA-specific, is generated by the function handle handle3A.

Introduced in R2017a

 registerODA

4-1595

reset
System object: comm.RBDSWaveformGenerator
Package: comm

Reset states of RBDS waveform generator object

Syntax
reset(rbdsgen)

Description
reset(rbdsgen) resets the states of the RBDSWaveformGenerator object, rbdsgen.

Introduced in R2017a

4 System Objects — Alphabetical List

4-1596

step
System object: comm.RBDSWaveformGenerator
Package: comm

Generate RDS/RBDS waveform

Syntax
y = step(rbdsgen)

Description

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

y = step(rbdsgen) outputs a frame of the baseband RDS/RBDS waveform in column
vector y. The waveform contains the number of 104-bit groups, specified in the
GroupsPerFrame property of the object. Each symbol is oversampled according to the
SamplesPerSymbol property. Thus, the output length is SamplesPerSymbol × 104 ×
GroupsPerFrame samples. The object uses an internal scheduler to determine the order
and frequency of the transmitted group types.

Note rbdsgen specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1597

Introduced in R2017a

4 System Objects — Alphabetical List

4-1598

comm.RectangularQAMDemodulator
Package: comm

(To be removed) Demodulate using rectangular QAM signal constellation

Note comm.RectangularQAMDemodulator will be removed in a future release. Use
qamdemod instead. For more information, see “Compatibility Considerations”.

Description
The RectangularQAMDemodulator object demodulates a signal that was modulated
using quadrature amplitude modulation with a constellation on a rectangular lattice.

To demodulate a signal that was modulated using quadrature amplitude modulation:

1 Define and set up your rectangular QAM demodulator object. See “Construction” on
page 4-1599.

2 Call step to demodulate the signal according to the properties of
comm.RectangularQAMDemodulator. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RectangularQAMDemodulator creates a demodulator System object, H.
This object demodulates the input signal using the rectangular quadrature amplitude
modulation (QAM) method.

H = comm.RectangularQAMDemodulator(Name,Value) creates a rectangular QAM
demodulator object, H, with each specified property set to the specified value. You can

 comm.RectangularQAMDemodulator

4-1599

specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMDemodulator(M,Name,Value) creates a rectangular
QAM demodulator object, H. This object has the ModulationOrder property set to M, and
the other specified properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as scalar value with a positive,
integer power of two. The default is 16.

PhaseOffset

Phase offset of constellation

Specify the phase offset of the signal constellation, in radians, as a real scalar value. The
default is 0.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. When you
set this property to true the step method outputs a column vector of bit values whose
length equals log2(ModulationOrder on page 4-0) times the number of
demodulated symbols. When you set this property to false, the step method outputs a
column vector with a length equal to the input data vector. This vector contains integer
symbol values between 0 and ModulationOrder-1. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) bits to the corresponding symbol as one of Binary | Gray | Custom. The default is
Gray. When you set this property to Gray, the object uses a Gray-coded signal

4 System Objects — Alphabetical List

4-1600

constellation. When you set this property to Binary, the object uses a natural binary-
coded constellation. When you set this property to Custom, the object uses the signal
constellation defined in the CustomSymbolMapping on page 4-0 property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:15. This property
is a row or column vector with a size of ModulationOrder on page 4-0 and with
unique integer values in the range [0, ModulationOrder-1]. The values must be of data
type double. The first element of this vector corresponds to the top-leftmost point of the
constellation, with subsequent elements running down column-wise, from left to right.
The last element corresponds to the bottom-rightmost point. This property applies when
you set the SymbolMapping on page 4-0 property to Custom.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as Minimum distance
between symbols | Average power | Peak power. The default is Minimum distance
between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric
scalar value. The default is 2. This property applies when you set the
NormalizationMethod on page 4-0 property to Minimum distance between
symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric
scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Average power.

 comm.RectangularQAMDemodulator

4-1601

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Peak power.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as Hard decision | Log-likelihood
ratio | Approximate log-likelihood ratio. The default is Hard decision. When
you set the BitOutput on page 4-0 property to false the object always performs
hard-decision demodulation. This property applies when you set the BitOutput property
to true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as Property | Input port. The default is
Property. This property applies when you set the BitOutput on page 4-0 property
to true and the DecisionMethod on page 4-0 property to Log-likelihood ratio
or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If this
value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations may
yield Inf or -Inf. This result occurs because the LLR algorithm computes the exponential
of very large or very small numbers using finite-precision arithmetic. In such cases, using
approximate LLR is recommended because its algorithm does not compute exponentials.
This property applies when you set the BitOutput on page 4-0 property to true, the
DecisionMethod on page 4-0 property to Log-likelihood ratio or
Approximate log-likelihood ratio, and the VarianceSource on page 4-0
property to Property. This property is tunable.

4 System Objects — Alphabetical List

4-1602

OutputDataType

Data type of output

Specify the output data type as Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is
Full precision.

This property applies only when you set the BitOutput on page 4-0 property to
false or when you set the BitOutput property to true and the DecisionMethod on
page 4-0 property to Hard decision. In this case, when the OutputDataType on
page 4-0 property is set to Full precision, and the input data type is single- or
double-precision, the output data has the same data type as the input.

When the input data is of a fixed-point type, the output data type behaves as if you had set
the OutputDataType property to Smallest unsigned integer.

When you set the BitOutput property to true and the DecisionMethod property to
Hard Decision, then logical data type becomes a valid option.

When you set the BitOutput property to true and the DecisionMethod property to
Log-likelihood ratio or Approximate log-likelihood ratio, the output data
type is the same as that of the input. In this case, that data type can only be single- or
double-precision.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true,
which is the default, the object computes all internal arithmetic and output data types
using full precision rules. These rules provide the most accurate fixed-point numerics. It
also turns off the display of other fixed-point properties because they do not apply
individually. These rules guarantee that no quantization occurs within the object. Bits are
added, as needed, to ensure that no roundoff or overflow occurs. If you set
FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects” on page 4-1608.

 comm.RectangularQAMDemodulator

4-1603

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as Same word length as input | Custom. The
default is Same word length as input. This property applies when you set the
BitOutput on page 4-0 property to false, or when you set the BitOutput property to
true and the DecisionMethod on page 4-0 property to Hard decision. The object
uses the derotate factor in the computations only when the step method input is of a
fixed-point type and the PhaseOffset on page 4-0 property has a value that is not a
multiple of π 2.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the DerotateFactorDataType on page 4-0 property to Custom.

DenormalizationFactorDataType

Data type of denormalization factor

Specify the denormalization factor data type as Same word length as input |
Custom. The default is Same word length as input. This property applies when you
set the BitOutput on page 4-0 property to false or when you set the BitOutput
property to true and the DecisionMethod on page 4-0 property to Hard
decision.

CustomDenormalizationFactorDataType

Fixed-point data type of denormalization factor

Specify the denormalization factor fixed-point type as an unscaled numerictype object
with a signedness of Auto. The default is numerictype([],16). This property applies
when you set the DenormalizationFactorDataType on page 4-0 property to
Custom.

ProductDataType

Data type of product

4 System Objects — Alphabetical List

4-1604

Specify the product data type as Full precision | Custom. The default is Full
precision. This property applies when you set the BitOutput on page 4-0 property
to false or when you set the BitOutput property to true and the DecisionMethod on
page 4-0 property to Hard decision.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],32). This property applies when
you set the ProductDataType on page 4-0 property to Custom.

ProductRoundingMethod

Rounding of fixed-point numeric value of product

Specify the product rounding method as Ceiling | Convergent | Floor | Nearest |
Round | Simplest | Zero. The default is Floor. This property applies when the object is
not in a full precision configuration, when you set the BitOutput on page 4-0
property to false or when you set the BitOutput property to true and the
DecisionMethod on page 4-0 property to Hard decision.

ProductOverflowAction

Action when fixed-point numeric value of product overflows

Specify the product overflow action as Wrap | Saturate. The default is Wrap. This
property applies when the object is not in a full precision configuration, when you set the
BitOutput on page 4-0 property to false or when you set the BitOutput property
to true and the DecisionMethod on page 4-0 property to Hard decision.

SumDataType

Data type of sum

Specify the sum data type as Full precision | Same as product | Custom. The
default is Full precision. This property applies when you set the
FullPrecisionOverride on page 4-0 property to false, when you set the
BitOutput on page 4-0 property to false or when you set the BitOutput property
to true and the DecisionMethod on page 4-0 property to Hard decision.

 comm.RectangularQAMDemodulator

4-1605

CustomSumDataType

Fixed-point data type of sum

Specify the sum fixed-point type as an unscaled numerictype object with a signedness of
Auto. The default is numerictype([],32). This property applies when you set the
FullPrecisionOverride on page 4-0 property to false or when you set the
SumDataType on page 4-0 property Custom.

Methods
constellation (To be removed) Calculate or plot ideal signal constellation
step (To be removed) Demodulate using rectangular QAM method

Common to All System Objects
release Allow System object property value changes

Examples

Modulate and Demodulate Data Using 16-QAM

This example shows how to modulate and demodulate data using 16-QAM modulation.

Create rectangular QAM modulator and demodulator objects with the modulation order
set to 16.

hMod = comm.RectangularQAMModulator('ModulationOrder',16);
hDemod = comm.RectangularQAMDemodulator('ModulationOrder',16);

Create an AWGN channel object.

hAWGN = comm.AWGNChannel('EbNo',2,'BitsPerSymbol',4);

To track the number of errors, create an error rate counter object.

hError = comm.ErrorRate;

Set the random number generator to its default state to ensure repeatability.

4 System Objects — Alphabetical List

4-1606

rng default

Generate random data symbols and apply 16-QAM modulation.

dataIn = randi([0 15],10000,1);
txSig = step(hMod,dataIn);

Pass the modulated data through the AWGN channel.

rxSig = step(hAWGN,txSig);

Display the noisy constellation using the scatterplot function.

scatterplot(rxSig)

 comm.RectangularQAMDemodulator

4-1607

Demodulate the received data symbols.

dataOut = step(hDemod,rxSig);

Using the step function of hError, calculate the error statistics.

errorStats = step(hError,dataIn,dataOut);

Display the error statistics, where you can observe that 8 errors were recorded in 10,000
transmitted symbols.

fprintf('\nError rate = %f\nNumber of errors = %d\nNumber of symbols = %d\n', ...
errorStats)

Error rate = 0.000800
Number of errors = 8
Number of symbols = 10000

More About

Full Precision for Fixed-Point System Objects
FullPrecisionOverride is a convenience property that, when you set to true,
automatically sets the appropriate properties for an object to use full-precision to process
fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough
additional bits to compute the ideal full precision result. This operation has no minimum
or maximum range overflow nor any precision loss due to rounding or underflow. It is also
independent of any hardware-specific settings. The data types chosen are based only on
known data type ranges and not on actual numeric values. Full precision for System
objects does not optimize coefficient values. When you set the FullPrecisionOverride
property to true, the other fixed-point properties it controls no longer apply and any of
their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

4 System Objects — Alphabetical List

4-1608

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM Demodulator Baseband block reference page. The object properties correspond to
the block parameters.

Compatibility Considerations

comm.RectangularQAMDemodulator will be removed in a
future release. Use qamdemod instead.
Not recommended starting in R2018b

Constellation normalization by PeakPower and AveragePower (other than unit average
power) as supported by comm.RectangularQAMModulator and
comm.RectangularQAMDemodulator is not inherently provided by functions. This code
shows you how to perform peak power and average power normalization using qammod
and qamdemod functions.

Average Power Normalization for Hard Decision
>> averagePowerReplacement(64)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

>> averagePowerReplacement(32)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

function averagePowerReplacement(M)
% QAM Workaround for "Average power" normalization method when using functions

 comm.RectangularQAMDemodulator

4-1609

 avgPow = 100;
 minD = avgPow2MinD(avgPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);
 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);

 % 1) The two constellations are same
 constellationSO = modObj([0:M-1]');
 constellationFcn = qammod([0:M-1]', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);
 z1 = demodObj(y1);
 objModDemodOutputIsEqual = isequal(x, z1)

 % 2) qamdemod() demodualtes modulator System object output
 y1ScaledForFcn = (2/minD) .* y1;
 z2 = qamdemod(y1ScaledForFcn, M);
 objModFcnDemodIsEqual = isequal(x, z2)

 % 3) Demodulator System object demodulates qammod() output
 y2 = qammod(x, M);
 y2ScaledForSO = (minD/2) .* y2;
 z3 = demodObj(y2ScaledForSO);
 fcnModObjDemodIsEqual = isequal(x, z3)

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Peak Power Normalization for Hard Decision
>> peakPowerReplacement(16)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical

4 System Objects — Alphabetical List

4-1610

 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

>> peakPowerReplacement(128)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

function peakPowerReplacement(M)
% QAM Workaround for "Peak power" normalization method when using functions

 pkPow = 5;
 minD = pkPow2MinD(pkPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);
 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);

 % 1) The two constellations are same
 constellationSO = modObj([0:M-1]');
 constellationFcn = qammod([0:M-1]', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);
 z1 = demodObj(y1);
 objModDemodOutputIsEqual = isequal(x, z1)

 % 2) qamdemod() demodualtes modulator System object output
 y1ScaledForFcn = (2/minD) .* y1;
 z2 = qamdemod(y1ScaledForFcn, M);
 objModFcnDemodIsEqual = isequal(x, z2)

 % 3) Demodulator System object demodulates qammod() output
 y2 = qammod(x, M);
 y2ScaledForSO = (minD/2) .* y2;
 z3 = demodObj(y2ScaledForSO);
 fcnModObjDemodIsEqual = isequal(x, z3)

end

function minD = pkPow2MinD(pkPow, M)
 % Peak power to minimum distance

 comm.RectangularQAMDemodulator

4-1611

 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = 0.5*M - sqrt(M) + 0.5;
 else
 % Cross QAM
 mBy32 = M/32;
 if (nBits > 4)
 sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
 else
 sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
 end
 end
 minD = sqrt(pkPow/sf);

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Average Power Normalization for Approximate LLR
>> averagePowerReplacementApproxLLR(16, 10, 1) % M=16, avgPow=10, snrdB=1
maxConstellationErr =
 0
maxOutputErr =
 0
>> averagePowerReplacementApproxLLR(32, 7, 20) % M=32, avgPow=7, snrdB=20
maxConstellationErr =
 0
maxOutputErr =
 8.5265e-14
>> averagePowerReplacementApproxLLR(64, 111, -2) % M=64, avgPow=111, snrdB=-2
maxConstellationErr =
 0
maxOutputErr =
 2.2204e-15
>> averagePowerReplacementApproxLLR(1024, 87, 33) % M=1024, avgPow=87, snrdB=33
maxConstellationErr =
 0
maxOutputErr =
 1.3642e-12

function averagePowerReplacementApproxLLR(M, avgPow, snrdB)
% QAM Workaround for "Average power" normalization method for
% Approximate LLR output when using functions
%

4 System Objects — Alphabetical List

4-1612

% M - Modulation order. Must be supported by QAM modulator-demodulator
% avgPow - Average constellation power
% snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = avgPow2MinD(avgPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Approximate log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Functions' output is same as System objects' output, with right
 % scaling
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Scale the received signal for the constellation used by function
 y2RecScaled = (2/minD) .* y2Rec;
 % Scale the noise variance appropriately
 z2 = qamdemod(y2RecScaled, M, 'OutputType', 'approxllr', ...
 'NoiseVariance', nv1 * (2/minD)^2);

 maxOutputErr = max(abs(z1-z2))

end

 comm.RectangularQAMDemodulator

4-1613

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Peak Power Normalization for Approximate LLR
>> peakPowerReplacementApproxLLR(4, 2.5, 7) % M=4, pkPow=2.5, snrdB=7
maxConstellationErr =
 0
maxOutputErr =
 7.1054e-15
>> peakPowerReplacementApproxLLR(16, 19, 0) % M=16, pkPow=19, snrdB=0
maxConstellationErr =
 0
maxOutputErr =
 4.4409e-15
>> peakPowerReplacementApproxLLR(128, 12, 4.4) % M=128, pkPow=12, snrdB=4.4
maxConstellationErr =
 0
maxOutputErr =
 2.6645e-15
>> peakPowerReplacementApproxLLR(256, 221, 16) % M=256, pkPow=221, snrdB=16
maxConstellationErr =
 0
maxOutputErr =
 2.8422e-14

function peakPowerReplacementApproxLLR(M, pkPow, snrdB)
% QAM Workaround for "Peak power" normalization method for
% Approximate LLR output when using functions
%
% M - Modulation order. Must be supported by QAM modulator-demodulator
% avgPow - Average constellation power
% snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = pkPow2MinD(pkPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

4 System Objects — Alphabetical List

4-1614

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Approximate log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Functions' output is same as System objects' output, with right
 % scaling
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Scale the received signal for the constellation used by function
 y2RecScaled = (2/minD) .* y2Rec;
 % Scale the noise variance appropriately
 z2 = qamdemod(y2RecScaled, M, 'OutputType', 'approxllr', ...
 'NoiseVariance', nv1 * (2/minD)^2);

 maxOutputErr = max(abs(z1-z2))

end

function minD = pkPow2MinD(pkPow, M)
 % Peak power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = 0.5*M - sqrt(M) + 0.5;
 else
 % Cross QAM
 mBy32 = M/32;
 if (nBits > 4)
 sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
 else
 sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
 end
 end
 minD = sqrt(pkPow/sf);

 comm.RectangularQAMDemodulator

4-1615

end

Average Power Normalization for LLR
>> averagePowerReplacementLLR(16, 20, 1) % M=16, avgPow=20, snrdB=1
maxConstellationErr =
 0
maxOutputErr =
 8.8818e-16
>> averagePowerReplacementLLR(32, 5.5, 15) % M=32, avgPow=5.5, snrdB=15
maxConstellationErr =
 0
maxOutputErr =
 7.1054e-15
>> averagePowerReplacementLLR(64, 100, -2) % M=64, avgPow=100, snrdB=-2
maxConstellationErr =
 0
maxOutputErr =
 8.8818e-16
>> averagePowerReplacementLLR(256, 117, 8) % M=256, avgPow=117, snrdB=8
maxConstellationErr =
 0
maxOutputErr =
 3.5527e-15

function averagePowerReplacementLLR(M, avgPow, snrdB)
 % QAM
 % Workaround for "Average power" normalization method for
 % LLR output when using functions
 %
 % M - Modulation order. Must be supported by QAM modulator-demodulator
 % avgPow - Average constellation power
 % snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = avgPow2MinD(avgPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...

4 System Objects — Alphabetical List

4-1616

 'AveragePower', avgPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Get the same output as System object using functions
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Create inputs required by utility function to compute LLR
 nBits = log2(M);
 bitwiseMapping = de2bi((0:M-1)', nBits, 'left-msb');
 % c0 contains indices of mapping which has 0 at various bit positions
 [c0, ~] = find(bitwiseMapping==0);
 c0 = reshape(int32(c0), M/2, nBits);
 % c1 contains indices of mapping which has 1 at various bit positions
 [c1, ~] = find(bitwiseMapping==1);
 c1 = reshape(int32(c1), M/2, nBits);

 z2 = comm.internal.utilities.computeLLRsim(y2Rec, M, nBits, ...
 scaledConstellationFcn, c0, c1, nv1);

 maxOutputErr = max(abs(z1-z2))

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Peak Power Normalization for LLR
>> peakPowerReplacementLLR(8, 21, 0) % M=8, pkPow=21, snrdB=0
maxConstellationErr =
 0
maxOutputErr =
 8.8818e-16

 comm.RectangularQAMDemodulator

4-1617

>> peakPowerReplacementLLR(64, 7, 22) % M=64, pkPow=7, snrdB=22
maxConstellationErr =
 0
maxOutputErr =
 7.1054e-15
>> peakPowerReplacementLLR(512, 1000, -5) % M=512, pkPow=1000, snrdB=-5
maxConstellationErr =
 0
maxOutputErr =
 2.6645e-15
>> peakPowerReplacementLLR(1024, 1, 6) % M=1024, pkPow=1, snrdB=6
maxConstellationErr =
 0
maxOutputErr =
 3.5527e-15

function peakPowerReplacementLLR(M, pkPow, snrdB)
% QAM Workaround for "Peak power" normalization method for
% LLR output when using functions
%
% M - Modulation order. Must be supported by QAM modulator-demodulator
% avgPow - Average constellation power
% snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = pkPow2MinD(pkPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Get the same output as System object using functions
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

4 System Objects — Alphabetical List

4-1618

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Create inputs required by utility function to compute LLR
 nBits = log2(M);
 bitwiseMapping = de2bi((0:M-1)', nBits, 'left-msb');
 % c0 contains indices of mapping which has 0 at various bit positions
 [c0, ~] = find(bitwiseMapping==0);
 c0 = reshape(int32(c0), M/2, nBits);
 % c1 contains indices of mapping which has 1 at various bit positions
 [c1, ~] = find(bitwiseMapping==1);
 c1 = reshape(int32(c1), M/2, nBits);

 z2 = comm.internal.utilities.computeLLRsim(y2Rec, M, nBits, ...
 scaledConstellationFcn, c0, c1, nv1);

 maxOutputErr = max(abs(z1-z2))

end

function minD = pkPow2MinD(pkPow, M)
 % Peak power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = 0.5*M - sqrt(M) + 0.5;
 else
 % Cross QAM
 mBy32 = M/32;
 if (nBits > 4)
 sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
 else
 sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
 end
 end
 minD = sqrt(pkPow/sf);

end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.RectangularQAMDemodulator

4-1619

See Also
Functions
genqamdemod | qamdemod

Objects
comm.GeneralQAMDemodulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-1620

constellation
System object: comm.RectangularQAMDemodulator
Package: comm

(To be removed) Calculate or plot ideal signal constellation

Note comm.RectangularQAMDemodulator will be removed in a future release. Use
qamdemod instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Plot QAM Reference Constellations

Plot QAM reference constellation using the qammod and qamdemod functions. Show that
the 'PlotConstellation,true' Name,Value pair property works for both qammod and
qamdemod functions. Also show the symbol ordering for Gray and binary code ordering by
representing the data in binary format.

Create symbols for a 16-QAM modulator.

M = 16; % For 16-QAM
refSym = (0:M-1)';

 constellation

4-1621

Plot the reference constellation using the qammod function.

qammod(refSym,M,'PlotConstellation',true);

The default symbol order is Gray code ordering. To highlight the Gray symbol mapping,
replot the reference constellation using binary input type. When you specify
'InputType','bit', the input signal must contain binary values, and the number of
rows must be an integer multiple of log2(M). Tranpose the input vector so that the input
symbols map to the column vectors.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'PlotConstellation',true,'InputType','bit');

4 System Objects — Alphabetical List

4-1622

Replot the reference constellation using binary-coded symbol ordering.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'bin','PlotConstellation',true,'InputType','bit');

 constellation

4-1623

Create symbols for a 64-QAM modulator.

M = 64; % For 64-QAM
refSym = (0:M-1);

Plot the reference constellation using the qamdemod function.

qamdemod(refSym,M,'PlotConstellation',true);

4 System Objects — Alphabetical List

4-1624

 constellation

4-1625

step
System object: comm.RectangularQAMDemodulator
Package: comm

(To be removed) Demodulate using rectangular QAM method

Note comm.RectangularQAMDemodulator will be removed in a future release. Use
qamdemod instead.

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates the input data, X, with the rectangular QAM demodulator
System object, H, and returns, Y. Input X must be a scalar or a column vector with double
or single precision data type. When ModulationOrder is an even power of two and you
set the BitOutput property to false or, when you set the DecisionMethod to Hard
decision and the BitOutput property to true, the data type of the input can also be
signed integer, or signed fixed point (fi objects). Depending on the BitOutput property
value, output Y can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratioor Log-likelihood ratio, and

4 System Objects — Alphabetical List

4-1626

the VarianceSource property to Input port. The data type of input VAR must be
double or single precision.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1627

comm.RectangularQAMModulator
Package: comm

(To be removed) Modulate using rectangular QAM signal constellation

Note comm.RectangularQAMModulator will be removed in a future release. Use
qammod instead. For more information, see “Compatibility Considerations”.

Description
The RectangularQAMModulator object modulates using M-ary quadrature amplitude
modulation with a constellation on a rectangular lattice. The output is a baseband
representation of the modulated signal. This block accepts a scalar or column vector input
signal.

To modulate a signal using quadrature amplitude modulation:

1 Define and set up your rectangular QAM modulator object. See “Construction” on
page 4-1628.

2 Call step to modulate the signal according to the properties of
comm.RectangularQAMModulator. The behavior of step is specific to each object
in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RectangularQAMModulator creates a modulator object, H. This object
modulates the input using the rectangular quadrature amplitude modulation (QAM)
method.

4 System Objects — Alphabetical List

4-1628

H = comm.RectangularQAMModulator(Name,Value) creates a rectangular QAM
modulator object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMModulator(M,Name,Value) creates a rectangular QAM
modulator object, H. This object has the ModulationOrder property set to M, and the
other specified properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as scalar value that is a positive
integer power of two. The default is 16.

PhaseOffset

Phase offset of constellation

Specify the phase offset of the signal constellation, in radians, as a real scalar value. The
default is 0.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input requires a column vector of bit values. The
length of this vector must an integer multiple of log2(ModulationOrder on page 4-
0). This vector contains bit representations of integers between 0 and
ModulationOrder–1. When you set this property to false, the step method input must
be a column vector of integer symbol values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 4-
0) input bits to the corresponding symbol as Binary | Gray | Custom. The default is

 comm.RectangularQAMModulator

4-1629

Gray. When you set this property to Gray, the System object uses a Gray-coded signal
constellation. When you set this property to Binary, the object uses a natural binary-
coded constellation. When you set this property to Custom, the object uses the signal
constellation defined in the CustomSymbolMapping on page 4-0 property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:15. This property
is a row or column vector with a size of ModulationOrder on page 4-0 . This vector
has unique integer values in the range [0, ModulationOrder–1]. These values must be
of data type double. The first element of this vector corresponds to the top-leftmost point
of the constellation, with subsequent elements running down column-wise, from left to
right. The last element corresponds to the bottom-rightmost point. This property applies
when you set the SymbolMapping on page 4-0 property to Custom.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as Minimum distance
between symbols | Average power | Peak power. The default is Minimum distance
between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric
scalar value. The default is 2. This property applies when you set the
NormalizationMethod on page 4-0 property to Minimum distance between
symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric
scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Average power.

4 System Objects — Alphabetical List

4-1630

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive real, numeric
scalar value. The default is 1. This property applies when you set the
NormalizationMethod on page 4-0 property to Peak power.

OutputDataType

Data type of output

Specify the output data type as double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of Auto.
The default is numerictype([],16). This property applies when you set the
OutputDataType on page 4-0 property to Custom.

Methods
constellation (To be removed) Calculate or plot ideal signal constellation
step (To be removed) Modulate using rectangular QAM method

Common to All System Objects
release Allow System object property value changes

Examples

Modulate Data with 64-QAM

This example shows how to modulate binary data with a 64-QAM System object and by
using the qammod function. The comm.RectangularQAMModulator System object will

 comm.RectangularQAMModulator

4-1631

be removed in a future release, use qammod instead. The resultant constellation is
displayed. For comparison, modulation using the comm.RectangulrQAMModulator
System object is also included.

Generate random binary data. When using binary input data, the signal length must be a
multiple of the number of bits per symbol. There are 6 bits/symbol in 64-QAM.

bps = 6;
M = 2^bps; % 64-QAM
data = randi([0 1],6000,1);

Create a 64-QAM modulator object that accepts binary input.

rectqamMod = comm.RectangularQAMModulator('ModulationOrder',64,'BitInput',true);

Modulate the data using the qammod function and using the rectqamMod System object.
Plot the both sets of modulated data using the scatterplot function.

dataMod = qammod(data,M,'InputType','bit');
dataModSO = rectqamMod(data);
scatterplot(dataMod)

4 System Objects — Alphabetical List

4-1632

scatterplot(dataModSO)

 comm.RectangularQAMModulator

4-1633

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM Modulator Baseband block reference page. The object properties correspond to the
block parameters.

4 System Objects — Alphabetical List

4-1634

Compatibility Considerations

comm.RectangularQAMModulator will be removed in a future
release. Use qammod instead.
Not recommended starting in R2018b

Constellation normalization by PeakPower and AveragePower (other than unit average
power) as supported by comm.RectangularQAMModulator and
comm.RectangularQAMDemodulator is not inherently provided by functions. This code
shows you how to perform peak power and average power normalization using qammod
and qamdemod functions.

Average Power Normalization for Hard Decision
>> averagePowerReplacement(64)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

>> averagePowerReplacement(32)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

function averagePowerReplacement(M)
% QAM Workaround for "Average power" normalization method when using functions

 avgPow = 100;
 minD = avgPow2MinD(avgPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);
 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);

 % 1) The two constellations are same

 comm.RectangularQAMModulator

4-1635

 constellationSO = modObj([0:M-1]');
 constellationFcn = qammod([0:M-1]', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);
 z1 = demodObj(y1);
 objModDemodOutputIsEqual = isequal(x, z1)

 % 2) qamdemod() demodualtes modulator System object output
 y1ScaledForFcn = (2/minD) .* y1;
 z2 = qamdemod(y1ScaledForFcn, M);
 objModFcnDemodIsEqual = isequal(x, z2)

 % 3) Demodulator System object demodulates qammod() output
 y2 = qammod(x, M);
 y2ScaledForSO = (minD/2) .* y2;
 z3 = demodObj(y2ScaledForSO);
 fcnModObjDemodIsEqual = isequal(x, z3)

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Peak Power Normalization for Hard Decision
>> peakPowerReplacement(16)
maxConstellationErr =
 0
objModDemodOutputIsEqual =
 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

>> peakPowerReplacement(128)
maxConstellationErr =
 0
objModDemodOutputIsEqual =

4 System Objects — Alphabetical List

4-1636

 logical
 1
objModFcnDemodIsEqual =
 logical
 1
fcnModObjDemodIsEqual =
 logical
 1

function peakPowerReplacement(M)
% QAM Workaround for "Peak power" normalization method when using functions

 pkPow = 5;
 minD = pkPow2MinD(pkPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);
 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);

 % 1) The two constellations are same
 constellationSO = modObj([0:M-1]');
 constellationFcn = qammod([0:M-1]', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);
 z1 = demodObj(y1);
 objModDemodOutputIsEqual = isequal(x, z1)

 % 2) qamdemod() demodualtes modulator System object output
 y1ScaledForFcn = (2/minD) .* y1;
 z2 = qamdemod(y1ScaledForFcn, M);
 objModFcnDemodIsEqual = isequal(x, z2)

 % 3) Demodulator System object demodulates qammod() output
 y2 = qammod(x, M);
 y2ScaledForSO = (minD/2) .* y2;
 z3 = demodObj(y2ScaledForSO);
 fcnModObjDemodIsEqual = isequal(x, z3)

end

function minD = pkPow2MinD(pkPow, M)
 % Peak power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = 0.5*M - sqrt(M) + 0.5;
 else
 % Cross QAM
 mBy32 = M/32;
 if (nBits > 4)
 sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
 else
 sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
 end

 comm.RectangularQAMModulator

4-1637

 end
 minD = sqrt(pkPow/sf);

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Average Power Normalization for Approximate LLR
>> averagePowerReplacementApproxLLR(16, 10, 1) % M=16, avgPow=10, snrdB=1
maxConstellationErr =
 0
maxOutputErr =
 0
>> averagePowerReplacementApproxLLR(32, 7, 20) % M=32, avgPow=7, snrdB=20
maxConstellationErr =
 0
maxOutputErr =
 8.5265e-14
>> averagePowerReplacementApproxLLR(64, 111, -2) % M=64, avgPow=111, snrdB=-2
maxConstellationErr =
 0
maxOutputErr =
 2.2204e-15
>> averagePowerReplacementApproxLLR(1024, 87, 33) % M=1024, avgPow=87, snrdB=33
maxConstellationErr =
 0
maxOutputErr =
 1.3642e-12

function averagePowerReplacementApproxLLR(M, avgPow, snrdB)
% QAM Workaround for "Average power" normalization method for
% Approximate LLR output when using functions
%
% M - Modulation order. Must be supported by QAM modulator-demodulator
% avgPow - Average constellation power
% snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = avgPow2MinD(avgPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');

4 System Objects — Alphabetical List

4-1638

 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Approximate log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Functions' output is same as System objects' output, with right
 % scaling
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Scale the received signal for the constellation used by function
 y2RecScaled = (2/minD) .* y2Rec;
 % Scale the noise variance appropriately
 z2 = qamdemod(y2RecScaled, M, 'OutputType', 'approxllr', ...
 'NoiseVariance', nv1 * (2/minD)^2);

 maxOutputErr = max(abs(z1-z2))

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;

 comm.RectangularQAMModulator

4-1639

 end
 end
 minD = sqrt(avgPow/sf);

end

Peak Power Normalization for Approximate LLR
>> peakPowerReplacementApproxLLR(4, 2.5, 7) % M=4, pkPow=2.5, snrdB=7
maxConstellationErr =
 0
maxOutputErr =
 7.1054e-15
>> peakPowerReplacementApproxLLR(16, 19, 0) % M=16, pkPow=19, snrdB=0
maxConstellationErr =
 0
maxOutputErr =
 4.4409e-15
>> peakPowerReplacementApproxLLR(128, 12, 4.4) % M=128, pkPow=12, snrdB=4.4
maxConstellationErr =
 0
maxOutputErr =
 2.6645e-15
>> peakPowerReplacementApproxLLR(256, 221, 16) % M=256, pkPow=221, snrdB=16
maxConstellationErr =
 0
maxOutputErr =
 2.8422e-14

function peakPowerReplacementApproxLLR(M, pkPow, snrdB)
% QAM Workaround for "Peak power" normalization method for
% Approximate LLR output when using functions
%
% M - Modulation order. Must be supported by QAM modulator-demodulator
% avgPow - Average constellation power
% snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = pkPow2MinD(pkPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

4 System Objects — Alphabetical List

4-1640

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Approximate log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Functions' output is same as System objects' output, with right
 % scaling
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Scale the received signal for the constellation used by function
 y2RecScaled = (2/minD) .* y2Rec;
 % Scale the noise variance appropriately
 z2 = qamdemod(y2RecScaled, M, 'OutputType', 'approxllr', ...
 'NoiseVariance', nv1 * (2/minD)^2);

 maxOutputErr = max(abs(z1-z2))

end

function minD = pkPow2MinD(pkPow, M)
 % Peak power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = 0.5*M - sqrt(M) + 0.5;
 else
 % Cross QAM
 mBy32 = M/32;
 if (nBits > 4)
 sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
 else
 sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
 end
 end
 minD = sqrt(pkPow/sf);

end

Average Power Normalization for LLR
>> averagePowerReplacementLLR(16, 20, 1) % M=16, avgPow=20, snrdB=1
maxConstellationErr =
 0
maxOutputErr =
 8.8818e-16
>> averagePowerReplacementLLR(32, 5.5, 15) % M=32, avgPow=5.5, snrdB=15
maxConstellationErr =
 0

 comm.RectangularQAMModulator

4-1641

maxOutputErr =
 7.1054e-15
>> averagePowerReplacementLLR(64, 100, -2) % M=64, avgPow=100, snrdB=-2
maxConstellationErr =
 0
maxOutputErr =
 8.8818e-16
>> averagePowerReplacementLLR(256, 117, 8) % M=256, avgPow=117, snrdB=8
maxConstellationErr =
 0
maxOutputErr =
 3.5527e-15

function averagePowerReplacementLLR(M, avgPow, snrdB)
 % QAM
 % Workaround for "Average power" normalization method for
 % LLR output when using functions
 %
 % M - Modulation order. Must be supported by QAM modulator-demodulator
 % avgPow - Average constellation power
 % snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = avgPow2MinD(avgPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Average power', ...
 'AveragePower', avgPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Get the same output as System object using functions
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise

4 System Objects — Alphabetical List

4-1642

 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Create inputs required by utility function to compute LLR
 nBits = log2(M);
 bitwiseMapping = de2bi((0:M-1)', nBits, 'left-msb');
 % c0 contains indices of mapping which has 0 at various bit positions
 [c0, ~] = find(bitwiseMapping==0);
 c0 = reshape(int32(c0), M/2, nBits);
 % c1 contains indices of mapping which has 1 at various bit positions
 [c1, ~] = find(bitwiseMapping==1);
 c1 = reshape(int32(c1), M/2, nBits);

 z2 = comm.internal.utilities.computeLLRsim(y2Rec, M, nBits, ...
 scaledConstellationFcn, c0, c1, nv1);

 maxOutputErr = max(abs(z1-z2))

end

function minD = avgPow2MinD(avgPow, M)
 % Average power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = (M - 1)/6;
 else
 % Cross QAM
 if (nBits > 4)
 sf = ((31 * M / 32) - 1) / 6;
 else
 sf = ((5 * M / 4) - 1) / 6;
 end
 end
 minD = sqrt(avgPow/sf);

end

Peak Power Normalization for LLR
>> peakPowerReplacementLLR(8, 21, 0) % M=8, pkPow=21, snrdB=0
maxConstellationErr =
 0
maxOutputErr =
 8.8818e-16
>> peakPowerReplacementLLR(64, 7, 22) % M=64, pkPow=7, snrdB=22
maxConstellationErr =
 0
maxOutputErr =
 7.1054e-15
>> peakPowerReplacementLLR(512, 1000, -5) % M=512, pkPow=1000, snrdB=-5
maxConstellationErr =
 0
maxOutputErr =
 2.6645e-15
>> peakPowerReplacementLLR(1024, 1, 6) % M=1024, pkPow=1, snrdB=6
maxConstellationErr =
 0

 comm.RectangularQAMModulator

4-1643

maxOutputErr =
 3.5527e-15

function peakPowerReplacementLLR(M, pkPow, snrdB)
% QAM Workaround for "Peak power" normalization method for
% LLR output when using functions
%
% M - Modulation order. Must be supported by QAM modulator-demodulator
% avgPow - Average constellation power
% snrdB - SNR, in dB. AWGN channel adds noise to provide this SNR.

 minD = pkPow2MinD(pkPow, M);

 modObj = comm.RectangularQAMModulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow);

 % 1) The two constellations are same
 constellationSO = modObj((0:M-1)');
 constellationFcn = qammod((0:M-1)', M);
 scaledConstellationFcn = (minD/2) .* constellationFcn;
 err = constellationSO - scaledConstellationFcn;
 maxConstellationErr = max(abs(err))

 x = randi([0, M-1], 100, 1);

 y1 = modObj(x);

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y1Rec = awgn(y1, snrdB, 'measured', 'db');

 % noise variance
 nv = mean(abs(y1).^2) / 10^(snrdB/10);

 demodObj = comm.RectangularQAMDemodulator('ModulationOrder', M, ...
 'NormalizationMethod', 'Peak power', ...
 'PeakPower', pkPow, ...
 'BitOutput', true, ...
 'DecisionMethod', 'Log-likelihood ratio', ...
 'Variance', nv);

 z1 = demodObj(y1Rec);

 % 2) Get the same output as System object using functions
 y2 = qammod(x, M);
 % Scale function's output so that it matches System object output.
 y2Scaled = (minD/2) .* y2;

 % Add noise
 % Reset global rng stream for repeatable noise samples
 reset(RandStream.getGlobalStream);
 y2Rec = awgn(y2Scaled, snrdB, 'measured', 'db');

 % noise variance
 nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

 % Create inputs required by utility function to compute LLR
 nBits = log2(M);
 bitwiseMapping = de2bi((0:M-1)', nBits, 'left-msb');
 % c0 contains indices of mapping which has 0 at various bit positions

4 System Objects — Alphabetical List

4-1644

 [c0, ~] = find(bitwiseMapping==0);
 c0 = reshape(int32(c0), M/2, nBits);
 % c1 contains indices of mapping which has 1 at various bit positions
 [c1, ~] = find(bitwiseMapping==1);
 c1 = reshape(int32(c1), M/2, nBits);

 z2 = comm.internal.utilities.computeLLRsim(y2Rec, M, nBits, ...
 scaledConstellationFcn, c0, c1, nv1);

 maxOutputErr = max(abs(z1-z2))

end

function minD = pkPow2MinD(pkPow, M)
 % Peak power to minimum distance
 nBits = log2(M);
 if (mod(nBits,2)==0)
 % Square QAM
 sf = 0.5*M - sqrt(M) + 0.5;
 else
 % Cross QAM
 mBy32 = M/32;
 if (nBits > 4)
 sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
 else
 sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
 end
 end
 minD = sqrt(pkPow/sf);

end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
genqammod | qammod

 comm.RectangularQAMModulator

4-1645

Objects
comm.GeneralQAMModulator

Introduced in R2012a

4 System Objects — Alphabetical List

4-1646

constellation
System object: comm.RectangularQAMModulator
Package: comm

(To be removed) Calculate or plot ideal signal constellation

Note comm.RectangularQAMModulator will be removed in a future release. Use
qammod instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Plot QAM Reference Constellations

Plot QAM reference constellation using the qammod and qamdemod functions. Show that
the 'PlotConstellation,true' Name,Value pair property works for both qammod and
qamdemod functions. Also show the symbol ordering for Gray and binary code ordering by
representing the data in binary format.

Create symbols for a 16-QAM modulator.

M = 16; % For 16-QAM
refSym = (0:M-1)';

 constellation

4-1647

Plot the reference constellation using the qammod function.

qammod(refSym,M,'PlotConstellation',true);

The default symbol order is Gray code ordering. To highlight the Gray symbol mapping,
replot the reference constellation using binary input type. When you specify
'InputType','bit', the input signal must contain binary values, and the number of
rows must be an integer multiple of log2(M). Tranpose the input vector so that the input
symbols map to the column vectors.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'PlotConstellation',true,'InputType','bit');

4 System Objects — Alphabetical List

4-1648

Replot the reference constellation using binary-coded symbol ordering.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'bin','PlotConstellation',true,'InputType','bit');

 constellation

4-1649

Create symbols for a 64-QAM modulator.

M = 64; % For 64-QAM
refSym = (0:M-1);

Plot the reference constellation using the qamdemod function.

qamdemod(refSym,M,'PlotConstellation',true);

4 System Objects — Alphabetical List

4-1650

 constellation

4-1651

step
System object: comm.RectangularQAMModulator
Package: comm

(To be removed) Modulate using rectangular QAM method

Note comm.RectangularQAMModulator will be removed in a future release. Use
qammod instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) modulates input data, X, with the rectangular QAM modulator object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

4 System Objects — Alphabetical List

4-1652

nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1653

comm.RectangularQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to rectangular QAM signal
constellation

Description
The RectangularQAMTCMDemodulator object uses the Viterbi algorithm to decode a
trellis-coded modulation (TCM) signal that was previously modulated using a rectangular
QAM signal constellation.

To demodulate convolutionally encoded data mapped to a rectangular QAM signal
constellation:

1 Define and set up your rectangular QAM TCM demodulator object. See
“Construction” on page 4-1654.

2 Call step to demodulate the signal according to the properties of
comm.RectangularQAMTCMDemodulator. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RectangularQAMTCMDemodulator creates a trellis-coded, rectangular,
quadrature amplitude (QAM TCM) demodulator System object, H. This object
demodulates convolutionally encoded data that has been mapped to a rectangular QAM
constellation.

H = comm.RectangularQAMTCMDemodulator(Name,Value) creates a rectangular,
QAM TCM, demodulator object, H, with each specified property set to the specified value.

4 System Objects — Alphabetical List

4-1654

You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMTCMDemodulator(TRELLIS,Name,Value) creates a
rectangular QAM TCM demodulator object, H. This object has the TrellisStructure
property set to TRELLIS, and the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether a structure is a valid
trellis. The default is the result of poly2trellis([3 1 1], [5 2 0 0; 0 0 1 0; 0
0 0 1]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The default
is Continuous.

When you set this property to Continuous, the object saves the internal state metric at
the end of each frame. The next frame uses the same state metric. The object treats each
traceback path independently. If the input signal contains only one symbol, you should use
Continuous mode.

When you set this property to Truncated, the object treats each input vector
independently. The traceback path starts at the state with the best metric and always
ends in the all-zeros state.

When you set this property to Terminated, the object treats each input vector
independently, and the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

 comm.RectangularQAMTCMDemodulator

4-1655

Specify the scalar, integer number of trellis branches to construct each traceback path.
The default is 21. The Traceback depth parameter influences the decoding accuracy and
delay. The decoding delay is the number of zero symbols that precede the first decoded
symbol in the output.

When you set the TerminationMethod property to Continuous, the decoding delay
consists of TracebackDepth zero symbols or TracebackDepth×K zero bits for a rate K/N
convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, no output
delay occurs and the traceback depth must be less than or equal to the number of
symbols in each input vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default is
false. When this additional reset input is a nonzero value, the internal states of the
encoder reset to initial conditions. This property applies when you set the
TerminationMethod property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive, integer scalar value. The number of points must be 4, 8, 16,
32, or 64. The default is 16. The ModulationOrder property value must equal the number
of possible input symbols to the convolutional decoder of the rectangular QAM TCM
demodulator object. The ModulationOrder must equal 2N for a rate K/N convolutional
code.

OutputDataType

Data type of output

Specify output data type as logical | double. The default is double.

4 System Objects — Alphabetical List

4-1656

Methods
reset Reset states of the rectangular QAM TCM demodulator object
step Demodulate convolutionally encoded data mapped to rectangular QAM

constellation

Common to All System Objects
release Allow System object property value changes

Examples

Modulate and Demodulate Using Rectangular 16-QAM TCM

Modulate and demodulate data using 16-QAM TCM in an AWGN channel. Estimate the
BER.

Create QAM TCM modulator and demodulator System objects™.

hMod = comm.RectangularQAMTCMModulator;
hDemod = comm.RectangularQAMTCMDemodulator('TracebackDepth',16);

Create an AWGN channel object.

hAWGN = comm.AWGNChannel('EbNo',5);

Determine the delay through the QAM TCM demodulator. The demodulator uses the
Viterbi algorithm to decode the TCM signal that was modulated using rectangular QAM.
To accurately calculate the bit error rate, the delay through the decoder must be known.

bitsPerSymbol = log2(hDemod.TrellisStructure.numInputSymbols);
delay = hDemod.TracebackDepth*bitsPerSymbol;

Create an error rate calculator object with the ReceiveDelay property set to delay.

hErrorCalc = comm.ErrorRate('ReceiveDelay',delay);

Generate binary data and modulate with 16-QAM TCM. Pass the signal through an AWGN
channel and demodulate. Calculate the error statistics. The loop runs until either 100 bit
errors are encountered or 1e7 total bits are transmitted.

 comm.RectangularQAMTCMDemodulator

4-1657

% Initialize the error results vector.
errStats = [0 0 0];

while errStats(2) < 100 && errStats(3) < 1e7
 % Transmit frames of 200 3-bit symbols
 txData = randi([0 1],600,1);
 % Modulate
 txSig = step(hMod,txData);
 % Pass through AWGN channel
 rxSig = step(hAWGN,txSig);
 % Demodulate
 rxData = step(hDemod,rxSig);
 % Collect error statistics
 errStats = step(hErrorCalc,txData,rxData);
end

Display the error data.

fprintf('Error rate = %4.2e\nNumber of errors = %d\n', ...
 errStats(1),errStats(2))

Error rate = 1.94e-03
Number of errors = 100

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM TCM Decoder block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects — Alphabetical List

4-1658

See Also
comm.GeneralQAMTCMDemodulator | comm.RectangularQAMTCMModulator |
comm.ViterbiDecoder

Introduced in R2012a

 comm.RectangularQAMTCMDemodulator

4-1659

reset
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Reset states of the rectangular QAM TCM demodulator object

Syntax
reset(H)

Description
reset(H) resets the states of the RectangularQAMTCMDemodulator object, H.

4 System Objects — Alphabetical List

4-1660

step
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to rectangular QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) demodulates the rectangular QAM modulated input data, X, and uses
the Viterbi algorithm to decode the resulting demodulated, convolutionally encoded bits.
X must be a complex, double or single precision column vector. The step method outputs a
demodulated, binary data column vector, Y. When the convolutional encoder represents a
rate K/N code, the length of the output vector is K*L, where L is the length of the input
vector, X.

Y = step(H,X,R) resets the decoder to the all-zeros state when you input a reset
signal, R that is non-zero. R must be a double precision or logical, scalar integer. This
syntax applies when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-1661

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1662

comm.RectangularQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using rectangular QAM signal constellation

Description
The RectangularQAMTCMModulator object implements trellis-coded modulation (TCM)
by convolutionally encoding the binary input signal and mapping the result to a
rectangular QAM signal constellation.

To convolutionally encode binary data and map the result using a rectangular QAM
constellation:

1 Define and set up your rectangular QAM TCM modulator object. See “Construction”
on page 4-1663.

2 Call step to modulate the signal according to the properties of
comm.RectangularQAMTCMModulator. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RectangularQAMTCMModulator creates a trellis-coded, rectangular,
quadrature amplitude (QAM TCM) System object, H. This object convolutionally encodes a
binary input signal and maps the result to a rectangular QAM constellation.

H = comm.RectangularQAMTCMModulator(Name,Value) creates a rectangular QAM
TCM modulator object, H, with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.RectangularQAMTCMModulator

4-1663

H = comm.RectangularQAMTCMModulator(TRELLIS,Name,Value) creates a
rectangular QAM TCM modulator object, H. This object has the TrellisStructure
property set to TRELLIS and the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether a structure is a valid
trellis. The default is the result of poly2trellis([3 1 1], [5 2 0 0; 0 0 1 0; 0
0 0 1]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The default
is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently. The encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder to the
all-zeros state at the end of the vector. For a rate K/N code, the step method outputs the
vector with a length given by y = N × (L + S) K, where S = constraintLength–1 (or, in the
case of multiple constraint lengths, S = sum(constraintLength(i)–1)). L is the length of
the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default is
false. When you set the reset input to the step method to a nonzero value, the object

4 System Objects — Alphabetical List

4-1664

resets the encoder to the all-zeros state. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive integer scalar value equal to 4, 8, 16, 32, or 64. The default is
16. The value of the ModulationOrder on page 4-0 property must equal the number
of possible output symbols from the convolutional encoder of the QAM TCM modulator.
Thus, the value for the ModulationOrder property must equal 2N for a rate K/N
convolutional code.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods
reset Reset states of the rectangular QAM TCM modulator object
step Convolutionally encode binary data and map using rectangular QAM constellation

Common to All System Objects
release Allow System object property value changes

Examples

Modulate Data Using Rectangular QAM TCM

Modulate data using rectangular 16-QAM TCM modulation and display the scatter plot.

Generate random binary data. The length of the data vector must be an integer multiple
of the number of input streams into the encoder, log2(8) = 3.

 comm.RectangularQAMTCMModulator

4-1665

data = randi([0 1],3000,1);

Create a modulator System object™ and use its step function to modulate the data.

hMod = comm.RectangularQAMTCMModulator;
modData = step(hMod,data);

Plot the modulated data.

scatterplot(modData)

4 System Objects — Alphabetical List

4-1666

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM TCM Encoder block reference page. The object properties correspond to the block
parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ConvolutionalEncoder | comm.GeneralQAMTCMModulator |
comm.RectangularQAMTCMDemodulator

Introduced in R2012a

 comm.RectangularQAMTCMModulator

4-1667

reset
System object: comm.RectangularQAMTCMModulator
Package: comm

Reset states of the rectangular QAM TCM modulator object

Syntax
reset(H)

Description
reset(H) resets the states of the RectangularQAMTCMModulator object, H.

4 System Objects — Alphabetical List

4-1668

step
System object: comm.RectangularQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using rectangular QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) convolutionally encodes and modulates the input data numeric or logical
column vector X, and returns the encoded and modulated data, Y. X must be of data type
numeric, logical, or unsigned fixed point of word length 1 (fi object). When the
convolutional encoder represents a rate K/N code, the length of the input vector, X, must
be K×L, for some positive integer L. The step method outputs a complex column vector,
Y, of length L.

Y = step(H,X,R) resets the encoder of the rectangular QAM TCM modulator object to
the all-zeros state when you input a non-zero reset signal, R. R must be a double precision
or logical, scalar integer. This syntax applies when you set the ResetInputPort property
to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as

 step

4-1669

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1670

comm.RicianChannel
Package: comm

Filter input signal through a Rician fading channel

Description
The RicianChannel System object filters an input signal through a Rician multipath
fading channel. The fading processing per link is described in Methodology for Simulating
Multipath Fading Channels.

To filter an input signal using a Rician multipath fading channel:

1 Define and set up your Rician channel object. See “Construction” on page 4-1671.
2 Call step to filter the input signal through a Rician multipath fading channel

according to the properties of comm.Ricianhannel. The behavior of step is specific
to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.RicianChannel creates a frequency-selective or frequency-flat multipath
Rician fading channel System object, H. This object filters a real or complex input signal
through the multipath channel to obtain the channel impaired signal.

H = comm.RicianChannel(Name,Value) creates a multipath Rician fading channel
object, H, with the specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.RicianChannel

4-1671

Properties
SampleRate

Input signal sample rate (hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 1 Hz.

PathDelays

Discrete path delay vector (seconds)

Specify the delays of the discrete paths in seconds as a double-precision, real, scalar or
row vector. The default value of this property is 0.

When you set PathDelays to a scalar, the channel is frequency flat.

When you set PathDelays to a vector, the channel is frequency selective.

AveragePathGains

Average path gain vector (decibels)

Specify the average gains of the discrete paths in decibels as a double-precision, real,
scalar or row vector. The default value of this property is 0. AveragePathGains must
have the same size as PathDelays.

NormalizePathGains

Normalize average path gains to 0 dB

When you set this property to true, the object normalizes the fading processes so that the
total power of the path gains, averaged over time, is 0dB. The default value of this
property is true.

KFactor

Rician K-factor scalar or vector (linear scale)

Specify the K-factor of a Rician fading channel as a double-precision, real, positive scalar
or nonnegative, nonzero row vector of the same length as PathDelays. The default value
of this property is 3.

4 System Objects — Alphabetical List

4-1672

If KFactor is a scalar, then the first discrete path is a Rician fading process with a Rician
K-factor of KFactor. The remaining discrete paths are independent Rayleigh fading
processes. If KFactor is a row vector, the discrete path corresponding to a positive
element of the KFactor vector is a Rician fading process with a Rician K factor specified
by that element. The discrete path corresponding to a zero-valued element of the
KFactor vector is a Rayleigh fading process.

DirectPathDopplerShift

Doppler shift(s) of line-of-sight component(s) (hertz)

Specify the Doppler shifts for the line-of-sight components of a Rician fading channel in
hertz as a double-precision, real scalar or row vector. The default value of this property is
0.

DirectPathDopplerShift must have the same size as KFactor. If
DirectPathDopplerShift is a scalar, this value represents the line-of-sight component
Doppler shift of the first discrete path. This path exhibits a Rician fading process. If
DirectPathDopplerShift is a row vector, the discrete path corresponding to a positive
element of the KFactor vector is a Rician fading process. Its line-of-sight component
Doppler shift is specified by the corresponding element of DirectPathDopplerShift.

DirectPathInitialPhase

Initial phase(s) of line-of-sight component(s) (radians)

Specify the initial phase(s) of the line-of-sight components of a Rician fading channel in
radians as a double-precision, real scalar or row vector. The default value of this property
is 0.

DirectPathInitialPhase must have the same size as KFactor. If
DirectPathInitialPhase is a scalar, this value represents the line-of-sight component
initial phase of the first discrete path. This path exhibits a Rician fading process. If
DirectPathInitialPhase is a row vector, the discrete path corresponding to a positive
element of the KFactor vector is a Rician fading process. Its line-of-sight component
initial phase is specified by the corresponding element of DirectPathInitialPhase.

MaximumDopplerShift

Maximum Doppler shift (hertz)

Specify the maximum Doppler shift for all channel paths in hertz as a double-precision,
real, nonnegative scalar. The default value of this property is 0.001 Hz.

 comm.RicianChannel

4-1673

The Doppler shift applies to all the paths of the channel. When you set the
MaximumDopplerShift to 0, the channel remains static for the entire input. You can use
the reset method to generate a new channel realization.

The MaximumDopplerShift must be smaller than SampleRate/10/fc for each path,
where fc represents the cutoff frequency factor of the path. For a Doppler spectrum type
other than Gaussian and bi-Gaussian, fc is 1. For Gaussian and bi-Gaussian Doppler
spectrum types, fc is dependent on the Doppler spectrum object properties. Refer to the
algorithm section of the comm.MIMOChannel for more details about how fc is defined.

DopplerSpectrum

Doppler spectrum

Specify the Doppler spectrum shape for the path(s) of the channel. This property accepts
a single Doppler spectrum structure returned from the doppler function or a row cell
array of such structures. The maximum Doppler shift value necessary to specify the
Doppler spectrum/spectra is given by the MaximumDopplerShift property. This property
applies when the MaximumDopplerShift property value is greater than 0. The default
value of this property is doppler('Jakes').

If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have
the same specified Doppler spectrum. If the FadingTechnique property is Sum of
sinusoids, DopplerSpectrum must be doppler('Jakes'); otherwise, select from
the following:

• doppler('Jakes')
• doppler('Flat')
• doppler('Rounded', ...)
• doppler('Bell', ...)
• doppler('Asymmetric Jakes', ...)
• doppler('Restricted Jakes', ...)
• doppler('Gaussian', ...)
• doppler('BiGaussian', ...)

If you assign a row cell array of different Doppler spectrum structures (which can be
chosen from any of those on the previous list) to DopplerSpectrum, each path has the
Doppler spectrum specified by the corresponding structure in the cell array. In this case,
the length of DopplerSpectrum must be equal to the length of PathDelays.

4 System Objects — Alphabetical List

4-1674

To generate C code, specify this property to a single Doppler spectrum structure.

FadingTechnique

Fading technique used to model the channel

Select between Filtered Gaussian noise and Sum of sinusoids to specify the
way in which the channel is modeled. The default value is Filtered Gaussian noise.

NumSinusoids

Number of sinusoids used to model the fading process

The NumSinuoids property is a positive integer scalar that specified the number of
sinusoids used in modeling the channel and is available only when the FadingTechnique
property is set to Sum of sinusoids. The default value is 48.

InitialTimeSource

Source to control the start time of the fading process

Specify the initial time source as either Property or Input port. This property is
available when the FadingTechnique property is set to Sum of sinusoids. When
InitialTimeSource is set to Input port, the start time of the fading process is
specified using the INITIALTIME input to the step function. The input value can change
in consecutive calls to the step function. The default value is Property.

InitialTime

Start time of the fading process (s)

Specify the time offset of the fading process as a real nonnegative scalar in seconds. This
property applies when the FadingTechnique property is set to Sum of sinusoids and
the InitialTimeSource property is set to Property. The default value is 0.

InitialTime must be greater than the last frame end time. When InitialTime is not a
multiple of 1/SampleRate, it is rounded up to the nearest sample position.

RandomStream

Source of random number stream

 comm.RicianChannel

4-1675

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream.

If you set RandomStream to Global stream, the current global random number stream
is used for normally distributed random number generation. In this case, the reset
method only resets the filters.

If you set RandomStream to mt19937ar with seed, the mt19937ar algorithm is used
for normally distributed random number generation. In this case, the reset method not
only resets the filters, but also reinitializes the random number stream to the value of the
Seed property.

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of an mt19937ar random number generator algorithm as a double-
precision, real, nonnegative integer scalar. The default value of this property is 73. This
property applies when you set the RandomStream property to mt19937ar with seed.
The Seed reinitializes the mt19937ar random number stream in the reset method.

PathGainsOutputPort

Output channel path gains

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

Visualization

Enable channel visualization

Specify the type of channel visualization to display as one of Off | Impulse response |
Frequency response | Impulse and frequency responses | Doppler spectrum.
The default value of this property is Off.

SamplesToDisplay

Specify percentage of samples to display

You can specify the percentage of samples to display, since displaying fewer samples will
result in better performance at the expense of lower accuracy. Specify the property as one
of 10% | 25% | 50% | 100%. This applies when Visualization is set to Impulse

4 System Objects — Alphabetical List

4-1676

response, Frequency response, or Impulse and frequency responses. The
default value is 25%.

PathsForDopplerDisplay

Specify path for Doppler display

You can specify an integer scalar which selects the discrete path used in constructing a
Doppler spectrum plot. The specified path must be an element of {1, 2, ..., Np}, where Np
is the number of discrete paths per link specified in the object. This property applies
when Visualization is set to Doppler spectrum. The default value is 1.

Methods
info Characteristic information about Rician Channel
reset Reset states of the RicianChannel object
step Filter input signal through multipath Rician fading channel

Common to All System Objects
release Allow System object property value changes

Visualization
Impulse Response

The impulse response plot displays the path gains, the channel filter coefficients, and the
interpolated path gains. The path gains shown in magenta occur at time instances which
correspond to the specified PathDelays property and may not be aligned with the input
sampling time. The channel filter coefficients shown in yellow are used to model the
channel. They are interpolated from the actual path gains and are aligned with the input
sampling time. In cases in which the path gains are aligned with the sampling time, they
will overlap the filter coefficients. Sinc interpolation is used to connect the channel filter
coefficients and is shown in blue. These points are used solely for display purposes and
not used in subsequent channel filtering. For a flat fading channel (one path), the sinc
interpolation curve is not displayed. For all impulse response plots, the frame and sample
numbers are shown in the display’s upper left corner.

 comm.RicianChannel

4-1677

The impulse response plot shares the same toolbar and menus as the System object it was
based on, dsp.ArrayPlot.

In the figure, the impulse response of a channel is shown for the case in which the path
gains are aligned with the sample time. The overlap between the path gains and filter
coefficients is evident.

The case in which the specified path gains are not aligned with the SampleRate property
is shown below. Observe that the path gains and the channel filter coefficients do not
overlap and that the filter coefficients are equally distributed.

4 System Objects — Alphabetical List

4-1678

The impulse response for a frequency flat channel is shown below. You can see that the
interpolated path gains are not displayed.

 comm.RicianChannel

4-1679

Note

• The displayed and specified path gain locations can differ by as much as 5% of the
input sample time.

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Updates to Improve Performance
menu item. Reducing the percentage of samples to display and the enabling reduced
updates will speed up the rendering of the impulse response.

• After the impulse response plots are manually closed, the step call for the Rician
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

4 System Objects — Alphabetical List

4-1680

Frequency Response

The frequency response plot displays the Rician channel spectrum by taking a discrete
Fourier transform of the channel filter coefficients. The frequency response plot shares
the same toolbar and menus as the System object it was based on,
dsp.SpectrumAnalyzer. The default parameter settings are shown below. These
parameters can be changed from their default values by using the View > Spectrum
Settings menu.

Parameter Value
Window Rectangular
WindowLength Channel filter length
FFTLength 512
PowerUnits dBW
YLimits Based on NormalizePathGains and

AveragePathGains properties

The frequency response plot for a frequency selective channel is shown.

 comm.RicianChannel

4-1681

Note

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Plot Rate to Improve Performance
menu item. Reducing the percentage of samples to display and the enabling reduced
updates will speed up the rendering of the frequency response.

• After the frequency response plots are manually closed, the step call for the Rician
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

4 System Objects — Alphabetical List

4-1682

Doppler Spectrum

The Doppler spectrum plot displays both the theoretical Doppler spectrum and the
empirically determined data points. The theoretical data is displayed as a yellow line for
the case of non-static channels and as a yellow point for static channels, while the
empirical data is shown in blue. There is an internal buffer which must be completely
filled with filtered Gaussian samples before the empirical plot is updated. The empirical
plot is the running mean of the spectrum calculated from each full buffer. For non-static
channels, the number of input samples needed before the next update is displayed in the
upper left hand corner. The samples needed is a function of the sample rate and the
maximum Doppler shift. For static channels, the text Reset fading channel for
next update is displayed.

 comm.RicianChannel

4-1683

Note

• After the Doppler spectrum plots are manually closed, the step call for the Rician
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

Examples

Produce Same Rician Channel Output Using Different Random Number
Generation Methods

The Rician Channel System object™ has two methods for random number generation. You
can use the current global stream or the mt19937ar algorithm with a specified seed. By
interacting with the global stream, the object can produce the same outputs from the two
methods.

4 System Objects — Alphabetical List

4-1684

Create a PSK Modulator System object to modulate randomly generated data.

pskModulator = comm.PSKModulator;
channelInput = pskModulator(randi([0 pskModulator.ModulationOrder-1],1024,1));

Create a Rician channel System object. Set the RandomStream property to mt19937ar
with seed using a name-value pair. Set the random number seed to 73.

ricianChan = comm.RicianChannel(...
 'SampleRate',1e6,...
 'PathDelays',[0.0 0.5 1.2]*1e-6,...
 'AveragePathGains',[0.1 0.5 0.2],...
 'KFactor',2.8,...
 'DirectPathDopplerShift',5.0,...
 'DirectPathInitialPhase',0.5,...
 'MaximumDopplerShift',50,...
 'DopplerSpectrum',doppler('Bell', 8),...
 'RandomStream','mt19937ar with seed', ...
 'Seed',73, ...
 'PathGainsOutputPort',true);

Filter the modulated data using the Rician channel System object, ricianChan.

[RicianChanOut1, RicianPathGains1] = ricianChan(channelInput);

Set the object to use the global stream for random number generation.

release(ricianChan);
ricianChan.RandomStream = 'Global stream';

Set the global stream to use the same seed that was specified for hRicianChan.

rng(73)

Filter the modulated data using hRicianChan for the case where the channel uses the
global random number generator.

[RicianChanOut2,RicianPathGains2] = ricianChan(channelInput);

Verify that the channel and path gain outputs are the same for both function calls.

isequal(RicianChanOut1,RicianChanOut2)

ans = logical
 1

 comm.RicianChannel

4-1685

isequal(RicianPathGains1,RicianPathGains2)

ans = logical
 1

Rician Channel Impulse and Frequency Responses

This example shows how to create a frequency selective Rician channel and display its
impulse and frequency responses.

Set the sample rate to 3.84 MHz and specify path delays and gains using ITU pedestrian
B channel parameters. Set the Rician K-factor to 10 and the maximum Doppler shift to 50
Hz.

fs = 3.84e6; % Hz
pathDelays = [0 200 800 1200 2300 3700]*1e-9; % sec
avgPathGains = [0 -0.9 -4.9 -8 -7.8 -23.9]; % dB
fD = 50; % Hz

Create a Rician channel System object with the previously defined parameters and set the
Visualization property to Impulse and frequency responses using name-value
pairs.

ricianChan = comm.RicianChannel('SampleRate',fs, ...
 'PathDelays',pathDelays, ...
 'AveragePathGains',avgPathGains, ...
 'KFactor',10, ...
 'MaximumDopplerShift',fD, ...
 'Visualization','Impulse and frequency responses');

Generate random binary data and pass it through the Rician channel. The impulse
response plot allows you to easily identify the individual paths and their corresponding
filter coefficients. The frequency selective nature of the pedestrian B channel is shown by
the frequency response plot.

x = randi([0 1],1000,1);
y = ricianChan(x);

4 System Objects — Alphabetical List

4-1686

 comm.RicianChannel

4-1687

Selected Bibliography
[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World

Propagation to Space-Time Code Design, Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

4 System Objects — Alphabetical List

4-1688

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. “A
stochastic MIMO radio channel model with experimental validation." IEEE Journal
on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp. 1211–1226.

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.AWGNChannel | comm.MIMOChannel | comm.RayleighChannel

Introduced in R2013b

 comm.RicianChannel

4-1689

info
System object: comm.RicianChannel
Package: comm

Characteristic information about Rician Channel

Syntax
S = info(OBJ)

Description
S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

4 System Objects — Alphabetical List

4-1690

reset
System object: comm.RicianChannel
Package: comm

Reset states of the RicianChannel object

Syntax
reset(H)

Description
reset(H) resets the states of the RicianChannel object, H.

If you set the RandomStream property of H to Global stream, the reset method only
resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

 reset

4-1691

step
System object: comm.RicianChannel
Package: comm

Filter input signal through multipath Rician fading channel

Syntax
Y = step(H,X)
[Y,PATHGAINS] = step(H,X)
___ = step(H,X,INITIALTIME)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) filters input signal X through a multipath Rician fading channel and
returns the result in Y. Both the input X and the output signal Y are of size Ns–by–1, where
Ns represents the number of samples. The input X can be of double- or single-precision
data type with real or complex values. Y is contains complex values with same precision
as input signal.

[Y,PATHGAINS] = step(H,X) returns the channel path gains of the underlying Rician
fading process in PATHGAINS. This syntax applies when you set the PathGainsOutputPort
property of H to true. PATHGAINS is of size Ns–by–Np, where Np represents the number of
paths, i.e., the length of the PathDelays property value of H. PATHGAINS contains
complex values with same precision as input signal.

___ = step(H,X,INITIALTIME) passes data through the Rician channel beginning at
INITIALTIME, where INITIALTIME is a nonnegative real scalar measured in seconds.
This syntax applies when the FadingTechnique property of H is set to Sum of sinusoids

4 System Objects — Alphabetical List

4-1692

and the InitialTimeSource property of H is set to Input port. The INITIALTIME must
be greater than the last frame end time. When INITIALTIME is not a multiple of 1/
SampleRate, it is rounded up to the nearest sample position.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1693

comm.RSDecoder
Package: comm

Decode data using Reed-Solomon decoder

Description
The RSDecoder object recovers a message vector from a Reed-Solomon codeword vector.
For proper decoding, the property values for this object should match the property values
in the corresponding RS Encoder object.

To decode data using a Reed-Solomon decoding scheme:

1 Define and set up your Reed-Solomon decoder object. See “Construction” on page 4-
1694.

2 Call step to decode data according to the properties of comm.RSDecoder. The
behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
dec = comm.RSDecoder creates a block decoder System object, dec. This object
performs Reed-Solomon (RS) decoding.

dec = comm.RSDecoder(N,K) creates an RS decoder object, dec with the
CodewordLength property set to N and the MessageLength property set to K.

dec = comm.RSDecoder(N,K,GP) creates an RS decoder object, dec with the
CodewordLength property set to N, the MessageLength property set to K, and the
GeneratorPolynomial property set to GP.

4 System Objects — Alphabetical List

4-1694

dec = comm.RSDecoder(N,K,GP,S) creates an RS decoder object, dec with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and the ShortMessageLength property set
to S.

dec = comm.RSDecoder(N,K,GP,S,Name,Value) creates an RS decoder object, dec
with the CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and each specified property Name set to the
specified Value.

dec = comm.RSDecoder(Name,Value) creates an RS decoder object, dec, with each
specified property name set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Note The input and output signal lengths are listed in “Input and Output Signal Lengths
in BCH and RS System Objects” on page 4-112 on the comm.BCHDecoder reference
page.

BitInput

Assume that input is bits

Specify whether the input comprises bits or integers. The default is false.

When you set this property to false, the step method input data value must be a
numeric, column vector of integers. The step method outputs an encoded data output
vector. The output result is a column vector of integers. Each symbol that forms the input
message and output codewords is an integer between 0 and 2M – 1. These integers
correspond to an element of the finite Galois field gf(2M). M is the degree of the primitive
polynomial that you specify with the PrimitivePolynomialSource on page 4-0 and
PrimitivePolynomial on page 4-0 properties.

When you set this property to true, the input value must be a numeric, column vector of
bits. The encoded data output result is a column vector of bits.

 comm.RSDecoder

4-1695

CodewordLength

Codeword length

Specify the codeword length of the RS code in symbols as a double-precision, positive,
integer scalar value. The default is 7.

For a full-length RS code, the value of this property must be 2M–1, where M is an integer
such that 3≤M ≤16.

MessageLength

Message length

Specify the message length in symbols as a double-precision positive integer scalar value.
The default is 3.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as Auto or Property. When this property
is set to Auto, the RS code is defined by the CodewordLength on page 4-0 ,
MessageLength on page 4-0 , GeneratorPolynomial on page 4-0 ,
and PrimitivePolynomial on page 4-0 properties.

When ShortMessageLengthSource is set to Property, you must specify the
ShortMessageLength on page 4-0 property, which is used with the other properties
to define the RS code. The default is Auto.

ShortMessageLength

Shortened message length

Specify the length of the shortened message in symbols as a double-precision positive
integer scalar whose value must be less than or equal to MessageLength on page 4-
0 .

When ShortMessageLength < MessageLength, the RS code is shortened. The default
is 3.

4 System Objects — Alphabetical List

4-1696

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as Auto or Property. The default is
Auto.

When you set this property to Auto, the object chooses the generator polynomial
automatically. The object calculates the generator polynomial based on the value of the
PrimitivePolynomialSource on page 4-0 property.

When you set this property to Auto, the object automatically chooses the generator
polynomial. The object calculates the generator polynomial based on the value of
the PrimitivePolynomial on page 4-0 property.

When you set this property to Property, you must specify a generator polynomial using
the GeneratorPolynomial on page 4-0 property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for the RS code as a double-precision integer row vector
or as a Galois field row vector whose entries are in the range from 0 to 2M–1 and
represent a generator polynomial in descending order of powers. The length of the
generator polynomial must be CodewordLength-MessageLength+1. This property
applies when you set GeneratorPolynomialSource on page 4-0 to Property.

The default is the result of rsgenpoly(7,3,[],[],'double'), which corresponds to
[1 3 1 2 3].

When you use this object to generate code, you must set the generator polynomial to a
double-precision integer row vector.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check. The default is true.
This check verifies that the specified generator polynomial is valid.

 comm.RSDecoder

4-1697

For larger codes, disabling the check accelerates processing time. As a best practice,
perform the check at least once before setting this property to false. This property
applies when you set GeneratorPolynomialSource on page 4-0 to Property.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto or Property. The default is Auto.

When you set this property to Auto, the object uses a primitive polynomial of degree M =
ceil(log2(CodewordLength on page 4-0 +1)).

When you setPrimitivePolynomialSource to Property, you must specify a
polynomial using PrimitivePolynomial on page 4-0 .

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field gf(2M) corresponding to the
integers that form messages and codewords. The default is the result of
fliplr(de2bi(primpoly(3))), which is [1 0 1 1] or the polynomial x3 + x + 1. Specify
this property as a double-precision, binary, row vector that represents a primitive
polynomial over GF(2) of degree M in descending order of powers. This property applies
when you set PrimitivePolynomialSource on page 4-0 to Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None or Property. The default is None.

If you set this property to None, the object does not apply puncturing to the code. If you
set it to Property, the object punctures the code based on a puncture pattern vector
specified in PuncturePattern on page 4-0 .

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary
column vector of length (CodewordLength on page 4-0 -MessageLength on page 4-

4 System Objects — Alphabetical List

4-1698

0). The default is [ones(2,1); zeros(2,1)]. Zeros in the puncture pattern vector
indicate the position of the parity symbols that are punctured or excluded from each
codeword. This property applies when you set PuncturePatternSource on page 4-0
to Property.

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as an input to the step method.
The default is false. The erasures input must be a double-precision or logical binary
column vector that indicates which symbols of the input codewords to erase.

The length of the erasures vector is explained in “Input and Output Signal Lengths in
BCH and RS System Objects” on page 4-112.

When this property is set to false, the object assumes no erasures.

NumCorrectedErrorsOutputPort

Enable number of corrected errors output

Set this property to true to obtain the number of corrected errors as an output to the
step method. The default is true. A nonnegative value in the i-th element of the error
output vector, denotes the number of corrected errors in the i-th input codeword. A value
of -1 in the i-th element of the error output vector indicates that a decoding error
occurred for that codeword. A decoding error occurs when an input codeword has more
errors than the error correction capability of the RS code.

OutputDataType

Data type of output

Specify the output data type as Same as input, double, or logical. The default is
Same as input. This property applies when you set BitInput on page 4-0 to true.

Methods
step Decode data using a Reed-Solomon decoder

 comm.RSDecoder

4-1699

Common to All System Objects
release Allow System object property value changes

Examples

Transmit an RS-encoded, 8-DPSK-modulated symbol stream

Transmit an RS-encoded, 8-DPSK-modulated symbol stream through an AWGN channel.
Then, demodulate, decode, and count errors.

 enc = comm.RSEncoder;
 mod = comm.DPSKModulator('BitInput',false);
 chan = comm.AWGNChannel(...
 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
 demod = comm.DPSKDemodulator('BitOutput',false);
 hDdecec = comm.RSDecoder;
 errorRate = comm.ErrorRate('ComputationDelay',3);

 for counter = 1:20
 data = randi([0 7], 30, 1);
 encodedData = step(enc, data);
 modSignal = step(mod, encodedData);
 receivedSignal = step(chan, modSignal);
 demodSignal = step(demod, receivedSignal);
 receivedSymbols = step(hDdecec, demodSignal);
 errorStats = step(errorRate, data, receivedSymbols);
 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 0.115578
Number of errors = 69

Transmit a Shortened RS-encoded, 256-QAM-modulated Symbol Stream

Transmit a shortened RS-encoded, 256-QAM-modulated symbol stream through an AWGN
channel. Then demodulate, decode, and count errors.

4 System Objects — Alphabetical List

4-1700

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the
nominal message length, and S is the shortened message length. Set the modulation
order, M, and the number of frames, L.

N = 255;
K = 239;
S = 188;
M = 256;
L = 50;

Create an AWGN channel System object and an error rate System object.

awgnChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...
 'EbNo',15,'BitsPerSymbol',log2(M));
errorRate = comm.ErrorRate('ComputationDelay',3);

Create the Reed-Solomon generator polynomial from the DVB-T standard.

gp = rsgenpoly(N,K,[],0);

Create a Reed-Solomon encoder and decoder pair using the shortened message length, S,
and the DVB-T generator polynomial, gp.

enc = comm.RSEncoder(N,K,gp,S);
dec = comm.RSDecoder(N,K,gp,S);

Generate random symbol frames whose length equals one message block. Encode,
modulate, apply AWGN, demodulate, decode, and collect statistics.

for counter = 1:L
 data = randi([0 1],S,log2(M));
 encodedData = step(enc,bi2de(data));
 modSignal = qammod(encodedData,M,'UnitAveragePower',true);
 rxSignal = awgnChan(modSignal);
 demodSignal = qamdemod(rxSignal,M,'UnitAveragePower',true);
 rxBits = dec(demodSignal);
 dataOut = de2bi(rxBits);
 errorStats = errorRate(data(:),dataOut(:));
end

Display the error rate and number of errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

 comm.RSDecoder

4-1701

Error rate = 2.01e-02
Number of errors = 1509

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BCHDecoder | comm.RSEncoder | primpoly | rsdec | rsgenpoly

Introduced in R2012a

4 System Objects — Alphabetical List

4-1702

step
System object: comm.RSDecoder
Package: comm

Decode data using a Reed-Solomon decoder

Syntax
[Y,ERR] = step(H,X)
Y = step(H,X)
Y = step(H,X,ERASURES)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[Y,ERR] = step(H,X) decodes the encoded input data, X, into the output vector Y and
returns the number of corrected symbols in output vector ERR. The value of the
BitInput property determines whether X is a vector of integers or bits with a numeric,
logical, or fixed-point data type. The input and output length of the step function equal
the values listed in the table in “Input and Output Signal Lengths in BCH and RS System
Objects” on page 4-112. This syntax applies when you set the
NumCorrectedErrorsOutputPort property to true. A value of -1 in the i-th element
of the error output vector indicates that a decoding error occurred for that codeword.

Y = step(H,X) decodes the encoded data, X, into the output vector Y. This syntax
applies when you set the NumCorrectedErrorsOutputPort property to false.

Y = step(H,X,ERASURES) uses the binary column input vector, ERASURES, to erase the
symbols of the input codewords. The elements in ERASURES must be of data type double
or logical. Values of 1 in the ERASURES vector correspond to erased symbols, and values

 step

4-1703

of 0 correspond to non-erased symbols. This syntax applies when you set the
ErasuresInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1704

comm.RSEncoder
Package: comm

Encode data using Reed-Solomon encoder

Description
The RSEncoder object creates a Reed-Solomon code with message and codeword lengths
you specify.

To encode data using a Reed-Solomon encoding scheme:

1 Define and set up your Reed-Solomon encoder object. See “Construction” on page 4-
1705.

2 Call step to encode data according to the properties of comm.RSEncoder. The
behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
enc = comm.RSEncoder creates a block encoder System object, enc. This object
performs Reed-Solomon (RS) encoding.

enc = comm.RSEncoder(N,K) creates an RS encoder object, enc, with the
CodewordLength property set to N and the MessageLength property set to K.

enc = comm.RSEncoder(N,K,GP) creates an RS encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, and the
GeneratorPolynomial property set to GP.

enc = comm.RSEncoder(N,K,GP,S) creates an RS encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, the

 comm.RSEncoder

4-1705

GeneratorPolynomial property set to GP, and the ShortMessageLength property set
to S.

enc = comm.RSEncoder(N,K,GP,S,Name,Value) creates an RS encoder object, enc,
with the CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, the ShortMessageLength property set to
S, and each specified property Name set to the specified Value.

enc = comm.RSEncoder(Name,Value) creates an RS encoder object, enc, with each
specified property name set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Note The input and output signal lengths are listed in “Input and Output Signal Lengths
in BCH and RS System Objects” on page 4-112 on the comm.BCHDecoder reference
page.

BitInput

Assume that input is bits

Specify whether the input comprises bits or integers. The default is false.

When you set this property to false, the step method input data value must be a
numeric, column vector of integers. Each symbol that forms the input message and output
codewords is an integer between 0 and 2M–1. These integers correspond to an element of
the finite Galois field gf(2M). M is the degree of the primitive polynomial that you specify
with the PrimitivePolynomialSource on page 4-0 and PrimitivePolynomial
on page 4-0 properties.

When you set this property to true, the input value must be a numeric, column vector of
bits. The encoded data output result is a column vector of bits.

CodewordLength

Codeword length

4 System Objects — Alphabetical List

4-1706

Specify the codeword length of the RS code as a double-precision positive integer scalar
value. The default is 7.

For a full-length RS code, the value of this property must be 2M–1, where M is an integer
such that 3 ≤ M ≤ 16.

MessageLength

Message length

Specify the message length as a double-precision positive integer scalar value. The
default is 3.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as Auto or Property. When this property
is set to Auto, the RS code is defined by the CodewordLength on page 4-
0 , MessageLength on page 4-0 , GeneratorPolynomial on page 4-0 ,
and PrimitivePolynomial on page 4-0 properties. When
ShortMessageLengthSource is set to Property, you must specify the
ShortMessageLength on page 4-0 property, which is used with the other properties
to define the RS code. The default is Auto.

ShortMessageLength

Shortened message length

Specify the length of the shortened message as a double-precision positive integer scalar
whose value must be less than or equal to MessageLength on page 4-0 .
When ShortMessageLength < MessageLength, the RS code is shortened. The default
is 3.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as Auto or Property. The default is
Auto.

 comm.RSEncoder

4-1707

When you set this property to Auto, the object chooses the generator polynomial
automatically. The object calculates the generator polynomial based on the value of the
PrimitivePolynomial on page 4-0 property.

When you set GeneratorPolynomialSource to Property, you must specify a
generator polynomial using the GeneratorPolynomial on page 4-0 property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for the RS code as a double-precision integer row vector
or as a Galois row vector. The Galois row vector entries must be in the range from 0 to
2M-1. These entries must represent a generator polynomial in descending order of
powers. Each coefficient is an element of the Galois field gf(2M), represented in integer
format. The length of the generator polynomial must be CodewordLength on page 4-
0 – MessageLength on page 4-0 + 1.

The default is the result of rsgenpoly(7,3,[],[],'double'), which evaluates to a GF(23)
array with elements [1 3 1 2 3]. This property applies when you set
GeneratorPolynomialSource on page 4-0 to Property.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check. The default is true.
This check verifies that the specified generator polynomial is valid. For larger codes,
disabling the check speeds up processing. As a best practice, perform the check at least
once before setting this property to false. This property applies when
GeneratorPolynomialSource on page 4-0 is set to Property.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto or Property. The default is Auto.

When you set this property to Auto, the object uses a primitive polynomial of degree M =
ceil(log2(CodewordLength on page 4-0 +1)).

When you set this property to Property, you must specify a polynomial using the
PrimitivePolynomial on page 4-0 property.

4 System Objects — Alphabetical List

4-1708

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field gf(2M) corresponding to the
integers that form messages and codewords. Specify this property as a double-precision,
binary row vector that represents a primitive polynomial over gf(2) of degree M in
descending order of powers.

If CodewordLength on page 4-0 is less than 2M–1, the object uses a shortened RS
code. The default is the result of fliplr(de2bi(primpoly(3))), which is [1 0 1 1] or the
polynomial x3 + x + 1.

This property applies when you set PrimitivePolynomialSource on page 4-0 to
Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None or Property. The default is None.

If you set this property to None, the object does not apply puncturing to the code. If you
set this property to Property, the object punctures the code based on a puncture pattern
vector specified in the PuncturePattern on page 4-0 property.

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary
column vector with a length of (CodewordLength on page 4-0 – MessageLength on
page 4-0). The default is [ones(2,1); zeros(2,1)]. Zeros in the puncture pattern
vector indicate the position of the parity symbols that are punctured or excluded from
each codeword. This property applies when you set the PuncturePatternSource on
page 4-0 property to Property.

OutputDataType

Data type of output

 comm.RSEncoder

4-1709

Specify the output data type as Same as input, double, or logical. The default is
Same as input. This property applies when you set the BitInput on page 4-0
property to true.

Methods
step Encode data using a Reed-Solomon encoder

Common to All System Objects
release Allow System object property value changes

Examples

Transmit an RS-encoded, 8-DPSK-modulated symbol stream

Transmit an RS-encoded, 8-DPSK-modulated symbol stream through an AWGN channel.
Then, demodulate, decode, and count errors.

 enc = comm.RSEncoder;
 mod = comm.DPSKModulator('BitInput',false);
 chan = comm.AWGNChannel(...
 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
 demod = comm.DPSKDemodulator('BitOutput',false);
 hDdecec = comm.RSDecoder;
 errorRate = comm.ErrorRate('ComputationDelay',3);

 for counter = 1:20
 data = randi([0 7], 30, 1);
 encodedData = step(enc, data);
 modSignal = step(mod, encodedData);
 receivedSignal = step(chan, modSignal);
 demodSignal = step(demod, receivedSignal);
 receivedSymbols = step(hDdecec, demodSignal);
 errorStats = step(errorRate, data, receivedSymbols);
 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

4 System Objects — Alphabetical List

4-1710

Error rate = 0.115578
Number of errors = 69

Transmit a Shortened RS-encoded, 256-QAM-modulated Symbol Stream

Transmit a shortened RS-encoded, 256-QAM-modulated symbol stream through an AWGN
channel. Then demodulate, decode, and count errors.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the
nominal message length, and S is the shortened message length. Set the modulation
order, M, and the number of frames, L.

N = 255;
K = 239;
S = 188;
M = 256;
L = 50;

Create an AWGN channel System object and an error rate System object.

awgnChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...
 'EbNo',15,'BitsPerSymbol',log2(M));
errorRate = comm.ErrorRate('ComputationDelay',3);

Create the Reed-Solomon generator polynomial from the DVB-T standard.

gp = rsgenpoly(N,K,[],0);

Create a Reed-Solomon encoder and decoder pair using the shortened message length, S,
and the DVB-T generator polynomial, gp.

enc = comm.RSEncoder(N,K,gp,S);
dec = comm.RSDecoder(N,K,gp,S);

Generate random symbol frames whose length equals one message block. Encode,
modulate, apply AWGN, demodulate, decode, and collect statistics.

for counter = 1:L
 data = randi([0 1],S,log2(M));
 encodedData = step(enc,bi2de(data));
 modSignal = qammod(encodedData,M,'UnitAveragePower',true);
 rxSignal = awgnChan(modSignal);

 comm.RSEncoder

4-1711

 demodSignal = qamdemod(rxSignal,M,'UnitAveragePower',true);
 rxBits = dec(demodSignal);
 dataOut = de2bi(rxBits);
 errorStats = errorRate(data(:),dataOut(:));
end

Display the error rate and number of errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 2.01e-02
Number of errors = 1509

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for
BCH and RS Errors-only Decoding”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BCHEncoder | comm.RSDecoder | primpoly | rsenc | rsgenpoly

Introduced in R2012a

4 System Objects — Alphabetical List

4-1712

step
System object: comm.RSEncoder
Package: comm

Encode data using a Reed-Solomon encoder

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes the numeric column input data vector, X, and returns the
encoded data, Y. The value of the BitInput property determines whether X is a vector of
integers or bits with a numeric, logical, or fixed-point data type. The input and output
length of the step function equal the values listed in the table in “Input and Output Signal
Lengths in BCH and RS System Objects” on page 4-112.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1713

comm.Scrambler
Package: comm

Scramble input signal

Description
The comm.Scrambler object scrambles a scalar or column vector input signal.

This schematic shows the scrambler operation. The adders operate modulo N, where N is
the value specified by the Calculation base property.

Input data

Scrambled data

1 2 M-1 M

p11 p2 pm-1 pm

At each time step, the input causes the contents of the registers to shift sequentially.
Using the Polynomial property, you specify the on or off state for each switch in the
scrambler.

To scramble an input signal:

1 Create the comm.Scrambler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

4 System Objects — Alphabetical List

4-1714

Creation

Syntax
scrambler = comm.Scrambler
scrambler = comm.Scrambler(base,poly,cond)
scrambler = comm.Scrambler(___ ,Name,Value)

Description
scrambler = comm.Scrambler creates a scrambler System object. This object
scrambles the input data by using a linear feedback shift register that you specify with
the Polynomial property.

scrambler = comm.Scrambler(base,poly,cond) creates the scrambler object with
the CalculationBase property set to base, the Polynomial property set to poly, and the
InitialConditions property set to cond.
Example: comm.Scrambler(8,'1 + z^-2 + z^-3 + z^-5 + z^-7',[0 3 2 2 5 1
7]) sets the calculation base to 8, and the scrambler polynomial and initial conditions as
specified.

scrambler = comm.Scrambler(___ ,Name,Value) sets properties using one or
more name-value pairs and either of the previous syntaxes. Enclose each property name
in single quotes.
Example: comm.Scrambler('CalculationBase',2)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

 comm.Scrambler

4-1715

CalculationBase — Range of input data
4 (default) | nonnegative integer

Range of input data used in the scrambler for modulo operations, specified as a
nonnegative integer. The input and output of this object are integers from 0 to
CalculationBase – 1.
Data Types: double

Polynomial — Connections for linear feedback shift registers
'1 + z^-1 + z^-2 + z^-4' (default) | character vector | integer vector | binary vector

Connections for linear feedback shift registers in the scrambler, specified as a character
vector, integer vector, or binary vector. The Polynomial property defines if each switch
in the scrambler is on or off. Specify the polynomial as:

• A character vector, such as '1 + z^-6 + z^-8'. For more details on specifying
polynomials in this way, see Character Representation of Polynomials.

• An integer vector, such as [0 -6 -8], listing the scrambler coefficients in order of
descending powers of z-1, where p(z-1) = 1 + p1z-1 + p2z-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of z that appear
in the polynomial that have a coefficient of 1. In this case, the order of the scramble
polynomial is one less than the binary vector length.

Example: '1 + z^-6 + z^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent
this polynomial:

p(z-1) = 1 + z-6 + z-8

Data Types: double | char

InitialConditionsSource — Initial conditions source
'Property' (default) | 'Input port'

• 'Property' – Specify scrambler initial conditions by using the InitialConditions
property.

• 'Input port' – Specify scrambler initial conditions by using an additional input
argument, initcond, when calling the object.

Data Types: char

InitialConditions — Initial conditions of scrambler registers
[0 1 2 3] (default) | nonnegative integer vector

4 System Objects — Alphabetical List

4-1716

Initial conditions of scrambler registers when the simulation starts, specified as a
nonnegative integer vector. The length of InitialConditions must equal the order of
the Polynomial property. The vector element values must be integers from 0 to
CalculationBase – 1.

Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

ResetInputPort — Scrambler state reset port
false (default) | true

Scrambler state reset port, specified as false or true. If ResetInputPort is true, you
can reset the scrambler object by using an additional input argument, reset, when calling
the object.

Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

Usage

Syntax
scrambledOut = scrambler(signal)
scrambledOut = scrambler(signal,initcond)
scrambledOut = scrambler(signal,reset)

Description
scrambledOut = scrambler(signal) scrambles the input signal. The output is the
same data type and length as the input vector.

scrambledOut = scrambler(signal,initcond) provides an additional input with
values specifying the initial conditions of the linear feedback shift register.

This syntax applies when you set the InitialConditionsSource property of the object to
'Input port'.

 comm.Scrambler

4-1717

scrambledOut = scrambler(signal,reset) provides an additional input indicating
whether to reset the state of the scrambler.

This syntax applies when you set InitialConditionsSource to 'Property' and
ResetInputPort to true.

Input Arguments
signal — Input signal
column vector

Input signal, specified as a column vector.
Example: scrambledOut = scrambler([0 1 1 0 1])
Data Types: double | logical

initcond — Initial register conditions
nonnegative integer column vector

Initial scrambler register conditions when the simulation starts, specified as a
nonnegative integer column vector. The length of initcond must equal the order of the
Polynomial property. The vector element values must be integers from 0 to
CalculationBase – 1.
Example: scrambledOut = scrambler(signal,[0 1 1 0]) corresponds to possible
initial register states for a scrambler with a polynomial order of 4 and a calculation base
of 2 or higher.
Data Types: double

reset — Reset initial state of scrambler
scalar

Reset the initial state of the scrambler when the simulation starts, specified as a scalar.
When the value of reset is nonzero, the object is reset before it is called.
Example: scrambledOut = scrambler(signal,0) scrambles the input signal without
resetting the scrambler states.
Data Types: double

4 System Objects — Alphabetical List

4-1718

Output Arguments
out — Scrambled output
column vector

Scrambled output, returned as a column vector with the same data type and length as
signal.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Scramble and Descramble Data

Scramble and descramble 8-ary data using comm.Scrambler and comm.Descrambler
System objects™ having a calculation base of 8.

Create scrambler and descrambler objects, specifying the calculation base, polynomial,
and initial conditions using input arguments. The scrambler and descrambler polynomials
are specified with different but equivalent data formats.

N = 8;
scrambler = comm.Scrambler(N,'1 + z^-2 + z^-3 + z^-5 + z^-7', ...
 [0 3 2 2 5 1 7]);
descrambler = comm.Descrambler(N,[1 0 1 1 0 1 0 1], ...
 [0 3 2 2 5 1 7]);

 comm.Scrambler

4-1719

Scramble and descramble random integers. Display the original data, scrambled data,
and descrambled data sequences.

data = randi([0 N-1],5,1);
scrData = scrambler(data);
deScrData = descrambler(scrData);
[data scrData deScrData]

ans = 5×3

 6 7 6
 7 5 7
 1 7 1
 7 0 7
 5 3 5

Verify that the descrambled data matches the original data.

isequal(data,deScrData)

ans = logical
 1

Scramble and Descramble Data with Changing Initial Conditions

Scramble and descramble quaternary data while changing the initial conditions between
function calls.

Create scrambler and descrambler System objects having a calculation base of 4. Set the
InitialConditionsSource property to 'Input port' so you can set the initial
conditions as an argument to the object.

N = 4;
scrambler = comm.Scrambler(N,'1 + z^-3','InitialConditionsSource','Input port');
descrambler = comm.Descrambler(N,'1 + z^-3','InitialConditionsSource','Input port');

Preallocate memory for the error vector which will be used to store errors output by the
symerr function.

errVec = zeros(10,1);

4 System Objects — Alphabetical List

4-1720

Scramble and descramble random integers while changing the initial conditions,
initCond, each time the loop executes. Use the symerr function to determine if the
scrambling and descrambling operations result in symbol errors.

for k = 1:10
 initCond = randperm(3)';
 data = randi([0 N-1],5,1);
 scrData = scrambler(data,initCond);
 deScrData = descrambler(scrData,initCond);
 errVec(k) = symerr(data,deScrData);
end

Examine errVec to verify that the output from the descrambler matches the original
data.

errVec

errVec = 10×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.Scrambler

4-1721

See Also
Objects
comm.Descrambler | comm.PNSequence

Blocks
Scrambler

Introduced in R2012a

4 System Objects — Alphabetical List

4-1722

comm.SphereDecoder
Package: comm

Decode input using sphere decoder

Description
The Sphere Decoder System object decodes the symbols sent over NT antennas using
the sphere decoding algorithm.

To decode input symbols using a sphere decoder:

1 Define and set up your sphere decoder object. See “Construction” on page 4-1723.
2 Call step to decode input symbols according to the properties of

comm.SphereDecoder. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.SphereDecoder creates a System object, H. This object uses the sphere
decoding algorithm to find the maximum-likelihood solution for a set of received symbols
over a MIMO channel with NT transmit antennas and NR receive antennas.

H = comm.SphereDecoder(Name,Value) creates a sphere decoder object, H, with the
specified property name set to the specified value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

 comm.SphereDecoder

4-1723

H = comm.SphereDecoder(CONSTELLATION,BITTABLE) creates a sphere decoder
object, H, with the Constellation property set to CONSTELLATION, and the BitTable
property set to BITTABLE.

Properties
Constellation

Signal constellation per transmit antenna

Specify the constellation as a complex column vector containing the constellation points
to which the transmitted bits are mapped. The default setting is a QPSK constellation
with an average power of 1. The length of the vector must be a power of two. The object
assumes that each transmit antenna uses the same constellation.

BitTable

Bit mapping used for each constellation point.

Specify the bit mapping for the symbols that the Constellation property specifies as a
numerical matrix. The default is [0 0; 0 1; 1 0; 1 1], which matches the default
Constellation property value.

The matrix size must be [ConstellationLength bitsPerSymbol].
ConstellationLength represents the length of the Constellation property.
bitsPerSymbol represents the number of bits that each symbol encodes.

InitialRadius

Initial search radius of the decoding algorithm.

Specify the initial search radius for the decoding algorithm as either Infinity | ZF
Solution. The default is Infinity.

When you set this property to Infinity, the object sets the initial search radius to Inf.

When you set this property to ZF Solution, the object sets the initial search radius to
the zero-forcing solution. This calculation uses the pseudo-inverse of the input channel
when decoding. Large constellations and/or antenna counts can benefit from the initial
reduction in the search radius. In most cases, however, the extra computation of the ZF
Solution will not provide a benefit.

4 System Objects — Alphabetical List

4-1724

DecisionType

Specify the decoding decision method as either Soft | Hard. The default is Soft.

When you set this property to Soft, the decoder outputs log-likelihood ratios (LLRs), or
soft bits.

When you set this property to Hard, the decoder converts the soft LLRs to bits. The hard-
decision output logical array follows the mapping of a zero for a negative LLR and one for
all other values.

Methods
step Decode received symbols using sphere decoding algorithm

Common to All System Objects
release Allow System object property value changes

Examples

Decode Using a Sphere Decoder

Modulate a set of bits using 16-QAM constellation. Transmit the signal as two parallel
streams over a MIMO channel. Decode using a sphere decoder with perfect channel
knowledge.

Specify the modulation order, the number of transmitted bits, the Eb/No ratio, and the
symbol mapping.

bps = 4; % Bits per symbol
M = 2^bps; % Modulation order
nBits = 1e3*bps;
ebno = 10;
symMap = [11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7];

Generate and display the symbol mapping of the 16-QAM modulator by using the qammod
function and the custom symbol map.

 comm.SphereDecoder

4-1725

sym = qammod(symMap(1:M)',M,symMap,'UnitAveragePower',true,'PlotConstellation',true);

Convert the decimal value of the symbol map to binary bits using the left bit as the most
significant bit (msb). The M-by-bps matrix bitTable is used by the sphere decoder.

bitTable = de2bi(symMap,bps,'left-msb');

Create a 2x2 MIMO Channel System object with PathGainsOutputPort set to true to
use the path gains as a channel estimate. To ensure the repeatability of results, set the
object to use the global random number stream.

mimo = comm.MIMOChannel(...
 'PathGainsOutputPort',true, ...
 'RandomStream','Global stream');

4 System Objects — Alphabetical List

4-1726

Create an AWGN Channel System object.

awgnChan = comm.AWGNChannel('EbNo',ebno,'BitsPerSymbol',bps);

Create a Sphere Decoder System object that processes bits using hard-decision decoding.
Configure using the custom bit table and symbol map.

sphDec = comm.SphereDecoder('Constellation',sym, ...
 'BitTable',bitTable,'DecisionType','Hard');

Create an error rate System object.

berRate = comm.ErrorRate;

Set the global random number generator seed.

rng(37)

Generate a random data stream.

data = randi([0 1],nBits,1);

Modulate the data and reshape it into two streams to be used with the 2x2 MIMO
channel.

modData = qammod(data,M,symMap,'InputType','bit','UnitAveragePower',true);
modData = reshape(modData,[],2);

Pass the modulated data through the MIMO fading channel and add AWGN.

[fadedSig,pathGains] = mimo(modData);
rxSig = awgnChan(fadedSig);

Decode the received signal using pathGains as a perfect channel estimate.

decodedData = sphDec(rxSig,squeeze(pathGains));

Convert the decoded hard-decision data, which is a logical matrix, into a double column
vector to enable the calculation of error statistics. Calculate and display the bit error rate
and the number of errors.

dataOut = double(decodedData(:));
errorStats = berRate(data,dataOut);
errorStats(1:2)

 comm.SphereDecoder

4-1727

ans = 2×1

 0.0380
 152.0000

Algorithm
This object implements a soft-output max-log a posteriori probability (APP) MIMO
detector by means of a soft-output Schnorr-Euchner sphere decoder (SESD), implemented
as single tree search (STS) tree traversal. The algorithm assumes the same constellation
and bit table on all of the transmit antennas. Given as inputs, the received symbol vector
and the estimated channel matrix, the algorithm outputs the log-likelihood ratios (LLRs)
of the transmitted bits.

The algorithm assumes a MIMO system model with NT transmit antennas and NR receive
antennas where NT symbols are simultaneously sent, expressed as:

y = Hs + n.

where y is the received symbols, H is the MIMO channel matrix, s is the transmitted
symbol vector, and n is the thermal noise.

The MIMO detector seeks the maximum-likelihood (ML) solution, sML
$, such that:

s ML = argmin
s ∈ o

y − Hs 2

where O is the complex-valued constellation from which the NT elements of s are chosen.

Soft detection also computes a log-likelihood ratio (LLR) for each bit that serves as a
measure of the reliability of the estimate for each bit. The LLR is calculated as using the
max-log approximation:

L x j, b = min
s ∈ x j, b

(0)
y − Hs 2

︸
λML

− min
s ∈ x j, b

(1)
y − Hs 2

︸
λj, b

ML

where

4 System Objects — Alphabetical List

4-1728

• L(xj,b) is the LLR estimate for each bit.
• x j, b is each sent bit, the bth bit of the jth symbol.
• x j, b

(0) and x j, b
(1) are the disjoint sets of vector symbols that have the bth bit in the label of

the jth scalar symbol equal to 0 and 1, respectively. The two λ symbols denotes the
distance calculated as norm squared., specifically:

• λML is the distance s ML.
• λ j, b

ML is the distance to the counter-hypothesis, which denotes the binary
complement of the bth bit in the binary label of the jth entry of s ML, specifically

the minimum of the symbol set x
j, b

x j, b
ML

, which contains all of the possible vectors for

which the bth bit of the jth entry is flipped compared to the same entry of s ML.

Based on whether x
j, b

x j, b
ML

 is 0 or 1, the LLR estimate for bit x j, b is computed as follows:

L(x j, b) =
λML− λ j, b

ML, x j, b
ML = 0

λ j, b
ML− λML, x j, b

ML = 1

The design of a decoder strives to efficiently find s ML, λML, and λ j, b
ML.

This search can be converted into a tree search by means of the sphere decoding
algorithms. To this end, the channel matrix is decomposed into H = QR by means of a QR
decomposition. Left-multiplying y by QH, the problem can be reformulated as:

λML = arg min
s ∈ o

y − Rs 2

λ j, b
ML =

s ∈ x
j, b

x j, b
ML

argmin y − Rs 2

Using this reformulated problem statement, the triangular structure of R can be exploited
to arrange a tree structure such that each of the leaf nodes corresponds to a possible s
vector and the partial distances to the nodes in the tree can be calculated cumulatively
adding to the partial distance of the parent node.

 comm.SphereDecoder

4-1729

In the STS algorithm, the λML and λ j, b
ML metrics are searched concurrently. The goal is to

have a list containing the metric λML, along with the corresponding bit sequence xML and

the metrics x
j, b

x j, b
ML

 of all counter-hypotheses. The sub-tree originating from a given node is

searched only if the result can lead to an update of either λML or λ j, b
ML.

The STS algorithm flow can be summarized as:

1 If when reaching a leaf node, a new ML hypothesis is found d x < λML , all λ j, b
ML for

which x j, b = x j, b
ML are set to λML which now turns into a valued counter-hypothesis.

Then, λML is set to the current distance, d(x).
2 If d(x) ≥ λML, only the counter-hypotheses have to be checked. For all j and b for

which d x < λML and x j, b = x j, b
ML, the decoder updates λ j, b

ML to be d(x).

3 A sub-tree is pruned if the partial distance of the node is bigger than the current λ j, b
ML

which may be affected when traversing the subtree.
4 The STS concludes once all of the tree nodes have been visited once or pruned.

Limitations
• The output LLR values are not scaled by the noise variance. For coded links employing

iterative coding (LDPC or turbo) or MIMO OFDM with Viterbi decoding, the output
LLR values should be scaled by the channel state information to achieve better
performance.

Selected Bibliography
[1] Studer, C., A. Burg, and H. Bölcskei. “Soft-Output Sphere Decoding: Algorithms and

VLSI Implementation”. IEEE Journal of Selected Areas in Communications. Vol.
26, No. 2, February 2008, pp. 290–300.

[2] Cho, Y. S., et.al. "MIMO-OFDM Wireless communications with MATLAB," IEEE Press,
2011.

4 System Objects — Alphabetical List

4-1730

[3] Hochwald, B.M., S. ten Brink. “Achieving near-capacity on a multiple-antenna
channel”, IEEE Transactions on Communications, Vol. 51, No. 3, Mar 2003, pp.
389-399.

[4] Agrell, E., T. Eriksson, A. Vardy, K. Zeger. “Closest point search in lattices”, IEEE
Transactions on Information Theory, Vol. 48, No. 8, Aug 2002, pp. 2201-2214.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Sphere Decoder | comm.LTEMIMOChannel | comm.MIMOChannel |
comm.OSTBCCombiner

Introduced in R2013a

 comm.SphereDecoder

4-1731

step
System object: comm.SphereDecoder
Package: comm

Decode received symbols using sphere decoding algorithm

Syntax
Y = step(H, RXSYMBOLS, CHAN)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H, RXSYMBOLS, CHAN) decodes the received symbols, RXSYMBOLS, using
the sphere decoding algorithm. The algorithm can be employed to decode Ns channel
realizations in one call, where in each channel realization, Nr symbols are received.

The inputs are:

RXSYMBOLS: a [Ns Nr] complex double matrix containing the received symbols.

CHAN: a [Ns Nt Nr] or [1 Nt Nr] complex double matrix representing the fading channel
coefficients of the flat-fading MIMO channel. For the [Ns Nt Nr] case, the object applies
each channel matrix to each Nr symbol set. For the block fading case, i.e., when the size
of CHAN is [1 Nt Nr], the same channel is applied to all of the received symbols.

The output Y, which depends on the setting of the DecisionType property, is a double
matrix containing the Log-Likelihood Ratios (LLRs) of the decoded bits or the bits
themselves. For both cases, the size of the output is [Ns*bitsPerSymbol Nt], where
bitsPerSymbol represents the number of bits per transmitted symbol, as determined by
the BitTable property.

4 System Objects — Alphabetical List

4-1732

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1733

comm.SymbolSynchronizer
Package: comm

Correct symbol timing clock skew

Description
The comm.SymbolSynchronizer System object corrects symbol timing clock skew
between a single-carrier transmitter and receiver for PAM, PSK, QAM, and OQPSK
modulation schemes. For more information, see “Symbol Synchronization Overview” on
page 4-1755.

Note The input signal operates on a sample-rate basis and the output signal operates on
a symbol-rate basis.

To correct symbol timing clock skew:

1 Create the comm.SymbolSynchronizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
symbolSync = comm.SymbolSynchronizer
symbolSync = comm.SymbolSynchronizer(Name,Value)

4 System Objects — Alphabetical List

4-1734

Description
symbolSync = comm.SymbolSynchronizer creates a symbol synchronizer System
objectfor correcting the clock skew between a single-carrier transmitter and receiver.

symbolSync = comm.SymbolSynchronizer(Name,Value) sets properties using one
or more name-value pairs. For example,
comm.SymbolSynchronizer('Modulation','OQPSK') configures the symbol
synchronizer System object for an OQPSK-modulated input signal. Enclose each property
name in quotes.

Tunable DampingFactor, NormalizedLoopBandwidth, and DetectorGain properties
enable you to optimize synchronizer performance in your simulation loop without
releasing the object.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Name-Value Pair Arguments
Modulation — Modulation type
'PAM/PSK/QAM' (default) | 'OQPSK'

Modulation type, specified as 'PAM/PSK/QAM' or 'OQPSK'.

Tunable: No
Data Types: char | string

TimingErrorDetector — Timing error detector method
Zero-Crossing (decision-directed) (default) | Gardner (non-data-aided) |
Early-Late (non-data-aided) | Mueller-Muller (decision-directed)

 comm.SymbolSynchronizer

4-1735

Timing error detector method, specified as Zero-Crossing (decision-directed),
Gardner (non-data-aided), Early-Late (non-data-aided), or Mueller-
Muller (decision-directed). This property assigns the timing error detection
scheme used in the synchronizer. For more information, see “Timing Error Detection
(TED)” on page 4-1756.

Tunable: No
Data Types: char | string

SamplesPerSymbol — Samples per symbol
2 (default) | integer greater than 1

Samples per symbol, specified as an integer greater than 1.

Tunable: No
Data Types: double

DampingFactor — Damping factor of loop filter
1 (default) | positive scalar

Damping factor of the loop filter, specified as a positive scalar. For more information, see
“Loop Filter” on page 4-1760.

Tunable: Yes
Data Types: double | single

NormalizedLoopBandwidth — Normalized bandwidth of loop filter
0.01 (default) | scalar in the range (0, 1)

Normalized bandwidth of the loop filter, specified as a scalar in the range (0, 1). The loop
bandwidth is normalized to the sample rate of the input signal. For more information, see
“Loop Filter” on page 4-1760.

Note To ensure the symbol synchronizer locks, set the NormalizedLoopBandwidth
property to a value less than 0.1.

Tunable: Yes
Data Types: double | single

4 System Objects — Alphabetical List

4-1736

DetectorGain — Phase detector gain
2.7 (default) | positive scalar

Phase detector gain, specified as a positive scalar.

Tunable: Yes
Data Types: double | single

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
symbols = symbolSync(samples)

Description
symbols = symbolSync(samples) corrects symbol timing clock skew between a
single-carrier transmitter and receiver based on the input samples and outputs
synchronized symbols.

• The input operates on a sample-rate basis and the output signal operates on a symbol-
rate basis.

• You can tune the DampingFactor, NormalizedLoopBandwidth, and
DetectorGain properties to improve the synchronizer performance.

Input Arguments
samples — Input samples
scalar (default) | column vector

 comm.SymbolSynchronizer

4-1737

Input samples, specified as a scalar or column vector of a PAM-, PSK-, QAM-, or OQPSK-
modulated single-carrier signal.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
symbols — Synchronized symbols
column vector

Synchronized symbols, returned as a variable-sized column vector. The output symbols
inherit the data type from the input samples. For an input with dimensions Nsamp-by-1, this
output has dimensions Nsym-by-1. Nsym is approximately equal to Nsamp divided by Nsps,
where Nsps is equal to the SamplesPerSymbol property value. If the output exceeds the

maximum output size of
Nsamp
Nsps

× 1.1 , it is truncated.

timingErr — Estimated timing error
scalar in the range [0, 1] | column vector of elements in the range [0, 1]

Estimated timing error for each input sample, returned as a scalar in the range [0, 1] or
column vector of elements in the range [0, 1]. The estimated timing error is normalized to
the input sample rate. timingErr has the same data type and size as input samples.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.SymbolSynchronizer
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm

4 System Objects — Alphabetical List

4-1738

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Correct Symbol Timing Error of QPSK-Modulated Signal

Correct a fixed symbol timing error on a noisy QPSK-modulated signal. Check the bit
error rate (BER) of the synchronized received signal.

Initialize simulation parameters.

M = 4; % Modulation order for QPSK
nSym = 5000; % Number of symbols in a packet
sps = 4; % Samples per symbol
timingErr = 2; % Samples of timing error
snr = 15; % Signal-to-noise ratio (dB)

Create root raised cosine (RRC) transmit and receive filter System objects.

txfilter = comm.RaisedCosineTransmitFilter(...
 'OutputSamplesPerSymbol',sps);
rxfilter = comm.RaisedCosineReceiveFilter(...
 'InputSamplesPerSymbol',sps,'DecimationFactor',2);

Create a symbol synchronizer System object to correct the timing error.

symbolSync = comm.SymbolSynchronizer;

Generate random M-ary symbols and apply QPSK modulation.

data = randi([0 M-1],nSym,1);
modSig = pskmod(data,M,pi/4);

Create a delay object to introduce a fixed timing error of 2 samples. Because the transmit
RRC filter outputs 4 samples per symbol, 1 sample is equivalent to a 1/4 symbol through
the fixed delay and channel.

fixedDelay = dsp.Delay(timingErr);
fixedDelaySym = ceil(fixedDelay.Length/sps); % Round fixed delay to nearest integer in symbols

 comm.SymbolSynchronizer

4-1739

Filter the modulated signal through a transmit RRC filter by using the txfilter object.
Apply a signal timing error by using the fixedDelay object.

txSig = txfilter(modSig);
delaySig = fixedDelay(txSig);

Pass the delayed signal through an AWGN channel with a 15 dB signal-to-noise ratio.

rxSig = awgn(delaySig,snr,'measured');

Filter the modulated signal through a receive RRC filter by using the rxfilter object.
Display the scatter plot. Due to the timing error, the received signal does not align with
the expected QPSK reference constellation.

rxSample = rxfilter(rxSig);
scatterplot(rxSample(1001:end),2)

4 System Objects — Alphabetical List

4-1740

Correct the symbol timing error by using the symbolSync object. Display the scatter
plot. The synchronized signal now aligns with the expected QPSK constellation.

rxSync = symbolSync(rxSample);
scatterplot(rxSync(1001:end),2)

 comm.SymbolSynchronizer

4-1741

Demodulate the QPSK signal.

recData = pskdemod(rxSync,M,pi/4);

Compute, in symbols, the total system delay due to the fixed delay and the transmit and
receive RRC filters.

sysDelay = dsp.Delay(fixedDelaySym + txfilter.FilterSpanInSymbols/2 + ...
 rxfilter.FilterSpanInSymbols/2);

Compute the BER, taking into account the system delay.

[numErr,ber] = biterr(sysDelay(data),recData)

numErr = 12

4 System Objects — Alphabetical List

4-1742

ber = 0.0012

Correct Symbol Timing Error of BPSK-Modulated Signal

Correct a fixed symbol timing error on a noisy BPSK transmission signal. Check the bit
error rate (BER) of the synchronized received signal.

Initialize simulation parameters.

M = 2; % Modulation order for BPSK
nSym = 20000; % Number of symbols in a packet
sps = 4; % Samples per symbol
timingErr = 2; % Samples of timing error
snr = 15; % Signal-to-noise ratio (dB)

Create root raised cosine (RRC) transmit and receive filter System objects.

txfilter = comm.RaisedCosineTransmitFilter(...
 'OutputSamplesPerSymbol',sps);
rxfilter = comm.RaisedCosineReceiveFilter(...
 'InputSamplesPerSymbol',sps,'DecimationFactor',1);

Create a symbol synchronizer System object™ to correct the timing error.

symbolSync = comm.SymbolSynchronizer(...
 'SamplesPerSymbol',sps, ...
 'NormalizedLoopBandwidth',0.01, ...
 'DampingFactor',1.0, ...
 'TimingErrorDetector','Early-Late (non-data-aided)');

Generate random data symbols and apply BPSK modulation.

data = randi([0 M-1],nSym,1);
modSig = pskmod(data,M);

Create a delay object to introduce a fixed timing error of 2 samples. Because the transmit
RRC filter outputs 4 samples per symbol, 1 sample is equivalent to a 1/4 symbol through
the fixed delay and channel.

fixedDelay = dsp.Delay(timingErr);
fixedDelaySym = ceil(fixedDelay.Length/sps); % Round fixed delay to nearest integer in symbols

 comm.SymbolSynchronizer

4-1743

Filter the modulated signal through a transmit RRC filter by using the txfilter object.
Apply a signal timing error by using the fixedDelay object.

txSig = txfilter(modSig);
delayedSig = fixedDelay(txSig);

Pass the delayed signal through an AWGN channel.

rxSig = awgn(delayedSig,snr,'measured');

Filter the modulated signal through a receive RRC filter by using the rxfilter object.
Display the scatter plot. Due to the timing error, the received signal does not align with
the expected BPSK reference constellation.

rxSample = rxfilter(rxSig);
scatterplot(rxSample(10000:end),2)

4 System Objects — Alphabetical List

4-1744

Correct the symbol timing error by using the symbolSync object. Display the scatter
plot. The synchronized signal now aligns with the expected BPSK constellation.

rxSync = symbolSync(rxSample);
scatterplot(rxSync(10000:end),2)

 comm.SymbolSynchronizer

4-1745

Demodulate the BPSK signal.

recData = pskdemod(rxSync,M);

Compute, in symbols, the total system delay due to the fixed delay and the transmit and
receive RRC filters.

sysDelay = dsp.Delay(fixedDelaySym + txfilter.FilterSpanInSymbols/2 + ...
 rxfilter.FilterSpanInSymbols/2);

Compute the BER, taking into account the system delay.

[numErr1,ber1] = biterr(sysDelay(data),recData)

numErr1 = 8

4 System Objects — Alphabetical List

4-1746

ber1 = 4.0000e-04

Correct Symbol Timing and Doppler Offsets

Correct symbol timing and frequency offset errors by using the
comm.SymbolSynchronizer and comm.CarrierSynchronizer System objects.

Configuration

Initialize simulation parameters.

M = 16; % Modulation order
nSym = 2000; % Number of symbols in a packet
sps = 2; % Samples per symbol
spsFilt = 8; % Samples per symbol for filters and channel
spsSync = 2; % Samples per symbol for synchronizers
lenFilt = 10; % RRC filter length

Create a matched pair of root raised cosine (RRC) filter System objects for transmitter
and receiver.

txfilter = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',lenFilt, ...
 'OutputSamplesPerSymbol',spsFilt,'Gain',sqrt(spsFilt));
rxfilter = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',lenFilt, ...
 'InputSamplesPerSymbol',spsFilt,'DecimationFactor',spsFilt/2,'Gain',sqrt(1/spsFilt));

Create a phase-frequency offset System object to introduce a 100 Hz Doppler shift.

doppler = comm.PhaseFrequencyOffset('FrequencyOffset',100, ...
 'PhaseOffset',45,'SampleRate',1e6);

Create a variable delay System object to introduce timing offsets.

varDelay = dsp.VariableFractionalDelay;

Create carrier and symbol synchronizer System objects to correct for Doppler shift and
timing offset, respectively.

carrierSync = comm.CarrierSynchronizer('SamplesPerSymbol',spsSync);
symbolSync = comm.SymbolSynchronizer(...
 'TimingErrorDetector','Early-Late (non-data-aided)', ...
 'SamplesPerSymbol',spsSync);

 comm.SymbolSynchronizer

4-1747

Create constellation diagram System objects to view the results.

refConst = qammod(0:M-1,M,'UnitAveragePower',true);
cdReceive = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
 'SamplesPerSymbol',spsFilt,'Title','Received Signal');
cdDoppler = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
 'SamplesPerSymbol',spsSync,'Title','Frequency Corrected Signal');
cdTiming = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
 'SamplesPerSymbol',spsSync,'Title','Frequency and Timing Synchronized Signal');

Main Processing Loop

The main processing loop:

• Generates random symbols and apply QAM modulation.
• Filters the modulated signal.
• Applies frequency and timing offsets.
• Passes the transmitted signal through an AWGN channel.
• Filters the received signal.
• Corrects the Doppler shift.
• Corrects the timing offset.

for k = 1:15
 data = randi([0 M-1],nSym,1);
 modSig = qammod(data,M,'UnitAveragePower',true);
 txSig = txfilter(modSig);

 txDoppler = doppler(txSig);
 txDelay = varDelay(txDoppler,k/15);

 rxSig = awgn(txDelay,25);

 rxFiltSig = rxfilter(rxSig);
 rxCorr = carrierSync(rxFiltSig);
 rxData = symbolSync(rxCorr);
end

Visualization

Plot the constellation diagrams of the received signal, frequency corrected signal, and
frequency and timing synchronized signal. Specific constellation points cannot be
identified in the received signal and can be only partially identified in the frequency

4 System Objects — Alphabetical List

4-1748

corrected signal. However, the timing and frequency synchronized signal aligns with the
expected QAM constellation points.

cdReceive(rxSig)

 comm.SymbolSynchronizer

4-1749

cdDoppler(rxCorr)

cdTiming(rxData)

4 System Objects — Alphabetical List

4-1750

 comm.SymbolSynchronizer

4-1751

Timing Error for Noisy 8-PSK Signal

Correct a monotonically increasing symbol timing error on a noisy 8-PSK signal. Display
the normalized timing error.

Initialize simulation parameters.

M = 8; % Modulation order
nSym = 5000; % Number of symbol in a packet
sps = 2; % Samples per symbol
nSamp = sps*nSym; % Number of samples in a packet

Create root raised cosine (RRC) transmit and receive filter System objects.

txfilter = comm.RaisedCosineTransmitFilter(...
 'OutputSamplesPerSymbol',sps);
rxfilter = comm.RaisedCosineReceiveFilter(...
 'InputSamplesPerSymbol',sps, ...
 'DecimationFactor',1);

Create a variable fractional delay System object™ to introduce a monotonically increasing
timing error.

varDelay = dsp.VariableFractionalDelay;

Create a symbol synchronizer System object to correct the timing error.

symbolSync = comm.SymbolSynchronizer(...
 'TimingErrorDetector','Mueller-Muller (decision-directed)', ...
 'SamplesPerSymbol',sps);

Generate random 8-ary symbols and apply 8-PSK modulation.

data = randi([0 M-1],nSym,1);
modSig = pskmod(data,M,pi/8);

Filter the modulated signal through a raised cosine transmit filter and apply a
monotonically increasing timing delay.

vdelay = (0:1/nSamp:1-1/nSamp)';
txSig = txfilter(modSig);
delaySig = varDelay(txSig,vdelay);

Pass the delayed signal through an AWGN channel with a 15 dB signal-to-noise ratio.

rxSig = awgn(delaySig,15,'measured');

4 System Objects — Alphabetical List

4-1752

Filter the modulated signal through a receive RRC filter. Display the scatter plot. Due to
the timing error, the received signal does not align with the expected 8-PSK reference
constellation.

rxSample = rxfilter(rxSig);
scatterplot(rxSample,sps)

Correct the symbol timing error by using the symbolSync object. Display the scatter
plot. The synchronized signal now aligns with the expected 8-PSK constellation.

[rxSym,tError] = symbolSync(rxSample);
scatterplot(rxSym(1001:end))

 comm.SymbolSynchronizer

4-1753

Plot the timing error estimate. Over time, the normalized timing error increases to 1
sample.

figure
plot(vdelay,tError)
xlabel('Time (s)')
ylabel('Timing Error (samples)')

4 System Objects — Alphabetical List

4-1754

More About

Symbol Synchronization Overview
The symbol timing synchronizer algorithm is based on a phased lock loop (PLL) algorithm
that consists of four components:

• A timing error detector (TED)
• An interpolator

 comm.SymbolSynchronizer

4-1755

• An interpolation controller
• A loop filter

For OQPSK modulation, the in-phase and quadrature signal components are first aligned
(as in QPSK modulation) using a state buffer to cache the last half symbol of the previous
input. After initial alignment, the remaining synchronization process is the same as for
QPSK modulation.

This block diagram shows an example of a timing synchronizer. In the figure, the symbol
timing PLL operates on x(t), the received sample signal after matched filtering. The
symbol timing PLL outputs the symbol signal, x(kTs + τ), after correcting for the clock
skew between the transmitter and receiver.

Timing Error Detection (TED)
The symbol timing synchronizer supports non-data-aided TED and decision-directed TED
methods. This table shows the timing estimate expressions for the TED method options.

4 System Objects — Alphabetical List

4-1756

TED
Method

Expression

Zero-
crossing
(decision-
directed)

e(k) = x (k− 1/2)Ts + τ a 0(k− 1)− a 0(k) + y (k− 1/2)Ts + τ a 1(k− 1)− a 1(k)

Gardner
(non-
data-
aided)

e(k) = x (k− 1/2)Ts + τ x (k− 1)Ts + τ − x(kTs + τ)
+ y (k− 1/2)Ts + τ y (k− 1)Ts + τ − y(kTs + τ)

Early-late
(non-
data-
aided)

e(k) = x(kTs + τ) x (k + 1/2)Ts + τ − x (k− 1/2)Ts + τ + y(kTs + τ
) y (k + 1/2)Ts + τ − y (k− 1/2)Ts + τ

Mueller-
Muller
(decision-
directed)

e(k) = a 0(k− 1)x(kTs + τ)− a 0(k)x (k− 1)Ts + τ + a 1(k− 1)y(kTs + τ)− a 1(k
)y (k− 1)Ts + τ

Non-data-aided TED uses received samples without any knowledge of the transmitted
signal or the results of the channel estimation. Non-data-aided TED is used to estimate
the timing error for signals with modulation schemes that have constellation points
aligned with the in-phase or quadrature axis. Examples of signals suitable for the Gardner
or early-late methods include QPSK-modulated signals with a zero phase offset that has
points at {1+0i, 0+1i, -1+0i, 0−1i} and BPSK-modulated signals with a zero phase offset.

• Gardner method — The Gardner method is a non-data-aided feedback method that is
independent of carrier phase recovery. It is used for baseband systems and modulated
carrier systems. More specifically, this method is used for systems that use a linear
modulation type with Nyquist pulses that have an excess bandwidth between
approximately 40% and 100%. Examples include systems that use PAM, PSK, QAM, or
OQPSK modulation and that shape the signal using raised cosine filters whose rolloff
factor is between 0.4 and 1. In the presence of noise, the performance of this timing
recovery method improves as the excess bandwidth increases (or rolloff factor
increases in the case of a raised cosine filter). The Gardner method is similar to the
early-late gate method.

• Early-late method — The early-late method is a non-data-aided feedback method. It
is used for systems that use a linear modulation type such as PAM, PSK, QAM, or

 comm.SymbolSynchronizer

4-1757

OQPSK modulation. For example, systems using a raised cosine filter with Nyquist
pulses. In the presence of noise, the performance of this timing recovery method
improves as the excess bandwidth of the pulse increases (or rolloff factor increases in
the case of a raised cosine filter).

The early-late method is similar to the Gardner method. The Gardner method performs
better in systems with high SNR values because it has lower self noise than the early-late
method.

Decision-directed TED uses the sign function to estimate the in-phase and quadrature
components of received samples, which result in lower computational complexity than
non-data-aided TED.

• Zero-crossing method — The zero-crossing method is a decision-directed technique
that requires 2 samples per symbol at the input to the synchronizer. It is used in low-
SNR conditions for all values of excess bandwidth and in moderate-SNR conditions for
moderate excess bandwidth factors in the approximate range [0.4, 0.6].

• Mueller-Muller method — The Mueller-Muller method is a decision-directed
feedback method that requires prior recovery of the carrier phase. When the input
signal has Nyquist pulses (for example, when using a raised cosine filter), the Mueller-
Muller method has no self noise. For narrowband signaling in the presence of noise,
the performance of the Mueller-Muller method improves as the excess bandwidth
factor of the pulse decreases.

Because the decision-directed methods (zero-crossing and Mueller-Muller) estimate
timing error based on the sign of the in-phase and quadrature components of signals
passed to the synchronizer, they are not recommended for constellations that have points
with either a zero in-phase or a quadrature component. x(kTs + τ) and y(kTs + τ) are the
in-phase and quadrature components of the input signals to the timing error detector,
where τ is the estimated timing error. The Mueller-Muller method coefficients a 0(k) and
a 1(k) are the estimates of x(kTs + τ) and y(kTs + τ). The timing estimates are made by
applying the sign function to the in-phase and quadrature components and are used for
only the decision-directed TED methods.

Interpolator
The time delay is estimated from the fixed-rate samples of the matched filter, which are
asynchronous with the symbol rate. Because the resulting samples are not aligned with
the symbol boundaries, an interpolator is used to "move" the samples. Because the time

4 System Objects — Alphabetical List

4-1758

delay is unknown, the interpolator must be adaptive. Moreover, because the interpolant is
a linear combination of the available samples, it can be thought of as the output of a filter.

The interpolator uses a piecewise parabolic interpolator with a Farrow structure and
coefficient α set to 1/2 (see Rice, Michael, Digital Communications: A Discrete-Time
Approach).

Interpolation Control
Interpolation control provides the interpolator with the basepoint index and fractional
interval. The basepoint index is the sample index nearest to the interpolant. The fractional
interval is the ratio of the time between the interpolant and its basepoint index and the
interpolation interval.

 comm.SymbolSynchronizer

4-1759

Interpolation is performed for every sample, and a strobe signal is used to determine if
the interpolant is output. The synchronizer uses a modulo-1 counter interpolation control
to provide the strobe and the fractional interval for use with the interpolator.

Loop Filter
The synchronizer uses a proportional-plus integrator (PI) loop filter. The proportional
gain, K1, and the integrator gain, K2, are calculated by

K1 = −4ζθ
1 + 2ζθ + θ2 Kp

and

4 System Objects — Alphabetical List

4-1760

K2 = −4θ2

1 + 2ζθ + θ2 Kp
.

The interim term, θ, is given by

θ =
BnTs

N
ζ + 1

4ζ
,

where:

• N is the number of samples per symbol.
• ζ is the damping factor.
• BnTs is the normalized loop bandwidth.
• Kp is the detector gain.

K
1

K
2 +

z-1

+

Loop Filter

References
[1] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle

River, NJ: Prentice Hall, 2008.

 comm.SymbolSynchronizer

4-1761

[2] Mengali, Umberto and Aldo N. D’Andrea. Synchronization Techniques for Digital
Receivers. New York: Plenum Press, 1997.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CarrierSynchronizer

Blocks
Symbol Synchronizer

Introduced in R2015a

4 System Objects — Alphabetical List

4-1762

comm.ThermalNoise
Package: comm

Add thermal noise to signal

Description
The ThermalNoise object simulates the effects of thermal noise on a complex, baseband
signal.

To add thermal noise to a complex, baseband signal:

1 Define and set up your thermal noise object. See “Construction” on page 4-1763.
2 Call step to add thermal noise according to the properties of comm.ThermalNoise.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
tn = comm.ThermalNoise creates a receiver thermal noise System object, H. This
object adds thermal noise to the complex, baseband input signal.

tn = comm.ThermalNoise(Name,Value) creates a receiver thermal noise object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
NoiseMethod — Method used to set noise power
'Noise temperature' (default) | 'Noise figure' | 'Noise factor'

 comm.ThermalNoise

4-1763

Method used to set the noise power, specified as 'Noise temperature', 'Noise
figure', or 'Noise factor'.

NoiseTemperature — Receiver noise temperature
290 (default) | nonnegative real scalar

Receiver noise temperature, specified in degrees K as a nonnegative real scalar. This
property is available when NoiseMethod is equal to 'Noise temperature'. Noise
temperature is typically used to characterize satellite receivers because the input noise
temperature can vary and is often less than 290 K. Tunable.

NoiseFigure — Noise figure
3.01 (default) | nonnegative real scalar

Noise figure, specified in dB as a nonnegative real scalar. This property is available when
NoiseMethod is equal to 'Noise figure'. Noise figure describes the performance of a
receiver and does not include the effect of the antenna. It is defined only for an input
noise temperature of 290 K. The noise figure is the dB equivalent of the noise factor.
Tunable.

NoiseFactor — Noise factor
2 (default) | real scalar ≥ 1

Noise factor, specified as a real scalar greater than or equal to 1. This property is
available when NoiseMethod is equal to 'Noise factor'. Noise factor describes the
performance of a receiver and does not include the effect of the antenna. It is defined only
for an input noise temperature of 290 K. The noise factor is the linear equivalent of the
noise figure. Tunable.

SampleRate — Sample rate
1 (default) | positive real scalar

Sample rate, specified as in Hz as a positive real scalar. The object computes the variance
of the noise added to the input signal as kT×SampleRate. The value k is Boltzmann's
constant and T is the noise temperature specified explicitly or implicitly via one of the
noise methods.

Add290KAntennaNoise — Add 290 K antenna noise
false (default) | true

4 System Objects — Alphabetical List

4-1764

Add 290 K antenna noise to the input signal, specified as a logical scalar. To add 290 K
antenna noise, set this property to true. This property is available when NoiseMethod is
equal to 'Noise factor' or 'Noise figure'.

The total noise applied to the input signal is the sum of the circuit noise and the antenna
noise.

Methods
step Add receiver thermal noise

Common to All System Objects
release Allow System object property value changes

Examples

Add Thermal Noise to QPSK Signal

Create a thermal noise object having a noise temperature of 290 K and a sample rate of 5
MHz.

thNoise = comm.ThermalNoise('NoiseTemperature',290,'SampleRate',5e6);

Generate QPSK-modulated data having an output power of 20 dBm.

data = randi([0 3],1000,1);
modData = 0.3162*pskmod(data,4,pi/4);

Attenuate the signal by the free space path loss assuming a 1000 m link distance and a
carrier frequency of 2 GHz.

fsl = (4*pi*1000*2e9/3e8)^2;
rxData = modData/sqrt(fsl);

Add thermal noise to the signal. Plot the noisy constellation.

noisyData = thNoise(rxData);
scatterplot(noisyData)

 comm.ThermalNoise

4-1765

Add Antenna and Receiver Thermal Noise to 16-QAM Signal

Create a thermal noise object having a 5 dB noise figure and a 10 MHz sample rate.
Specify that the 290 K antenna noise be included.

thermalNoise = comm.ThermalNoise('NoiseMethod','Noise figure', ...
 'NoiseFigure',5, ...
 'SampleRate',10e6, ...
 'Add290KAntennaNoise',true);

Generate QPSK-modulated data having a 1 W output power.

4 System Objects — Alphabetical List

4-1766

data = randi([0 15],1000,1);
modSig = qammod(data,16,'UnitAveragePower',true);

Attenuate the signal by the free space path loss assuming a 1 km link distance and a 5
GHz carrier frequency.

fsl = (4*pi*1000*5e9/3e8)^2;
rxSig = modSig/sqrt(fsl);

Add thermal noise to the signal and plot its constellation.

noisySig = thermalNoise(rxSig);
scatterplot(noisySig)

Estimate the SNR.

 comm.ThermalNoise

4-1767

mer = comm.MER;
snrEst1 = mer(rxSig,noisySig)

snrEst1 = 22.6611

Decrease the noise figure to 0 dB, and plot the resultant received signal. Because antenna
noise is included, the signal is not completely noiseless.

thermalNoise.NoiseFigure = 0;
noisySig = thermalNoise(rxSig);
scatterplot(noisySig)

Estimate the SNR. The SNR is 5 dB higher than in the first case, which is expected given
the 5 dB decrease in the noise figure.

4 System Objects — Alphabetical List

4-1768

snrEst2 = mer(rxSig,noisySig)

snrEst2 = 27.8658

snrEst2 - snrEst1

ans = 5.2047

Algorithms
Wireless receiver performance is often expressed as a noise factor or figure. The noise
factor is defined as the ratio of the input signal-to-noise ratio, Si/Ni to the output signal-to-
noise ratio, So/No, such that

F =
Si/Ni
So/No

.

Given receiver gain G and receiver noise power Nckt, the noise factor can be expressed as

F =
Si/Ni

GSi/ Nckt + GNi

=
Nckt + GNi

GNi
.

The IEEE defines the noise factor assuming that noise temperature at the input is T0,
where T0 = 290 K. The noise factor is then

F =
Nckt + GNi

GNi

=
GkBTckt + GkBT0

GkBT0

=
Tckt + T0

T0
.

Tckt is the equivalent input noise temperature of the receiver and is expressed as

Tckt = T0(F − 1) .

The overall noise temperature of an antenna and receiver, Tsys, is

 comm.ThermalNoise

4-1769

Tsys = Tant + Tckt ,

where Tant is the antenna noise temperature.

The noise figure, NF, is the dB equivalent of the noise factor and can be expressed as

NF = 10log10(F) .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.AWGNChannel

Introduced in R2012a

4 System Objects — Alphabetical List

4-1770

step
System object: comm.ThermalNoise
Package: comm

Add receiver thermal noise

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) adds thermal noise to the complex, baseband input signal, X, and
outputs the result in Y. The input signal X must be a complex, double or single precision
data type column vector or scalar.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1771

comm.TurboDecoder
Package: comm

Decode input signal using parallel concatenated decoding scheme

Description
The Turbo Decoder System object decodes the input signal using a parallel
concatenated decoding scheme that employs the a-posteriori probability (APP) decoder as
the constituent decoder. Both constituent decoders use the same trellis structure and
algorithm.

To decode an input signal using a turbo decoding scheme:

1 Define and set up your turbo decoder object. See “Construction” on page 4-1772.
2 Call step to decode a binary signal according to the properties of

comm.TurboDecoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.TurboDecoder creates a System object, H. This object uses the a-posteriori
probability (APP) constituent decoder to iteratively decode the parallel-concatenated
convolutionally encoded input data.

H = comm.TurboDecoder(Name, Value) creates a turbo decoder object, H, with the
specified property name set to the specified value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

H = comm.TurboDecoder(TRELLIS, INTERLVRINDICES, NUMITER) creates a turbo
decoder object, H, with the TrellisStructure property set to TRELLIS, the

4 System Objects — Alphabetical List

4-1772

InterleaverIndices property set to INTERLVRINDICES, and the NumIterations property
set to NUMITER.

Properties
TrellisStructure

Trellis structure of constituent convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Use the istrellis function to check if a structure is a
valid trellis structure. The default is the result of poly2trellis(4, [13 15], 13).

InterleaverIndicesSource

Source of interleaver indices

Specify the source of the interleaver indices as one of Property | Input port. When
you set this property to Input port, the object uses the interleaver indices specified as
an input to the step method. When you set this property to Property, the object uses the
interleaver indices that you specify in the InterleaverIndices property. When you set this
property to Input port, the object processes variable-size signals.

Default: Property

InterleaverIndices

Interleaver indices

Specify the mapping used to permute the input bits at the encoder as a column vector of
integers. This mapping is a vector with the number of elements equal to length, L, of the
output of the step method. Each element must be an integer between 1 and L, with no
repeated values.

Default: (64:-1:1).'.

Algorithm

Decoding algorithm

Specify the decoding algorithm that the object uses for decoding as one of True APP |
Max* | Max. When you set this property to True APP, the object implements true a-

 comm.TurboDecoder

4-1773

posteriori probability decoding. When you set this property to any other value, the object
uses approximations to increase the speed of the computations.

Default: True APP

NumScalingBits

Number of scaling bits

Specify the number of bits the constituent decoders use to scale the input data to avoid
losing precision during the computations. The constituent decoders multiply the input by
2 NumScalingBits and divide the pre-output by the same factor. The NumScalingBits
property must be a scalar integer between 0 and 8. This property applies when you set
the Algorithm property to Max*.

Default: 3

NumIterations

Number of decoding iterations

Specify the number of decoding iterations used for each call to the step method. The
object iterates and provide updates to the log-likelihood ratios (LLR) of the uncoded
output bits. The output of the step method is the hard-decision output of the final LLR
update.

Default: 6

Methods
step Decode input signal using parallel concatenated decoding scheme

Common to All System Objects
release Allow System object property value changes

Examples

4 System Objects — Alphabetical List

4-1774

Transmit and Receive Turbo-Encoded Data over a BPSK-Modulated AWGN
Channel

Simulate the transmission and reception of BPSK data over an AWGN channel using turbo
encoding and decoding.

Set the Eb/No (dB) and frame length parameters. Set the random number generator to its
default state to ensure that the results are repeatable.

EbNo= -6;
frmLen = 256;
rng default

Calculate the noise variance from the Eb/No ratio. Generate random interleaver indices.

noiseVar = 10^(-EbNo/10);
intrlvrIndices = randperm(frmLen);

Create a turbo encoder and decoder pair using the trellis structure given by
poly2trellis(4,[13 15 17],13) and intrlvrIndices.

hTEnc = comm.TurboEncoder('TrellisStructure',poly2trellis(4, ...
 [13 15 17],13),'InterleaverIndices',intrlvrIndices);

hTDec = comm.TurboDecoder('TrellisStructure',poly2trellis(4, ...
 [13 15 17],13),'InterleaverIndices',intrlvrIndices, ...
 'NumIterations',4);

Create a BPSK modulator and demodulator pair, where the demodulator outputs soft bits
determined by using a log-likelihood ratio method.

hMod = comm.BPSKModulator;
hDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...
 'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

hChan = comm.AWGNChannel('EbNo',EbNo);
hError = comm.ErrorRate;

The main processing loop performs the following steps:

• Generate binary data
• Turbo encode the data

 comm.TurboDecoder

4-1775

• Modulate the encoded data
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using LLR to output soft bits
• Turbo decode the demodulated data. Because the bit mapping from the demodulator is

opposite that expected by the turbo decoder, the decoder input must use the inverse of
demodulated signal.

• Calculate the error statistics

for frmIdx = 1:100
 data = randi([0 1],frmLen,1);
 encodedData = step(hTEnc,data);
 modSignal = step(hMod,encodedData);
 receivedSignal = step(hChan,modSignal);
 demodSignal = step(hDemod,receivedSignal);
 receivedBits = step(hTDec,-demodSignal);
 errorStats = step(hError,data,receivedBits);
end

Display the error data.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...
 errorStats)

Bit error rate = 2.34e-04
Number of errors = 6
Total bits = 25600

Turbo Coding with 16-QAM Modulation in an AWGN Channel

Simulate an end-to-end communication link employing 16-QAM using turbo codes in an
AWGN channel. The packet sizes are randomly selected from a set of {500, 1000, 1500}.
Because the packet size varies, provide the interleaver indices to the turbo encoder and
decoder objects as an input to their associated object calls.

Set the modulation order and Eb/No (dB) parameters. Set the random number generator
to its default state to be able to repeat the results.

M = 16;
EbNo= -2;
rng default

4 System Objects — Alphabetical List

4-1776

Calculate the noise variance from the Eb/No ratio and the modulation order.

noiseVar = 10^(-EbNo/10)*(1/log2(M));

Create a turbo encoder and decoder pair. The interleaver indices are supplied by an input
argument to the object when executed.

turboEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');
turboDec = comm.TurboDecoder('InterleaverIndicesSource','Input port','NumIterations',4);

Create an AWGN channel object and an error rate object.

awgnChan = comm.AWGNChannel('EbNo',EbNo,'BitsPerSymbol',log2(M));
errRate = comm.ErrorRate;

The processing loop performs the following steps:

• Select a random packet size and generate interleaver indices
• Generate random binary data
• Turbo encode the data
• Apply 16-QAM modulation, normalize the average signal power.
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal by using a log-likelihood ratio method, output soft bits,

normalize the average signal power
• Turbo decode the data
• Calculate the error statistics

numPkts = 100;
for pktIdx = 1:numPkts
 % Randomly select one of three possible packet sizes
 pktLen = 500*randi([1 3],1,1);

 % Determine the interleaver indices given the packet length
 intrlvrIndices = randperm(pktLen);

 % Generate random binary data
 data = randi([0 1],pktLen,1);

 % Turbo encode the data
 encodedData = turboEnc(data,intrlvrIndices);

 % Modulate the encoded data

 comm.TurboDecoder

4-1777

 modSignal = qammod(encodedData,M,'InputType','bit','UnitAveragePower',true);

 % Pass the signal through the AWGN channel
 receivedSignal = awgnChan(modSignal);

 % Demodulate the received signal
 demodSignal = qamdemod(receivedSignal,M,'OutputType','llr', ...
 'UnitAveragePower',true,'NoiseVariance',noiseVar);

 % Turbo decode the demodulated signal. Because the bit mapping from the
 % demodulator is opposite that expected by the turbo decoder, the
 % decoder input must use the inverse of demodulated signal.
 receivedBits = turboDec(-demodSignal,intrlvrIndices);

 % Calculate the error statistics
 errorStats = errRate(data,receivedBits);
end

Display the error statistics.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...
 errorStats)

Bit error rate = 3.51e-04
Number of errors = 33
Total bits = 94000

Algorithms
This object implements the algorithm, inputs, and outputs described on the Turbo
Decoder block reference page. The object properties correspond to the block parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

4 System Objects — Alphabetical List

4-1778

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Turbo Decoder | comm.APPDecoder | comm.TurboEncoder

Introduced in R2012a

 comm.TurboDecoder

4-1779

step
System object: comm.TurboDecoder
Package: comm

Decode input signal using parallel concatenated decoding scheme

Syntax
Y = step(H,X)
Y = step(H, X, INTERLVRINDICES)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) decodes the input data, X, using the parallel concatenated convolutional
coding scheme that you specify using the TrellisStructure and
InterleaverIndices properties. It returns the binary decoded data, Y. Both X and Y
are column vectors of double precision data type. When the constituent convolutional
code represents a rate 1/N code, the step method sets the length of the output vector, Y,
to (M-2*numTails)/(2*N-1), where M represents the input vector length and numTails is
given by log2(TrellisStructure.numStates)*N. The output length, L, is the same as the
length of the interleaver indices.

Y = step(H, X, INTERLVRINDICES) uses the INTERLVRINDICES specified as an
input. INTERLVRINDICES is a column vector containing integer values from 1 to L with
no repeated values. The lengths of the INTERLVRINDICES input and the Y output are the
same.

Note obj specifies the System object on which to run this step method.

4 System Objects — Alphabetical List

4-1780

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1781

comm.TurboEncoder
Package: comm

Encode input signal using parallel concatenated encoding scheme

Description
The Turbo Encoder System object encodes a binary input signal using a parallel
concatenated coding scheme. This coding scheme uses two identical convolutional
encoders and appends the termination bits at the end of the encoded data bits.

To encode an input signal using a turbo coding scheme:

1 Define and set up your turbo encoder object. See “Construction” on page 4-1782.
2 Call step to encode a binary signal according to the properties of

comm.TurboEncoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.TurboEncoder creates a System object, H, that encodes binary data using a
turbo encoder.

H = comm.TurboEncoder(Name, Value) creates a turbo encoder object, H, with the
specified property name set to the specified value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

H = comm.TurboEncoder(TRELLIS, INTERLVRINDICES) creates a turbo encoder
object, H. In this construction, the TrellisStructure property is set to TRELLIS, and
the InterleaverIndices property is set to INTERLVRINDICES.

4 System Objects — Alphabetical List

4-1782

Properties
TrellisStructure

Trellis structure of constituent convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Use the istrellis function to check if a structure is a
valid trellis structure. The default is the result of poly2trellis(4, [13 15], 13).

InterleaverIndicesSource

Source of interleaver indices

Specify the source of the interleaver indices as one of Property | Input port. When
you set this property to Input port, the object uses the interleaver indices specified as
an input to the step method. When you set this property to Property, the object uses the
interleaver indices that you specify in the InterleaverIndices property. When you set this
property to Input port, the object processes variable-size signals.

Default: Property

InterleaverIndices

Interleaver indices

Specify the mapping used to permute the input bits at the encoder as a column vector of
integers. This mapping is a vector with the number of elements equal to the length of the
input for the step method. Each element must be an integer between 1 and L, with no
repeated values.

Default: (64:-1:1).'.

Methods
step Encode input signal using parallel concatenated coding scheme

Common to All System Objects
release Allow System object property value changes

 comm.TurboEncoder

4-1783

Examples

Transmit and Receive Turbo-Encoded Data over a BPSK-Modulated AWGN
Channel

Simulate the transmission and reception of BPSK data over an AWGN channel using turbo
encoding and decoding.

Set the Eb/No (dB) and frame length parameters. Set the random number generator to its
default state to ensure that the results are repeatable.

EbNo= -6;
frmLen = 256;
rng default

Calculate the noise variance from the Eb/No ratio. Generate random interleaver indices.

noiseVar = 10^(-EbNo/10);
intrlvrIndices = randperm(frmLen);

Create a turbo encoder and decoder pair using the trellis structure given by
poly2trellis(4,[13 15 17],13) and intrlvrIndices.

hTEnc = comm.TurboEncoder('TrellisStructure',poly2trellis(4, ...
 [13 15 17],13),'InterleaverIndices',intrlvrIndices);

hTDec = comm.TurboDecoder('TrellisStructure',poly2trellis(4, ...
 [13 15 17],13),'InterleaverIndices',intrlvrIndices, ...
 'NumIterations',4);

Create a BPSK modulator and demodulator pair, where the demodulator outputs soft bits
determined by using a log-likelihood ratio method.

hMod = comm.BPSKModulator;
hDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...
 'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

hChan = comm.AWGNChannel('EbNo',EbNo);
hError = comm.ErrorRate;

The main processing loop performs the following steps:

4 System Objects — Alphabetical List

4-1784

• Generate binary data
• Turbo encode the data
• Modulate the encoded data
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using LLR to output soft bits
• Turbo decode the demodulated data. Because the bit mapping from the demodulator is

opposite that expected by the turbo decoder, the decoder input must use the inverse of
demodulated signal.

• Calculate the error statistics

for frmIdx = 1:100
 data = randi([0 1],frmLen,1);
 encodedData = step(hTEnc,data);
 modSignal = step(hMod,encodedData);
 receivedSignal = step(hChan,modSignal);
 demodSignal = step(hDemod,receivedSignal);
 receivedBits = step(hTDec,-demodSignal);
 errorStats = step(hError,data,receivedBits);
end

Display the error data.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...
 errorStats)

Bit error rate = 2.34e-04
Number of errors = 6
Total bits = 25600

Turbo Coding with 16-QAM Modulation in an AWGN Channel

Simulate an end-to-end communication link employing 16-QAM using turbo codes in an
AWGN channel. The packet sizes are randomly selected from a set of {500, 1000, 1500}.
Because the packet size varies, provide the interleaver indices to the turbo encoder and
decoder objects as an input to their associated object calls.

Set the modulation order and Eb/No (dB) parameters. Set the random number generator
to its default state to be able to repeat the results.

 comm.TurboEncoder

4-1785

M = 16;
EbNo= -2;
rng default

Calculate the noise variance from the Eb/No ratio and the modulation order.

noiseVar = 10^(-EbNo/10)*(1/log2(M));

Create a turbo encoder and decoder pair. The interleaver indices are supplied by an input
argument to the object when executed.

turboEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');
turboDec = comm.TurboDecoder('InterleaverIndicesSource','Input port','NumIterations',4);

Create an AWGN channel object and an error rate object.

awgnChan = comm.AWGNChannel('EbNo',EbNo,'BitsPerSymbol',log2(M));
errRate = comm.ErrorRate;

The processing loop performs the following steps:

• Select a random packet size and generate interleaver indices
• Generate random binary data
• Turbo encode the data
• Apply 16-QAM modulation, normalize the average signal power.
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal by using a log-likelihood ratio method, output soft bits,

normalize the average signal power
• Turbo decode the data
• Calculate the error statistics

numPkts = 100;
for pktIdx = 1:numPkts
 % Randomly select one of three possible packet sizes
 pktLen = 500*randi([1 3],1,1);

 % Determine the interleaver indices given the packet length
 intrlvrIndices = randperm(pktLen);

 % Generate random binary data
 data = randi([0 1],pktLen,1);

4 System Objects — Alphabetical List

4-1786

 % Turbo encode the data
 encodedData = turboEnc(data,intrlvrIndices);

 % Modulate the encoded data
 modSignal = qammod(encodedData,M,'InputType','bit','UnitAveragePower',true);

 % Pass the signal through the AWGN channel
 receivedSignal = awgnChan(modSignal);

 % Demodulate the received signal
 demodSignal = qamdemod(receivedSignal,M,'OutputType','llr', ...
 'UnitAveragePower',true,'NoiseVariance',noiseVar);

 % Turbo decode the demodulated signal. Because the bit mapping from the
 % demodulator is opposite that expected by the turbo decoder, the
 % decoder input must use the inverse of demodulated signal.
 receivedBits = turboDec(-demodSignal,intrlvrIndices);

 % Calculate the error statistics
 errorStats = errRate(data,receivedBits);
end

Display the error statistics.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...
 errorStats)

Bit error rate = 3.51e-04
Number of errors = 33
Total bits = 94000

Algorithms
This object implements the algorithm, inputs, and outputs described on the Turbo
Encoder block reference page. The object properties correspond to the block parameters.

 comm.TurboEncoder

4-1787

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Turbo Encoder | comm.ConvolutionalEncoder | comm.TurboDecoder

Introduced in R2012a

4 System Objects — Alphabetical List

4-1788

step
System object: comm.TurboEncoder
Package: comm

Encode input signal using parallel concatenated coding scheme

Syntax
Y = step(H,X)
Y = step(H, X, INTERLVRINDICES)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) encodes the input data, X, using the parallel concatenated convolutional
coding scheme that you specify using the TrellisStructure and
InterleaverIndices properties. It returns the binary encoded data, Y. Both X and Y
are column vectors of numeric, logical, or unsigned fixed point with word length 1 (fi
object). When the constituent convolutional encoder represents a rate 1/N code, the step
method sets the length of the output vector, Y, to L*(2*N-1)+2*numTails where L
represents the input vector length and numTails is given by
log2(TrellisStructure.numStates)*N. The tail bits, due to the termination, are appended at
the end after the input bits are encoded.

Y = step(H, X, INTERLVRINDICES) uses the INTERLVRINDICES specified as an
input. INTERLVRINDICES is a column vector containing integer values from 1 to L with
no repeated values. The length of the data input X and the INTERLVRINDICES input must
be the same.

Note obj specifies the System object on which to run this step method.

 step

4-1789

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

4 System Objects — Alphabetical List

4-1790

comm.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Description
The ViterbiDecoder object decodes input symbols to produce binary output symbols.
This object can process several symbols at a time for faster performance. This object
processes variable-size signals; however, variable-size signals cannot be applied for
erasure inputs.

To decode input symbols and produce binary output symbols:

1 Define and set up your Viterbi decoder object. See “Construction” on page 4-1791.
2 Call step to decode input symbols according to the properties of

comm.ViterbiDecoder. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
H = comm.ViterbiDecoder creates a Viterbi decoder System object, H. This object
uses the Viterbi algorithm to decode convolutionally encoded input data.

H = comm.ViterbiDecoder(Name,Value) creates a Viterbi decoder object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

 comm.ViterbiDecoder

4-1791

H = comm.ViterbiDecoder(TRELLIS,Name,Value) creates a Viterbi decoder object,
H. This object has the TrellisStructure property set to TRELLIS and the other
specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. The default is the result of poly2trellis(7, [171 133]). Use the
istrellis function to verify whether a structure is a valid trellis.

InputFormat

Input format

Specify the format of the input to the decoder as Unquantized | Hard | Soft. The
default is Unquantized.

When you set this property to Unquantized, the input must be a real vector of double- or
single-precision soft values that are unquantized. The object considers negative numbers
to be 1s and positive numbers to be 0s.

When you set this property to Hard, the input must be a vector of hard decision values,
which are 0s or 1s. The data type of the inputs can be double-precision, single-precision,
logical, 8-, 16-, and 32-bit signed integers. You can also use 8-, 16-, and 32-bit unsigned
integers.

When you set this property to Soft, the input requires a vector of quantized soft values

represented as integers between 0 and . The data
type of the inputs can be double-precision, single-precision, logical, 8-, 16-, and 32-bit
signed integers. You can also use 8-, 16-, and 32-bit unsigned integers. Alternately, you
can specify the data type as an unsigned and unscaled fixed point object (fi) with a word
length equal to the word length that you specify in the SoftInputWordLength property.
The object considers negative numbers to be 0s and positive numbers to be 1s.

4 System Objects — Alphabetical List

4-1792

SoftInputWordLength

Soft input word length

Specify the number of bits to represent each quantized soft input value as a positive,
integer scalar value. The default is 4 bits. This property applies when you set the
InputFormat on page 4-0 property to Soft.

InvalidQuantizedInputAction

Action when input values are out of range

Specify the action the object takes when input values are out of range as Ignore | Error.
The default is Ignore. Set this property to Error so that the object generates an error
when the quantized input values are out of range. This property applies when you set the
InputFormat on page 4-0 property to Hard or Soft.

TracebackDepth

Traceback depth

Specify the number of trellis branches to construct each traceback path as a numeric,
integer scalar value. The default is 34. The traceback depth influences the decoding
accuracy and delay. The number of zero symbols that precede the first decoded symbol in
the output represent a decoding delay.

When you set the TerminationMethod on page 4-0 property to Continuous, the
decoding delay consists of TracebackDepth on page 4-0 zero symbols or
TracebackDepth×K zero bits for a rate K/N convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, there is
no output delay. In this case, TracebackDepth must be less than or equal to the number
of symbols in each input.

As a general estimate, a typical TracebackDepth property value is approximately two to
three times (k – 1)/(1 – r), where k is the constraint length of the code and r is the code
rate [1]. For example:

• A rate 1/2 code has a TracebackDepth of 5(k – 1).
• A rate 2/3 code has a TracebackDepth of 7.5(k – 1).
• A rate 3/4 code has a TracebackDepth of 10(k – 1).

 comm.ViterbiDecoder

4-1793

• A rate 5/6 code has a TracebackDepth of 15(k – 1).

TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The default
is Continuous.

In Continuous mode, the object saves the internal state metric at the end of each frame
for use with the next frame. The object treats each traceback path independently.

In Truncated mode, the object treats each frame independently. The traceback path
starts at the state with the best metric and always ends in the all-zeros state. In
Terminated mode, the object treats each frame independently, and the traceback path
always starts and ends in the all-zeros state.

ResetInputPort

Enable decoder reset input

Set this property to true to enable an additional step method input. The default is false.
When the reset input is a nonzero value, the object resets the internal states of the
decoder to initial conditions. This property applies when you set the
TerminationMethod on page 4-0 property to Continuous.

DelayedResetAction

Reset on nonzero input via port

Set this property to true to delay resetting the object output. The default is false. When
you set this property to true, the reset of the internal states of the decoder occurs after
the object computes the decoded data. When you set this property to false, the reset of
the internal states of the decoder occurs before the object computes the decoded data.
This property applies when you set the ResetInputPort on page 4-0 property to
true.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None | Property. The default is None.

4 System Objects — Alphabetical List

4-1794

When you set this property to None, the object assumes no puncturing. Set this property
to Property to decode punctured codewords based on a puncture pattern vector
specified via the PuncturePattern on page 4-0 property.

PuncturePattern

Puncture pattern vector

Specify puncture pattern to puncture the encoded data. The default is [1; 1; 0; 1; 0;
1]. The puncture pattern is a column vector of 1s and 0s. The 0s indicate the position to
insert dummy bits. The puncture pattern must match the puncture pattern used by the
encoder. This property applies when you set the PuncturePatternSource on page 4-
0 property to Property.

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as a step method input. The
default is false. The erasures input must be a double-precision or logical, binary, column
vector. This vector indicates which symbols of the input codewords to erase. Values of 1
indicate erased bits. The decoder does not update the branch metric for the erasures in
the incoming data stream.

The lengths of the step method erasure input and the step method data input must be
the same. When you set this property to false, the object assumes no erasures.

OutputDataType

Data type of output

Specify the data type of the output as Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
logical. The default is Full precision.

When the input signal is an integer data type, you must have a Fixed-Point Designer user
license to use this property in Smallest unsigned integer or Full precision
mode.

 comm.ViterbiDecoder

4-1795

Fixed-Point Properties

StateMetricDataType

Data type of state metric

Specify the state metric data type as Full precision | Custom. The default is Full
precision.

When you set this property to Full precision, the object sets the state metric fixed-
point type to numerictype([],16). This property applies when you set the
InputFormat on page 4-0 property to Hard or Soft.

When you set the InputFormat property to Hard, the step method data input must be a
column vector. This vector comprises unsigned, fixed point numbers (fi objects) of word
length 1 to enable fixed-point Viterbi decoding. Based on this input (either a 0 or a 1), the
object calculates the internal branch metrics using an unsigned integer of word length L.
In this case, L indicates the number of output bits as specified by the trellis structure.

When you set the InputFormat property to Soft, the step method data input must be a
column vector. This vector comprises unsigned, fixed point numbers (fi objects) of word
length N. N indicates the number of soft-decision bits specified in the
SoftInputWordLength on page 4-0 property.

The step method data inputs must be integers in the range 0 to 2N–1. The object
calculates the internal branch metrics using an unsigned integer of word length L = (N +
Nout – 1). In this case, Nout represents the number of output bits as specified by the
trellis structure.

CustomStateMetricDataType

Fixed-point data type of state metric

Specify the state metric fixed-point type as an unscaled, numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the StateMetricDataType on page 4-0 property to Custom.

4 System Objects — Alphabetical List

4-1796

Methods
reset Reset states of the Viterbi decoder object
step Decode convolutionally encoded data using Viterbi algorithm

Common to All System Objects
release Allow System object property value changes

Examples

Encode and Decode 8-DPSK Modulated Data

Transmit a convolutionally encoded 8-DPSK modulated bit stream through an AWGN
channel. Then, demodulate and decode using a Viterbi decoder.

Create the necessary System objects.

hConEnc = comm.ConvolutionalEncoder;
hMod = comm.DPSKModulator('BitInput',true);
hChan = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (SNR)',...
 'SNR',10);
hDemod = comm.DPSKDemodulator('BitOutput',true);
hDec = comm.ViterbiDecoder('InputFormat','Hard');
hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay', 34);

Process the data using the following steps:

1 Generate random bits
2 Convolutionally encode the data
3 Apply DPSK modulation
4 Pass the modulated signal through AWGN
5 Demodulate the noisy signal
6 Decode the data using a Viterbi algorithm
7 Collect error statistics

 comm.ViterbiDecoder

4-1797

for counter = 1:20
 data = randi([0 1],30,1);
 encodedData = step(hConEnc, data);
 modSignal = step(hMod, encodedData);
 receivedSignal = step(hChan, modSignal);
 demodSignal = step(hDemod, receivedSignal);
 receivedBits = step(hDec, demodSignal);
 errors = step(hError, data, receivedBits);
end

Display the number of errors.

errors(2)

ans = 3

Convolutional Encoding and Viterbi Decoding with a Puncture Pattern Matrix

Encode and decode a sequence of bits using a convolutional encoder and a Viterbi
decoder with a defined puncture pattern. Verify that the input and output bits are
identical

Define a puncture pattern matrix and reshape it into vector form for use with the Encoder
and Decoder objects.

pPatternMat = [1 0 1;1 1 0];
pPatternVec = reshape(pPatternMat,6,1);

Create convolutional encoder and a Viterbi decoder in which the puncture pattern is
defined by pPatternVec.

ENC = comm.ConvolutionalEncoder(...
 'PuncturePatternSource','Property', ...
 'PuncturePattern',pPatternVec);

DEC = comm.ViterbiDecoder('InputFormat','Hard', ...
 'PuncturePatternSource','Property',...
 'PuncturePattern',pPatternVec);

Create an error rate counter with the appropriate receive delay.

ERR = comm.ErrorRate('ReceiveDelay',DEC.TracebackDepth);

4 System Objects — Alphabetical List

4-1798

Encode and decode a sequence of random bits.

dataIn = randi([0 1],600,1);

dataEncoded = step(ENC,dataIn);

dataOut = step(DEC,dataEncoded);

Verify that there are no errors in the output data.

errStats = step(ERR,dataIn,dataOut);
errStats(2)

ans = 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Viterbi
Decoder block reference page. The object properties correspond to the block parameters,
except:

• The Decision type parameter corresponds to the InputFormat on page 4-0
property.

• The Operation mode parameter corresponds to the TerminationMethod on page 4-
0 property.

References
[1] Moision, B., “A Truncation Depth Rule of Thumb for Convolutional Codes,” Information

Theory and Applications Workshop, pp. 555–557, 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 comm.ViterbiDecoder

4-1799

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.APPDecoder | comm.ConvolutionalEncoder

Topics
“LLR vs. Hard Decision Demodulation”

Introduced in R2012a

4 System Objects — Alphabetical List

4-1800

reset
System object: comm.ViterbiDecoder
Package: comm

Reset states of the Viterbi decoder object

Syntax
reset(H)

Description
reset(H) resets the states of the ViterbiDecoder object, H.

 reset

4-1801

step
System object: comm.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Syntax
Y = step(H,X)
Y = step(H,X,ERASURES)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(H,X) decodes encoded data, X, using the Viterbi algorithm and returns Y. X,
must be a column vector with data type and values that depend on how you set the
InputFormat property. If the convolutional code uses an alphabet of 2N possible
symbols, the length of the input vector, X, must be L×N for some positive integer L.
Similarly, if the decoded data uses an alphabet of 2K possible output symbols, the length
of the output vector, Y, is L×K.

Y = step(H,X,ERASURES) uses the binary column input vector, ERASURES, to erase the
symbols of the input codewords. The elements in ERASURES must be of data type double
or logical. Values of 1 in the ERASURES vector correspond to erased symbols, and values
of 0 correspond to non-erased symbols. The lengths of the X and ERASURES inputs must
be the same. This syntax applies when you set the ErasuresInputPort property to true.

Y = step(H,X,R) resets the internal states of the decoder when you input a non-zero
reset signal, R. R must be a double precision or logical scalar. This syntax applies when

4 System Objects — Alphabetical List

4-1802

you set the TerminationMethod property to Continuous and the ResetInputPort
property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1803

comm.WalshCode
Package: comm

Generate Walsh code from orthogonal set of codes

Description
The WalshCode object generates a Walsh code from an orthogonal set of codes.

To generate a Walsh code:

1 Define and set up your Walsh code object. See “Construction” on page 4-1804.
2 Call step to encode the input signal according to the properties of

comm.WalshCode. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Construction
H = comm.WalshCode creates a Walsh code generator System object, H. This object
generates a Walsh code from a set of orthogonal codes.

H = comm.WalshCode(Name,Value) creates a Walsh code generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Length

Length of generated code

4 System Objects — Alphabetical List

4-1804

Specify the length of the generated code as a numeric, integer scalar value that is a
power of two. The default is 64.

Index

Index of code of interest

Specify the index of the desired code from the available set of codes as a numeric, integer
scalar value in the range [0, 1, ... , N-1]. N is the value of the Length on page 4-
0 property. The default is 60. The number of zero crossings in the generated code
equals the value of the specified index.

SamplesPerFrame

Number of output samples per frame

Specify the number of Walsh code samples that the step method outputs as a numeric,
positive, integer scalar value . The default is 1. If you set this property to a value of M,
then the step method outputs M samples of a Walsh code of length N. N is the length of
the code that you specify in the Length on page 4-0 property.

OutputDataType

Data type of output

Specify the output data type as double | int8. The default is double.

Methods
reset Reset states of Walsh code generator object
step Generate Walsh code from orthogonal set of codes

Common to All System Objects
release Allow System object property value changes

Examples

 comm.WalshCode

4-1805

Walsh Code Sequence

Generate 16 samples of a length-64 Walsh code sequence.

walsh = comm.WalshCode('SamplesPerFrame',16)

walsh =
 comm.WalshCode with properties:

 Length: 64
 Index: 60
 SamplesPerFrame: 16
 OutputDataType: 'double'

seq = walsh()

seq = 16×1

 1
 -1
 1
 -1
 1
 -1
 1
 -1
 1
 -1
 ⋮

Algorithms
This object implements the algorithm, inputs, and outputs described on the Walsh Code
Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

4 System Objects — Alphabetical List

4-1806

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.HadamardCode | comm.OVSFCode

Introduced in R2012a

 comm.WalshCode

4-1807

reset
System object: comm.WalshCode
Package: comm

Reset states of Walsh code generator object

Syntax
reset(H)

Description
reset(H) resets the states of the WalshCode object, H.

4 System Objects — Alphabetical List

4-1808

step
System object: comm.WalshCode
Package: comm

Generate Walsh code from orthogonal set of codes

Syntax
Y = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

Y = step(H) outputs a frame of the Walsh code in column vector Y. Specify the frame
length with the SamplesPerFrame property. The Walsh code corresponds to a row of an
NxN Hadamard matrix, where N is a nonnegative power of 2 that you specify in the
Length property. Use the Index property to choose the row of the Hadamard matrix. The
output code is in a bi-polar format with 0 and 1 mapped to 1 and -1 respectively.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

4-1809

comm.WINNER2Channel
Package: comm

Filter input signal through WINNER II fading channel

Download Required
To use comm.WINNER2Channel, first download the WINNER II Channel Model for
Communications Toolbox from the Add-On Explorer. For more information on
downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

Description
The comm.WINNER2Channel System object filters an input signal through a WINNER II
fading channel. The object utilizes the basic model defined and provided by the WINNER
II Channel Models [1].

To filter an input signal using a WINNER II fading channel:

1 Define and set up your WINNER II channel object. See “Construction” on page 4-
1810.

2 Call step to filter the input signal through a WINNER II fading channel according to
the properties of comm.WINNER2Channel.

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction
chan = comm.WINNER2Channel creates a WINNER II fading channel System object to
model single or multiple links. chan generates channel coefficients using the WINNER II
spatial channel model (SCM). It also filters a real or complex input signal through the
fading channel for each link.

4 System Objects — Alphabetical List

4-1810

chan = comm.WINNER2Channel(Name,Value) creates a WINNER II fading channel
object, chan, that overrides default values using one or more Name,Value pair
arguments. You can specify additional name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

chan = comm.WINNER2Channel(cfgModel) creates a WINNER II fading channel
object with the ModelConfig property set to cfgModel.

chan = comm.WINNER2Channel(cfgModel,cfgLayout) creates a WINNER II fading
channel object with the ModelConfig property set to cfgModel and the LayoutConfig
property set to cfgLayout.

Properties
ModelConfig

WINNER II model parameter configuration

WINNER II model parameter configuration, specified as a structure containing these
fields:

NumTimeSamples

Number of time samples. The default value is 100.

Note If the number of samples in the input signal (NS) does not match
NumTimeSamples, NumTimeSamples is updated to match NS.

FixedPdpUsed

Set to 'yes' to use predefined path delays and powers for specific scenarios. The default
value is 'no'.

FixedAnglesUsed

Set to 'yes' to use predefined angles of departure (AoDs) and angles of arrival (AoAs)
for specific scenarios. The default value is 'no'.

 comm.WINNER2Channel

4-1811

IntraClusterDsUsed

Set to 'yes' to divide each of the two strongest clusters per link into three subclusters.
The default value is 'yes'.

PolarisedArrays

Set to 'yes' to use dual polarized arrays. The default value is 'yes'.

UseManualPropCondition

Set to 'yes' to use the manually defined propagation conditions (LOS or NLOS) in the
LayoutConfig.PropagConditionVector field. Set to 'no' to draw propagation
conditions from predefined LOS probabilities. The default value is 'yes'.

UniformTimeSampling

Set to 'yes' to sample all links at the same time instants. The default value is 'no'.

SampleDensity

Number of time samples per half wavelength. The default value is 2e6.

CenterFrequency

Center frequency of carrier. The default value 5.25e9 Hz.

DelaySamplingInterval

Sampling grid to which the path delays are rounded. The default value of 0 seconds
indicates no rounding on path delays.

• DelaySamplingInterval specifies the input signal sample time.
• When performing channel filtering, the object uses DelaySamplingInterval = 0 to

obtain the original path delays. Any non-zero value of DelaySamplingInterval is
ignored, specifically the path delays used are not rounded to be multiples of
DelaySamplingInterval values that are non-zero.

ShadowingModelUsed

Set to 'yes' to include shadow fading in the model. The default value is 'no'.

4 System Objects — Alphabetical List

4-1812

PathLossModelUsed

Set to 'yes' to include path loss in the model. The default value is 'no'.

PathLossModel

Path loss model function name, specified as 'pathloss', which uses the internal
pathloss function from the “WINNER II Channel” Add-On to model the path loss. The
PathLossModel property is applicable only when PathLossModelUsed is 'yes'. The
default value is 'pathloss'.

PathLossOption

Path loss option indicating the wall material for the NLOS path loss calculation of
scenario A1, specified as one of {'CR_light', 'CR_heavy', 'RR_light',
'RR_heavy'}. The default value is 'CR_light'. The PathLossOption property is
applicable only when PathLossModelUsed is 'yes'.

See LayoutConfig.ScenarioVector for the scenario number mapping.

RandomSeed

Seed for random number generators. To use the global random stream, set RandomSeed
to empty, []. The default is [].

LayoutConfig

WINNER II layout parameter configuration

WINNER II layout parameter configuration, specified as a structure containing these
fields:

Stations

Row vector of structures to describe antenna arrays for active stations. The row ordering
specifies BS sectors first, followed by the MS. The default assigns two structures, one for
BS and one for MS.

NofSect

Vector of number of sectors in each BS. The default is 1.

 comm.WINNER2Channel

4-1813

Pairing

A 2-by-NL matrix, where NL specifies the number links to be modeled. The default is
[1;2].

ScenarioVector

A 1-by-NL vector of scenario numbers. The default is 1, which specifies scenario A1.

The scenarios numbers map as {1=A1, 2=A2, 3=B1, 4=B2, 5=B3, 6=B4, 10=C1, 11=C2,
12=C3, 13=C4, 14=D1, 15=D2a}.

For more information, see WINNER II Channel Models [1], Section 2.3.

PropagConditionVector

A 1-by-NL vector of propagation conditions (LOS = 1 and NLOS = 0) for each link. The
default is 1.

StreetWidth

A 1-by-NL vector of identical values that specify the average width (in meters) of the
streets. StreetWidth is used for the path loss model of the B1 and B2 scenarios. The
default is 20. See ScenarioVector for the scenario number mapping. All elements must
have the same value. The StreetWidth property is applicable only when the
ModelConfig.PathLossModelUsed property is 'yes'.

Dist1

A 1-by-NL vector of distances from BS to the last LOS point. Dist1 is used for the path
loss model of the B1 and B2 scenarios. The default value is NaN, which means the
distance is randomly determined in path loss function. See ScenarioVector for the
scenario number mapping. Dist1 is applicable only when the
ModelConfig.PathLossModelUsed property is 'yes'.

For more information, see WINNER II Channel Models [1], Figure 4-3.

NumFloors

A 1-by-NL vector indicating the floor number where the indoor BS or MS is located. The
default value is 1. The NumFloors property is used for the path loss model of the A2 and
B4 scenarios only. See ScenarioVector for the scenario number mapping. The

4 System Objects — Alphabetical List

4-1814

NumFloors property is applicable only when ModelConfig.PathLossModelUsed is
'yes'.

NumPenetratedFloors

A 1-by-NL vector indicating the number of penetrated floors between BS and MS. The
default value is 0. The NumPenetratedFloors is used for the NLOS path loss model of
the A1 scenario. See ScenarioVector for the scenario number mapping. The
NumPenetratedFloors property is applicable only when PathLossModelUsed is
'yes'.

For more information, see WINNER II Channel Models [1], Table 4-4.

NormalizeChannelOutputs

Normalize channel outputs, specified as true or false. Set this property to true to
normalize the channel outputs by the number of receive antennas at the mobile station
(MS) for each link. The default value is true.

For more information, see “Channel Power” on page 4-1819.

Methods
info Display information about WINNER2Channel object
reset Reset states of WINNER2Channel object
step Filter input signal through WINNER II fading channel

Common to All System Objects
release Allow System object property value changes

Examples

WINNER II Channel with Two Mobile Stations

Simulate a system that has two MS connected to one BS. One MS is 8 meters away from
the BS; the other is 20 meters away from the BS. Impulse signals are sent through the

 comm.WINNER2Channel

4-1815

two links. The spectrum of the received signals at MS shows frequency selectivity. It also
shows the MS that is closer the BS has a larger average received power than the other
MS.

Specify random number generator seed for repeatability.

rng(100);

Initial frame length and sample rate.

frmLen = 1024;

Configure layout parameters.

BSAA = winner2.AntennaArray('UCA', 8, 0.02); % UCA-8 antenna array for BS
MSAA1 = winner2.AntennaArray('ULA', 2, 0.01); % ULA-2 antenna array for MS
MSAA2 = winner2.AntennaArray('ULA', 4, 0.005); % ULA-4 antenna array for MS
MSIdx = [2 3]; BSIdx = {1}; NL = 2; maxRange = 100; rndSeed = 101;
cfgLayout = winner2.layoutparset(MSIdx,BSIdx,NL, ...
 [BSAA,MSAA1,MSAA2],maxRange,rndSeed);

Adjust BS and MS positions.

cfgLayout.Stations(1).Pos(1:2) = [10, 10];
cfgLayout.Stations(2).Pos(1:2) = [18, 10]; % 8 meters away from BS
cfgLayout.Stations(3).Pos(1:2) = [22, 26]; % 20 meters away from BS

NLOS for both links

cfgLayout.Pairing = [1 1; 2 3];
cfgLayout.PropagConditionVector = [0 0];

Configure model parameters

cfgModel = winner2.wimparset;
cfgModel.NumTimeSamples = frmLen; % Frame length
cfgModel.IntraClusterDsUsed = 'no'; % No cluster splitting
cfgModel.SampleDensity = 2e5; % For lower sample rate
cfgModel.PathLossModelUsed = 'yes'; % Turn on path loss
cfgModel.ShadowingModelUsed = 'yes'; % Turn on shadowing

Create a WINNER II channel System object.

wimChan = comm.WINNER2Channel(cfgModel, cfgLayout);

Call the info method of the object to get some system information

4 System Objects — Alphabetical List

4-1816

chanInfo = info(wimChan)

chanInfo = struct with fields:
 NumLinks: 2
 NumBSElements: [8 8]
 NumMSElements: [2 4]
 NumPaths: [16 16]
 SampleRate: [1.0000e+07 1.0000e+07]
 ChannelFilterDelay: [7 7]
 NumSamplesProcessed: 0

numTx = chanInfo.NumBSElements(1);
Rs = chanInfo.SampleRate(1);

Create a Spectrum Analyzer System object.

SA = dsp.SpectrumAnalyzer('SampleRate', Rs, ...
 'YLimits', [-170, -100], 'ShowLegend', true, ...
 'ChannelNames', {'MS 1 (8 meters away)','MS 2 (20 meters away)'});

Pass impulse signals through the two links and show spectra of the received signals at the
two MS.

for i = 1:10
 x = [ones(1,numTx); zeros(frmLen-1, numTx)];
 y = wimChan(x);
 SA([y{1}(:,1), y{2}(:,1)]);
end

 comm.WINNER2Channel

4-1817

More About

WINNER II Sampling Rate
The signal sample rate (RS) for generating channel coefficients and performing channel
filtering is calculated per link using the mobile station speed (VMS), half wavelength
distance, and sample density. The sample rate for each link is available as a field in the
info method return.

RS = VMS / (C / Fcenter / 2 / NSD),

4 System Objects — Alphabetical List

4-1818

• For the MS speed,VMS,

• When ModelConfig.UniformTimeSampling is set to 'no', VMS is the speed of
the MS for the corresponding link, derived from the
LayoutConfig.Stations(i).Velocity field.

• When ModelConfig.UniformTimeSampling is set to 'yes', VMS is the maximum
speed of the MS for all links.

• C is the speed of light (2.99792458e8 m/s).
• Fcenter is ModelConfig.CenterFrequency.
• NSD is ModelConfig.SampleDensity.

Channel Power
These conditions apply to the channel power of the comm.WINNER2Channel object:

• When path loss and shadowing are off, path gains are normalized. Specifically, path
gains are normalized when the ModelConfig.ShadowingModelUsed and
ModelConfig.PathLossModelUsed parameters are set to 'no'.

• When the NormalizeChannelOutputs property is true, the average gain of the channel
is 0 dB.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4–

027756 WINNER II, September 2007.

See Also
Objects
comm.AWGNChannel | comm.MIMOChannel | comm.RayleighChannel |
comm.RicianChannel

Functions
winner2.AntennaArray | winner2.layoutparset | winner2.wim |
winner2.wimparset

 comm.WINNER2Channel

4-1819

Introduced in R2016b

4 System Objects — Alphabetical List

4-1820

info
System object: comm.WINNER2Channel
Package: comm

Display information about WINNER2Channel object

Syntax
s = info(obj)

Description
s = info(obj) returns a structure containing information about the Winner2Channel
System object characteristics. The information structure contains:

• Numlinks - Number of links in the system
• NumBSElements - Number of transmit antennas at the BS for each link
• NumMSElements - Number of receive antennas at the MS for each link
• NumPaths - Number of delay paths for each link
• SampleRate - Sample rate for each link
• ChannelFilterDelay - Channel filter delay per link, measured in samples
• NumSamplesProcessed - Number of samples the channel has processed since the

last reset

Introduced in R2016b

 info

4-1821

reset
System object: comm.WINNER2Channel
Package: comm

Reset states of WINNER2Channel object

Syntax
reset(obj)

Description
reset(obj) resets the states of the Winner2Channel System object.

If the ModelConfig.RandomSeed property of obj is empty, the reset method resets the
filters only. Otherwise, the reset method resets the filters and also reinitializes the
random number stream to the value of the ModelConfig.RandomSeed property.

Introduced in R2016b

4 System Objects — Alphabetical List

4-1822

step
System object: comm.WINNER2Channel
Package: comm

Filter input signal through WINNER II fading channel

Syntax
y = step(obj,x)
[y,pathGains] = step(obj,x)

Description

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

y = step(obj,x) filters input signal x through a WINNER II fading channel and
returns the result in y. Both x and y are NL-by-1 cell arrays, where NL represents the
number of links, as determined by the LayoutConfig property of obj. The ith element
of x must be an NS-by-NT(i) matrix of doubles.

• NS represents the number of samples to be generated and must be the same for all
elements of x.

• NT(i) is the number of transmit antennas at the base station (BS) for the ith link,
determined by the LayoutConfig property of obj.

If the channel has only one link or if all links have the same number of transmit antennas,
x can also be an NS-by-NT matrix of doubles. In this case, the same input signal is filtered
through all the links. The ith element of y is an NS-by-NR(i) matrix of doubles. NR(i) is
the number of receive antennas at the mobile station (MS) for the ith link, as determined
by the LayoutConfig property of obj.

[y,pathGains] = step(obj,x) also returns the channel coefficients of the underlying
WINNER II fading process. pathGains is an NL-by-1 cell array. The ith element of

 step

4-1823

pathGains is an NR(i)-by-NT(i)-by-NP(i)-by-NS array of complex doubles. NP(i) is
the number of paths for the ith link, as determined by the LayoutConfig property of
obj.

NR, NT, and NP are link specific. NS is the same for all the links.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016b

4 System Objects — Alphabetical List

4-1824

rxsite
Create radio frequency receiver site

Description
Use the rxsite object to create a radio frequency receiver site.

Creation

Syntax
rx = rxsite
rx = rxsite(Name,Value)

Description
rx = rxsite creates a radio frequency receiver site.

rx = rxsite(Name,Value) sets properties using one or more name-value pairs. For
example, rx = rxsite('Name','RX Site') creates a receiver site with name RX
Site. Enclose each property name in quotes.

Properties
Name — Site name
character vector | string | row or column vector

Site name, specified as a character vector or as a row or column vector or as a string.
Example: 'Name','Site 3'
Example: RX.Name = 'Site 3'

 rxsite

4-1825

Example: If you want to assign multiple values then - names = ["Fenway
Park","Faneuil Hall","Bunker Hill Monument"]; RX =
rxsite('Name',names)

Data Types: char | string

Latitude — Site latitude coordinates
42.3021 (default) | numeric scalar | row or column vector

Site latitude coordinates, specified as a numeric scalar or a row or column vector in the
range of range -90 to 90. Coordinates are defined using Earth ellipsoid model WGS-84.
Latitude is the north/south angle.
Example: 'Latitude',45.098
Example: RX = 45.098
Example: If you want to assign multiple values then - latitude =
[42.3467,42.3598,42.3763]; RX = rxsite('Latitude',latitude)

Longitude — Site longitude coordinates
-71.3764 (default) | numeric scalar | row or column vector

Site longitude coordinates, specified as a numeric scalar or a row or column vector.
Coordinates are defined using Earth ellipsoid model WGS-84. Longitude is the east/west
angle.
Example: 'Longitude',-68.890
Example: RX.Longitude = -68.890
Example: If you want to assign multiple values then - longitude =
[-71.0972,-71.0545,-71.0611]; RX = rxsite('Longitude',longitude)

Antenna — Antenna element or array
'isotropic' (default) | object | row vector

Antenna element or array specified as an object or 'isotropic'. By default, the antenna
is 'isotropic', which defines an antenna that radiates uniformly in all directions.

AntennaAngle — Antenna x-axis angle
0 (default) | numeric scalar | 2-by-1 vector | 2-by-N matrix

Antenna x-axis angle, specified as a numeric scalar, a 2-by-1 vector, or a 2-by-N matrix in
degrees.

4 System Objects — Alphabetical List

4-1826

The numeric scalar is the azimuth angle measured counterclockwise from the east to the
antenna x-axis.

In the 2-by-1 vector, the first element is the azimuth angle and the second element
elevation angle. The elevation angle measures from the horizontal plane to antenna x-axis
from -90 to 90 degrees.
Example: 'AntennaAngle',25
Example: RX.AntennaAngle = [25,-80]
Data Types: double

AntennaHeight — Antenna height above surface
1 (default) | non-negative numeric scalar | row vector

Antenna height from the ground or building surface, specified as a non-negative numeric
scalar in meters. Maximum value for this property is 6,371,000 m.

If the site coincides with the building, the height is measured from the top of the building
to the center of the antenna. Otherwise,the height is measured from ground elevation to
the center of the antenna.
Example: 'AntennaHeight',25
Example: RX.AntennaHeight = 15
Data Types:

SystemLoss — System loss
0 (default) | nonnegative numeric scalar | row vector

System loss, specified as a non-negative numeric scalar or a row vector in dB.

System loss includes transmission line loss and any other miscellaneous system losses.
Example: 'SystemLoss',10
Example: RX.SystemLoss = 10
Data Types:

ReceiverSensitivity — Minimum received power to detect signal
-100 (default) | numeric scalar | row vector

Minimum received power to detect the signal, specified as a numeric scalar or a row
vector in dBm.

 rxsite

4-1827

Example: 'ReceiverSensitivity',-80
Example: RX.ReceiverSensitivity = -80
Data Types: double

Object Functions
show Show site location on map
hide Hide site location on map
distance Distance between sites
angle Angle between sites
elevation Elevation of site
location Location coordinates at a given distance and angle from site
sigstrength Signal strength due to transmitter
los Plot or compute the line-of-sight (LOS) visibility between sites on a map
link Display communication link on map
pattern Plot antenna radiation pattern on map

Examples

Default Receiver Site

Create and show the default receiver site.

rx = rxsite

rx =
 rxsite with properties:

 Name: 'Site 2'
 Latitude: 42.3021
 Longitude: -71.3764
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 1
 SystemLoss: 0
 ReceiverSensitivity: -100

show(rx)

4 System Objects — Alphabetical List

4-1828

See Also
siteviewer | txsite

Introduced in R2017b

 rxsite

4-1829

siteviewer
Create Site Viewer map display for visualizing sites

Description
Use the siteviewer object to create a map viewer for visualizing transmitter and
receiver sites.

Note Site Viewer is a 3-D map display and requires hardware graphics support for
WebGL™.

Creation

Syntax
viewer = siteviewer
viewer = siteviewer(Name,Value)

Description
viewer = siteviewer creates a “Site Viewer” map display for visualizing transmitter
or receiver sites.

viewer = siteviewer(Name,Value) creates a Site Viewer map display with
properties specified by one or more name-value pairs. Properties you do not specify retain
their default values.

Properties
Name — Caption to display on map viewer window
'Site Viewer' (default) | character vector | string scalar

4 System Objects — Alphabetical List

4-1830

Caption to display on map viewer window, specified as a character vector or a string
scalar.
Data Types: char | string

Position — Size and location of map viewer window in pixels
four-element integer-valued vector

Size and location of map viewer window in pixels, specified as a four-element integer-
valued vector in the form [left bottom width height]. The default value depends
on the screen resolution such that the window lies in the center of the screen with a width
of 800 pixels and a height of 600 pixels.
Data Types: double

Basemap — Map imagery used to visualize sites
'satellite' (default) | 'streets' | 'openstreetmap' | 'darkwater' |
'grayland' | 'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover'

Map imagery used to visualize sites, specified as a one of the following:

• 'satellite' - Satellite imagery provided by ESRI
• 'streets' - Street maps provided by ESRI.
• 'openstreetmap' - Street maps provided by OpenStreetMap.
• 'darkwater' - Two-tone map with light gray for land and dark gray for water.
• 'grayland' - Two-tone map with gray for land and white for water.
• 'bluegreen' - Two-tone map with green for land and blue for water.
• 'colorterrain' - Shaded relief map derived from elevation and climate.
• 'grayterrain' - Shaded relief map in shades of gray.
• 'landcover' - Shaded relief map derived from satellite data.

Data Types: char | string

Terrain — Data on which to visualize sites and perform terrain calculations
'gmted2010' (default) | 'none' | character vector | scalar

Data on which to visualize sites and perform terrain calculations, specified as a character
vector or a scalar previously added using addCustomTerrain or one of the following
options:

 siteviewer

4-1831

• 'none' - Terrain elevation is 0 everywhere.
• 'gmted2010' - USGS GMTED2010 terrain data. This option requires an internet

connection.

This property is read-only once the Site Viewer is created.

For limitations, see “Limitations” (Antenna Toolbox).
Data Types: char | string

Buildings — Name of OpenStreetMap (.osm) file to use as buildings data
string scalar | character vector

Name of the OpenStreetMap (.osm) file to use as buildings data, specified as a string
scalar or a character vector. The file must be in the current directory, in a directory on the
MATLAB path. You can also use a full or relative path to the file to specify the data. By
default, this value is empty.

This property is read-only once the Site Viewer is created.

For limitations, see “Limitations” (Antenna Toolbox).
Data Types: char | string

Object Functions
clearMap Clear map visualizations
close Close map viewer window

Examples

Default Site Viewer Map Display

Create a default Site Viewer map display.

viewer = siteviewer;

4 System Objects — Alphabetical List

4-1832

View Transmitter Site On Site Viewer

Launch a Site Viewer with streets basemap.

viewer = siteviewer("Basemap","streets");

 siteviewer

4-1833

View a transmitter site on this map.

tx = txsite;
show(tx)

4 System Objects — Alphabetical List

4-1834

Compare Coverage Maps

Launch two Site Viewer windows.

One Site Viewer window uses the terrain model.

viewer1 = siteviewer("Terrain","gmted2010","Name","Site Viewer (Using Terrain)");

 siteviewer

4-1835

The second Site Viewer window does not use the terrain model.

viewer2 = siteviewer("Terrain","none","Name","Site Viewer (No Terrain)");

4 System Objects — Alphabetical List

4-1836

Create a transmitter site.

tx = txsite;

Generate a coverage map on each window. The map with terrain uses the Longley-Rice
propagation model by default.

coverage(tx,"Map",viewer1)

 siteviewer

4-1837

The map without terrain uses the free-space model by default.

coverage(tx,"Map",viewer2)

4 System Objects — Alphabetical List

4-1838

Close the maps.

close(viewer1)
close(viewer2)

Site Viewer with Buildings

Launch siteviewer map window with basemap and buildings file.

viewer = siteviewer("Basemap","openstreetmap",...
 "Buildings","manhattan.osm");

 siteviewer

4-1839

Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
 "Longitude",-74.0114,...
 "AntennaHeight",50);
show(tx)

4 System Objects — Alphabetical List

4-1840

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, the nremove
the custom basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL

indicates which server to use to get the data. For load balancing, the provider has
three servers that you can use: a, b, or c.

 siteviewer

4-1841

• Create an attribution to display on the map that gives credit to the provider of the map
data. Web map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer
object that loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

4 System Objects — Alphabetical List

4-1842

After a custom basemap is added to siteviewer, the custom map is available for future
calls to siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;

 siteviewer

4-1843

Use removeCustomBasemap to remove the custom basemap from future calls to
siteviewer. Note the 'Open Topo Map' icon is no longer available in the Imagery
tab.

removeCustomBasemap(name)
siteviewer;

4 System Objects — Alphabetical List

4-1844

Limitations
Terrain

• Default terrain access requires Internet connection. If no internet connection exists,
then Site Viewer automatically uses 'none' in the property Terrain.

 siteviewer

4-1845

• Custom DTED terrain files for use with addCustomTerrain must be acquired outside
of MATLAB for example by using USGS EarthExplorer.

• When using custom terrain, analysis is restricted to the terrain region. For example,
an error occurs if trying to show a txsite or rxsite outside of the region.

Buildings

• OpenStreetMap files obtained from https://www.openstreetmap.org represent crowd-
sourced map data, and the completeness and accuracy of the buildings data may vary
depending on the map location.

• When downloading data from https://www.openstreetmap.org, select an export area
larger than the desired area to ensure that all expected building features are fully
captured. Building features at the edge of the selected export area may be missing.

• Building geometry and features are interpreted from the file according to the
recommendations of OpenStreetMap for 3D buildings.

See Also
addCustomBasemap | addCustomTerrain | removeCustomBasemap |
removeCustomTerrain | rxsite | txsite

Topics
“Site Viewer”

Introduced in R2019a

4 System Objects — Alphabetical List

4-1846

https://www.openstreetmap.org/
https://www.openstreetmap.org/

txsite
Create radio frequency transmitter site

Description
Use txsite object to create a radio frequency transmitter site.

Creation

Syntax
tx = txsite
tx = txsite(Name,Value)

Description
tx = txsite creates a radio frequency transmitter site.

tx = txsite(Name,Value) sets properties using one or more name-value pairs. For
example, tx = txsite('Name','TX Site') creates a transmitter site with name TX
Site. Enclose each property name in quotes.

Properties
Name — Site name
character vector | string | row or column vector

Site name, specified as a character vector or string, or row or column vector of N
elements.
Example: 'Name','Site 2'
Example: TX.Name = 'Fenway Park'

 txsite

4-1847

Example: If you want to assign multiple values then - names = ["Fenway
Park","Faneuil Hall","Bunker Hill Monument"]; TX =
txsite('Name',names)

Data Types: char | string

Latitude — Site latitude coordinates
42.3001 (default) | numeric scalar | row or column vector

Site latitude coordinates, specified as a numeric scalar in the range of -90 to 90, or as a
row or column vector of N elements. Coordinates are defined using Earth ellipsoid model
WGS-84. Latitude is the north/south angle.
Example: 'Latitude',45.098
Example: TX.Latitude = 45.098
Example: If you want to assign multiple values then - latitude =
[42.3467,42.3598,42.3763]; TX = txsite('Latitude',latitude)

Longitude — Site longitude coordinates
-71.3504 (default) | numeric scalar | row or column vector

Site longitude coordinates, specified as a numeric scalar or as a row or column vector of
N elements. Coordinates are defined using Earth ellipsoid model WGS-84. Longitude is
the east/west angle.
Example: 'Longitude',-68.890
Example: TX.Longitude = -71.0972
Example: If you want to assign multiple values then - longitude =
[-71.0972,-71.0545,-71.0611]; TX = txsite('Longitude',longitude)

Antenna — Antenna element or array
'isotropic' (default) | object | row vector

Antenna element or array specified as an object or 'isotropic'. By default, the antenna
is 'isotropic', which defines an antenna that radiates uniformly in all directions.

AntennaAngle — Antenna x-axis angle
0 (default) | numeric scalar | 2-by-1 vector | 2-by-N matrix

Antenna x-axis angle, specified as a numeric scalar or a 2-by-1 vector or a 2-by-N matrix
in degrees.

4 System Objects — Alphabetical List

4-1848

The azimuth angle measured counterclockwise from the east to the antenna x-axis.

The elevation angle measures from the horizontal plane to antenna x-axis from -90 to 90
degrees.
Example: 'AntennaAngle',25
Example: TX.AntennaAngle = [25,-80]

AntennaHeight — Antenna height above surface
10 (default) | non-negative numeric scalar | row vector

Antenna height from the ground or building surface, specified as a non-negative numeric
scalar in meters. Maximum value for this property is 6,371,000 m.

If the site coincides with the building, the height is measured from the top of the building
to the center of the antenna. Otherwise,the height is measured from ground elevation to
the center of the antenna.
Example: 'AntennaHeight',25
Example: TX.AntennaHeight = 15
Data Types:

SystemLoss — System loss
0 (default) | nonnegative numeric scalar | row vector

System loss, specified as a non-negative numeric scalar in dB.

System loss includes transmission line loss and any other miscellaneous system losses.
Example: 'SystemLoss',10
Example: txsite.SystemLoss = 10
Data Types:

TransmitterFrequency — Transmitter operating frequency
1.9000e+09 (default) | numeric scalar | row vector

Transmitter operating frequency, specified as a numeric scalar in Hz. The range is from
1e3 to 200e9.
Example: 'TransmitterFrequency',30e9
Example: txsite.TransmitterFrequency = 30e9

 txsite

4-1849

Data Types: double

TransmitterPower — Signal power at transmitter output
10 (default) | positive numeric scalar

Signal power at transmitter output, specified as a positive numeric scalar in watts. The
transmitter out is connected to the antenna.
Example: 'TransmitterPower',30
Example: txsite.TransmitterPower = 30
Data Types: double

Object Functions
show Show site location on map
hide Hide site location on map
distance Distance between sites
angle Angle between sites
elevation Elevation of site
location Location coordinates at a given distance and angle from site
los Plot or compute the line-of-sight (LOS) visibility between sites on a map
coverage Display coverage map
sinr Display signal-to-interference-plus-noise ratio (SINR) map
pattern Plot antenna radiation pattern on map

Examples

Default Transmitter Site

Create and view a transmitter site at a latitude of 42.3001 and a longitude of -71.3504.

tx = txsite('Name','MathWorks Apple Hill','Latitude',42.3001,...
 'Longitude',-71.3504)

tx =
 txsite with properties:

 Name: 'MathWorks Apple Hill'
 Latitude: 42.3001

4 System Objects — Alphabetical List

4-1850

 Longitude: -71.3504
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 10
 SystemLoss: 0
 TransmitterFrequency: 1.9000e+09
 TransmitterPower: 10

show(tx)

View the coverage of the antenna.

pattern(tx)

 txsite

4-1851

See Also
rxsite | siteviewer

Introduced in R2017b

4 System Objects — Alphabetical List

4-1852

